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Abstract

We study (p-harmonic) singular functions, defined by means of upper gradients, in bounded domains in 
metric measure spaces. It is shown that singular functions exist if and only if the complement of the domain 
has positive capacity, and that they satisfy very precise capacitary identities for superlevel sets. Suitably 
normalized singular functions are called Green functions. Uniqueness of Green functions is largely an open 
problem beyond unweighted Rn, but we show that all Green functions (in a given domain and with the 
same singularity) are comparable. As a consequence, for p-harmonic functions with a given pole we obtain 
a similar comparison result near the pole. Various characterizations of singular functions are also given. 
Our results hold in complete metric spaces with a doubling measure supporting a p-Poincaré inequality, or 
under similar local assumptions.
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1. Introduction

Let � ⊂ Rn be a bounded domain, and let x0 ∈ �. Then u is a p-harmonic Green function in 
� with singularity at x0 if

�pu := div(|∇u|p−2∇u) = −δx0 in � (1.1)

with zero boundary values on ∂� (in Sobolev sense), where δx0 is the Dirac measure at x0. Such a 
Green function is in particular p-harmonic in � \{x0} and p-superharmonic in the whole domain 
�. If 1 < p ≤ n, it is also unbounded. For example, the p-harmonic Green function in the unit 
ball in unweighted Rn is given by

u(x) = ω
1/(1−p)

n−1

⎧⎨
⎩

p − 1

|n − p|
∣∣|x|(p−n)/(n−1) − 1

∣∣, if p �= n,

− log |x|, if p = n,

where ωn−1 is the surface area of Sn−1.
In metric measure spaces, Holopainen–Shanmugalingam [32] gave a definition of singular 

functions, which behave similarly to the Green functions in Rn. In this paper we introduce a 
simpler definition of singular functions, and then define Green functions as suitably normalized 
singular functions. See Section 12 for the definition from [32] and for a discussion on the relation 
between these different definitions.

In a metric measure space X = (X, d, μ) there is (a priori) no equation available for defining 
p-harmonic functions, and they are instead defined as local minimizers of the p-energy integral

ˆ
g

p
u dμ,

where gu is the minimal p-weak upper gradient of u, see Definition 2.1. This definition of p-
harmonic functions is in, e.g., Rn equivalent to the definition using the p-Laplace operator �pu.

Definition 1.1. Let � ⊂ X be a bounded domain. A positive function u : � → (0, ∞] is a singu-
lar function in � with singularity at x0 ∈ � if it satisfies the following properties:

(S1) u is p-superharmonic in �;
(S2) u is p-harmonic in � \ {x0};
(S3) u(x0) = sup� u;
(S4) inf� u = 0;
(S5) ũ ∈ N

1,p

loc (X \ {x0}), where

ũ =
{

u in �,

0 on X \ �.

There is actually some redundancy in this definition under very mild assumptions, see The-
orem 1.6 and Remark 6.3. Singular functions are sometimes called Green functions in the 
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literature, and vice versa. Moreover they can be normalized, or pseudonormalized, in differ-
ent ways. For Green functions, we require the following precise normalization in terms of the 
variational capacity of superlevel sets.

Definition 1.2. Let � ⊂ X be a bounded domain. A Green function is a singular function which 
satisfies

capp(�b,�) = b1−p, when 0 < b < u(x0), (1.2)

where �b = {x ∈ � : u(x) ≥ b}.

In fact, it follows that Green functions u satisfy

capp(�b,�a) = (b − a)1−p, when 0 ≤ a < b ≤ u(x0), (1.3)

where �a = {x ∈ � : u(x) > a} and we interpret ∞1−p as 0, see Theorem 9.3.
In unweighted Rn, the study of singular and (p-harmonic) Green functions with p �= 2 goes 

back to Serrin [41], [42]. On domains in weighted Rn (with a p-admissible weight) the existence 
of singular functions follows from Heinonen–Kilpeläinen–Martio [28, Theorem 7.39]. (Instead 
of (S5) they showed that condition (b.2) in Theorem 7.2 holds, but in view of Theorem 7.2 this 
establishes the existence of singular functions in our sense.)

The classical p-harmonic Green functions defined by (1.1) in unweighted Euclidean domains 
(and similarly for domains in weighted Rn with a p-admissible weight) coincide with the Green 
functions given by Definition 1.2, see Remark 9.4. Uniqueness of Green functions in unweighted 
Euclidean domains was for p �= 2 established by Kichenassamy–Veron [35] (see Section 9), 
but is not really known beyond that. In particular, it remains open in weighted Rn. However, 
Holopainen [31, Theorem 3.22] proved uniqueness in regular relatively compact domains in n-di-
mensional Riemannian manifolds (equipped with their natural measures) when p = n. Moreover, 
in Balogh–Holopainen–Tyson [2], uniqueness was shown for global Q-harmonic Green func-
tions in Carnot groups of homogeneous dimension Q.

In this paper we show the existence of singular functions and also of Green functions satisfy-
ing the precise normalization (1.2), or equivalently (1.3), under the following standard assump-
tions on the metric measure space X; see Section 2 for the relevant definitions.

We make the following general assumptions in the theorems in the introduction: Assume that 
1 < p < ∞ and that X is a complete metric space equipped with a doubling measure μ sup-
porting a p-Poincaré inequality. Let � ⊂ X be a bounded domain and let x0 ∈ �. We also write 
Br = B(x0, r) for r > 0.

These assumptions are fulfilled in weighted Rn equipped with a p-admissible measure, on 
Riemannian manifolds and Carnot–Carathéodory spaces equipped with their natural measures, 
and in many other situations, see Sections 2 and 13 for further details. Actually, the above as-
sumptions on the space X can be relaxed to similar local assumptions. The same applies also to 
our other results, see Section 11 for details.

The following theorem summarizes some of our main results.
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Theorem 1.3.

(a) There exists a Green function (or equivalently, in view of (b), a singular function) in � with 
singularity at x0 if and only if Cp(X \ �) > 0 (which is always true if X is unbounded).

(b) If u is a singular function in � with singularity at x0, then there is a unique α > 0 such that 
αu is a Green function.

(c) If u and v are two Green functions in � with singularity at x0, then

u � v, (1.4)

where the comparison constants depend only on p, the doubling constant and the constants 
in the Poincaré inequality. If moreover Cp({x0}) > 0, then u = v and it is a multiple of the 
capacitary potential for {x0} in �.

(d) If u is a Green function (or equivalently, in view of (b), a singular function) in � with 
singularity at x0, then u is bounded if and only if Cp({x0}) > 0.

When Cp({x0}) = 0, Theorem 1.3 (c) gives almost uniqueness of Green functions, and in 
particular shows that all Green functions have the same growth behaviour near the singularity. 
As mentioned above, uniqueness of Green functions is not known even in weighted Rn (when 
Cp({x0}) = 0). Proposition 5.3 in our forthcoming paper [14] shows that Cp({x0}) = 0 if and 
only if

δˆ

0

(
ρ

μ(Bρ)

)1/(p−1)

dρ = ∞ for some (or equivalently all) δ > 0,

see also Remark 4.7. In unweighted Rn, this happens if and only if p ≤ n.
The next result shows that (1.4) is strong enough to make p-harmonic functions into singular 

ones, provided that Cp({x0}) = 0.

Theorem 1.4. Assume that Cp({x0}) = 0. Let u be a singular function in � with singularity at 
x0, and let v : � → (0, ∞] be a function which is p-harmonic in � \ {x0}.

Then v is a singular function in � with singularity at x0 if and only if v � u.

Holopainen–Shanmugalingam [32] provided a construction of singular functions (according 
to their definition); see however Remark 12.2. We show in Proposition 12.3 that, under the as-
sumptions used in [32], the definition therein is essentially equivalent to Definition 1.1, up to a 
normalization. Hence we also recover the existence of singular functions according to the defi-
nition in [32]. Nevertheless, Definition 1.1 seems to be both more general and more flexible, and 
hence better suited e.g. for studying the existence and uniqueness of singular and Green func-
tions. In particular, the definition in [32] contains explicit superlevel set inequalities, whereas 
we show in Lemma 9.1 that a precise superlevel set identity is a consequence of the properties 
assumed in Definition 1.1. The absence of any a priori superlevel set requirements makes it easy 
to apply our results to general p-harmonic functions with poles, see Theorem 10.1.

From the superlevel set property we in turn obtain the following pointwise estimate for Green 
functions near their singularities.
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Theorem 1.5. If u is a Green function in � with singularity at x0, then for all r > 0 such that 
B50λr ⊂ � and all x ∈ ∂Br ,

u(x) � capp(Br,�)1/(1−p), (1.5)

where the comparison constants depend only on p, the doubling constant and the constants in 
the Poincaré inequality. Here λ is the dilation constant in the p-Poincaré inequality.

In weighted Rn (with a p-admissible weight), (1.5) was obtained by Fabes–Jerison–Kenig [23, 
Lemma 3.1] (for p = 2) and Heinonen–Kilpeläinen–Martio [28, Theorem 7.41] (for balls and 
1 < p < ∞). For p-Laplacian-type equations of the form

divA(x,u,∇u) = B(x,u,∇u) (1.6)

in unweighted Rn, with 1 < p < ∞, it is due to Serrin [41, Theorem 12], [42, Theo-
rem 1]. In Carnot–Carathéodory spaces, (1.5) was proved by Capogna–Danielli–Garofalo [20, 
Theorem 7.1]. It was also obtained in some specific cases on metric spaces by Danielli–
Garofalo–Marola [22], see Remark 9.5. In [22, Section 6] they obtained some further results 
for Cheeger singular and Cheeger–Green functions, cf. Section 13. See also Holopainen [31, 
Section 3] for results on Green functions in regular relatively compact domains in n-dimensional 
Riemannian manifolds (equipped with their natural measures) when 1 < p ≤ n.

We also establish various useful characterizations for singular functions. Theorems 1.4 and 1.6
contain some of these, but in Sections 7–9 we obtain several additional characterizations, which 
are either more technical to state or which only hold in one of the cases Cp({x0}) = 0 or 
Cp({x0}) > 0.

Theorem 1.6. Assume that Cp(X \�) > 0 and let u : � → (0, ∞]. Then the following are equiv-
alent:

(a) u is a singular function in � with singularity at x0;
(b) u satisfies (S1), (S2) and (S5);
(c) u(x0) = limx→x0 u(x) and u satisfies (S2) and (S5).

The outline of the paper is as follows. We begin in Section 2 by recalling the basic defi-
nitions related to the analysis on metric spaces. In Section 3 we establish sharp superlevel set 
formulas for capacitary potentials. Such a formula was obtained in weighted Rn (with a p-
admissible weight) in Heinonen–Kilpeläinen–Martio [28, p. 118]. Their argument depends on 
the Euler–Lagrange equation, which is not available in the metric space setting considered here. 
Nevertheless, we are able to obtain this formula with virtually no assumptions on the metric 
space nor on the sets involved, and at the same time the proof is considerably shorter than the 
one in [28, pp. 116–118]. See Section 3 for more details.

Section 4 contains a discussion about (super)harmonic functions in the metric setting, while 
in Section 5 we obtain, with the help of harmonic extensions and Perron solutions, some finer 
properties for these functions and, in particular, for capacitary potentials.

The actual study of singular and Green functions begins in Section 6, where we record some 
easy observations concerning singular functions. Sections 7 and 8 contain proofs for the existence 
and further properties of singular functions under the respective assumptions that Cp({x0}) = 0 or 
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Cp({x0}) > 0. Then, in Section 9, we establish a sharp superlevel set property for superharmonic 
functions and show how this property yields the existence of Green functions. In Section 10 we 
study the growth behaviour of p-harmonic functions with poles. Local assumptions are discussed 
in Section 11, and in Section 12 we compare our definitions and results with those in Holopainen–
Shanmugalingam [32].

By the theory of Cheeger [21], it is possible to use also a PDE approach to the study of singu-
lar and Green functions in metric spaces satisfying the standard assumptions. In Section 13 we 
show that in this setting the Cheeger–Green functions, based on Definition 1.2, actually satisfy 
an equation corresponding to (1.1) and hence the situation is analogous to that in (weighted) 
Rn. Note, however, that Cheeger p-(super)harmonic functions, and thus also the corresponding 
singular and Green functions, differ in general from those defined by means of upper gradi-
ents.

Acknowledgment

A.B. and J.B. were supported by the Swedish Research Council, grants 2016-03424 and 621-
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2. Preliminaries

We assume throughout the paper that 1 < p < ∞ and that X = (X, d, μ) is a metric space 
equipped with a metric d and a positive complete Borel measure μ such that 0 < μ(B) < ∞
for all balls B ⊂ X. The σ -algebra on which μ is defined is obtained by the completion of the 
Borel σ -algebra. It follows that X is separable. To avoid pathological situations we assume that 
X contains at least two points.

