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tion around a given solution. From a local inversion theorem we
get the local controllability to the trajectories of the nonlinear sys-
tem.
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1. Introduction

In this paper we consider the following Kuramoto–Sivashinsky (KS) control system

⎧⎨
⎩

yt + yxxxx + γ yxx + yyx = 0, x ∈ (0,1), t > 0,

y(t,0) = h1(t), y(t,1) = 0, t > 0,

yx(t,0) = h2(t), yx(t,1) = 0, t > 0,

(1)

where the state is given by y = y(t, x) and the time-dependent functions h1, h2 are boundary con-
trols. This equation, where the real positive number γ is called the “anti-diffusion” parameter, was
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derived independently by Kuramoto and Tsuzuki in [19,20,18] as a model for phase turbulence in
reaction–diffusion systems and by Sivashinsky in [26] as a model for plane flame propagation. This
nonlinear partial differential equation describes incipient instabilities in a variety of physical and
chemical systems (see, for instance, [6] and [16]). From a mathematical point of view, well-posedness
and dynamical properties of KS equations have attracted a lot of attention since the pioneer arti-
cles [22,23,11].

We are interested in controllability properties of system (1). For parabolic control problems, in
general it is not possible to steer the system to an arbitrary prescribed state. Thus, we do not expect
the exact controllability to be true for the KS control system.

In this work, we address the problem of steering the solutions of system (1) to a given trajectory
of the KS equation. More precisely, given T > 0 and an appropriate space X , we say that system (1)
is exactly controllable to the trajectories if for any initial condition y0 ∈ X and for any trajectory u
satisfying

⎧⎨
⎩

ut + uxxxx + γ uxx + uux = 0, x ∈ (0,1), t > 0,

u(t,0) = 0, u(t,1) = 0, t > 0,

ux(t,0) = 0, ux(t,1) = 0, t > 0,

(2)

there exist boundary controls h1, h2 such that the solution of (1) with y(0, ·) = y0 satisfies y(T , ·) =
u(T , ·). We say that the local exact controllability to the trajectories holds if we can find controls as
above whenever ‖y0 − u(0, ·)‖X is small enough. In this paper we will prove this last property for
system KS.

Let y, u be solutions of (1) and (2) respectively. The function q := y − u satisfies

⎧⎨
⎩

qt + qxxxx + γ qxx + uqx + uxq + qxq = 0,

q(t,0) = h1(t), q(t,1) = 0,

qx(t,0) = h2(t), qx(t,1) = 0.

(3)

Given a state q0, we wonder if there exist some controls h1, h2 such that the solution q = q(t, x)
of (3) with initial condition q(0, x) = q0(x) satisfies q(T , x) = 0. If this controls exist for any state q0
lying in an appropriate space, we say that (3) is null controllable in time T . We can easily see that the
controllability to the trajectories of (1) is equivalent to the null controllability of (3). Therefore from
now on, we focus on the proof of the latter property.

In order to study the control system (3), we first prove that the following linear KS equation is
null controllable ⎧⎨

⎩
yt + yxxxx + γ yxx + uyx + ux y = 0,

y(t,0) = h1(t), y(t,1) = 0,

yx(t,0) = h2(t), yx(t,1) = 0.

(4)

To do that, we obtain a global Carleman estimate for the adjoint system of (4). From this estimate,
we deduce an observability inequality which is equivalent to the null controllability of the direct
system (4). Then, we show that the local null controllability holds for the nonlinear control system (3).
It will be done by using an inverse function argument.

The main result of this paper is the following.

Theorem 1.1. Let T > 0. Let u ∈ L∞(0, T ; H2
0(0,1)) be a solution of system (2). There exists r > 0 such

that for any y0 ∈ H−2(0,1) with ‖y0 − u(0, ·)‖H−2(0,1) � r, there exist h1,h2 ∈ L2(0, T ) and y ∈ C([0, T ],
H−2(0,1)) ∩ L2(0, T ; L2(0,1)) satisfying (1), y(0, ·) = y0 and y(T , ·) = u(T , ·).

