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Abstract

The Cauchy problem for n-dimensional complex heat equation is considered. The Borel summability of
formal solutions is characterized in terms of analytic continuation with an appropriate growth condition of
the spherical mean of the Cauchy data.
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1. Introduction

For the last several years the theory of the summability or the multisummability of the formal
series has been developed. The application of this theory to ordinary differential equations gives
very interesting results. In particular, it was proved that formal solutions of meromorphic differ-
ential equations are multisummable (see Braaksma [6]). It means that for every formal solution
of such equation, one can derive an analytic solution in some sector, having the formal one as its
asymptotic expansion.

For partial differential equation this problem is more complicated. The first result on summa-
bility of formal solutions was obtained for the heat equation by Lutz, Miyake and Schäfke [11]
and generalized by Balser [1]. In the subsequent papers, analogous questions for more general
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classes of linear partial differential equations were studied by Balser [3], Balser and Malek [4],
Balser and Miyake [5], Hibino [8], Ichinobe [9,10], Miyake [13], Ōuchi [14] and others.

In the paper we consider the Cauchy problem for the n-dimensional complex heat equation

∂τ u(τ, z) = �zu(τ, z), u(0, z) = ϕ(z), (1)

where τ ∈ C, z ∈ C
n, �z := ∑n

i=1 ∂2
zi

and ϕ(z) is analytic in a complex neighbourhood G ⊆ C
n

of the origin.
The Cauchy problem (1) has the unique formal solution

û(τ, z) =
∞∑

k=0

uk(z)τ
k with uk(z) := �kϕ(z)

k! , (2)

which diverges for a general initial condition ϕ(z). Precisely, the formal solution (2) conver-
gences if and only if the Cauchy data ϕ(z) is an entire function of exponential order at most 2
(see Introduction in [11]).

The aim of this paper is answer to the question: under what conditions on the Cauchy data is
the formal solution (2) Borel summable? In the one-dimensional case this problem was solved
by Lutz, Miyake and Schäfke [11]. They showed that for n = 1 the formal solution (2) is
1-summable in a direction θ if and only if ϕ(z) can be analytically continued to infinity in some
sectors in directions θ/2 and π + θ/2 and the continuation is of exponential size at most 2 when
z → ∞ in these directions. Similar result for more general initial data was given by W. Balser [1].
The multidimensional heat equation was investigated by Balser and Malek [4], but their result is
not stated immediately in the term of the initial data.

In our paper we generalize the results of Lutz, Miyake and Schäfke [11] to the higher spatial
dimensions as follows:

The formal solution (2) of the Cauchy problem (1) is 1-summable in a direction θ if and only
if the function

Φn(τ, z) =
⎧⎨⎩

∫
∂Bn(1)

ϕ(z + τx) dS(x) if n is odd,∫
Bn(1)

ϕ(z+τx) dx√
1−|x|2 if n is even,

is analytically continued to infinity in some sectors in directions θ/2 and π +θ/2 (with respect
to τ ) and to some ball with a center at origin (with respect to z) and this continuation is of
exponential growth of order at most two as τ → ∞.

For the precise formulation see Corollary 1.
Following Balser (see [1–5]) we shall use the modified Borel transform of û(τ, z) instead of

the Borel transform. This modified transform is more suitable for a study of formal solutions
of PDE. The crucial fact is that after appropriate change of variables this transform satisfies the
wave equation.
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2. Notation

The complex (respectively real) ball with a center at z0 ∈ C
n (respectively x0 ∈ R

n) and
a radius r > 0 is denoted by Dn(z0, r) := {z ∈ C

n: |z − z0| < r} (respectively Bn(x0, r) :=
{x ∈ R

n: |x − x0| < r}), where | · | is the Euclidean norm |z| := √
z1z1 + · · · + znzn in C

n (re-

spectively |x| :=
√

x2
1 + · · · + x2

n in R
n). To simplify notation we write D(z0, r) (respectively

B(x0, r)) for n = 1, Dn(r) and D(r) (respectively Bn(r) and B(r)) for z0 = 0 (respectively
x0 = 0).