Next we are going to introduce the necessary background on Sobolev spaces and capacities 
in metric spaces. Proofs of most of the results mentioned in this section can be found in the 
monographs Björn–Björn [8] and Heinonen–Koskela–Shanmugalingam–Tyson [30].

A curve is a continuous mapping from an interval, and a rectifiable curve is a curve with finite 
length. We will only consider curves which are nonconstant, compact and rectifiable, and thus 
each curve can be parameterized by its arc length ds. A property is said to hold for p-almost every 
curve if it fails only for a curve family � with zero p-modulus, i.e. there exists 0 ≤ ρ ∈ Lp(X)

such that 
´
γ

ρ ds = ∞ for every curve γ ∈ �.
We begin with the notion of p-weak upper gradients as defined by Koskela–MacManus [40], 

see also Heinonen–Koskela [29].

Definition 2.1. A measurable function g : X → [0, ∞] is a p-weak upper gradient of a function 
f : X → [−∞, ∞] if for p-almost every curve γ : [0, lγ ] → X,

|f (γ (0)) − f (γ (lγ ))| ≤
ˆ

γ

g ds,

where we follow the convention that the left-hand side is ∞ whenever at least one of the terms 
therein is ±∞.

If f has a p-weak upper gradient in Lp

loc(X), then it has an a.e. unique minimal p-weak upper 
gradient gf ∈ L

p
(X) in the sense that for every p-weak upper gradient g ∈ L

p
(X) of f we 
loc loc
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have gf ≤ g a.e. Following Shanmugalingam [43], we define a version of Sobolev spaces on the 
metric space X.

Definition 2.2. For a measurable function f : X → [−∞, ∞], let

‖f ‖N1,p(X) =
(ˆ

X

|f |p dμ + inf
g

ˆ

X

gp dμ

)1/p

,

where the infimum is taken over all p-weak upper gradients of f . The Newtonian space on X is

N1,p(X) = {f : ‖f ‖N1,p(X) < ∞}.

The space N1,p(X)/∼, where f ∼ h if and only if ‖f −h‖N1,p(X) = 0, is a Banach space and 
a lattice. In this paper we assume that functions in N1,p(X) are defined everywhere, not just up to 
an equivalence class in the corresponding function space. This is needed for the definition of p-
weak upper gradients to make sense. For a measurable set A ⊂ X, the Newtonian space N1,p(A)

is defined by considering (A, d|A, μ|A) as a metric space in its own right. If f, h ∈ N
1,p

loc (X), 
then gf = gh a.e. in {x ∈ X : f (x) = h(x)}. In particular, gmin{f,c} = gf χ{f <c} for any c ∈ R.

Definition 2.3. The Sobolev capacity of an arbitrary set E ⊂ X is

Cp(E) = inf
u

‖u‖p

N1,p(X)
,

where the infimum is taken over all u ∈ N1,p(X) such that u ≥ 1 on E. We say that a property 
holds quasieverywhere (q.e.) if the set of points for which it fails has Sobolev capacity zero.

The capacity is the correct gauge for distinguishing between two Newtonian functions. If 
u ∈ N1,p(X), then u ∼ v if and only if u = v q.e. Moreover, if u, v ∈ N

1,p

loc (X) and u = v a.e., 
then u = v q.e. Both the Sobolev and the variational capacity (defined below in Definition 3.1) 
are countably subadditive.

Definition 2.4. For measurable sets E ⊂ A ⊂ X, let

N
1,p

0 (E;A) = {f |E : f ∈ N1,p(A) and f = 0 on A \ E}.

If A = X, we omit X in the notation and write N1,p
0 (E). Whenever convenient, we regard func-

tions in N1,p

0 (E; A) as extended by zero to A \ E.

The measure μ is doubling if there is a constant C > 0 such that

μ(B(x,2r)) ≤ Cμ(B(x, r)) (2.1)

for all balls B(x, r) = {y ∈ X : d(x, y) < r}.
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The space X (or the measure μ) supports a p-Poincaré inequality if there exist constants 
C > 0 and λ ≥ 1 such that for all balls B = B(x, r) ⊂ X, all integrable functions u on X, and all 
p-weak upper gradients g of u,

−
ˆ

B

|u − uB |dμ ≤ Cr

(
−
ˆ

λB

gp dμ

)1/p

, (2.2)

where uB := −́
B

u dμ := ´
B

u dμ/μ(B) is the integral average and λB stands for the dilated ball 
B(x, λr).

If X is complete and μ is a doubling measure supporting a p-Poincaré inequality, then func-
tions in N1,p(X) and those in N1,p(�), for open � ⊂ X, are quasicontinuous. This will be 
important in Theorem 5.2, but affects also how we formulate various statements, such as the 
definition of the Sobolev capacity above.

If X = Rn is equipped with dμ = w dx, then w ≥ 0 is a p-admissible weight in the sense 
of Heinonen–Kilpeläinen–Martio [28] if and only if μ is a doubling measure which supports 
a p-Poincaré inequality, see Corollary 20.9 in [28] (which is only in the second edition) and 
Proposition A.17 in [8]. In this case, N1,p(Rn) and N1,p(�) are the refined Sobolev spaces 
defined in [28, p. 96], and moreover our Sobolev and variational capacities coincide with those 
in [28]; see Björn–Björn [8, Theorem 6.7 (ix) and Appendix A.2] and [9, Theorem 5.1]. The 
situation is similar on Riemannian manifolds and Carnot–Carathéodory spaces equipped with 
their natural measures; see Hajłasz–Koskela [27, Sections 10 and 11] and Section 13 below for 
further details.

Throughout the paper, we write Y � Z if there is an implicit constant C > 0 such that Y ≤ CZ. 
We also write Y � Z if Z � Y , and Y � Z if Y � Z � Y . Unless otherwise stated, we always 
allow the implicit comparison constants to depend on the standard parameters, such as p, the 
doubling constant and the constants in the Poincaré inequality.

3. Superlevel identities for capacitary potentials

Definition 3.1. If E ⊂ A are bounded subsets of X, then the variational capacity of E with 
respect to A is

capp(E,A) = inf
u

ˆ

X

g
p
u dμ, (3.1)

where the infimum is taken over all u ∈ N1,p(X) such that u ≥ 1 on E and u = 0 on X \ A. If no 
such function u exists then capp(E, A) = ∞.

One can equivalently take the above infimum over all u ∈ N1,p(X) such that u ≥ 1 q.e. on E
and u = 0 q.e. on X \ A; we call such u admissible for the capacity capp(E, A).

Since A is not required to be measurable we cannot take the integral in (3.1) over A, and it is 
also important that the minimal p-weak upper gradient of u is taken with respect to X. However, 
if A is open then the integral and the minimal p-weak upper gradient can equivalently be taken 
over A.
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Definition 3.2. Let E ⊂ A be bounded subsets of X. A capacitary potential for the condenser 
(E, A) is a minimizer for (3.1), i.e. an admissible function realizing this infimum.

Provided that capp(E, A) < ∞, there is always a minimizer u, i.e. a capacitary potential, 
by Theorem 5.13 in Björn–Björn [10]; this fact holds with no assumptions on the space. If 
capp(E, A) = ∞, there is no admissible function and hence there cannot be any capacitary po-
tential. Note that if dist(E, X \ A) > 0, then capp(E, A) < ∞. Since u is a minimizer, we have

ˆ

X

g
p
u dμ = capp(E,A). (3.2)

Under rather mild assumptions, capacitary potentials are unique up to sets of Sobolev capacity 
zero, see [10, Theorem 5.13]. For more about capacitary potentials, see also Lemmas 5.5 and 5.6
below and the comment preceding them.

One of the crucial ingredients in our estimates for Green functions is the following capacity 
formula for superlevel sets of capacitary potentials.

Theorem 3.3. Assume that E ⊂ A are bounded sets such that capp(E, A) < ∞ and let u be a 
capacitary potential of (E, A). Let Aa = {x ∈ A : u(x) > a} and Aa = {x ∈ A : u(x) ≥ a}. Then

capp(Ab,Aa) = capp(Ab,Aa) = (b − a)1−p capp(E,A), if 0 ≤ a < b ≤ 1,

capp(Ab,Aa) = capp(Ab,A
a) = (b − a)1−p capp(E,A), if 0 ≤ a < b < 1.

We reduce the proof of Theorem 3.3 to the following special cases.

Lemma 3.4. Assume that E ⊂ A are bounded sets such that capp(E, A) < ∞ and let u be a 
capacitary potential of (E, A). Let Aa = {x ∈ A : u(x) > a} and Aa = {x ∈ A : u(x) ≥ a}. Then

capp(Aa,A) = a1−p capp(E,A), if 0 < a ≤ 1, (3.3)

capp(Aa,A) = a1−p capp(E,A), if 0 < a < 1, (3.4)

capp(E ∩ Aa,Aa) = (1 − a)1−p capp(E,A), if 0 ≤ a < 1, (3.5)

capp(E ∩ Aa,Aa) = (1 − a)1−p capp(E,A), if 0 ≤ a < 1. (3.6)

Moreover, u1 = min{u/a, 1} is a capacitary potential of both (Aa, A) and (Aa, A), while u2 =
(u − au1)/(1 − a) is a capacitary potential of (E ∩ Aa, Aa) and (E ∩ Aa, Aa), under the same 
conditions on a as in (3.3)–(3.6).

The first identity (3.3) was obtained for open A in weighted Rn (with a p-admissible weight) 
in Heinonen–Kilpeläinen–Martio [28, p. 118]. Their argument depends on the Euler–Lagrange 
equation, which is not available in the metric space setting considered here. Nevertheless, the 
weaker estimate

capp(Aa,A) � a1−p capp(E,A)
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was obtained for open A in metric spaces in Björn–MacManus–Shanmugalingam [19, Lem-
ma 5.4] using a variational approach. Our proof is also based on the variational method, and still 
yields the exact identity in the metric space setting, with virtually no assumptions whatsoever on 
the metric space, but is at the same time shorter than the proofs in [28, pp. 116–118] and [19].

For open A in complete metric spaces equipped with a doubling measure supporting 
a p-Poincaré inequality, the identities (3.3) and (3.4) were recently obtained in Aikawa–
Björn–Björn–Shanmugalingam [1] using similar ideas as here.

Proof of Lemma 3.4. The identities for a = 0 and a = 1 are rather immediate, so assume that 
0 < a < 1.

Note that both u1 = 1 and u2 = 1 q.e. on E. It follows that for each t ∈ [0, 1], the function 
tu1 + (1 − t)u2 is admissible in the definition of capp(E, A). Since for a.e. x ∈ X, either gu1 = 0
or gu2 = 0, we obtain (using also (3.2)) that

capp(E,A) =
ˆ

X

g
p
u dμ ≤ tp

ˆ

X

g
p
u1 dμ + (1 − t)p

ˆ

X

g
p
u2 dμ, (3.7)

with equality for t = a. Denote the above integrals by I , I1 and I2, respectively.
If u1 were not a capacitary potential of (Aa, A), then we could replace u1 by a capacitary 

potential v of (Aa, A) on the right-hand side above. This would yield a strictly smaller right-
hand side when t = a, contradicting the fact that we have equality throughout with u1 on the 
right-hand side when t = a. Hence u1 is a capacitary potential of (Aa, A) and I1 = capp(Aa, A). 
Similarly, u2 is a capacitary potential of (E ∩ Aa, Aa) and I2 = capp(E ∩ Aa, Aa).

Next, we rewrite (3.7) and the equality in it as

I ≤ tpI1 + (1 − t)pI2 and I = apI1 + (1 − a)pI2. (3.8)

In particular, t �→ tpI1 + (1 − t)pI2 attains its minimum for t = a. Differentiating with respect to 
t and letting t = a we thus obtain that ap−1I1 = (1 − a)p−1I2. Inserting this and t = a into (3.8)
yields

I = apI1 + ap−1(1 − a)I1 = ap−1I1,

I = a(1 − a)p−1I2 + (1 − a)pI2 = (1 − a)p−1I2,

proving (3.3) and (3.6).
As u = 1 q.e. on E, we see that

capp(E ∩ Aa,Aa) ≥ capp(E ∩ Aa,A
a) = capp(E ∩ Aa,Aa)

≥ lim
ε→0+

capp(E ∩ Aa,Aa−ε) = lim
ε→0+

capp(E ∩ Aa−ε,Aa−ε),

which together with (3.6) shows that (3.5) holds. The proof of (3.4) is similar to the proof of 
(3.5). It also follows that u1 and u2 are capacitary potentials of (Aa, A) and (E ∩ Aa, Aa), 
respectively. �
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Proof of Theorem 3.3. We prove the identity for capp(Ab, Aa); the other identities are shown 
similarly. By Lemma 3.4, u1 = min{u/b, 1} is a capacitary potential of (Ab, A). Since u > a if 
and only if u1 > a/b, we get using first (3.6), with E replaced by Ab, and then (3.3) that

capp(Ab,Aa) =
(

1 − a

b

)1−p

capp(Ab,A)

=
(

1 − a

b

)1−p

b1−p capp(E,A) = (b − a)1−p capp(E,A). �
4. p-harmonic and superharmonic functions

From now on, but for Sections 10–12, we assume that X is complete, μ is doubling and 
supports a p-Poincaré inequality, � ⊂ X is a nonempty open set, and x0 ∈ � is a fixed point. We 
also write Br = B(x0, r) for r > 0. As always in this paper, 1 < p < ∞.

