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Abstract

In the current paper we consider an inverse boundary value problem of electromagnetism with nonlinear
Second Harmonic Generation (SHG) process. We show the unique determination of the electromagnetic
material parameters and the SHG susceptibility parameter of the medium by making electromagnetic mea-
surements on the boundary. We are interested in the case when a frequency is fixed.
© 2021 Elsevier Inc. All rights reserved.
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1. Introduction

The beginning of the field of nonlinear optics is often taken to be the discovery of second-
harmonic generation by Franken et al. in 1961, shortly after the demonstration of the first working
laser by Maiman in 1960. Nonlinear optical phenomena occur when the response of a material
to an incident optical field depends nonlinearly on the strength of the optical field. For example,
second-harmonic generation occurs as a result of the part of the atomic response that scales
quadratically with the strength of the applied optical field. Consequently, the intensity of the
light generated at the second-harmonic frequency tends to increase as the square of the intensity
of the applied laser light.

* Corresponding author.
E-mail addresses: yernat.assylbekov@gmail.com (Y.M. Assylbekov), t.zhou@northeastern.edu (T. Zhou).

https://doi.org/10.1016/j.jde.2021.06.002
0022-0396/© 2021 Elsevier Inc. All rights reserved.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.jde.2021.06.002&domain=pdf
http://www.sciencedirect.com
https://doi.org/10.1016/j.jde.2021.06.002
http://www.elsevier.com/locate/jde
mailto:yernat.assylbekov@gmail.com
mailto:t.zhou@northeastern.edu
https://doi.org/10.1016/j.jde.2021.06.002

Y.M. Assylbekov and T. Zhou Journal of Differential Equations 296 (2021) 148—169

Ever since the invention of laser, fascinating new fields have emerged, among which non-
linear optics has the broadest scope. Applications of the nonlinear optical phenomena include
obtaining coherent radiation at a wavelength shorter than that of the incident laser, through
the frequency doubling effect of SHG. Moreover, in the second-harmonic imaging microscopy
(SHIM), a second-harmonic microscope obtains contrasts from variations in a specimen’s ability
to generate second-harmonic light from the incident light while a conventional optical micro-
scope obtains its contrast by detecting variations in optical density, path length, or refractive
index of the specimen. The SHIM is also exploited in imaging flux residues (see the work in
Chen Lab at the University of Michigan). Although nonlinear optical effects are in general very
weak, the significant enhancement of SHG was shown using diffraction gratings or periodic
structures, see [23,24].

In this paper, we consider an inverse boundary value problem for Maxwell’s equations with
second harmonic generation. Let €2 be a bounded domain in R3 with smooth boundary. We
consider the propagation of light through a nonlinear optical medium occupying €2 by beginning
with Maxwell’s equations without free charges

VxE+B=0
VXH—B,DZO,

where E(t,x), H(t, x) are electric and magnetizing fields, D is the electric displacement and
B is the magnetic field. For a non-magnetic material with nonlinear polarization, we have the
constitutive relation

B=uH D=¢E+P

where i, ¢ are electric permittivity and magnetic permeability, respectively, and the polarization
P depends nonlinearly' on the electric field E. In the process of second-harmonic generation
(SHG), the nonlinear polarization P = (P;) takes the form

2
Pi(t,x) =Y X\pEjEx
jk

where x ® is the second order susceptibility parameter. When a beam with time-harmonic elec-
tric field

Ein(t,x) = Ein(x)e™"!

is incident upon such a medium (e.g., a noncentrosymmetric crystal), new waves are generated
at zero frequency and at frequency 2w. Writing the solution (E (¢, x), H (¢, x)) to include these
terms

1 There exists a linear term in the polarization, which we assume to be scalar and merge into the term ¢ E so that our
P only has nonlinear terms.

149



Y.M. Assylbekov and T. Zhou Journal of Differential Equations 296 (2021) 148—169

E(t,x) =2Re {Ew(x)e_iw’} +2Re {Ez“’(x)e—"zw’}

H(t,x) =2Re {Hw(x)e—““f} +2Re {Hz“’(x)e_iz"”} ,

and assuming that the susceptibility parameter is isotropic x ® = ( Xl(z))?zl, then we obtain the
time-harmonic system

Vx E®—iouH® =0,

V x H” +iweE® +iwx PE® - E** =0,

V x EX — 20pH* =0,

V x H*® + i2we E** + i20xPE® . E® =0.

(1.1)

Here we can assume that n and & depend on the frequency w. For more discussion on the math-
ematical modeling of the second harmonic generation in nonlinear optics, we refer the readers to
[3.4,1].

The inverse problem is to uniquely determine both the linear pair (i, €) and the second order
susceptibility parameter y ® using the boundary measurements of the electromagnetic fields,
taking the form of the admittance map defined in (1.2). Physically, this corresponds to measuring
the tangential components of electric fields and magnetic fields for both frequencies @ and 2w
on the boundary (surface) of the medium 2.