The mean values of a function f over a ball Bn(r) and over a sphere ∂Bn(r) are denoted by

−
∫

Bn(r)

f (x) dx := 1

α(n)rn

∫
Bn(r)

f (x) dx

and

−
∫

∂Bn(r)

f (y) dS(y) := 1

nα(n)rn−1

∫
∂Bn(r)

f (y) dS(y),

where α(n) := πn/2


(n/2+1)
is the volume of the unit ball Bn(1) and nα(n) is the surface of the unit

sphere Sn−1 := ∂Bn(1).
For θ ∈ R, ε > 0 and δ > 0 we set E+(θ, ε) := {s ∈ C: dist(s, eiθ

R+) < ε} and Ω(θ/2, δ) :=
{z ∈ C: dist(z, eiθ/2

R) < δ}.
A sector in the universal covering space of C \ {0} is denoted by

S(θ,α,T ) := {
z ∈ C: z = reiϕ, θ − α/2 < ϕ < θ + α/2, 0 < r < T

}
for θ ∈ R, α > 0 and 0 < T � +∞. In case T = +∞ we denote it briefly by S(θ,α). A sector
S′ is called a proper subsector of S(θ,α,T ) if its closure in C is contained in S(θ,α,T ) ∪ {0}.

Sometimes we will denote a point x ∈ R
n+1 by (x′, xn+1) = (x1, . . . , xn, xn+1) and z ∈ C

n+1

by (z′, zn+1) = (z1, . . . , zn, zn+1).
By O(D) we denote the space of analytic functions on a domain D ⊆ C

n. The Banach space
of analytic functions on Dn(r), continuous on its closure and equipped with the norm ‖ϕ‖r :=
max|z|�r |ϕ(z)| is denoted by En(r).

3. Borel summability

We recall some fundamental facts about the Borel summability following [2,11].

Definition 1. We say that a function u(t, z) ∈ O(S(θ, ε) × Dn(r)) (respectively u(t, z) ∈
O(E+(θ, ε)×Dn(r)), u(t, z) ∈O(Ω(θ, ε)×Dn(r))) is of exponential growth of order at most k

as t → ∞ in S(θ, ε) (respectively in E+(θ, ε), in Ω(θ, ε)) if and only if for any r1 ∈ (0, r) and
any ε1 ∈ (0, ε) there exist positive constants C and B such that
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max
|z|�r1

∣∣u(t, z)
∣∣ < CeB|t |k for every t ∈ S(θ, ε1)

(
respectively t ∈ E+(θ, ε1), t ∈ Ω(θ, ε1)

)
.

If k = 1, we say for short that u(t, z) is of exponential growth as t → ∞ in S(θ, ε) (respectively
in E+(θ, ε), in Ω(θ, ε)).

Analogously, we say that a function ϕ(z) ∈O(S(θ, ε)) (respectively ϕ(z) ∈O(Ω(θ, ε))) is of
exponential growth of order at most k as z → ∞ in S(θ, ε) (respectively in Ω(θ, ε)) if and only
if for any ε1 ∈ (0, ε) there exist positive constants C and B such that∣∣ϕ(z)

∣∣ < CeB|z|k for every z ∈ S(θ, ε1)
(
respectively z ∈ Ω(θ, ε1)

)
.

If k = 1, we say for short that ϕ(z) is of exponential growth as z → ∞ in S(θ, ε) (respectively
in Ω(θ, ε)).

Definition 2. Fix any r > 0. We say that

û(τ, z) :=
∞∑

k=0

uk(z)τ
k with uk(z) ∈ En(r),

is 1-Gevrey formal power series if its coefficients satisfy

max
|z|�r

∣∣uk(z)
∣∣ � ABkk! for k = 0,1, . . . ,

with some positive constants A and B .
The set of 1-Gevrey formal power series in τ over En(r) is denoted by En(r)[τ ]1. We also set

En[τ ]1 := ⋃
r>0 En(r)[τ ]1.