Since X is complete and μ is doubling, X is also proper, i.e. bounded closed sets are compact. 
It moreover follows from the assumptions that X is quasiconvex (see e.g. [8, Theorem 4.32]), and 
thus connected and locally connected. These facts will be important to keep in mind. By Keith–
Zhong [34, Theorem 1.0.1], X supports a q-Poincaré inequality for some q < p. This is assumed 
explicitly in some of the papers we refer to below.

In this section we recall the definitions of p-harmonic and superharmonic functions and 
present some of their important properties that will be needed later. For proofs of the facts not 
proven in this section, we refer to the monograph Björn–Björn [8]. The following definition of 
(super)minimizers is one of several equivalent versions in the literature, cf. Björn [4, Proposi-
tion 3.2 and Remark 3.3].

Definition 4.1. A function u ∈ N
1,p

loc (�) is a (super)minimizer in � if

ˆ

ϕ �=0

g
p
u dμ ≤

ˆ

ϕ �=0

g
p
u+ϕ dμ for all (nonnegative) ϕ ∈ N

1,p

0 (�).

A p-harmonic function is a continuous minimizer (by which we mean real-valued continuous in 
this paper).

It was shown in Kinnunen–Shanmugalingam [38] that under our standing assumptions, a min-
imizer can be modified on a set of zero (Sobolev) capacity to obtain a p-harmonic function. For 
a superminimizer u, it was shown by Kinnunen–Martio [36] that its lsc-regularization

u∗(x) := ess lim inf
y→x

u(y) = lim
r→0

ess inf
B(x,r)

u

is also a superminimizer and u∗ = u q.e.
If G is a bounded open set with Cp(X \ G) > 0 and f ∈ N1,p(G), then there is a unique 

p-harmonic function HGf in G such that HGf − f ∈ N
1,p

0 (G). The function HGf is called the 
p-harmonic extension of f . It is also the solution of the Dirichlet problem with boundary values 
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f in the Sobolev sense. Whenever convenient, we let HGf = f on ∂G or on X \ G, provided 
that f is defined therein. An important property, coming from the ellipticity of the theory, is the 
following comparison principle for f1, f2 ∈ N1,p(G),

HGf1 ≤ HGf2 whenever f1 ≤ f2 q.e. on ∂G, (4.1)

see Lemma 8.32 in [8].

Definition 4.2. A function u : � → (−∞, ∞] is superharmonic in � if

(i) u is lower semicontinuous;
(ii) u is not identically ∞ in any component of �;

(iii) for every nonempty open set G � � with Cp(X \ G) > 0, and all Lipschitz functions v on 
G, we have HGv ≤ u in G whenever v ≤ u on ∂G.

As usual, by G � � we mean that G is a compact subset of �. By Theorem 6.1 in Björn [3]
(or [8, Theorem 14.10]), this definition of superharmonicity is equivalent to the definition usually 
used in the Euclidean literature, e.g. in Heinonen–Kilpeläinen–Martio [28].

Superharmonic functions are always lsc-regularized (i.e. u∗ = u). Any lsc-regularized su-
perminimizer is superharmonic, and conversely any bounded superharmonic function is an lsc-
regularized superminimizer.

The strong minimum principle for superharmonic functions, which says that a superharmonic 
function which attains its minimum in a domain is constant therein, holds by Theorem 9.13 in 
[8]. The weak minimum principle says that if G is a nonempty bounded open set, and u ∈ C(G)

is superharmonic in G, then minG u = min∂G u. As X is connected and complete, the weak 
minimum principle follows from the strong one.

We will use the following extension property several times. It is a direct consequence of 
Theorems 6.2 and 6.3 in Björn [5] (or Theorems 12.2 and 12.3 in [8]).

Lemma 4.3. Let x0 ∈ � be such that Cp({x0}) = 0. If u ≥ 0 is p-harmonic in � \ {x0}, then u
has a unique superharmonic extension to �, given by u(x0) := lim infx→x0 u(x).

If u is in addition bounded from above or if u ∈ N1,p(� \ {x0}), then the extension is p-
harmonic in �.

Also the following observation, containing a version of the Harnack inequality, will be useful 
for us. It shows in particular that the lim inf in Lemma 4.3 is actually a true limit. Note that 
Cp({x0}) > 0 is allowed here. Recall that Br = B(x0, r).

Proposition 4.4. Let u ≥ 0 be a function which is p-harmonic in � \ {x0} and superharmonic 
in �. Then the limit a := limx→x0 u(x) exists (possibly infinite) and u(x0) = a.

Moreover, if 0 < τ ≤ 1 then there is a constant A > 0 which only depends on p, τ , the 
doubling constant of μ and the constants in the p-Poincaré inequality, such that if B = Bρ , 
50λB ⊂ � and K = B \ τB , then

maxu ≤ Aminu = Aminu. (4.2)

K K ∂B
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If Cp({x0}) = 0, then by Lemma 4.3 we actually do not need to require u to be superharmonic 
in �, only that u(x0) = lim infx→x0 u(x); the same is true for Proposition 4.5. But if Cp({x0}) > 0
then superharmonicity cannot be omitted in general, as seen by e.g. letting � = (−1, 1) ⊂ R, 
x0 = 0 and u = χ(0,1).

Proof. Let G be the component of � containing x0. Since 50λB ⊂ �, it follows from the 
Poincaré inequality that B ⊂ G, see e.g. Lemma 4.10 in Björn–Björn [11]. We start with the 
second part. Let

m = min
K

u and M = max
K

u,

which both exist and are finite as u is p-harmonic (and thus continuous) in � \ {x0}. Fix k > M . 
Then uk := min{u, k} is an lsc-regularized superminimizer in �. By the weak minimum princi-
ple for superharmonic functions and the continuity of u, we see that m = min∂B u = infB u =
infB uk .

Let B ′ = B
(
y, 14τρ

)
be a ball with centre y ∈ K such that M ≤ supB ′ uk . We shall now use 

the weak Harnack inequalities from Theorems 8.4 and 8.10 in Björn–Björn [8] (or Kinnunen–
Shanmugalingam [38] and Björn–Marola [18]). Together with the doubling property of the 
measure μ, they imply that

M ≤ sup
B ′

uk ≤ C

(
−
ˆ

2B ′
u

q
k dμ

)1/q

≤ C′
(

−
ˆ

2B

u
q
k dμ

)1/q

≤ A inf
B

uk = Am,

where q > 0 is as in Theorem 8.10 in [8] and the constants A, C and C′ depend only on p, τ , the 
doubling constant of μ and the constants in the p-Poincaré inequality. This proves (4.2).

To prove the first part of the proposition, let

m(r) = min
∂Br

u and M(r) = max
∂Br

u

for r < ρ. As above, we have m(r) = infBr u, and so m( · ) is a nonincreasing function. Thus 
m0 = limr→0+ m(r) exists.

If m0 = ∞, then limx→x0 u(x) = ∞ and we are done. Assume therefore that m0 < ∞ and 
let ε > 0. Then there is r1 > 0 such that m0 − m(r1) < ε. Thus v := u − m(r1) satisfies the 
assumptions of the proposition with � replaced by Br1 . We can thus use (4.2) to obtain that for 
0 < r < r1/50λ,

M(r) − m0 ≤ M(r) − m(r1) = max
∂Br

v ≤ Amin
∂Br

v

= A(m(r) − m(r1)) ≤ A(m0 − m(r1)) < Aε.

Letting ε → 0+ shows that lim supx→x0
u(x) = m0, and so limx→x0 u(x) exists and equals u(x0)

by the lower semicontinuity of u. �
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The following characterization may be of independent interest.

Proposition 4.5. Assume that Cp({x0}) = 0. Let u ≥ 0 be a function which is superharmonic in 
� and p-harmonic in � \ {x0}. Then the following are equivalent:

(a) u is p-harmonic in �;
(b) u is bounded in Br for some r > 0;
(c) u(x0) < ∞;
(d) u ∈ N1,p(Br) for some r > 0;
(e) gu ∈ Lp(Br) for some r > 0.

Remark 4.6. As u is p-harmonic in � \ {x0} it belongs to N1,p

loc (� \ {x0}) and thus has a minimal 
p-weak upper gradient gu ∈ L

p

loc(� \ {x0}) in � \ {x0}. Since Cp({x0}) = 0, gu is also a p-weak 
upper gradient of u within �, by Proposition 1.48 in [8]. Even though it may happen that gu

does not belong to Lp

loc(�) it is still minimal in an obvious sense. Thus gu is not as defined in 
Section 2.6 in [8], but instead coincides with the minimal p-weak upper gradient Gu of Section 5 
in Kinnunen–Martio [37] and Section 2.8 in [8]. In this paper, we will denote it by gu even within 
�. This will, in particular, apply to singular and Green functions u.

The argument above, using [8, Proposition 1.48], also shows that N1,p(Br) = N1,p(Br \ {x0})
and thus (d) can equivalently be formulated using N1,p(Br \ {x0}).

It is not known if being p-harmonic in a metric space (defined using upper gradients as here) 
is a sheaf property, see [8, Open problems 9.22 and 9.23]. This requires some care when proving
(b) ⇒ (a) and (d) ⇒ (a) below.

Proof of Proposition 4.5. (a) ⇒ (c) and (a) ⇒ (d) These implications follow directly from the 
p-harmonicity.

(b) ⇔ (c) By Proposition 4.4, u(x0) = limx→x0 u(x), from which the equivalence follows.
(b) ⇒ (a) and (d) ⇒ (a) Let �k = {x ∈ Bk : dist(x, X \ �) > 1/k} (with the convention that 

dist(x, ∅) = ∞). If (b) holds then, together with the p-harmonicity of u in � \ {x0}, it shows that 
u is bounded in �k . If (d) holds, we instead get that u ∈ N1,p(�k \ {x0}). In both cases, it follows 
from Lemma 4.3 that u is p-harmonic in �k . Hence u is p-harmonic in �, by Propositions 9.18 
and 9.21 in [8].

(d) ⇒ (e) This is trivial.
(e) ⇒ (d) This follows from the (p, p)-Poincaré inequality (see e.g. [8, Corollary 4.24]) 

together with Proposition 4.13 in [8]. �
Remark 4.7. The distinction between the cases Cp({x0}) = 0 and Cp({x0}) > 0 will often be 
important in this paper. Hence we recall that (under our standing assumptions) Proposition 1.3 in 
Björn–Björn–Lehrbäck [13] shows that Cp({x0}) = 0 if

lim inf
r→0

μ(Br)

p
= 0 or lim sup

μ(Br)

p
< ∞.
r r→0 r
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Conversely, if

lim inf
r→0

μ(Br)

rq
> 0 for some q < p,

then Cp({x0}) > 0. It is also shown in [13] that the power of decay of μ(Br) alone cannot 
determine whether Cp({x0}) = 0. However, Proposition 5.3 in our forthcoming paper [14] shows 
that Cp({x0}) = 0 if and only if

δˆ

0

(
ρ

μ(Bρ)

)1/(p−1)

dρ = ∞ for some (or equivalently all) δ > 0.

5. Perron solutions and boundary behaviour

In addition to the general assumptions from the beginning of Section 4, we assume in this 
section that � is bounded and that Cp(X \ �) > 0.

Perron solutions will be an important tool for us.

Definition 5.1. Given f : ∂� → [−∞, ∞], let Uf (�) be the collection of all superharmonic 
functions u in � that are bounded from below and satisfy

lim inf
��x→y

u(x) ≥ f (y) for all y ∈ ∂�.

The upper Perron solution of f is defined by

P �f (x) = inf
u∈Uf (�)

u(x), x ∈ �.

The lower Perron solution is defined similarly using subharmonic functions or by P �f =
−P �f . If P �f = P �f , then we denote the common value by P�f . Moreover, if P�f is real-
valued, then f is said to be resolutive (with respect to �).

We will often write Pf instead of P�f , and similarly for Pf , Pf as well as for Hf . An 
immediate consequence of Definition 5.1 is that

Pf1 ≤ Pf2 whenever f1 ≤ f2 on ∂�.

It follows from Theorem 7.2 in Kinnunen–Martio [36] (or Theorem 9.39 in [8]) that Pf ≤
Pf . In each component of �, Pf is either p-harmonic or identically ±∞, by Theorem 4.1 in 
Björn–Björn–Shanmugalingam [16]. (This and all the facts below can also be found in Chap-
ter 10 in [8].) We will need several results from [16, Sections 5 and 6], which we summarize 
as follows. (Part (a) follows from [16, Theorem 5.1] after multiplying f by a suitable Lipschitz 
cutoff function.)
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Theorem 5.2.