The type of inverse boundary value problem was first formulated by Calderén [5] for the linear
conductivity equation V - y (x)Vu = 0 when he sought to determine the electrical conductivity
y (x) of a medium by making boundary measurements of electric voltage and current. The unique
determination was proved in [29] in dimension n > 3 by solving the problem of determining an
electric potential g (x) in a Schrédinger operator —A + ¢ from the boundary Dirichlet and Neu-
mann data. Since then, the inverse problem has been extensively studied in various generalized
cases, including those for other elliptic PDE’s such as the magnetic Schrodinger equations, lin-
ear elasticity equations and so on. The inverse boundary value problem for linear time-harmonic
Maxwell’s equations was first formulated in [25] and later solved in [21,22] for isotropic cases,
adopting a similar approach of implementing special complex phased exponential solutions, as
in solving those for above mentioned scalar equations.

In dealing with the inverse problems for nonlinear PDEs, such inverse boundary value prob-
lems have been considered for various semilinear and quasilinear elliptic equations and systems
(see [9,10,12,11,26,28,27,8]) based on a first order linearization approach. Recently the higher
order linearization of the boundary map has been applied in determining the full nonlinearity
of the medium for certain elliptic PDE’s. See [7,16,15,17—19]. The method was also applied to
solve inverse problems for several nonlinear hyperbolic equations on the spacetime [14], where
in contrast the underlying problems for linear hyperbolic equations are still open. Shortly be-
fore these results, in our paper [2], we first adopt the method to solve the inverse problems for
time-harmonic Maxwell’s equations with Kerr-type nonlinearity, where the nonlinear term takes
the form x®|E|>E with x @ (x) being the third order nonlinear susceptibility parameter and E
representing the electric field. In this type, the fields of different frequencies are not assumed
coupled.

In this paper, we first present the well-posedness of the boundary value problem for the time-
harmonic nonlinear second harmonic generation Maxwell’s equations when the boundary data is
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small. Then we solve the inverse problem to determine the parameters, with the focus mainly on
the second order susceptibility parameter x ® (x).

1.1. Direct problem

First we consider the boundary value problem for the nonlinear Maxwell equations (1.1).
We suppose that &, 1 € C!(2) are complex-valued functions with positive real parts and x® e
cl(; C3).

The boundary conditions are expressed in terms of tangential trace,

t:C¥(Q;C3) = C®ONC tw)=v x wlpa, weC®Q:C),

where v is the unit outer normal vector to d€2. Then t has its extension to a bounded operator
wlr(Q; C3) — wi=1/P-P(3Q; C3) for p > 1. Here and in what follows, W7 (Q; C3) and
W!1=1/P.P(32; C3) are standard Sobolev spaces on  and 9%, respectively.

To describe the boundary conditions, we introduce the spaces

Wil () = {u € WIP(2; C3) : Div(tw)) € W!=1/PP(39; C3)),
TWp, /PP (0Q) = (f € W'T1/PP(3Q; C) : Div(f) € W!T/PP (902; €,

where Div is the surface divergence on d2. These spaces are Banach spaces with norms

ettty 1.r gy = ullwrr i3y + I DVE@)Twi-1700 5 c3)-

Hetll w1170 0y = WS lwi=vrmp @y + APV w1700 a1y

It is not difficult to see that t(Wé’ig (M)) = TW];;,I/ PP (3M). Our first main result is the follow-
ing theorem on well-posedness of the nonlinear Maxwell equations (1.1) with prescribed small
t(E®) and t(E%®) on 9%2.

Theorem 1. Ler Q be a bounded domain in R? with smooth boundary and let 3 < p < 6. Sup-
pose that e, € C1(Q; C) are complex-valued functions with positive real parts and x? e
CH (2 R3). For every w € C, outside a discrete set ¥ C C of resonant frequencies, there is

2
€ > 0 such that for a pair (f®, f2*) € (TWé;l/p’p(aM)) with E ”fkw”TWl*l/]),]?(aQ) <e,
Div
k=1,2

4
the Maxwell’s equations (1.1) have a unique solution (E“, H®, E%0 H2) ¢ (Wg’ig(ﬂ)) sat-
isfying t(EX®) = £k fork =1,2 and

ko ko ko
E E 1, + |H 1, <C E 1-1/p, )

for some constant C > 0 independent of (f©, f*®).
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Remark 1. We can also add similar nonlinear magnetic polarization terms to the equations, that
is, to include terms —iw X}j)m- H?® and —i2w X}é)H ® . H® in the left hand sides of the first
and the third equations in (1.1), respectively. The analysis will be the same.

1.2. Inverse problem

For w > 0 with w ¢ %, we define the admittance map A X<2) as

A2 o (12 2 = (HH), (H™)), (1.2)
2
for (f©, f2°) e (TWI;W‘/P ”(89)) with LF5 gy 1000 5 < € Where (E<, HO, E2,
k=12 v

4
H?®) ¢ (W];’if(ﬂ)) is the unique solution of the system (1.1) with t(E*®) = fk* (k =1,2),

guaranteed by Theorem 1. Moreover, the estimate provided in Theorem | implies that the admit-
tance map satisfies

w,2w o 2w
1AL 0, (f€5 f2) (rwtsrr o)’ C 3 W lpyi-vins g, < Ce.
k=1,2

The inverse problem is to determine &, u and x @ from the knowledge of the admittance map
w,2w

e @
Our second main result is for the inverse problem as follows.