Definition 3. Let θ ∈ R, α > 0 and u(τ, z) ∈ O(S(θ,α,T )×Dn(r)) with some r > 0 and T > 0.
Then û(τ, z) ∈ En[τ ]1 is called the Gevrey asymptotic expansion of u(τ, z) in S(θ,α) if for any
proper subsector S′ ⊂ S(θ,α,T ) there exist positive constants A, B and r1 ∈ (0, r) such that
û(τ, z) ∈ En(r1)[τ ]1 and

max
|z|�r1

∣∣∣∣∣u(τ, z) −
K−1∑
k=1

uk(z)τ
k

∣∣∣∣∣ � ABKK!|τ |K for τ ∈ S′, K = 1,2, . . . . (3)

If we take α � π then, according to Ritt’s theorem for Gevrey asymptotics (see [2, Proposi-
tion 10]), for every û(τ, z) ∈ En[τ ]1 there exists an analytic function u(τ, z) such that û(τ, z) is
the Gevrey asymptotic expansion of u(τ, z). However, this u(τ, z) is not unique.

On the other hand, if α > π and if û(τ, z) ∈ En[τ ]1 is the Gevrey asymptotic expansion of
some u(τ, z) then, by Watson’s lemma (see [2, Proposition 11]), this u(τ, z) is unique. This
observation motivates the following definition.

Definition 4. We say that û(τ, z) ∈ En[τ ]1 is 1-summable in S(θ,α) if α > π and if there exist
r > 0, T > 0 and u(τ, z) ∈ O(S(θ,α,T ) × Dn(r)) such that û(τ, z) is the Gevrey asymptotic
expansion of u(τ, z) in S(θ,α). This u(τ, z) is called the 1-sum of û(τ, z) in S(θ,α).
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We say that û(τ, z) ∈ En[τ ]1 is 1-summable in a direction θ if û(τ, z) is 1-summable in
S(θ,α) for some α > π .

The 1-summability can be characterized as follows:

Proposition 1. (See [2, Theorem 33].) Let θ ∈ R, α > π . A formal series û(τ, z) ∈ En[τ ]1 is
1-summable in S(θ,α) if and only if its Borel transform

v̂(s, z) :=
∞∑

k=0

uk(z)
sk

k!

is analytic in S(θ,α − π) × Dn(r) ( for some r > 0) and is of exponential growth as s → ∞ in
S(θ,α − π). The 1-sum of û(τ, z) in S(θ,α) is represented by the Laplace transform of v̂(s, z),

uϕ(τ, z) := 1

τ

eiϕ∞∫
0

e−s/τ v̂(s, z) ds,

where the integration is taken over the ray eiϕ
R+ := {reiϕ : r � 0} for ϕ ∈ (θ −α+π, θ +α−π).

In the case of α = π , a function u(τ, z) satisfying a Gevrey asymptotic expansion (3) of
û(τ, z) ∈ En[τ ]1 is not unique. One can remove this inconvenience replacing subsectors by open
balls.

Definition 5. We say that û(τ, z) ∈ En[τ ]1 is fine 1-summable in a direction θ if there exist
T > 0, r > 0 and u(τ, z) ∈ O(D(T eiθ , T )×Dn(r)) such that for some T ′ ∈ (0, T ) and for every
r1 ∈ (0, r),

max
|z|�r1

∣∣∣∣∣u(τ, z) −
K−1∑
k=1

uk(z)τ
k

∣∣∣∣∣ � ABKK!|τ |K for τ ∈ D
(
T ′eiθ , T ′), K = 1,2, . . . ,

with some positive constants A and B . This u(τ, z) is called the fine 1-sum of û(τ, z) in a direc-
tion θ .

As in the 1-summable case, one can prove that if û(τ, z) ∈ En[τ ]1 is fine 1-summable in a
direction θ then its fine 1-sum is unique (see [12, Section 1.4.2]).

The fine 1-summability is also characterized as follows:

Proposition 2. (See [12, Theorem 1.4.2.1].) A formal series û(τ, z) ∈ En[τ ]1 is fine 1-summable
in a direction θ if and only if its Borel transform v̂(s, z) belongs to O(E+(θ, ε) × Dn(r)) ( for
some ε > 0 and r > 0) and is of exponential growth as s → ∞ in E+(θ, ε). The fine 1-sum of
û(τ, z) in S(θ,α) is represented by the Laplace transform of v̂(s, z) in a direction θ .
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Since 1/4k � (k!)2/(2k)! � 1 for every k ∈ N, according to the general theory of moment
summability (see [2, Section 6.5]) a formal series û(τ, z) = ∑

uk(z)τ
k is 1-summable in S(θ,α)

(respectively 1-fine summable in a direction θ ) if and only if the same holds for the series

∑
uk(z)

(k!)2

(2k)!τ
k.