(a) If f ∈ N1,p(G) for some open set G ⊃ �, then Hf = Pf .
(b) If f ∈ C(∂�), then f is resolutive.
(c) If f is bounded and as in (a) or (b), and u is a bounded p-harmonic function in � such that

lim
��x→y

u(x) = f (y) for q.e. y ∈ ∂�,

then u = Pf .

Remark 5.3. In order for (a) to be possible it is important that the Newtonian function f is 
quasicontinuous, which follows from Theorem 1.1 in Björn–Björn–Shanmugalingam [17] (or 
Theorem 5.29 in [8]).

A boundary point x0 ∈ ∂� is regular if lim��x→x0 Pf (x) = f (x0) for every f ∈ C(∂�). 
We will need the following so-called Kellogg property, see Theorem 3.9 in Björn–Björn–
Shanmugalingam [15]. (The definition of regular points is different in [15], but by [16, Theo-
rem 6.1] it is equivalent to our definition.)

Theorem 5.4 (The Kellogg property). The set of irregular boundary points has capacity zero.

We will also use that regularity is a local property of the boundary, i.e. that x0 ∈ ∂� is regular 
with respect to � if and only if it is regular with respect to � ∩ B for every (or some) ball 
B � x0, see Theorem 6.1 in Björn–Björn [6] (or [8, Theorem 11.1]). Moreover, if G ⊂ � and 
x0 ∈ ∂� ∩ ∂G is regular with respect to �, then it is also regular with respect to G, see [6, 
Corollary 4.4] (or [8, Corollary 11.3]).

Another important tool in this paper is capacitary potentials, which we studied in Section 3
in very general situations. Under our standing assumptions we can say considerably more. In 
particular, capacitary potentials are unique up to sets of capacity zero, by Theorem 5.13 in Björn–
Björn [10]. In fact, it is easy to see that any capacitary potential is a solution to the KχE,0(�)-
obstacle problem, as defined in [8, Section 7], and vice versa. Thus, provided that there is a 
capacitary potential of (E, �), Theorem 8.27 in [8] shows that there is a unique lsc-regularized 
capacitary potential u, i.e. such that u∗ = u in � and u ≡ 0 on X \ �. Then u also coincides 
with the “capacitary potential” as defined in [8, Definition 11.15], and is therefore superharmonic 
in �, by [8, Proposition 9.4]. We shall sometimes call u|� a capacitary potential as well. Recall 
that a capacitary potential of (E, �) exists if and only if capp(E, �) < ∞.

We shall need the following two characterizations of capacitary potentials.

Lemma 5.5. Let E ⊂ � be relatively closed and let u : � → [0, ∞]. Then u is the lsc-regularized 
capacitary potential of (E, �) if and only if all of the following conditions hold:

(a) u is superharmonic in �;
(b) u is p-harmonic in G := � \ E;
(c) u = 1 q.e. on E;
(d) u ∈ N

1,p
(�).
0
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Moreover, u = HGu in G and

lim
��x→y

u(x) = 0 at every regular boundary point y ∈ ∂� \ E. (5.1)

In particular, (5.1) holds for q.e. y ∈ ∂� \ E.

Proof. If u is an lsc-regularized capacitary potential of (E, �), then it satisfies (c) and (d) by 
assumption, (a) by the above, and (b) by Theorem 8.28 in [8]. Moreover, it is straightforward to 
see that within G, u is the lsc-regularized solution of the K0,u(G)-obstacle problem, i.e. u = HGu

in G. Hence, (5.1) and the last statement follow from [8, Theorem 11.11 (j)] together with the 
Kellogg property (Theorem 5.4).

Conversely, if u ∈ N
1,p
0 (�) is p-harmonic in G then, by definition, u = HGu in G. If, in 

addition, u = 1 q.e. on E then u ∈ KχE,0(�) and must therefore be a capacitary potential of 
(E, �). If it is also superharmonic in �, then it is lsc-regularized. �
Lemma 5.6. Let K ⊂ � be compact and let u : � → [0, ∞]. Then u is the lsc-regularized ca-
pacitary potential of (K, �) if and only if all of the following conditions hold:

(a) u is bounded and p-harmonic in G := � \ K ;
(b) u ≡ 1 in intK ;
(c) lim

G�x→y
u(x) = χK(y) for q.e. y ∈ ∂G;

(d) u(y) = lim inf
G�x→y

u(x) for all y ∈ � ∩ ∂K .

Moreover, u = PGχK in G.

Proof. Let u be the lsc-regularized capacitary potential of (K, �) and set

ũ =

⎧⎪⎨
⎪⎩

u in � \ K,

1 in K,

0 in X \ �.

Then ũ = u q.e. in � and ũ ∈ N
1,p
0 (�). Thus

u = HGu = HGũ = PGũ = PGχK in G,

by (4.1) and Theorem 5.2 (a). (In particular, χK ∈ C(∂G) is resolutive with respect to G.) Hence
(a) holds, and so does (c) by the Kellogg property (Theorem 5.4). Since u is the lsc-regularization 
of ũ, it satisfies (b) and (d).

Conversely, if u is bounded and p-harmonic in G and satisfies (c) then u = PGχK in G by 
Theorem 5.2 (c). Hence, if u also satisfies (b) and (d), then it is the lsc-regularized capacitary 
potential of (K, �), by the first part of the proof. �
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Lemma 5.7. Assume that K ⊂ � is compact and that u : � → (0, ∞] is p-harmonic in � \ K . 
For an open set V � � such that K ⊂ V , consider the following conditions:

(b.1′) u ∈ N
1,p

0 (� \ V ; X \ V );
(b.2′) u is bounded in � \ V and

lim
��x→y

u(x) = 0 for q.e. y ∈ ∂�; (5.2)

(b.3′) u is bounded in � \ V and min{u, k} ∈ N
1,p

0 (�) for every k > 0.

Then (b.3′) ⇒ (b.1′) ⇔ (b.2′). Moreover, (5.2) can be equivalently replaced by

lim
��x→y

u(x) = 0 for every regular y ∈ ∂�. (5.3)

As u can be defined arbitrarily in K in (b.1′) and (b.2′), but not in (b.3′), we see that the 
implication (b.3′) ⇒ (b.1′) is not an equivalence.

Proof. Extend u by letting u = 0 on X \ �. Let G = � \ V .
(b.3′) ⇒ (b.1′) Since u is bounded in � \ V , we have u = uk := min{u, k} therein for large k. 

As uk ∈ N
1,p
0 (�) ⊂ N

1,p
0 (� \ V ; X \ V ), (b.1′) follows.

(b.1′) ⇒ (b.2′) As u is p-harmonic in � \ K and u ∈ N
1,p

0 (� \ V ; X \ V ), it follows from 
the definition that HGu = u in G. Since u is bounded on ∂V and vanishes on ∂�, there is α > 0
such that u ≤ αv on ∂G, where v is the lsc-regularized capacitary potential for V in �. By 
the comparison principle (4.1), u ≤ αv also in G and, in particular, u is bounded therein. Now, 
(5.3) follows from (5.1), applied to v, while (5.2) follows from (5.3) and the Kellogg property 
(Theorem 5.4).

(b.2′) ⇒ (b.1′) Let η ≥ 0 be a Lipschitz function on X such that η = 1 on ∂V and η = 0
in a neighbourhood of K ∪ (X \ �). As u is p-harmonic in � \ K and ∂V � � \ K , the 
function u|∂G = ηu|∂G is continuous. Since (5.2) or (5.3) holds, Theorem 5.2 (c) shows that 
u = PG(ηu). It follows from the Leibniz rule (see [8, Theorem 2.15]) that ηu ∈ N1,p(X). Hence 
Theorem 5.2 (a) implies that u = HG(ηu) in G, which yields u ∈ N

1,p

0 (� \ V ; X \ V ). �
Note that in the generality of Section 3, capacitary potentials are unique up to sets of capacity 

zero under rather mild conditions, by Theorem 5.13 in [10]. Nevertheless, it is far from clear if 
we can then always pick a canonical representative in a suitable way. In particular, even if A is 
open it is not at all clear if u∗ = u q.e., that is whether there always exists an lsc-regularized 
capacitary potential. Under our standing assumptions in this section it is true that u∗ = u q.e., but 
this is a consequence of the rather deep interior regularity theory for superminimizers.

6. Singular functions

In addition to the general assumptions from the beginning of Section 4, we assume in this 
section that � is a bounded domain.

Recall properties (S1)–(S5) in Definition 1.1 of singular functions, and that a domain is a 
nonempty open connected set. In this paper we are interested in singular functions on bounded 
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domains only. For simplicity, we will often just say that u is a singular function, when we im-
plicitly mean within � and with singularity at x0.

Note that a singular function must be nonconstant in �, as it is positive and (S4) holds. Our 
first observation, Proposition 6.1, shows that Cp(X \ �) > 0 is a necessary condition for the 
existence of singular functions. (We will later show that it is also sufficient.) Under this condition, 
the theory of singular functions on bounded domains splits naturally into two cases depending on 
whether Cp({x0}) = 0 or Cp({x0}) > 0, which we will consider in Sections 7 and 8, respectively. 
But first we deduce some results covering both cases simultaneously.

Proposition 6.1. If Cp(X \�) = 0, then there is no singular function in � (or more generally no 
positive superharmonic function in � satisfying (S4)).

Proof. It follows directly that X must bounded. Let u > 0 be a superharmonic function in �. By 
Theorem 6.3 in Björn [5] (or Theorem 12.3 in [8]), u has a superharmonic extension to all of X, 
and by Corollary 9.14 in [8] this extension must be constant. Hence u does not satisfy (S4) and 
is, in particular, not a singular function. �
Proposition 6.2. If Cp(X \ �) > 0 then there is no positive p-harmonic function in � which 
satisfies (S5). In particular, a singular function in � is never p-harmonic in all of �.

Proof. Assume that u is a positive p-harmonic function in � satisfying (S5). In particular, u ∈
N

1,p

loc (�). Extend u as 0 on X \ �. Since u ∈ N
1,p

loc (�) and (S5) holds, we see that u ∈ N1,p(X)

and hence u ∈ N
1,p
0 (�). But then u = Hu = H0 ≡ 0 in �, which is a contradiction as u is 

positive, i.e. no such function exists.
Finally, if there is a singular function in �, then Proposition 6.1 implies that Cp(X \ �) > 0, 

and thus the singular function cannot be p-harmonic in � by the first part of the lemma. �
Remark 6.3. There is actually some redundancy in the definition of singular functions. As we 
shall see, by Theorem 8.5 below, if Cp(X \ �) > 0 then it is enough to assume that u satisfies
(S1), (S2) and (S5). However, in the somewhat pathological case Cp(X \ �) = 0, this is not 
enough as it would not prevent a constant function from being a singular function. To cover also 
this case it is enough to additionally assume (S4) or to assume that u is nonconstant, or that u is 
not p-harmonic in �.

Even though (S3) is thus redundant, we have included it in the definition as it seems such a 
natural requirement for u. Also, for unbounded domains it seems that one may need to require at 
least these five properties to obtain a coherent theory of singular functions, but we postpone such 
a study to a future paper.

That (S1) cannot be dropped even if (S3) is replaced by the stronger requirement

(S3′) u(x0) = sup�\{x0} u,

follows by considering the function

u(x) =
{

1 + x, −1 < x < 0,

2 − 2x, 0 ≤ x < 1,
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which is p-harmonic in (−1, 1) \ {0} ⊂ X := R. (Note that if (S1) holds, then (S3) ⇔ (S3′), but 
without assuming (S1), assuming (S3′) might be more natural.)

However, if Cp({x0}) = 0 then it follows from Theorem 7.2 below that (S1) can be replaced by 
e.g. u(x0) = ∞, and thus Proposition 4.4 shows that, in this case, (S1) can be dropped provided 
that (S3) is kept.

To see that (S2) cannot be dropped we instead let u be the lsc-regularized capacitary potential 
of (B1, B2) in Rn. That (S5) cannot be dropped follows from Example 7.3 below.

We conclude this section by summarizing some useful properties of singular functions.

Proposition 6.4. If u is a singular function in � with singularity at x0 ∈ �, then

(a) u(x0) = limx→x0 u(x);

(b) u ∈ N
1,p
0 (� \ Br ; X \ Br) for every r > 0;

(c) min{u, k} ∈ N
1,p

0 (�) for every k > 0;
(d) u is bounded in � \ Br for every r > 0;
(e) lim

��x→y
u(x) = 0 for q.e. y ∈ ∂�, namely for all y ∈ ∂� that are regular with respect to �.

Note that (b) is just an equivalent way of writing (S5), when � is bounded, but not when � is 
unbounded. We therefore prefer to have the formulation (S5) in the definition.