Theorem 2. Let  be a bounded domain in R? with smooth boundary and let 3 < p < 6. Sup-
posethatej, i € C3(§2; C) with positive real parts and X/(Z) eC! (22; (C3), j=1,2. Fixw>0
outside a discrete set of resonant frequencies ¥ C C and fix sufficiently small € > 0. If

Aa) 20 o (fw wa) CU 260’ o (fw, wa)

E1,I1, X £2,142, Xy

2
1-1 .
forall (f®, f>) e (TWDlV /p: p(BQ)) with E ||fkw||TW$‘—1/p.p(3Q) <€ thene; = ¢, 1] =
k=12 v

2 2
o 02 = xy” in Q.

For the SHG type of nonlinear Maxwell’s equations, after first order linearization of the
boundary admittance map with respect to the boundary input, we can quickly recover p and
& by solving the corresponding inverse problem for the linear equations (see [21,22]). The dif-
ficulty lies in reconstructing the susceptibility parameter x ®). By calculating the second order
term of the asymptotic expansion of the admittance map, one derives a key integral identity for
the parameter x ® multiplied by the product of three linear solutions. The general idea here is
to plug in the complex geometrical optics (CGO) solutions that are constructed in solving the
inverse problems for linear equations, in order to obtain the Fourier transform of the parameter.
When the nonlinearity is of Kerr-type as discussed in [2], the integral identity involves products
of the parameter x® with four linear solutions. By plugging in the CGO solutions constructed
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as in [13] or [6] using the reduction to a second order Helmholtz Schrédinger system technique,
the sum of four complex phases and the product of four amplitudes can be managed to give the
desirable Fourier transform. However, with products of three solutions as in the SHG case, the
special formats of these solutions do not allow us to choose proper complex phases and am-
plitudes for the CGO’s to get the Fourier transform from the product. Instead, we turn to [21]
for their CGO solutions, with carefully chosen complex phases and amplitudes, and we could
successfully reduce the integral into the Fourier transform of components of x .

The paper is organized as following. In Section 2, we prove the well-posedness of the direct
problem (Theorem 1). In Section 3, we compute the asymptotic expansion of the admittance map

A‘:?“; - To solve the inverse problem, the reconstruction of u and ¢ is a direct corollary of the

result for linear equations. Then we prove the unique determination of x® in Section 4, which
completes the proof of Theorem 2.
Acknowledgments

The research of TZ is supported by the NSF grant DMS-1501049. The authors would like
to thank Prof. Gunther Uhlmann for suggesting the problem and to thank Prof. Gang Bao for
helpful discussions on the second harmonic generation.

2. Well-posedness of the direct problem

To prove existence and uniqueness result for the nonlinear equations, we first need the results
for both the homogeneous and inhomogeneous linear equations, given in [2, Section 3.1].

Lemma 1. Let Q2 be a bounded domain with a smooth boundary and 2 < p <6 and let ¢, 1 €
CY(2; C) be complex functions with positive real parts. There is a discrete subset S of C such

that for all w ¢ X and for a given f € TWég””"’(a Q) the Maxwell’s equation
VXE—iopH=0, VxH+4iwcE=0

has a unique solution (E, H) € Wé’i"/’(Q) X W];’if(Q) satisfying t(E) = f and

1EN o0+ 1H D yio g < CUf i tins -
for some constant C > 0 independent of f.
For the boundary value problem of inhomogeneous linear equations, we define

WP (Q) = {u e WhP(Q; C?) : t(u) =0},

and

WP(Vx,Q):={ueLP(Q;C?: VxueLP(Q;C?),
WP(V-, Q) :={uell(QC%: V.ueLP(Q;C))}

endowed with the norms
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lullwr(vx,2) = ||u||Lp(gz;(C3) + [V x “||Lp(gz;(c3),
lullwr v = lullpr@.c3 + IV - ullLrc)-

Then we have

Lemma 2. Let 2 < p <6 and let e, u € CI(Q; C) be complex-valued functions with positive

real parts. Suppose that J,, J,, € WP (V-, Q) and v - J,|3q, v - Jnlaq € WIV/P-P(3Q). There is
a discrete subset X of C such that for all v ¢ X the Maxwell’s system

VXE—-iouH=J,, VXH+iwcE=1J,
has a unique solution (E, H) € Wé’P(Q) X Wll)’if(Q) satisfying
||E||W]1);5(Q) + ||H||W11)}5(Q) =Clv- Telaallwi-1prpo + 11V - Inloellwi-1/r.ro0)
+ ClVellwrv.@ + 1Imllwrv.2)
for some constant C > 0 independent of J, and Jp,.

In addition, using the Sobolev embedding wlp (2) — C(2) when p > n, we obtain

Ifgllwir =1f8lLr +1/VE+8gVfiLr
<C{lIflie= (IgllLr + IVelr@) + lIghe@ IV flir e}

<Clfllwrrllglwirg)-

Therefore, when p > 3, WP (Q; C3)is an algebra and the nonlinear terms in Maxwell’s equa-
tions (1.1) are in appropriate function spaces.