Consequently, we obtain analogous characterization of 1-summability and of fine 1-summability
as in Propositions 1 and 2 if we replace the Borel transform by the modified Borel transform

v(s, z) :=
∞∑

k=0

uk(z)
k!sk

(2k)! (4)

and the Laplace transform by the Ecalle acceleration operator

uϕ(τ, z) = 1√
τ

eiϕ∞∫
0

v(s, z)C2(
√

s/τ ) d
√

s. (5)

The integration in the last formula is taken over the ray eiϕ
R+ for ϕ ∈ (θ − α + π, θ + α − π)

and C2(ζ ) is defined by

C2(ζ ) := 1

2πi

∫
γ

eu−ζ
√

u

√
u

du

with a path of integration γ as in the Hankel integral for the inverse Gamma function: from ∞
along argu = −π to some u0 < 0, then on the circle |u| = |u0| to argu = π , and back to ∞
along this ray.

Hence the modified version of Proposition 2 we can formulate as follows:

Proposition 3. A formal series û(τ, z) ∈ En[τ ]1 is fine 1-summable in a direction θ if and only
if its modified Borel transform v(s, z) belongs to O(E+(θ, ε) × Dn(r)) ( for some ε > 0 and
r > 0) and is of exponential growth as s → ∞ in E+(θ, ε). The fine 1-sum of û(τ, z) in S(θ,α)

is represented by the Ecalle acceleration operator (5) of v(s, z) in a direction θ .

4. The main result

In the proof of the main theorem we shall use the following auxiliary lemmas.

Lemma 1. Let ϕ(z) be analytic in a complex neighbourhood of the origin. Then the formal
solution (2) of the Cauchy problem (1) is 1-Gevrey formal power series. Moreover, if the Cauchy
data ϕ(z) ∈O(Dn(r̃)) then for any r ∈ (0, r̃) the formal solution û(τ, z) ∈ En(r)[τ ]1.

Proof. Take r̃ > 0 such that ϕ(z) ∈ O(Dn(r̃)). We need to show that for any r ∈ (0, r̃) the formal
solution û(τ, z) ∈ En(r)[τ ]1. To this end take any r, r1 ∈ (0, r̃), r < r1, and put ε := r1−r√

n+1
.

Observe that for any z ∈ Dn(r) the set {ζ ∈ C
n: |ζi − zi | = ε for i = 1, . . . , n} is contained
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in Dn(r1). Hence, by the Cauchy integral formula, the coefficients (uk(z))
∞
k=0 of the formal

solution (2) satisfy

max
|z|�r

∣∣uk(z)
∣∣ = max

|z|�r

∣∣∣∣ (∂2
z1

+ · · · + ∂2
zn

)kϕ(z)

k!
∣∣∣∣

� max
|z|�r

∑
i1+···+in=k
i1,...,in�0

1

i1! · · · in!
∣∣∂2i1

z1
· · · ∂2in

zn
ϕ(z)

∣∣
� max

|z|�r

∑
i1+···+in=k
i1,...,in�0

(2i1)! · · · (2in)!
i1! · · · in!(2π)n

×
∣∣∣∣ ∫
|ζ1−z1|=ε

· · ·
∫

|ζn−zn|=ε

ϕ(ζ )

(ζ1 − z1)2i1+1 · · · (ζn − zn)2in+1
dζ

∣∣∣∣
�

∑
i1+···+in=k
i1,...,in�0

4ki1! · · · in!
ε2k

max
|z|�r1

∣∣ϕ(z)
∣∣ � max

|z|�r1

∣∣ϕ(z)
∣∣(4n

ε2

)k

k! = ABkk!

for k = 0,1, . . . , with positive constants A = max|z|�r1 |ϕ(z)| and B = 4n/ε2. �
Lemma 2. Let v(s, z) be the modified Borel transform (4) of the formal solution (2) of the
Cauchy problem (1). Then w(τ, z) := v(τ 2, z) is a solution of the Cauchy problem for the com-
plex n-dimensional wave equation

∂2
τ w(τ, z) = �zw(τ, z), w(0, z) = ϕ(z), ∂τw(0, z) = 0. (6)

Moreover, if for some z ∈ C
n the function τ �→ w(τ, z) is analytic on D(r) then the function

s �→ v(s, z) is analytic on D(r2).