Proof. (a) This follows from Proposition 4.4.
(b) As � is bounded, (b) is equivalent to (S5).
(c) Let uk = min{u, k} which is a bounded superharmonic function, and thus a supermini-

mizer, and in particular uk ∈ N
1,p

loc (�). From (b) it then follows that uk ∈ N
1,p
0 (�).

(d) and (e) These follow from the already proven (b) and Lemma 5.7 applied to K = {x0} and 
V = Br , together with (5.3). �
7. Characterizations when Cp({x0}) = 0

In addition to the general assumptions from the beginning of Section 4, we assume in Sec-
tions 7–9 that � is a bounded domain such that Cp(X \ �) > 0. In particular, Cp(∂�) > 0 by
[8, Lemma 4.5].

As already mentioned, the theory of singular functions (on bounded domains) splits naturally 
into the two cases Cp({x0}) = 0 and Cp({x0}) > 0. We postpone the study of the latter case to 
Section 8 and concentrate on the case Cp({x0}) = 0 in this section.

Note first that, when Cp({x0}) = 0, it follows from the extension Lemma 4.3 that the require-
ment of superharmonicity in the definition of singular functions can be replaced by the condition 
that u(x0) = lim infx→x0 u(x). In fact, by the following result, this also forces u(x0) = ∞.

Lemma 7.1. Assume that Cp({x0}) = 0. Also assume that u is a singular function in � with 
singularity at x0, or more generally that u : � → (0, ∞] satisfies (S1), (S2) and (S5) in Defini-
tion 1.1. Then u(x0) = limx→x0 u(x) = ∞.

That we only assume (S1), (S2) and (S5) will play a role in the proof of Theorem 7.2.
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Proof. We already know from Proposition 4.4 that u(x0) = limx→x0 u(x). If u(x0) were finite, 
then u would be bounded in �, and thus u|�\{x0} would have a p-harmonic extension to � by 
Lemma 4.3. But this contradicts Proposition 6.2. �

Singular functions can be characterized in many ways. Our aim is to have as simple and 
flexible criteria as possible. Note that u is assumed to be positive, and that condition (a.3) can 
always be guaranteed by redefining u at x0.

Theorem 7.2. Assume that Cp({x0}) = 0. Let u : � → (0, ∞] and consider the following prop-
erties:

(a.1) u is superharmonic in �;
(a.2) u(x0) = limx→x0 u(x);
(a.3) u(x0) = lim infx→x0 u(x);
(a.4) u(x0) = ∞;

and

(b.1) u ∈ N
1,p

0 (� \ Br ; X \ Br) for every r > 0;
(b.2) u is bounded in � \ Br for every r > 0, and

lim
��x→y

u(x) = 0 for q.e. y ∈ ∂�; (7.1)

(b.3) u is bounded in � \ Br for every r > 0, and min{u, k} ∈ N
1,p
0 (�) for every k > 0.

Let j ∈ {1, 2, 3, 4} and k ∈ {1, 2, 3}. Then u is a singular function in � with singularity at x0
if and only if u is p-harmonic in � \ {x0} and u satisfies (a.j ) and (b.k).

Example 7.3. Let x0 = 0, x1 = (1, 0, . . . , 0) and � = B(0, 2) \ {x1} in (unweighted) Rn, n ≥ 3, 
with p = 2. Also let v(x) = |x|2−n + |x − x1|2−n and u = v − Pv, where Pv is the Perron 
solution in �. Then, by linearity, u is 2-harmonic in � \ {x0} and superharmonic in �. In fact, u
satisfies (S1)–(S4) in Definition 1.1, but not (S5). It also satisfies (a.1)–(a.4), but not (b.1)–(b.3). 
This shows, in particular, that the boundedness assumptions in (b.2) and (b.3) cannot be dropped.

As Cp({x0}) = 0, conditions (b.1)–(b.3) allow u(x0) to be arbitrary, which shows that condi-
tions (a.1)–(a.4) cannot be omitted.

Proof of Theorem 7.2. If u is a singular function, then u is p-harmonic in � \ {x0} and satisfies
(a.1) by assumption. It further satisfies (a.2), (a.3) and (b.1)–(b.3) by Proposition 6.4, and (a.4)
by Lemma 7.1.

Conversely, assume that u is p-harmonic in � \ {x0} and satisfies (a.j ) and (b.k) for some 
j and k. Lemma 5.7 shows that (b.3) ⇒ (b.1) ⇔ (b.2). The implication (a.2) ⇒ (a.3) is trivial, 
while (a.3) ⇒ (a.1) holds by Lemma 4.3 since Cp({x0}) = 0.

We postpone the case j = 4, but otherwise, regardless of the values of j, k ∈ {1, 2, 3}, we 
have shown that (a.1), (b.1) and (b.2) are satisfied. Thus (S1) and (S2) are satisfied. As (7.1)
holds and Cp(∂�) > 0, we obtain (S4). Extending u by 0 on X \ � and letting r → 0 in (b.1)
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yields (S5). By Lemma 7.1, u(x0) = ∞ = sup� u and (S3) holds, which concludes the proof that 
u is a singular function.

Finally, consider the case when j = 4 and k ∈ {1, 2, 3}. We have already shown that (b.2) is 
satisfied. Let

ũ(x) =
{

u(x), x �= x0,

lim infy→x0 u(y), x = x0.

Then ũ is p-harmonic in � \{x0} and satisfies (a.3) and (b.2). So by the already established cases, 
ũ is a singular function. Lemma 7.1 shows that ũ(x0) = ∞, i.e. u = ũ is a singular function. �

We are now prepared to prove the existence of singular functions at points having zero capac-
ity.

Theorem 7.4. If Cp({x0}) = 0, then there is a singular function in � with singularity at x0.

Proof. Let r0 > 0 be so small that Br0 � �. For 0 < r ≤ r0, let ur be the lsc-regularized ca-
pacitary potential for Br in �. Then ur is superharmonic in � and p-harmonic in � \ Br , by 
Lemma 5.5.

Let Mr = max∂Br0
ur > 0, which exists by the continuity of ur in � \ Br (while Mr0 = 1

as Cp(∂Br0) > 0). Also, Mr > 0 by the strong minimum principle for superharmonic functions 
since Cp(Br) > 0. Let vr = ur/Mr . Then max∂Br0

vr = 1. Thus we can use Harnack’s con-
vergence theorem (Proposition 5.1 in Shanmugalingam [44] or Theorem 9.37 in [8]) to find a 
subsequence {vrj }∞j=1 converging locally uniformly in � \ {x0} to a nonnegative p-harmonic 
function u. As Cp({x0}) = 0, Lemma 4.3 implies that u has a superharmonic extension to �
given by u(x0) := lim infx→x0 u(x). Clearly u ≤ 1 on ∂Br0 , and from the local uniform conver-
gence and the compactness of ∂Br0 we conclude that max∂Br0

u = 1. Thus u is positive in � by 
the strong minimum principle for superharmonic functions.

By definition and the comparison principle (4.1),

vr = HGvr ≤ HGur0 = ur0 in G := � \ Br0

for all 0 < r ≤ r0, and hence 0 ≤ u ≤ ur0 in G. Thus, by Lemma 5.5,

0 ≤ lim inf
��x→y

u(x) ≤ lim sup
��x→y

u(x) ≤ lim
��x→y

ur0(x) = 0 for q.e. y ∈ ∂�,

i.e. (7.1) holds. Since u is p-harmonic, and thus continuous, in � \ {x0}, it is bounded in the 
compact set Br0 \ Br for every r > 0. As also 0 ≤ u ≤ 1 in G = � \ Br0 , we see that u is 
bounded in � \ Br for every r > 0.

We have thus shown that u is a positive p-harmonic function in � \ {x0}, which satisfies (a.1)
and (b.2), and hence u is a singular function by Theorem 7.2. �
Remark 7.5. In the above proof we constructed a singular function using capacitary potentials 
of balls. This is just for convenience, but there is nothing special about balls in this case. Indeed, 
if we let G1 ⊃ G2 ⊃ . . . be open sets such that G1 � � and 

⋂∞
k=1 Gk = {x0}, then we can 

instead use the capacitary potentials for Gk . It is an open question, even in weighted Rn (with 
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a p-admissible weight), whether all such constructions lead to the same singular function (upon 
proper normalization as in (1.2)).

We conclude this section with a simple nonintegrability result for singular functions. Part (c) is 
mainly interesting as contrasting Proposition 8.4 below, see also Theorem 8.6. In our forthcoming 
paper [14], we will give much more precise results on the Lt integrability and nonintegrability 
of u and gu for singular and Green functions u, where t > 0.

Proposition 7.6. Assume that Cp({x0}) = 0 and that u is a singular function in � with singularity 
at x0. Extend u by letting u = 0 on X \ �. Then the following are true:

(a) u /∈ N1,p(Br) is true for every r > 0;
(b)

´
Br

g
p
u dμ = ∞ for every r > 0;

(c) u /∈ N
1,p
0 (�).

Proof. Parts (a) and (b) follow directly from Proposition 6.2 or Lemma 7.1, together with Propo-
sition 4.5. Part (c) then follows directly from (a). �
8. Characterizations when Cp({x0}) > 0

Recall the standing assumptions from the beginning of Section 7.

We now turn to the case when the singularity point x0 has positive capacity. As we shall 
see, singular functions are unique in this case, up to multiplication by positive constants. By 
Theorem 8.2 below, there is also an explicit representative for singular functions, namely the 
capacitary potential for {x0} in �.

Lemma 8.1. Assume that Cp({x0}) > 0, and let u be a p-harmonic function in � \ {x0}. Then 
lim infx→x0 u(x) < ∞.

In particular, if limx→x0 u(x) =: u(x0) exists, then u(x0) ∈ R.

Proof. If lim infx→x0 u(x) = ∞, then there is a connected open neighbourhood G ⊂ � of x0
such that u > 0 in G \ {x0}. The definition of Perron solutions implies that u/k ≥ PG\{x0}χ{x0}
for all k > 0. Letting k → ∞ shows that PG\{x0}χ{x0} ≡ 0, which contradicts Cp({x0}) > 0 and 
the Kellogg property (Theorem 5.4). Hence lim infx→x0 u(x) < ∞.

Applying this also to −u shows that when u(x0) := limx→x0 u(x) exists it must be real. �
The following is an existence and uniqueness result (up to normalization) for singular func-

tions when Cp({x0}) > 0.

Theorem 8.2. Assume that Cp({x0}) > 0, and let v be the lsc-regularized capacitary potential 
for {x0} in �. Then a function u is a singular function in � with singularity at x0 if and only if 
there is a constant 0 < b < ∞ such that u = bv in �. Moreover, b = u(x0) = limx→x0 u(x) in 
that case.

In particular, v is a singular function in � with singularity at x0.

Proof. Let u = bv. By definition, u is nonnegative and bounded. Lemma 5.5 shows that u is p-
harmonic in � \ {x0} and superharmonic in �. As Cp(∂�) > 0 and Cp({x0}) > 0, we conclude 
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from Lemma 5.6 (c) that inf� u = 0 and u(x0) = b = sup� u. In particular, u �≡ 0, and so u > 0 in 
� by the strong minimum principle for superharmonic functions. Thus, u is a singular function.

Conversely assume that u is a singular function. Proposition 4.4 and Lemma 8.1 imply 
that b := u(x0) = limx→x0 u(x) < ∞. Thus u is a bounded superharmonic function in some 
neighbourhood Br of x0, and in particular u ∈ N1,p(Br/2). Together with (S5) this shows that 
u ∈ N

1,p

0 (�) and Lemma 5.5 implies that u = bv in �. �
Also when Cp({x0}) > 0, singular functions can be characterized in many ways.

Theorem 8.3. Assume that Cp({x0}) > 0. Let u : � → (0, ∞] and consider the properties (a.j ) 
and (b.k) from Theorem 7.2.

Let j ∈ {1, 2} and k ∈ {1, 2, 3}. Then u is a singular function in � with singularity at x0 if and 
only if u is p-harmonic in � \ {x0} and u satisfies (a.j ) and (b.k).

Note that compared with Theorem 7.2 (for the case when Cp({x0}) = 0) conditions (a.3) and
(a.4) are omitted here. By Theorem 8.2, condition (a.4) is never satisfied for singular functions 
when Cp({x0}) > 0, so it cannot be included here. To see that (a.3) cannot be included, consider 
the function

u(x) =
{

1 + x, −1 < x ≤ 0,

2 − 2x, 0 < x < 1,

which is p-harmonic in (−1, 1) \ {0} ⊂ X := R and satisfies (a.3), (b.2) and (b.1), but not (a.2), 
and hence not (a.1) either, by Proposition 4.4. In particular, u is not a singular function. Also
(b.3) fails as functions in N1,p(R) are continuous.