Remark 1.2. The reference trajectory u is required to be more regular than the solution y. This is due
to the fact that u will also appear into the adjoint equation of (4) which will be studied in a more
regular framework.
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Remark 1.3. The linear control system (4) with u = 0 has been studied in [4] by using a spectral
approach. This system is null controllable with two controls. Moreover, if one can acts on the system
with just one control input, the system is still controllable if and only if the “anti-diffusion” param-
eter γ does not belong to a countably infinite discrete set of critical values. If γ belongs to this set,
there exists a finite-dimensional space of initial conditions that cannot be driven to zero with only
one control. A similar situation was found by Rosier in [24] for a Korteweg–de Vries (KdV) equation.
Later, in [8,3,5] the authors proved that the KdV equation is exactly controllable in despite of the
lack of this property for the linearized system. In the KS context, an interesting open problem would
be to study these critical cases. We could wonder if the null controllability holds for the nonlinear
system (1) with only one control.

Remark 1.4. Other control topics for the KS equation have been studied in the literature. For in-
stance [2,7,21] deal with the stabilization problem and [17] is concerned with the robust control
problem.

Remark 1.5. The null controllability and the controllability to the trajectories for other nonlinear par-
tial differential equations has been studied by other authors. It has been done by using either internal
controls (see [9,14,15,10,13]) or boundary controls (see [12,25]).

This article is organized as follows. First, in Section 2 we establish the well-posedness framework
used in this paper. Next, Section 3 is devoted to the linear control system. We prove a global Carleman
estimate in Section 3.1 and we use it in Section 3.2 in order to obtain the observability inequality.
Thus, we obtain the null controllability of the linearized KS equation. Finally, Section 4 is concerned
with the nonlinear system. We get the local null controllability and consequently the local exact
controllability to the trajectories by means of an inverse function theorem.

2. The Cauchy problem

In this section we prove the well-posedness results we need along this paper for both linear and
nonlinear equations. We can restrict ourselves to the case u = 0. The general case can be proved by
using a classical fixed point argument thanks to the regularity asked to the reference trajectory.

In order to consider boundary conditions in L2(0, T ), we will define the solution of (4) by trans-
position. Therefore, we have to study the corresponding adjoint equation (see (5) below).

2.1. Adjoint equation

It is not difficult to see that the self-adjoint operator

A : w ∈ D(A) ⊂ L2(0,1) �−→ −w ′′′′ − γ w ′′ ∈ L2(0,1),

D(A) := H4(0,1) ∩ H2
0(0,1),

has a compact resolvent. Hence the spectrum of A is a discrete set σ(A) = {σk}k∈N ⊂ R consisting only
of eigenvalues, which satisfy limk→∞ σk = −∞. Furthermore, the eigenfunctions define an orthonor-
mal basis of L2(0,1). Thanks to classical semigroup theory, we have that if g ∈ L1(0, T ; L2(0,1)), then
the solution of ⎧⎪⎪⎨

⎪⎪⎩
−wt + wxxxx + γ wxx = g,

w(t,0) = 0, w(t,1) = 0,

wx(t,0) = 0, wx(t,1) = 0,

w(T , x) = 0

(5)

satisfies w ∈ C([0, T ]; L2(0,1)). Moreover, if g ∈ C1([0, T ]; L2(0,1)), then w ∈ C([0, T ]; D(A)) ∩
C1([0, T ]; L2(0,1)). As we need more precise information about the regularity of the solutions, we
obtain the following results, by using energy estimates as in [17].
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Proposition 2.1. Let G be either L2(0, T ; L2(0,1)) or L1(0, T ; H2
0(0,1)). If g ∈ G, then the solution of (5)

satisfies w ∈ L2(0, T ; H4(0,1)) ∩ C([0, T ]; H2
0(0,1)). Moreover there exists a constant C > 0 such that

‖w‖L2(0,T ;H4(0,1))∩C([0,T ];H2
0(0,1)) � C‖g‖G

for every g ∈ G.