Proof of Theorem 1. Suppose f** € TW, """ (8Q) with k = 1,2 such that

kw
D M N yicinr gy <€
k=1,2

with € > 0 to be determined. By Lemma 1, there is a unique (EA®, HX®) e W];’if (Q) x W];’if (Q)
solving

V x Ef® —ikopHf® =0, V x HE +ikwsEE” =0, «E) = f*, k=1,2,

and satisfying

§ kw kw E : kw
—+ < —
e ”EO ”Wll)l\l/)(Q) ”H() ||W];IC(Q) = Ck = ”f ”T“r];ivl/l’vl’(ag)'

Then (E®, H®, E2®, H2) is a solution to (1.1) if and only if (E®’, H', E2*' H?*") defined
by (Ek*, HY®) = (E®, H\®) + (E*', H*') for k = 1,2 satisfies
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V x E® —iopH® =0,

Vx HY +iwe B +iox® (Eg+ B) - (B3 + E*') =0,

V x E*' — 2eppH>* =0, 2.1
V x H*' 4 i2weE +i20x® (EQ + E®') - (E + E¥') =0,

t(Eky =0, k=1,2.

By Lemma 2, there is a bounded linear operator
Gor WP (Q; CF) x WhP(Q: CF) - WP (Q) x Wil (Q)

mapping (J,, J,,) € WhP(Q; C3) x WhP(Q; C?) to the unique solution (E, ﬁ) of the problem
V x E —ikouH = J,, V x H+ikweE=1J,, tE)=0.

Define X; to be the set of (¢2, h?, €22, h2°) € WP (Q) x WP (2) x WP (2) x WP () such
that

2 1 lwrr@ies + 11y g, <,
k=12
where § > 0 will be determined later. Define an operator A on X5 as
A(ew, hw’ 620)’ h2w)
= (gj;“(o, iox P (EY +e?) - (B3 +€*)), G5 (0, i20x P (EG +e”) - (E§ + ew))) .

We wish to show that for sufficiently small € > 0 and § > 0, depending on the frequency w,
the operator A is a contraction on Xs.

Remark 2. Note that the operator does not depend on A% and A>® in this case. However, it can
be generalized to cover the case with second order magnetic nonlinearity.

First, A maps X into itself. Indeed, when p > 3, we have

o o 20 120
[Ae™, n™, e™, h )”W})’”(sz)xWg;f(sz)xwg"(sz)xwgif(sz)

< Co(lxPEG +e”) - (E” + &) lwin@c
+ I P EG + ) - (B + e)llwioo,c)
< Coll E§ + e llwirg.ch (1EG” + € lwinacs) + 1EG + € llwirgic)

2 2w 2 2 2012
S Cw(”Eg)le,p(Q;(C}) + ”Eownwl,p(Q;CS) + ”ewnwl,p(g;(cG) + “e w”w],p(g;(ci%))‘
Therefore,
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o po 20 120
LA™, A7, e Ry b oyl oy wh @) Wi @)

kw o po 20 120
S CC() € Z ||f IlTWll);/l/Pvp(aQ)+8||(e ’ h ’ e ) h )” Wll),p(Q)xwll)lf/,(Q)XW[l)‘p(Q)xWDll\lzj(Q)
k=1,2

< Cw(e® +8%).
(2.2)
Taking € > 0 and § > O sufficiently small ensures that A maps X into itself.
Next, we show that A is a contraction on X. For (e{, h{, elz“’, h%“’), (€5, he, 62 , hz“’) € Xs,
we have
liwx® (E§ +€§) - (E5” + €5°) —iwx @ (E§ + ef) - (Eg” + e1) lwiria.c3)
< Coll(E§ +€5) - (e5° — €i”) + (€5 — 7)) - (E3” + 1) | wina: )

and

li2wx P(EG + €5) - (E§ + €3) — i20x P (EY + €)) - (E§ + el winq:c3)
S CC()”(ZESJ + 63) + e(lu) . (eg) —_ eclo)||wl,p(g;(c3).

Together, these imply

o o 2wy ® 2w
||A(e2’ 2’62 7h ) A(e]s ]se] ah )” 1p(Q)XWlélg(g)xwl;p(g)xwélc(g)

2 2
< Cw{(HES)HWLP(Q;C% + e lwrr:c3plles” — er llwir.c3)

+ (I3 + e lyrpauc) + I2EG + €8 +ef lwincs ) 6§ — ¢ lwrauic |

k k ko k
<Co| D IECIwirgcy + D e lwinacy | X 16° —eilwirgics)
k=12 kj=1.2 k=12

2
< Caw(e+ )€, hy, e3”, h3”) — (e}, h{, e1”, hi®)| WhP @ xWhP @ x WP @ x wh @)

This verifies that A is a contraction when Cw (€ 4+ §) < 1.
Now, using the contraction mapping theorem, there exists a unique fixed point

(Ew/, Hw/, Ezw” H2w’) € X;s

of A. It solves (2.1) when 3 < p <6 and § > 0, € > 0 are small enough. Using (2.2), one can see
that

w! ! 20’ 2w’
ICE™, H™, E°", H )”W})’”(Q)xngvp(sz)xwgf’(sz)xwglg’(sz)

_ o o’ 2o’ 20
=||A(EY,H" ,E*” | H )”W]‘)v”(gz)xW];}\’/’(Q)XWII)']’(SZ)XW];,C(Q)
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st(e I il P

k=1,2

w! w! 2w’ 20’
+SI(E” HY  E*', H )||W(Q)XW];}C(Q)Xw;ip(g)stic(g)).