The above u also shows that (a.j ) cannot be dropped if k ∈ {1, 2}. We do not know if (a.j ) is 
redundant when (b.3) is assumed. That (b.1)–(b.3) cannot be dropped follows by considering the 
constant function u ≡ 1.

Proof of Theorem 8.3. If u is a singular function, then u is p-harmonic in � \ {x0} and satisfies
(a.1) by assumption. It further satisfies (a.2) and (b.1)–(b.3) by Proposition 6.4.

Conversely, assume that u is p-harmonic in � \ {x0} and u satisfies (a.j ) and (b.k) for some 
j ∈ {1, 2} and k ∈ {1, 2, 3}. Lemma 5.7 shows that (b.3) ⇒ (b.1) ⇔ (b.2).

If (a.2) holds, then u(x0) = limx→x0 u(x) < ∞ by Lemma 8.1. Hence, in view of (b.2), u
is bounded in �. Lemma 5.6, together with (a.2) and (7.1) from (b.2), implies that u = u(x0)v, 
where v is the lsc-regularized capacitary potential for {x0} in �. In particular, u is superharmonic 
in �, and thus (a.2) ⇒ (a.1).

Hence, regardless of the values of j and k, we have shown that (a.1), (b.1) and (b.2) hold, and 
so (S1), (S2) and (S5) are satisfied. As (7.1) holds and Cp(∂�) > 0, we obtain (S4).

It remains to show that (S3) holds. If u(x0) were ∞ then this would be immediate, so we 
may assume that u(x0) < ∞. Proposition 4.4 implies that limx→x0 u(x) = u(x0) and hence 
u = P�\{x0}(u(x0)χ{x0}), by (7.1) and Theorem 5.2 (c). Thus u ≤ u(x0) in �, and hence (S3)
holds. �

The following result shows that if we strengthen (b.1) in a suitable way, we do not even need 
to assume (a.1) or (a.2).
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Proposition 8.4. Assume that Cp({x0}) > 0. Then u : � → (0, ∞] is a singular function in �
with singularity at x0 if and only if u is p-harmonic in � \ {x0} and u ∈ N

1,p
0 (�).

Proposition 7.6 shows that the corresponding characterization is false when Cp({x0}) = 0. It 
also shows that condition (b.1) cannot be replaced by assuming that u ∈ N

1,p
0 (�) in Theorem 7.2, 

nor in Theorem 8.5 below.

Proof. If u is a singular function, then u is p-harmonic in � \ {x0} and u ∈ N
1,p

0 (�), by Theo-
rem 8.2.

Conversely, assume that u ∈ N
1,p

0 (�) is p-harmonic in � \ {x0}. As Cp({x0}) > 0, we have 
u(x0) < ∞, by [8, Proposition 1.30]. By definition, u = H�\{x0}u, and Lemma 5.5 implies that

u = H�\{x0}u = H�\{x0}(u(x0)v) = u(x0)v,

where v is the lsc-regularized capacitary potential for {x0} in �. By Theorem 8.2, u is a singular 
function in �. �

We conclude this section by summarizing which characterizations are true in both cases 
Cp({x0}) = 0 and Cp({x0}) > 0. Here (d) is added compared with Theorem 1.6. Recall that 
� is bounded and Cp(X \ �) > 0 in this section.

Theorem 8.5. Let u : � → (0, ∞], j ∈ {1, 2} and k ∈ {1, 2, 3}. Assume that u is p-harmonic in 
� \ {x0}. Then the following are equivalent:

(a) u is a singular function in � with singularity at x0;
(b) u satisfies (S1) and (S5);
(c) u(x0) = limx→x0 u(x) and u satisfies (S5);
(d) u satisfies (a.j ) and (b.k) from Theorem 7.2.

Proof of Theorems 1.6 and 8.5. These results follow directly from Theorems 7.2 and 8.3. �
We can now also characterize whether Cp({x0}) is zero or not in terms of various properties 

of singular functions as follows.

Theorem 8.6. Assume that u is a singular function in � with singularity at x0, and extend u by 
letting u = 0 on X \ �. Then the following are equivalent:

(a) Cp({x0}) > 0;
(b) u(x0) < ∞;
(c) u is bounded;
(d) u ∈ N1,p(Br) for some r > 0;
(e) u ∈ N1,p(X);
(f) u ∈ N

1,p

0 (�);
(g)

´
Br

g
p
u dμ < ∞ for some r > 0;

(h) gu ∈ Lp(X).
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Proof. Assume first that Cp({x0}) = 0, i.e. (a) fails. In this case, (b) fails by Lemma 7.1, while
(d), (f) and (g) fail by Proposition 7.6. Hence also (c), (e) and (h) fail.

Assume now instead that Cp({x0}) > 0, i.e. (a) is true. Then (f) is true by Proposition 8.4, and 
thus (d)–(h) all hold. Finally, (b) and (c) hold by Theorem 8.2. �
9. Superlevel set estimates and Green functions

Recall the standing assumptions from the beginning of Section 7.

The following result about superlevel sets of superharmonic functions generalizes (and has 
been inspired by) Lemma 3.5 in Holopainen–Shanmugalingam [32]. This result holds even with-
out assuming that � is connected, i.e. for nonempty open � with Cp(X \ �) > 0. Recall that

Cp- ess inf
E

u := sup{k ∈ R : Cp({x ∈ E : u(x) < k}) = 0}.

Lemma 9.1. Let E ⊂ � be relatively closed and let u > 0 be a superharmonic function in �
which is p-harmonic in � \ E and such that min{u, k} ∈ N

1,p
0 (�) for all k > 0. Then there is a 

constant � > 0 such that

capp(�b,�a) = capp(�b,�a) = �(b − a)1−p, when 0 ≤ a < b ≤ Cp- ess inf
E

u,

capp(�b,�a) = capp(�b,�
a) = �(b − a)1−p, when 0 ≤ a < b < Cp- ess inf

E
u,

where �b = {x ∈ � : u(x) ≥ b}, �a = {x ∈ � : u(x) > a} and we interpret ∞1−p as 0.

The set A = {x : u(x) = ∞} is a so-called polar set, and thus Cp(A) = 0, by Proposition 2.2 
in Kinnunen–Shanmugalingam [39] (or Corollary 9.51 in [8]). Hence Cp- ess infE u = ∞ if and 
only if Cp(E) = 0, which in turn happens if and only if capp(E, �) = 0, by Lemma 6.15 in [8], 
i.e. if and only if the lsc-regularized capacitary potential of (E, �) is identically zero. In this case 
it also follows from Lemma 9.1 that u must be unbounded as capp(�b, �) = �b1−p > 0 for all 
b > 0.

Note that � = bp−1 capp(�b, �) whenever b satisfies the assumptions above. In particular if 
b = 1 is allowed, then � = capp(�1, �). Note also that even when E = {x0}, it is not necessary 
for u in Lemma 9.1 to be a singular function, see the double-pole function in Example 7.3.

Proof of Lemma 9.1. Note that as u is lower semicontinuous, �a is open. If Cp- ess infE u = 0, 
there is nothing to prove and we may let � = 1. (If E = ∅, we consider Cp- ess infE u and infE u

to be ∞, as usual.) As �∞ is a polar set, we have Cp(�∞) = 0 and thus capp(�∞, �a) =
capp(�∞, �a) = 0, i.e. the first formula holds when b = ∞. We assume therefore that b < ∞
and Cp- ess infE u > 0 in the rest of the proof.

Let k = Cp- ess infE u if it is finite, and b < k < ∞ otherwise. Then Cp(E \ �k) = 0. As u is 
continuous in � \ E, we see that �k ∪ E must be relatively closed. By Lemma 5.5, uk/k is the 
lsc-regularized capacitary potential of (�k ∪ E, �), and thus of (�k, �), since Cp(E \ �k) = 0. 
Hence, by Theorem 3.3,

capp(�b,�a) =
(

b − a
)1−p

capp(�k,�) = kp−1(b − a)1−p capp(�k,�).

k k
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This proves one identity in the statement of the lemma, upon letting � = kp−1 capp(�k, �)

(which is independent of the choice of k). The other three identities then follow from Theo-
rem 3.3.

To see that � > 0, we note that as u > 0, there is some b such that 0 < b < Cp- ess infE u and 
Cp(�b) > 0, and hence � = bp−1 capp(�b, �) > 0, by Lemma 6.15 in [8]. �

In the proof above we used that �k ∪ E is relatively closed. Observe that it is not always true 
that �k itself is relatively closed, as seen by the following example.

Example 9.2. In unweighted R3 with p = 2, x0 = 0 and xj = (2−j , 0, 0), j = 1, 2, . . . , let

u(x) =
∞∑

j=1

4−j

|x − xj | , � = B(0,1) and E = {x0, x1, . . .}.

By linearity and e.g. Lemma 7.3 in Heinonen–Kilpeläinen–Martio [28], u is superharmonic in 
R3 and harmonic in R3 \ E. As u(xj ) = ∞, j = 1, 2, . . . , and u(0) = 1, it follows that �k is not 
relatively closed when k > 1.

Recall Definition 1.2 of Green functions. We can now relate singular and Green functions in 
the following way.

Theorem 9.3. Let v be a singular function in � with singularity at x0, and let

α =

⎧⎪⎨
⎪⎩

capp({x ∈ � : v(x) ≥ 1},�)1/(1−p), if Cp({x0}) = 0,

1

v(x0)
capp({x0},�)1/(1−p), if Cp({x0}) > 0.

Then u := αv is a Green function in � with singularity at x0. Moreover, (1.3) holds for u, and α
is the unique number such that u is a Green function.

Proof. Let u = αv and �b = {x ∈ � : u(x) ≥ b} for b ≥ 0. Clearly, u is a singular function in �
with singularity at x0.

If Cp({x0}) = 0, then by the definition of u and α,

capp(�α,�) = capp({x ∈ � : v(x) ≥ 1},�) = α1−p,

and thus � = 1 in Lemma 9.1.
On the other hand, if Cp({x0}) > 0 then u(x0) < ∞, by Theorem 8.2, and u/u(x0) is a capac-

itary potential in � for {x0}, as well as for �u(x0), by Lemma 5.5. Hence,

capp(�u(x0),�) = capp({x0},�) = (αv(x0))
1−p = u(x0)

1−p,

and so � = 1 in Lemma 9.1 also in this case.
Now, (1.2) and (1.3) follow from Lemma 9.1. Since (1.2) holds, α must be unique. �



A. Björn et al. / J. Differential Equations 269 (2020) 6602–6640 6629
By Lemma 9.1, it is enough if the normalization (1.2) holds for one b, and we may e.g. let 
b = min{1, u(x0)}. Thus a singular function is a Green function if and only if

{
capp(�1,�) = 1, if u(x0) ≥ 1,

capp(�u(x0),�) = u(x0)
1−p, if u(x0) < ∞.

(9.1)

When 1 ≤ u(x0) < ∞ it is enough to require either condition. It is always true that

capp(�u(x0),�) = capp({x0},�),

and thus if u(x0) < ∞ we may equivalently require that

u(x0) = capp({x0},�)1/(1−p). (9.2)

Note that it can happen that �u(x0) �= {x0}, e.g. when X = [0, ∞), � = [0, 2) and x0 = 1, in 
which case �u(x0) = [0, 1].

Remark 9.4. In weighted Rn with a p-admissible weight w, the classical Green function is 
defined as an (extended real-valued) continuous weak solution u, with zero boundary values on 
∂� (in Sobolev sense), of the equation

div(w|∇u|p−2∇u) = −δx0 in �,

that is
ˆ

�

|∇u|p−2∇u · ∇ϕ dμ = ϕ(x0) for all ϕ ∈ C∞
0 (�). (9.3)

Here δx0 is the Dirac measure at x0 and dμ = w dx. In particular, u is p-harmonic in � \ {x0}.
As C∞

0 (�) is dense in W 1,p
0 (�, μ), we can test (9.3) with ϕ = min{u, 1} ∈ W

1,p
0 (�, μ). If 

u(x0) ≥ 1, this yields

1 = ϕ(x0) =
ˆ

u<1

|∇u|p dμ = capp(�1,�).

On the other hand, if u(x0) < 1, then u/u(x0) is a capacitary potential of (�u(x0), �), by 
Lemma 5.5, and it follows that

u(x0) = ϕ(x0) =
ˆ

u<u(x0)

|∇u|p dμ = u(x0)
p capp(�u(x0),�).

Hence (9.1) holds in both cases, and we conclude that Definition 1.2 is equivalent to the classi-
cal definition of Green functions in weighted Rn. In Section 13 we show that the corresponding 
equivalence holds also in the metric setting for Cheeger–Green functions defined via the differ-
ential structures introduced by Cheeger [21].
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Using the superlevel set estimates in Lemma 9.1 and the Harnack inequality in Proposi-
tion 4.4, we can now prove Theorem 1.5.