Proof. Notice that by (2) and (4)

v(s, z) =
∞∑

k=0

�kϕ(z)

(2k)! sk,

hence

w(τ, z) = v
(
τ 2, z

) =
∞∑

k=0

�kϕ(z)

(2k)! τ 2k.

A trivial verification shows that w(τ, z) is a solution of the Cauchy problem for the wave equa-
tion (6).

Take z ∈ C
n such that τ �→ w(τ, z) is analytic on D(r). Hence, by the Cauchy–Hadamard

formula,
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1

lim supk→∞ 2k

√
|�kϕ(z)|

(2k)!
� r,

and consequently

1

lim supk→∞ k

√
|�kϕ(z)|

(2k)!
� r2,

which implies that the function s �→ v(s, z) is analytic on D(r2). �
Now, we are ready to formulate the main result

Theorem 1 (The main theorem). The formal solution û(τ, z) given by (2) is fine 1-summable in
a direction θ if and only if there exists δ > 0 such that:

• For n = 1, the Cauchy data ϕ(z) is analytically continued to Ω(θ/2, δ) and is of exponential
growth of order at most 2 as z → ∞ in Ω(θ/2, δ).

• For n > 1 and any δ̃ ∈ (0, δ), the function

Φn(τ, z) =
⎧⎨⎩

∫
∂Bn(1)

ϕ(z + τx) dS(x) for n odd,∫
Bn(1)

ϕ(z+τx) dx√
1−|x|2 for n even,

(7)

is analytically continued to Ω(θ/2, δ − δ̃) × Dn(δ̃) and is of exponential growth of order at
most 2 as τ → ∞ in Ω(θ/2, δ − δ̃).

Proof. The one-dimensional part of this theorem was proved by Lutz, Miyake and Schäfke [11].
For the completeness we give a new proof of their result.

(⇐) For n = 1. By Lemma 2 and the d’Alembert formula we have

v
(
τ 2, z

) = w(τ, z) = 1

2

[
ϕ(z + τ) + ϕ(z − τ)

]
.

Fix r ∈ (0, δ). The Cauchy data ϕ(z) is analytic on Ω(θ/2, δ), hence for any z ∈ D(r) the
function τ �→ w(τ, z) is analytic on Ω(θ/2, δ − r). Moreover, for any r1 ∈ (0, r) and any
ε1 ∈ (0, δ − r),

max
|z|�r1

∣∣w(τ, z)
∣∣ = max

|z|�r1

1

2

∣∣ϕ(z + τ) + ϕ(z − τ)
∣∣

� max
|z|�r1

1

2

∣∣CeB̃|z+τ |2 + CeB̃|z−τ |2 ∣∣ � CeB|τ |2 , τ ∈ Ω(θ/2, ε1),

with some positive constants B , B̃ and C. Since v(s, z) = w(
√

s, z) = w(−√
s, z), it follows that

v(s, z) is analytic on({
s ∈ C: dist

(√
s, eiθ/2

R
)
< δ − r

} ∩ S(θ,π/2)
) × D(r).
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On the other hand, by Lemma 2 and observation that w(τ, z) ∈ O(D(δ − r) × D(r)), for any
z ∈ D(r) the function s �→ v(s, z) is analytic on D((δ − r)2). Consequently, v(s, z) is analytic
on E+(θ, ε) × D(r) with ε := (δ − r)2 and for any r1 ∈ (0, r) and any ε1 ∈ (0, ε),

max
|z|�r1

∣∣v(s, z)
∣∣ = max

|z|�r1

∣∣w(±√
s, z)

∣∣ � CeB|s|, s ∈ E+(θ, ε1),

with some positive constants B and C. The assertion follows by Proposition 3.
For n > 1. By Lemma 2 and the generalization of the Kirchhoff and Poisson formula (see

Evans [7]), we have:

(a) for n = 2k + 1, k = 1,2, . . . ,

v
(
τ 2, z

) = w(τ, z) = 1

(n − 2)!!∂τ

(
τ−1∂τ

) n−3
2

(
τn−2 −

∫
∂Bn(1)

ϕ(z + τx) dS(x)

)

= 1

α(n)n!!∂τ

(
τ−1∂τ

) n−3
2 τn−2Φ2k+1(τ, z);

(b) for n = 2k, k = 1,2, . . . ,

v
(
τ 2, z

) = w(τ, z) = 1

n!!∂τ

(
τ−1∂τ

) n−2
2

(
τn−1 −

∫
Bn(1)

ϕ(z + τx) dx√
1 − |x|2

)

= 1

α(n)n!!∂τ

(
τ−1∂τ

) n−2
2 τn−1Φ2k(τ, z).