Choosing Cwd < %, we obtain the estimate

w! w! 20’ 20’ kw
< —
I(E”, H® B> H )||Wll),p(mxWll)}f(mxwg,,(:)XWI;K(Q)_ck§lzllf lrwiz1rr gy

Finally, (E®, H®, E**, H**) = (EQ, HY, E3®, H3®) + (E®, H*', E**', H*') solves (1.1)
with t(E*) = fk@ (k =1, 2) and satisfies the estimate

kw kw kw
E E 1, + ||H 1, <C E 1-1/p, .

The proof of Theorem 1 is thus complete.
3. Asymptotics of the admittance map
Let Q be a bounded domain in R3 with smooth boundary and let 3 < p < 6. Suppose that

e, u € C1(Q; C) are complex functions with positive real parts and x @ € C1(Q2; C3). Fix w > 0

outside a discrete set of resonant frequencies. Suppose that (f®, f2¢) e TW];;,I/ PPaQ) x

TW];I/ PP(3Q) and s € R is small enough. By Theorem 1, there is a unique solution

4
(E®, H®, B> H2) e (W];ié’ (sz)) of (1.1) such that t(EX®) = s f*@ with k = 1,2 and

k k k
2 B Ny o) + Nyt g < Clsl D I pyivmn g 3.1
k=1,2 k=1,2

4
By Lemma 1, there is a unique (E{’, H}’, E%“’, le‘”) € (W];’if(Q)) solving

V x EX® —ikopHf® =0, V x Hf® +ikweEX” =0, t(Ef*)=f*, k=12,

such that

D NE Ny g+ TH o) <€ D0 1l yicins g (3.2)
k=12 k=12

Also, by Lemma 2 there is a unique solution (E3, Hy’, E%‘”, sz“’) € ng(Q) X W];’if(Q) X
W5 (Q) x Wyl(Q) for
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V x E5® —ikopHY® =0, k=1,2,
V x HY +iweES +ia)x(2)E_i”~ E} =0,
V x H3® + 2w E3° 4+ iwx PE? - EY =0,

satisfying
kw kw
D NE gy + IHE Iy g
k=1,2
=C (” X PEY - EYllwir@cs + IXPEY - Eiullww(sz;c-*))
=€ (llE(f)llW“”(Q:@)”E%w”W‘*P(Q:@) + ||Ef)||%v1»p(sz;c3)> ’
hence
kw kw kw2
kXEZIIEZ e o) + I3 ||W$}5(Q)§Ck21:2|| T R (3.3)

Now we define (F®, G2, F22, G2) € WP () x W52 (2) x WP (Q) x WP () by
(Ek®, H*) = s(EX + sFF HF 4 5G%*),  k=1,2. (3.4)
First, by (3.1) and (3.2), it satisfies

2 kw 2 kw
2 BPIElwir@icn +IsPIGE Iy o,

k=1,2
< k; VES Nyt gy + Nyt ) + ISHE Lyt g 15Tyt g
<Clsl Y2 Il pytoinn gy
k=1,2
Therefore,

2 IEhwir@cy + G lyte g <C 30 I Ny o G5)
k=1,2 k=1,2

Next, plugging (3.4) in the nonlinear Maxwell’s equations, we obtain
kw . ko __ —
V x F{® —ikopnGg® =0, k=1,2,
V x G® +iweF® +iwx® (E_j" EX 4 SE? . F2 4 sF® . E2 4+ 7F® . Ffw) —0,

V x G2 4+ i2we FX + 20y @ (E;” CE® +25EY . F® 4+ s2F® . F;") -0,

t(Ffy=0, k=1,2.
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Set
pke .= ke _gho koGl _pglo k=12
Then (P®, Q¢, P2*, Q2) satisfies
V x P* _ikwp Qe =0, k=1,2,
Vx QY +iwsP? + iwx® (sE—‘l“ Fszw +SF2. E%‘” +s2ﬁ~ F?‘”) =0,

V x 02 + i2we P2 + i2wy @ (2sE;0 F® 4 5*F® . F;)) —0,

t(Pky=0, k=1,2,

which implies

2 : k k
”Ps w”Wl,p(Q,(Cfi) + || st“W]l)jP(Q)
iv
k=1,2

<Clsl| D0 IEC e | | 20 IEIwin@c

k=1,2 k=1,2
2 kw2
+ClsP Y E iy
k=1,2

Then by (3.2) and (3.5), we have

kw kw kw2
kzlzna lwir@.co) + 1108 ||W];;5(Q)sck212||f i gy

which by (3.6) and (3.3) provides

kw kw
> IEClwrgen + 165y,
k=1,2

kw2
= ”f ”TWSi—Vl/p,p(aQ)
k=1,2

k k
+ kZIZ IES Iwiricn + 1Lyt g,

<C Y I

1-1/p,p .
5 TWE PP (0%)