Proof of Theorem 1.5. Let r > 0 be such that B50λr ⊂ � and define

m = min
∂Br

u and M = max
∂Br

u,

which exist and are finite as u is p-harmonic (and thus continuous) in � \ {x0}. The weak mini-
mum principle for superharmonic functions shows that Br ⊂ �m. Hence, by Proposition 4.4 and 
(1.2),

M1−p � m1−p = capp(�m,�) ≥ capp(Br,�).

If u(x0) = M < ∞, then Cp({x0}) > 0, and thus by (9.2),

M1−p = u(x0)
1−p = capp({x0},�) ≤ capp(Br,�).

On the other hand, if u(x0) > M , then u = H�\Br
u ≤ M in � \ Br , by the comparison principle 

(4.1), and thus �M ⊂ Br . As u is a Green function, it follows from (1.2) that � = 1 in Lemma 9.1, 
which thus gives

M1−p = capp(�M,�) ≤ capp(Br,�).

Hence, in either case,

m � M � capp(Br,�)1/(1−p). �
Remark 9.5. As mentioned in the introduction, Theorem 1.5 was obtained in some specific cases 
on metric spaces by Danielli–Garofalo–Marola [22, Theorems 3.1, 3.3 and 5.2]. More precisely, 
they required that 1 < p < q , where q = supQ and

Q =
{
q > 0 : there is Cq so that

μ(Br)

μ(BR)
≤ Cq

( r

R

)q

for 0 < r < R < ∞
}
.

They however also implicitly assumed that q ∈ Q, see [22, eq. (2.2)], and that X is LLC, through 
their use (at the bottom of p. 354) of Lemma 5.3 in Björn–MacManus–Shanmugalingam [19]. 
(Here the LLC condition is the same as in [19] or Holopainen–Shanmugalingam [32].) As the 
constant C2 in Theorem 3.1 in [22] depends on r , they did not obtain (1.5) when p = q ∈ Q. 
Note also that q is not the natural exponent for determining when Cp({x0}) > 0, see Björn–
Björn–Lehrbäck [13, Proposition 1.3] and Remark 4.7.

When � ⊂ Rn (unweighted) is a bounded domain, then two singular functions having sin-
gularity at x0 ∈ � are multiples of each other. This follows from the results of Serrin [42]
and Kichenassamy–Veron [35]. More precisely, if 1 < p ≤ n and u and v are such singular 
functions, then by Theorem 3 in Serrin [42] there are positive constants C1 and C2 such that 
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−�pu = C1δx0 and −�pv = C2δx0 in �. Hence there is λ ∈ R such that −�p(λu) = C2δx0

in �. Since λu = v = 0 on ∂� and the solutions of such equations are unique by Theorem 2.1 
in [35], we conclude that v = λu in �. Theorem 2.1 in [35] is stated for regular �, but the 
uniqueness part does not require any regularity of �, since (2.8) therein follows directly from 
the corresponding identity, obtained using the Gauss–Green formula, in a ball containing �. It is 
this use of the Gauss–Green formula which makes the uniqueness argument only applicable in 
unweighted Rn.

In our generality we have not been able to prove such uniqueness, but we can show that two 
singular functions with the same singularity are always comparable in �. This is based on part
(c) of Theorem 1.3, which gives a stronger comparability result for Green functions. We collect 
here also the proofs of the other parts of that theorem.

Proof of Theorem 1.3. (b) This is a less refined form of Theorem 9.3.
(a) If Cp(X \ �) = 0, then Proposition 6.1 shows that there is no singular function. On the 

other hand, if Cp(X \�) > 0 then the existence of a singular function follows from Theorems 7.4
and 8.2. In view of (b) this shows (a).

(c) Let r > 0 be so small that 50λBr ⊂ �. By Theorem 1.5, u � v in Br .
Let u = v = 0 on X \ �. As u is p-harmonic in � \ {x0} and u ∈ N

1,p

loc (X \ {x0}), we see that, 
by definition, H�\Br

u = u in � \ Br , and similarly for v. By the comparison principle in (4.1),

u = H�\Br
u � H�\Br

v = v in � \ Br.

The last part, for Cp({x0}) > 0, follows from (b) and Theorem 8.2.
(d) This follows directly from Theorem 8.6. �
The comparability result for singular functions, but with comparison constants also depending 

on u and v, now follows from Theorem 1.3 (b)–(c). When Cp({x0}) > 0, Theorem 8.2 allows us 
to say more, namely that singular functions are unique up to a multiplicative factor. However, 
regardless of the value of Cp({x0}), we have the following characterization of singular functions, 
which is a more general version of Theorem 1.4, valid also when Cp({x0}) > 0.

Theorem 9.6. Let u be a singular function in � with singularity at x0, and let v : � → (0, ∞] be 
p-harmonic in � \ {x0}. If Cp({x0}) > 0, we also assume that v is superharmonic in � or that 
v(x0) = limx→x0 v(x).

Then v is a singular function in � with singularity at x0 if and only if v � u, with comparison 
constants depending on u and v.

Proof of Theorems 1.4 and 9.6. If v is a singular function, then v � u by Theorem 1.3 (b)–(c).
Conversely, if v � u then v automatically satisfies (b.2) in Theorem 7.2 since u does (by 

Proposition 6.4). Moreover, if Cp({x0}) = 0 then u(x0) = limx→x0 u(x) = ∞, and thus also 
v(x0) = limx→x0 v(x) = ∞, i.e. (a.2) in Theorem 7.2 holds. If Cp({x0}) > 0 then (a.1) or (a.2) is 
true by assumption. Hence v is a singular function by Theorem 8.5. �
Remark 9.7. The extra assumption in Theorem 9.6 when Cp({x0}) > 0 cannot be omitted. In-
deed, if X = R (unweighted), � = (−1, 1) and x0 = 0, then all the functions
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v(x) =
{

a(x + 1), −1 < x < 0,

1 − x, 0 ≤ x < 1,
with a > 0,

are p-harmonic in � \ {x0} and comparable to each other, but only the one with a = 1 is super-
harmonic and singular in � with singularity at x0.

10. p-harmonic functions with poles

Assume in this section that X is complete and that μ is doubling and supports a p-Poincaré 
inequality. We also fix x0 ∈ X and write Br = B(x0, r) for r > 0.

We shall now apply our results to general p-harmonic functions with poles. Note that there is 
no relation between G and U in the theorem below.

Theorem 10.1. Let G and U be arbitrary open sets containing x0, such that G is bounded and 
Cp(X \ G) > 0. Let u and v be p-harmonic functions in U \ {x0} such that

u(x0) := lim
x→x0

u(x) = ∞ and v(x0) := lim
x→x0

v(x) = ∞. (10.1)

Then the following are true:

(a) Cp({x0}) = 0;
(b) there is a bounded domain � � x0 and a ≥ 0 such that u − a is a singular function in � with 

singularity at x0;
(c) there is r0 > 0 such that if 0 < r < r0 and x ∈ ∂Br , then

u(x) � capp(Br,G)1/(1−p), (10.2)

where the comparison constants depend on G and u, but not on r ;
(d) there is r0 > 0 such that

u � v in Br0,

where the comparison constants depend on u and v.

Note that also the radius r0, for which (c) and (d) hold, depends on u (and v). This is easily 
seen by considering the function |x|(p−n)/(p−1) − c in Rn, p < n, for various constants c ≥ 0.

However, Theorem 10.1 (c)–(d) shows that all p-harmonic functions with a given pole (i.e. 
such that (10.1) holds) have growth of the same order near the pole. For elliptic quasilinear 
equations (1.6) on unweighted Rn, this is a classical result due to Serrin [42, Theorem 1]. 
On the contrary, results in Björn–Björn [7] show that the so-called quasiminimizers (rather 
than minimizers) of the p-energy integral 

´
g

p
u dμ can have singularities of arbitrary order, de-

pending on the quasiminimizing constant. Quasiminimizers were introduced by Giaquinta and 
Giusti [25], [26] as a natural unification of elliptic equations with various ellipticity constants.
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Proof. Let r ′ > 0 be such that Br ′ � U and Cp(X \ Br ′) > 0, and let

M(r) = max
∂Br

u for 0 < r ≤ r ′.

Let a = max{M(r ′), 0}, � = {x ∈ Br ′ : u(x) > a} and ū = u − a. By the strong maximum prin-
ciple for p-harmonic functions, � must be connected. It is easy to see that ū satisfies (a.2) and
(b.1) in Theorem 7.2 (with ū in place of u). As ū is p-harmonic in � \ {x0}, it follows from 
Theorem 8.5 that ū is a singular function in �, i.e. (b) holds. Thus (a) follows from Theorem 8.6.

Let next r0 > 0 be so small that B50λr0 ⊂ �. By the strong minimum principle for superhar-
monic functions, infBr0

u > a ≥ 0 and thus

u ≥ u − a ≥ Cu in Br0,

with C > 0 depending on a and infBr0
u. Theorems 1.3 (b) and 1.5, applied to ū, then yield

u(x) � ū(x) � capp(Br,�)1/(1−p) whenever x ∈ ∂Br and 0 < r < r0, (10.3)

where the comparison constants depend on u, a and r0. This proves (c) for G = �. Also (d)
follows directly from this, with the same choice of r0.

Now consider a general open set G in (c). We may choose r ′ above so small that Br ′ ⊂ G. 
It follows that � ⊂ G. For 0 < r ≤ r0, let ur be the capacitary potential for Br in G, and set 
ar = max∂� ur . Then 0 < ar ≤ ar0 < 1. Also let

vr = ur − ar

1 − ar

.

Then vr = 1 in Br and vr ≤ 0 on X \ �. Hence

capp(Br,�) ≤
ˆ

X

gp
vr

dμ ≤
(

1

1 − ar

)p ˆ

X

g
p
ur

dμ

≤
(

1

1 − ar0

)p ˆ

X

g
p
ur

dμ =
(

1

1 − ar0

)p

capp(Br,G).

As capp(Br, G) ≤ capp(Br, �), we see that (10.2) follows from (10.3). �
11. Local assumptions

In this section we investigate to which extent our results hold in more general metric measure 
spaces than those assuming our three standing assumptions: completeness, doubling measure and 
p-Poincaré inequality. We start by introducing the local assumptions.

Definition 11.1. The measure μ is doubling within a ball B0 if there is C > 0 (depending on B0) 
such that

μ(2B) ≤ Cμ(B) holds for all balls B ⊂ B0.
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Similarly, the p-Poincaré inequality holds within a ball B0 if there are constants C > 0 and λ ≥ 1
(depending on B0) such that (2.2) holds for all balls B ⊂ B0, all integrable functions u on λB , 
and all p-weak upper gradients g of u within λB .

We also say that any of the above two properties is local if for every x0 ∈ X there is r0
(depending on x0) such that the property holds within B(x0, r0). If a property holds within every 
ball B(x0, r0) then it is called semilocal.

Note that if μ is semilocally doubling and C is independent of x0 and r0, then μ is doubling 
according to (2.1). The situation is similar for Poincaré inequalities.

The following result from Björn–Björn [11] makes it possible to generalize the results in this 
paper to spaces with local assumptions. Recall that a space is proper if every bounded closed 
subset is compact.

Theorem 11.2. (Proposition 1.2 and Theorem 1.3 in [11]) If X is proper and connected, and μ
is locally doubling and supports a local p-Poincaré inequality, then μ is semilocally doubling 
and supports a semilocal p-Poincaré inequality.

Examples in [11] show that properness cannot be replaced by completeness, and connect-
edness cannot be dropped from Theorem 11.2. Moreover, if μ supports a semilocal Poincaré 
inequality, then X is connected.

So, for the rest of this section, we assume that X is proper and connected, and that μ is locally 
doubling and supports a local p-Poincaré inequality.

As in Keith–Zhong [34, Theorem 1.0.1], a better semilocal q-Poincaré inequality with some 
q < p holds also in this case, by Theorem 5.3 in [11].

In [11, Section 10], it was explained how the potential theory of p-harmonic functions, specif-
ically the results in Chapters 7–14 in [8], hold under these assumptions, with the exception of 
the Liouville theorem. The same is true for the results in this paper, it is only the dependence 
of constants on the different associated parameters that needs to be carefully investigated. If X
is bounded, then the semilocal assumptions are global and hence our standing assumptions are 
equivalent to the local assumptions above in this case.

If X is unbounded, we let (as before) � be a bounded domain and find a ball B0 ⊃ �. Since X
is unbounded, the condition Cp(X \ �) > 0 is automatically satisfied. Let CPI, λ and Cμ be the 
constants in the p-Poincaré inequality and the doubling condition within 2B0. The weak Harnack 
inequalities then hold for every ball B such that 50λB ⊂ � and with a constant depending only on 
p, CPI, λ and Cμ, coming from 2B0 as above. Thus all our estimates depend on these parameters 
instead of the constants in the global assumptions, which perhaps do not hold on X.