Fix r, r̃ ∈ (0, δ), r < r̃ . By assumption, Φn(τ, z) given by (7) is analytic on D(δ − r̃)×Dn(r̃).
In particular, the function

z �→ Φn(0, z) =
⎧⎨⎩

∫
∂Bn(1)

ϕ(z) dS(x) = nα(n)ϕ(z) for n odd,∫
Bn(1)

ϕ(z) dx√
1−|x|2 = n+1

2 α(n + 1)ϕ(z) for n even,

is analytic on Dn(r̃). Hence ϕ(z) ∈ O(Dn(r̃)). Therefore, by Lemma 1, the formal solution
û(τ, z) given by (2) belongs to En(r)[τ ]1.

Since Φn(τ, z) is analytic on Ω(θ/2, δ−r)×Dn(r), we see that w(τ, z) ∈ O(Ω(θ/2, δ−r)×
Dn(r)). We show that w(τ, z) is of exponential growth of order at most 2 as τ → ∞ in
Ω(θ/2, δ − r). To this end take any m ∈ N. By assumption on the growth of Φn(τ, z) and
by the Cauchy inequalities for holomorphic functions, we have for any r1 ∈ (0, r) and any
ε1 ∈ (0, δ − r),

max
|z|�r1

∣∣∂m
τ Φn(τ, z)

∣∣ � max
|z|�r1

max
|τ−τ̃ |= δ−r−ε1

2

|Φn(τ̃ , z)|(
δ−r−ε1

2

)m

� 2mC̃eB̃
(|τ |+ δ−r−ε1

2
)2

m
� CeB|τ |2 , τ ∈ Ω(θ/2, ε1),
(δ − r − ε1)
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with some positive constants B , B̃ , C and C̃. Analogously

max
|z|�r1

∣∣τmΦn(τ, z)
∣∣ � τmCeB̃|τ |2 � CeB|τ |2 , τ ∈ Ω(θ/2, ε1).

Therefore w(τ, z) is of exponential growth of order at most 2 as τ → ∞ in Ω(θ/2, δ − r).
Since v(s, z) = w(±√

s, z), taking ε = (δ − r)2, we conclude (analogously as in 1-dimen-
sional case), that v(s, z) is analytic on E+(θ, ε) × Dn(r). Moreover, for any r1 ∈ (0, r) and any
ε1 ∈ (0, ε),

max
|z|�r1

∣∣v(s, z)
∣∣ = max

|z|�r1

∣∣w(±√
s, z)

∣∣ � CeB|s|, s ∈ E+(θ, ε1),

with some positive constants B and C. By Proposition 3, this yields the assertion.

(⇒) For n = 1. Fix δ ∈ (0, r). By Proposition 3 and Lemma 2, we can regard the function
w(τ, z) = v(τ 2, z) as the solution of the Cauchy problem to the wave equation

∂2
τ w(τ, z) = ∂2

z w(τ, z), w(τ, z0) = ψ0(τ ), wz(τ, z0) = ψ1(τ ),

for any fixed z0 ∈ D(δ). By assumption on v(τ 2, z), the functions ψ0(τ ) and ψ1(τ ) are analytic
on {τ ∈ C: dist(τ 2, eiθ

R+) < ε} (for some ε > 0) and are of exponential growth of order at
most 2 as τ → ∞.

By the d’Alembert formula we obtain

w(τ, z) = 1

2

[
ψ0(τ + z − z0) + ψ0(τ − z + z0) +

τ+z−z0∫
τ−z+z0

ψ1(y) dy

]
.