We plug this back into (3.7) to finally obtain
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kw kw kw kw
> IE = Elyingen G = H o,
k=1,2

= Clsl D Wiy + CI1 D0 IF 1 imn gy B9
k=1,2 k=1,2

<Cyls]

for |s| small enough and some constant C s > 0 depending on (f*, f 20y,
Denote by Ag{ﬁ“’ the admittance map A(:ﬁ“(’) for linear Maxwell’s equations, i.e.,

ALZO(f, f2%) = (((HP), t(H?)).
We obtain the following asymptotic expansion of the admittance map.

Proposition 1. Suppose that (f©, f2°) € TW) PP (9Q) x TWp-""?(9Q) with 3 < p <6.
Then

sTUALT o (5f 2 sf7) = sALE (., 7)) = 0, (3.10)
and
SN o (51752 = SALROCFY )~ (KHD)L HHED) (3D

both in TWL VPP (0Q) x TWL VPP (09) as s — 0.

Proof. From (3.4) we have
AL o (5f 512 = sALR(F, £2) = 5% (HG9), HGE))
Then by boundedness of t from W];’ifj (€2) onto TWé;l/p’p(BQ) and by (3.8),
s~ LAY o (57 SF2) = SAZEE . L) pyiinn g crwi=1mo

2 : k
= C|S| ”G_gw”WI;vI’(Q)
iv
k=1,2

<Cslsl.

Taking s — 0, this implies (3.10). Similarly, by (3.9),

— 2
s T2LAL 7 o (57 5F2) =S AL (£, F2)1= (6CHS) ACHED) gy i sgy 0

<C Y IGY — H”|

L.p
Wi (Q)
k=1.2 Div

< Cylsl,
which proves (3.11). O
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By (3.10) in the Proposition 1 and the result in [22], the uniqueness of w,e € C 3(Q:;C) in
Theorem 2 is proved from the injectivity of the map

w,2w

(m, &) = AE".

Remark 3. One can see that the proof applies to the case when p and ¢ also depend on the
frequency. That is, given (e*, u®, g0 uz‘“) € (C 2(SZ; (C3))4 with positive real-parts, the admit-
tance map

A L) e (), ()

£, 2,620, 20 x (@)
for the Maxwell’s system

VxE®Y—ion”H® =0,

Vx H” +iwe”E® + iox PE® . E** =0,

V x E** — 20p*°H?*® =0,

V x H*® 4+ 20’ E*® 4+ 20y P E® . E® =0
t(EF) = fhe k=1,2,

. . 4 . . .
uniquely determines (e“, u®, e20 2y ¢ (C 2(Q; (C3)) since the linear admittance map after
first order approximation decouples to two linear admittance maps for linear Maxwell’s equations
associated to frequencies w and 2w.

4. Proof of Theorem 2

In this section we continue the proof of Theorem 2 by showing xl(z) = Xz(z). To that end, we

shall use complex geometrical optics solutions in an integral identity (4.4).
4.1. An integral identity

Now, by (3.11) in Proposition 1, we obtain t(Hy9) = t(H5%) for k = 1,2, where (ES

2,j°
HY ;. E3%. H3®) € WP () x Wil () x WP () x Wiy (), j = 1,2, s the unique solution
to

2J

V x E5% —ikopHy% =0, k=12,

Vx H +iweES ; +iox U EY - E7 =0, @.1)
V x H% + 208 E3% + i20x D EY - EY =0,
WESD=0. k=12
with (EY, H, E{®, H{) € Wl;’i\[; (§2) x WJ;}C(Q) X W];i\[,) (2) x Wé’iC () is a solution to
V x E]fw—ika)/LHlszo, V x Hlk“’—i—ika)gEll“"zo, k=1,2, (4.2)
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satisfying t(EX?) = fro with k = 1,2. Let (E®, H®, E2, H*) € WP(Q) x WP (Q) x
Dw P(Q) x Wélf(Q) be a solution to

V x EX —ikomH* =0, V x H* +ikwsEX =0, k=1,2. (4.3)

Using integration by parts,

> /t(H @) . (v x t(Ek®)) dS = > /v x HE® . Eko — Hk .V x Eko dx

k=1,290 k=1,2¢

/ 3 —ikweES Bk —iw(x® - E) (E_i” Elzw)

k=1,2

—i20(x® - E2)(EY- EY)~ Y HE . (ikomH ) dx,
k=1,2

then

3 / t(HE?) - (v x t(Ek)) dS
k=1,25¢,

/ZE : VXka)—la)( (2)-5)(15_?-13%“))
Qk 1,2

—i20(x® - E2)(EY - EY)+ Y (V x EA®) - Hk dx
k=1,2

= | > «E)- v x t(Hr)) dS
g k=12

+ [ iolc® B (F7 - £1) - 20 B (57 - £)
Q
=/—iw(x(2) . E®) (E_i"Elz“’) —i20(x@ - E2)(E? - E?) dx
Q