12. Holopainen–Shanmugalingam’s definition

In this section we compare our results with the following definition of singular functions from 
Holopainen–Shanmugalingam [32]. (See below for the precise assumptions on X.)

Definition 12.1. (Definition 3.1 in [32]) Let � ⊂ X be a relatively compact domain. A function 
u : X → [0, ∞] is a singular function in the sense of Holopainen–Shanmugalingam, or an HS-
singular function, in � with singularity at x0 ∈ � if



A. Björn et al. / J. Differential Equations 269 (2020) 6602–6640 6635
(HS1) u is p-harmonic in � \ {x0} and positive in �;
(HS2) u|X\� = 0 q.e.;
(HS3) u ∈ N1,p(X \ B(x0, r)) for all r > 0;
(HS4) lim

x→x0
u(x) = capp({x0}, �)1/(1−p) (in particular, lim

x→x0
u(x) = ∞ if capp({x0}, �) = 0);

(HS5) For 0 ≤ a < b < sup� u,

(
p − 1

p

)2(p−1)

(b − a)1−p ≤ capp(�b,�a) ≤ p2(b − a)1−p, (12.1)

where �b = {x ∈ � : u(x) ≥ b} and �a = {x ∈ � : u(x) > a}.

The existence of such a function, when x0 ∈ � ⊂ X and � is a relatively compact domain, 
was given in [32, Theorem 3.4] under the assumptions that X is connected, locally compact, 
noncompact and satisfies the so-called LLC property, and that μ is locally doubling and supports 
a local q-Poincaré inequality for some 1 ≤ q < p < ∞, cf. Remark 2.4 in [32]. These local 
assumptions are as defined in [32] and are stronger than those in Section 11. In fact, they coincide 
with those called semiuniformly local in Björn–Björn [11].

Remark 12.2. From the proof of [32, Theorem 3.4] it is not clear why the function called g on 
p. 322 therein satisfies (HS3) in the case when Cp({x0}) = 0. This can be justified, at least under 
the assumptions in this paper, in a similar way as we do in Lemma 5.7, using Perron solutions 
and the uniqueness result in Theorem 5.2 (c). These tools were however not available at that time.

In the definition of HS-singular functions above, the value u(x0) can be rather arbitrary. In 
particular, u is not required to be superharmonic in �. However, in order for (HS5) to be satisfied, 
one must have 0 < u(x0) ≤ capp({x0}, �)1/(1−p) (which automatically holds if Cp({x0}) = 0). 
In view of (HS4) it is natural to let u(x0) := limx→x0 u(x), and we do so from now on.

We obtain the following relation to our Definitions 1.1 and 1.2.

Proposition 12.3. Assume that X is a proper connected metric space, and that μ is locally dou-
bling and supports a local p-Poincaré inequality. Let � ⊂ X be a bounded domain such that 
Cp(X \ �) > 0, and let x0 ∈ � and u : X → [0, ∞].

(a) If u is an HS-singular function in � with singularity at x0, and u(x0) = limx→x0 u(x), then 
u|� is a singular function in � in the sense of Definition 1.1.

(b) If u is a Green function in � with singularity at x0 in the sense of Definition 1.2, then its 
zero extension ũ (given by letting ũ = 0 on X \ �) is an HS-singular function in � with 
singularity at x0.

In particular there is an HS-singular function in � with singularity at x0.

Proof. By the discussion in Section 11 the results in this paper hold under these assumptions 
on X. Part (a) follows from Theorem 1.6, while part (b) follows from the definition of Green 
functions and Theorem 9.3 (which yields (HS4)). Finally, the existence follows from Theo-
rem 1.3 (a). �
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Requiring the superlevel set estimates in (12.1) with those explicit constants, is a weaker type 
of (pseudo)normalization than in our definition of Green functions. However, it was natural in 
[32] as it used the best estimates available at the time.

We also remark that while proving the existence of HS-singular functions, Holopainen and 
Shanmugalingam [32, formula (8), p. 322] showed that estimate (1.5) holds, for x close enough 
to x0, for the HS-singular functions obtained by their construction. Here, we obtain it for all 
Green functions. Recall that in this generality, it is not known whether Green functions are unique 
when Cp({x0}) = 0.

13. Cheeger–Green functions

Recall the standing assumptions from the beginning of Section 4. In this section we also as-
sume that � is bounded and that Cp(X \ �) > 0.

Theorem 4.38 in Cheeger [21] shows that, under our standing assumptions, the metric space 
X can be equipped with a coordinate structure in such a way that each Lipschitz function u in 
X has a vector-valued “gradient” Du, defined a.e. in X. Since Lipschitz functions are dense in 
N1,p(X), this gradient can be extended uniquely to N1,p(X), by Franchi–Hajłasz–Koskela [24, 
Theorem 10] or Keith [33]. Then |Du| � gu a.e. in X for all u ∈ N1,p(X), where the comparison 
constants are independent of u. Here and throughout this section | · | is an inner product norm 
on some RN , related to the Cheeger structure. Both | · | and the dimension N depend on x ∈ X, 
but there is a bound on N , which only depends on the doubling constant and the constants in the 
Poincaré inequality. By adding dummy coordinates, it can thus be assumed that Du(x) ∈ RN , 
with the same dimension N for all x.

In a general metric space X there is some freedom in choosing the Cheeger structure. In 
(weighted) Rn we will however always make the natural choice Du = ∇u, where ∇u denotes 
the Sobolev gradient from Heinonen–Kilpeläinen–Martio [28]. In this case |Du| = gu, by Propo-
sition A.13 in [8]. If the weight w on Rn satisfies w1/(1−p) ∈ L1

loc(R
n) (in particular, if it is a 

Muckenhoupt Ap weight) then the Sobolev gradient ∇u is also the distributional gradient.
It was shown by Hajłasz and Koskela that gu = |∇u| also on Riemannian manifolds [27, 

Proposition 10.1] and Carnot–Carathéodory spaces [27, Proposition 11.6 and Theorem 11.7], 
equipped with their natural measures.

Cheeger (super)minimizers and Cheeger p-harmonic functions are defined by replacing gu

and gu+ϕ in Definition 4.1 with |Du| and |D(u + ϕ)|. Similarly, the Cheeger variational ca-
pacity of E ⊂ �, denoted Ch-capp(E, �), and the related capacitary potentials are defined as 
in Section 3 but with gu replaced by |Du|. Then all the results we have obtained in the previ-
ous sections hold also for the corresponding Cheeger singular and Cheeger–Green functions, 
which are defined as in Definitions 1.1 and 1.2, with obvious modifications. See Appendix B.2 
in [8] for more comments, details and references on Cheeger p-harmonic functions in general, 
and Danielli–Garofalo–Marola [22, Section 6] for some specific results for Cheeger singular and 
Cheeger–Green functions.

Due to the additional vector structure of the Cheeger gradient it is possible to make the 
following definition, which has no counterpart in the case of general scalar-valued upper gra-
dients.
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Definition 13.1. A function u ∈ N
1,p

loc (�) is a (super)solution in � if

ˆ

�

|Du|p−2Du · Dϕ dμ ≥ 0 for all (nonnegative) ϕ ∈ Lipc(�), (13.1)

where · is the inner product giving rise to the norm | · |, and Lipc(�) denotes the family of 
Lipschitz functions with compact support in �.

For solutions, one can equivalently replace ≥ by = in (13.1), which follows directly after 
testing also with −ϕ.

It can be shown that a function is a (super)solution if and only if it is a Cheeger (super)min-
imizer, the proof is the same as for Theorem 5.13 in Heinonen–Kilpeläinen–Martio [28]. In 
weighted Rn with a p-admissible weight and the choice Du = ∇u, we have gu = |Du| = |∇u|
a.e. which implies that (super)minimizers, Cheeger (super)minimizers and (super)solutions co-
incide, and are the same as in [28]. Similar identities hold also on Riemannian manifolds and 
Carnot–Carathéodory spaces equipped with their natural measures.

The following result is contained in Proposition 5.1 in Björn–Björn–Latvala [12], see also 
Proposition 3.5 and Remark 3.6 in Björn–MacManus–Shanmugalingam [19].

Proposition 13.2. For every supersolution u in � there is a Radon measure ν ∈ N
1,p

0 (�)′ such 

that for all ϕ ∈ N
1,p
0 (�),

ˆ

�

|Du|p−2Du · Dϕ dμ =
ˆ

�

ϕ dν, (13.2)

where · is the inner product giving rise to the norm | · |.

Next we show that the Cheeger–Green functions are exactly the weak solutions of the p-
Laplace equation with the Dirac measure on the right-hand side and with zero boundary values, 
as in the case of Rn considered in Remark 9.4.

Theorem 13.3. Let u be a Cheeger–Green function in � with singularity at x0. Then

ˆ

�

|Du|p−2Du · Dϕ dμ = ϕ(x0) for all ϕ ∈ Lipc(�), (13.3)

that is, �pu = −δx0 in the weak sense.
Conversely, assume that v is an (extended real-valued) continuous function in � such that 

|Dv| ∈ Lp−1(�), (S5) in Definition 1.1 is satisfied, and v is a solution of (13.3). Then v is a 
Cheeger–Green function.

Note that the assumption |Dv| ∈ Lp−1(�) in the second part of the statement is natural, since 
it guarantees that the integral in (13.3) is well-defined, and it moreover holds for all superhar-
monic functions, by Theorem 5.6 in Kinnunen–Martio [37] (or [8, Corollary 9.55]).
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Proof. Assume first that Cp({x0}) = 0. Write uk = min{u, k} for k > 0. Then uk ∈ N
1,p

0 (�) by 

Proposition 6.4 (c), and uk is a supersolution. Let νk ∈ N
1,p
0 (�)′ be the corresponding Radon 

measures given by Proposition 13.2. Since uk is Cheeger p-harmonic in � \ �k , νk is supported 
on �k . Hence, by testing (13.2) for νk with ϕ = uk , we obtain that

ˆ

�

|Duk|p dμ =
ˆ

�

uk dνk = kνk(�
k). (13.4)

On the other hand, the function uk/k is the Cheeger capacitary potential of (�k, �), by 
Lemma 5.5. Thus it follows from the normalization (1.2) of Cheeger–Green functions that

ˆ

�

|Duk|p dμ = kpCh-capp(�k,�) = kpk1−p = k, (13.5)

and so νk(�
k) = 1 for all k > 0.

Let ϕ ∈ Lipc(�) and let ε > 0. Choose k0 > 0 so large that |ϕ(x) − ϕ(x0)| < ε for all x ∈ �k0

(and hence also for all x ∈ �k whenever k ≥ k0); note that this is possible by Theorem 1.5 and 
Proposition 6.4 (d). Then (13.2) and the fact that νk(�) = νk(�

k) = 1 yield

∣∣∣∣
ˆ

�

|Duk|p−2Duk · Dϕ dμ − ϕ(x0)

∣∣∣∣ =
∣∣∣∣
ˆ

�

ϕ dνk − ϕ(x0)

∣∣∣∣ ≤
ˆ

�k

|ϕ − ϕ(x0)|dνk ≤ ε

for all k ≥ k0. Since |Du| ∈ Lp−1(�) by Theorem 5.6 in Kinnunen–Martio [37] (or [8, Corol-
lary 9.55]) and ϕ ∈ Lipc(�), we see that

∣∣|Duk|p−2Duk · Dϕ
∣∣ ≤ |Duk|p−1|Dϕ| ≤ |Du|p−1‖Dϕ‖∞ ∈ L1(�)

for all k > 0. As Duk → Du a.e. in �, we hence obtain by dominated convergence that

∣∣∣∣
ˆ

�

|Du|p−2Du · Dϕ dμ − ϕ(x0)

∣∣∣∣ ≤ ε.

Since this holds for all ε > 0, the claimed identity (13.3) follows when Cp({x0}) = 0.

Next, consider the case when Cp({x0}) > 0. Then we know by Theorem 8.2 that u ∈ N
1,p

0 (�)

and u is Cheeger p-harmonic in � \ {x0}. Let ν be the measure provided for u by Proposi-
tion 13.2. Since u is Cheeger p-harmonic in � \ {x0}, ν must be supported on {x0} and hence ´
�

ϕ dν = ϕ(x0)ν({x0}) for all ϕ ∈ N
1,p

0 (�). Testing (13.2) with ϕ = u then shows as in (13.5)
and (13.4) that

u(x0)
1−p = Ch-capp(�u(x0),�) = 1

u(x0)p

ˆ

�

|Du|p dμ = u(x0)
1−pν({x0}),

i.e. ν({x0}) = 1, which proves the claim when Cp({x0}) > 0.
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Conversely, let v be as in the statement of the theorem. Then it is immediate that v is Cheeger 
p-harmonic in � \ {x0}. Hence v is a Cheeger singular function by Theorem 8.5 with (a.2)
and (b.1). The normalization (9.1) for v is now obtained exactly as in Remark 9.4, with ∇u

replaced by Dv, and thus v is a Cheeger–Green function. �
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