Hence the function

ϕ(z) = w(0, z) = 1

2

[
ψ0(z − z0) + ψ0(−z + z0) +

z−z0∫
−z+z0

ψ1(y) dy

]

is analytic on z0 +{z ∈ C: dist(z2, eiθ
R+) < ε}. Changing z0 ∈ D(δ), we see that ϕ(z) is analyt-

ically continued to the domain⋃
|z0|<δ

(
z0 + {

z ∈ C: dist
(
z2, eiθ

R+
)
< ε

})
,

which contains {z ∈ C: dist(z, eiθ/2
R) < δ} = Ω(θ/2, δ).

Moreover, ϕ(z) is of exponential growth of order at most 2, because for any ε1 ∈ (0, δ),

∣∣ϕ(z)
∣∣ = ∣∣w(0, z)

∣∣ � 1

2

∣∣ψ0(z − z0)
∣∣ + 1

2

∣∣ψ0(−z + z0)
∣∣

+ 2|z − z0| max
y∈[−z+z0,z−z0]

∣∣ψ1(y)
∣∣ � AeB|z|2 , z ∈ Ω(θ/2, ε1),

with some positive constants A and B .
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For n = 2k + 1, k � 1. By Proposition 3, w(τ, z) = v(τ 2, z) is analytic on {τ ∈ C: dist(τ 2,

eiθR+) < ε} × Dn(r) (for some ε > 0 and r > 0) and, by Lemma 2, satisfies the n-dimensional
wave equation. Using spherical means we can reduce this equation to 1-dimensional case (see
Evans [7]). To this end let us define the function

w̃(τ, �, z) := (
�−1∂�

)k−1
�2k−1 −

∫
∂Bn(1)

w(τ, z + �x)dS(x),

which is analytic on {τ ∈ C: dist(τ 2, eiθR+) < ε} × D(δ − δ̃) × Dn(δ̃) with δ = r and any fixed
δ̃ ∈ (0, r). Moreover, for any �0 ∈ D(δ − δ̃) the function (τ, z) �→ w̃(τ, �0, z) is of exponential
growth of order at most 2 as τ → ∞. We can regard w̃(τ, �, z) as the solution of the Cauchy
problem to the wave equation

∂2
τ w̃(τ, �, z) = ∂2

�w̃(τ, �, z), w̃(τ, �0, z) = ψ̃0(τ, z), ∂�w̃(τ, �0, z) = ψ̃1(τ, z),

for any fixed �0 ∈ D(δ − δ̃). By assumption on v(τ 2, z), ψ̃0(τ, z) and ψ̃1(τ, z) are analytic
on {τ ∈ C: dist(τ 2, eiθR+) < ε} × Dn(δ̃) and are of exponential growth of order at most 2 as
τ → ∞. By the d’Alembert formula

w̃(τ, �, z) = 1

2

[
ψ̃0(τ + � − �0, z) + ψ̃0(τ − � + �0, z) +

τ+�−�0∫
τ−�+�0

ψ̃1(y, z) dy

]
.

Observe that for any �0 ∈ D(δ − δ̃) the function

w̃(0, �, z) = 1

2

[
ψ̃0(� − �0, z) + ψ̃0(−� + �0, z) +

�−�0∫
−�+�0

ψ̃1(y, z) dy

]

is analytic on (�0 +{� ∈ C: dist(�2, eiθ
R+) < ε})×Dn(δ̃). Changing �0 ∈ D(δ− δ̃) we conclude

that w̃(0, �, z) is analytically continued to⋃
�0∈D(δ−δ̃)

(
�0 + {

� ∈ C: dist
(
�2, eiθ

R+
)
< ε

}) × Dn(δ̃),

so also to Ω(θ/2, δ − δ̃) × Dn(δ̃) = {� ∈ C: dist(�, eiθ/2
R) < δ − δ̃} × Dn(δ̃).

On the other hand,

w̃(0, �, z) = (
�−1∂�

)k−1
�2k−1 −

∫
∂Bn(1)

w(0, z + �x)dS(x)

= (
�−1∂�

)k−1
�2k−1 −

∫
n

ϕ(z + �x)dS(x).
∂B (1)
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Notice that for l = 0,1, . . . , k − 2 the function

� �→ (
�−1∂�

)l
�2k−1 −

∫
∂Bn(1)

ϕ(z + �x)dS(x)

is equal to 0 for � = 0. Therefore,

1

�2k−1

�∫
0

�k−1

�k−1∫
0

�k−2 · · ·
�2∫

0

�1w̃(0, �1, z) d�1 d�2 · · · d�k−1 = −
∫

∂Bn(1)

ϕ(z + �x)dS(x).