For X j = 1,2, we have
> / t(HES) - (v x t(Ek)) dS = — / 1 [ (B E) Eo+2(Ey - EY)E™ ] dx.
k=125, o
Then by that t(Hff‘f) = t(Hf’“z)) for k = 1,2, we have the key identity
Q
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for solutions to (4.2) and (4.3).
4.2. Construction of complex geometrical optics solutions

In this section, we construct appropriated solutions to the linear equations (4.2) and (4.3) in
order to plug in the integral identity (4.4). We adopt the approach in [21]. For the completeness

of the work, we present the main steps here.
Given ¢ € C3 such that ¢ - ¢ = k2, the Faddeev kernel is defined as

i&x
— (27)73 ¢
ge(x) =(2m) / EE—2i7 d&. (4.5)

Then ¥ (x) = &5~ g¢ (x) is a fundamental solution to the operator —(A + x2) and

W2 T+ VX
G=— . vv. 9

[270]

is a fundamental solution to the Maxwell’s operator . — w in vacuum, where

0 Lyx
gz(—LVx 600 ), k2 = W’ poso.
o

Here the operators VV- and V x are interpreted as matrix operators acting on scalar functions

d11 012 013 0 —-03 o
VV.=| 0y 0p» 03|, VX = d3 0 —01
031 03 033 —d 01 0

As aresult, Maxwell’s equations for (E, H) in the whole space
VXE—iopuH =0, VxH+iwcE=0

read

(g—w)(fl>=w<£fl> (4.6)

where € = (¢ — €9) /&0 and & = (u — o)/ o. Given above fundamental solutions, the solutions
we are looking for in turn solve the integral equation

E\_(Eo /G__ EMEM \ 47
(H) <H0>+‘” ( ”(mmm ! @0

for some vacuum solutions (Eg, Hyp) to

(z—w)(fl‘;)zo.
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Specifically, we choose
Eo(x)=¢""A;,  Ho(x)=e""B;

where ¢ X Ay = wuoB; and ¢ x By = —wepA¢. In particular, if ¢ - A; = 0, one only needs to
choose A; = —L—¢ x B,.

—weq
By [21, Theorem 2.5], for u, € € C3(Q, C), the equation (4.6), or equivalently (4.7), admits a
unique solution (E, H) of the form

E(x)=e""(A; + R(x)), H(x) =" (B + Q(x)),
with R(x) and Q(x) in L2 ;(R3; C3) for § € [1/2, 1], where

1/2

1flls = /(1 PR dx | < oo
R3

L;(R*: C" =1 f e Li, (R’ C")

Then by [21, Lemma 2.4], (R(x), Q(x)) satisfies the equation

(0)-()alua(@) e

where
J\ - . Ag —1 . A¢
(K)_(M My 1)<B§>+M G, <M(V Q)<B; , “4.9)
1/2 0 1/2 0
_(¢ _{ %
M—( 0 M1/2>, MO—( 0 'ué/z ’
and
2 2 i Ael/? 0
(e — pnogo) + V-loge =V (ne)x o172
— 0V (pe)x (e — 110e0) + V:ogp ) 0 At

The operator G is the convolution of components with the Faddeev kernel g, defined in (4.5).
It is a bounded operator from L§(]R3; C% to Lz_(S (R3;CO) for § € (1/2, 1) with the decaying
property (see [21, Proposition 2.1])

C
IGe fll—s < mufna, feL3(R3CO. (4.10)

The proof of such decay can be found in [29].
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Denote E = ¢‘*“e and H = ¢ *h, that is, e(x) = A; + R(x) and h(x) = B; + Q(x). By (4.8)

and (4.9), we have
A
M<ﬁ>=M0(B§)+G; <M(V—q)(fl)). (4.11)

Using the decaying estimate (4.10) for G, for |¢] large, (4.11) admits a solution by Neumann

series
~ 1/2 —1/2 A E
()=o) (B)-( o s) e
¢ Q > V2(B + 0)

where R, é € Lz_(S (R3; C3) satisfying

C(|Ag|+|B:])

Rl|l_s5. 10l <
IR =5, 1Ol -5 7]

., se1/2,1)

where C > 0 is independent of |{|. Note that R and Q do not satisfy this decaying property since

0 1/2

(R) (eé/28’1/2—1> Ag +8$/28’1/2§
= 12 _ R
(Mo/ M 1/2—1>Bc+uo w120

Moreover, by [20, Lemma 2.11 (b)], we have that the solution (E, H) = (e**e, ¢ *h), with
(e, h) given by (4.12), belongs to H2(2; C3) x H*(Q; C3), and

C(A¢ |+ B¢

FE. s €[0,1]. (4.13)