For any fixed z ∈ Dn(δ̃) the left-hand side is analytic for � ∈ Ω(θ/2, δ − δ̃) \ {0} and the right-
hand side is analytic for |�| < δ − δ̃, hence the function

Φ2k+1(�, z) =
∫

∂Bn(1)

ϕ(z + �x)dS(x)

is analytically continued to Ω(θ/2, δ − δ̃) × Dn(δ̃) and is of exponential growth of order at
most 2 as � → ∞.

For n = 2k, k � 1. Let z = (z′, zn+1) = (z1, . . . , zn, zn+1) ∈ C
n+1 and define the function

w(τ, z′, zn+1) := w(τ, z′) = v(τ 2, z′). By Proposition 3, this function is analytic on {τ ∈ C:
dist(τ 2, eiθ

R+) < ε} × Dn(r) × C (for some ε > 0 and r > 0) and, by Lemma 2, satisfies the
(n + 1)-dimensional wave equation.

Following previous case we have

w̃(τ, �, z) := (
�−1∂�

)k−1
�2k−1 −

∫
∂Bn+1(1)

w(τ, z + �x)dS(x)

and w̃(0, �, z) is analytically continued to Ω(θ/2, δ − δ̃)×Dn(δ̃)×C for δ = r and for any fixed
δ̃ ∈ (0, r). On the other hand,

w̃(0, �, z) = (
�−1∂�

)k−1
�2k−1 −

∫
∂Bn+1(1)

w(0, z′ + �x′) dS(x)

= (
�−1∂�

)k−1
�2k−1 −

∫
∂Bn+1(1)

ϕ(z′ + �x′) dS(x)

with x = (x′, xn+1) = (x1, . . . , xn, xn+1) ∈ R
n+1. Hence the function

Φ2k(�, z′) = 1

2

∫
∂Bn+1(1)

ϕ(z′ + �x′) dS(x) =
∫

Bn(1)

ϕ(z′ + �x′)√
1 − |x′|2 dx′

is analytically continued to Ω(θ/2, δ − δ̃) × Dn(δ̃) and is of exponential growth of order at
most 2 as � → ∞. �
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As a corollary to Theorem 1 we can characterize 1-summability of the formal solution (2) (see
[11, Proof of Theorem 3.2])

Corollary 1. The formal solution û(τ, z) given by (2) is 1-summable in a sector S(θ,α) if and
only if the Cauchy data ϕ(z) satisfies:

(1) For n = 1, ϕ(z) is analytically continued to a double sector

S̃(θ,α) := S
(
θ/2, (α − π)/2

) ∪ S
(
π + θ/2, (α − π)/2

)
and is of exponential growth of order at most 2 as z → ∞ in S̃(θ,α).

(2) For n > 1, the function

Φn(τ, z) =
⎧⎨⎩

∫
∂Bn(1)

ϕ(z + τx) dS(x) for n odd,∫
Bn(1)

ϕ(z+τx) dx√
1−|x|2 for n even,

is analytically continued to S̃(θ,α) × Dn(δ) for some δ > 0 and is of exponential growth of
order at most 2 as τ → ∞ in S̃(θ,α).

If ϕ(z) is analytic on {z ∈ C
n: dist(z, eiθ/2

R
n) < δ} for some δ > 0 and is of exponential

growth of order at most 2 as z → ∞ then the function Φn(τ, z) is analytic on Ω(θ/2, δ − δ̃) ×
Dn(δ̃) and is of exponential growth of order at most 2 as τ → ∞ in Ω(θ/2, δ − δ̃). Hence we
have

Corollary 2. If the Cauchy data ϕ(z) is analytically continued to Ωn(θ/2, δ) := {z ∈ C
n:

dist(z, eiθ/2
R

n) < δ} for some δ > 0 and is of exponential growth of order at most 2 as z → ∞
in Ωn(θ/2, δ) (i.e., for every ε1 ∈ (0, δ) there exists positive constants B and C such that
|ϕ(z)| � CeB|z|2 for z ∈ Ωn(θ/2, ε1)) then the formal solution û(τ, z) given by (2) is fine
1-summable in the direction θ .
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