1R 115 .03y 1101l s sy <
By Sobolev embedding, we have (E, H) € W17 (; C3) x WP (Q; C3) for 2 < p < 6. Then by
Maxwell’s equations and Div(t(E)) = v-(V x E), we obtain that (E, H) € Wé’if(Q) X Wé’if ().
Finally, one can obtain the estimates

- C(A: |+ B

||R||Lp(gz;(c3)a l Q||Lp(gz;(c3) = 4.14)

6—p
[¢]2»
using the inequality 0 < % <1, Sobolev embedding and (4.13). To summarize, we obtain

Proposition 2. Let Q be a bounded domain in R with smooth boundary and 2 < p < 6. Suppose
that &, ;1 € C3(2; C) with positive real parts in Q. Then for ¢ € C3 with ¢ - ¢ = k* = w?1o€o,
and A, B satisfying ¢ X Ay = wpoB; and § X By = —wegAg, with |¢| large enough, the
Maxwell’s equations

VX E=iouH, VX H=—iweE
have a solution (E, H) € W];’if(Q; C3) x W];’if(Q; C3) of the form
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x 1/2 — o . 12 — ~
E(x)=¢7e)?s™V2(Ac + R), H(x)=e" /> u="?(B, + 0)
where ﬁ, é satisfy (4.14).

Remark 4. In the following we choose ¢ and A, satisfying ¢ - ¢ = «2 and ¢ - Ay =0. Then
X (& xA)= —KZA;, which is equivalent to { X A; = wuoB; and { X By = —wepA;.

4.3. Proof of Theorem 2: part Il

Recall that we assume 3 < p < 6. For arbitrary & € R3\{0}, choose coordinates such that

& =£1eq. Set
w .El Elz 2 . 2 2 .
& :zEel— Z+r e+ ivVTe—k-e3~1(—eyt+iez).

[£2
30 =—igje; +2 %1 +12ey+2ivV1? —Kk? ez~ 1t(2e +2ies),

2
?= —i%lel -1/ %1 +12ey+iviZ—«k?ez~t(—ez+iez),
[e2
2 =ige +2 %4—12 ey +2ivVt2—kZez3~1(2e; +2ie3).

Then we have

¢ L =0T =kt e =0 0 = 4k = (20) oso
and
TP+ TO =ik, 2P 4T =0,

Then we pick

b
-8
Il
| )
INEAY
+
_
o
B
ES)
e
|
NTﬁ.’*
|
|2
4
~
o
b
o
S
|
S OO

One can verify
é']w-A‘]UZ %w.A%w:EZa).ANszo.
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For A?, we have two choices

0 1
1 1
A? = 5 or AY= 5
§ .2 i, 5,
T"FT T+ T-’rl’
ivVt2—k? ivVt2—k?

Then A® ~E‘” =0.
Then by Proposition 2, we have solutions to the linear equations (4.1) and (4.3) given by
EY =%y 2e 1 2 (AY + RY),
E%w _ e;%w.xg(l)/ngl/Z(A%a) + R%w),
B0 = Foxgl e 12 (R0 4 o),
B0 _ eEZM.xgé/qu/z(gzw + E2a))’
where

~ ~ C
10} 2w w 20w
||R1 ||Lp(gz;(c3), ||R1 ”LP(Q;(C3)7 IR ||Lp(gz;(c3)’ IR ||LP(Q;(C3) = 6—p °
P

2
Since we assume p < 6, plugging these solutions into the integral identity (4.4) and using the
generalized Holder’s inequality and above decay property for the terms involving remainders, we
obtain as T — oo

—_

0
/eiié'xaxg <X1(2) — XZ(Z)) | 1] dx=0 and /efié'anQ <X1(2) - Xz(Z)) ) dx=0.

i

~.

Here and in what follows, a := 83/ 2|8|"§_1/ 2 Hence, we obtain

1

0
Flaxax® =x) 1| ]©®=0 and Flaxax®-x®)-[1]]®=0
i i

for all £ € R3\{0}, where F is the Fourier transform. Since a is assumed non-vanishing every-
where, this implies

0 1
(XI(Z) — Xz(z)) -1 1]1=0 in  and (X](Z) - X2(2)) [ 1]=0 in Q
i i
2)

Therefore, for complex-valued x,* — Xz(z), this verifies
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2 (2) ) )
Re(x, )2 —Im(x;™ — %7 )3 =
2 (2) _ 2 .
(X1 )1=0 and o 2) & @ in Q. (4195
Re(x,; )3 +Im(x;™ — x,7 )2 =

Lastly, in above choices of ¢{°, {12“’, E“’, Zz“’, AT, A%‘”, we switch the components of e, and
e3; then choose

0
sz i‘FTZ
ivVt2—k2

1

‘We obtain
2 2 0
Flaxex® =) -|i || ®=0

1

for all £ € R3\{0}, which shows that

Re(x? — %) +Im(x? — x{¥)3 =0
2 2 2 2
Re(x(? = 13”3 = Im(x;” = x57)2 =0

in Q. Together with (4.15) this implies (x, @ _ (2))2 (O @ _ (2))3 = 0 in Q. Therefore,

Xl( = 2(2) in 2 and this completes the proof of Theorem 2.
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