Proof. We consider g regular enough. Let us replace t by T − t . System (5) becomes

wt + wxxxx + γ wxx = g (6)

with homogeneous boundary conditions and null initial data w(0, x) = 0. Let us multiply the equation
by wxxxx and integrate on (0,1). We obtain

1

2

d

dt

1∫
0

|wxx|2 dx +
1∫

0

|wxxxx|2 dx = −γ

1∫
0

wxx wxxxx dx +
1∫

0

g wxxxx dx

� 1

2

1∫
0

|wxxxx|2 dx + γ 2

2

1∫
0

|wxx|2 +
1∫

0

g wxxxx dx

and then

d

dt

1∫
0

|wxx|2 dx +
1∫

0

|wxxxx|2 dx � C

1∫
0

|wxx|2 + C

1∫
0

g wxxxx dx. (7)

Let us first obtain the norm corresponding to the space G = L1(0, T ; H2
0(0,1)). From (7) we have

d

dt

1∫
0

|wxx|2 dx � C

1∫
0

|wxx|2 + C

1∫
0

gxx wxx dx, (8)

and Gronwall’s lemma implies the existence of C > 0 such that

‖w‖2
L∞([0,T ];H2

0(0,1))
� C

T∫
0

1∫
0

|gxx wxx|dx dt

and then

‖w‖L∞([0,T ];H2
0(0,1)) � ‖g‖L1([0,T ];H2

0(0,1)).

Taking into account this estimate, we integrate (7) on (0, T ) and we obtain C > 0 such that

‖w‖L2((0,T );H4(0,1)) � C‖g‖L1((0,T );H2
0(0,1)).

Thus, by a density argument we can prove that g ∈ L1(0, T ; H2
0(0,1)) implies that the solution w lies

in L2(0, T ; H4(0,1)) ∩ C([0, T ]; H2
0(0,1)).
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In order to get the norm of the space G = L2(0, T ; L2(0,1)), let us note that the second term in
the right-hand side of inequality (7) can be bounded from above by

C

2

1∫
0

|g|2 dx + 1

2

1∫
0

|wxxxx|2 dx

and in this way the term 1
2

∫ 1
0 |wxxxx|2 dx can be absorbed into the left-hand side. As before, by

applying the Gronwall lemma, we obtain the existence of a constant C > 0 such that

‖w‖L2(0,T ;H4(0,1))∩C([0,T ];H2
0(0,1)) � C‖g‖L2(0,T ;L2(0,1)).

Using a density argument we end the proof of Proposition 2.1. �
Corollary 2.2. If either g ∈ L2(0, T ; L2(0,1)) or g ∈ L1(0, T ; H2

0(0,1)), then w ∈ L∞(0, T ; W 1,∞(0,1)).

Proof. Obvious from the fact that H2
0(0,1) embeds continuously into W 1,∞(0,1). �

In order to be able to define the solution of (4) with boundary conditions h1,h2 ∈ L2(0, T ), we
need the following result.

Corollary 2.3. If either G = L2(0, T ; L2(0,1)) or G = L1(0, T ; H2
0(0,1)), then there exists C > 0 such that for

any g ∈ G, the solution w of (5) satisfies

∥∥wxx(·,0)
∥∥

L2(0,T )
+ ∥∥wxxx(·,0)

∥∥
L2(0,T )

� C‖g‖G .

Proof. This inequality is a direct consequence of Proposition 2.1 and the continuous embedding of
H4((0,1)) into C3([0,1]). �
Remark 2.4. If g ∈ L2(0, T ; L2(0,1)), then the solution satisfies w ∈ L2(0, T ; H4(0,1)) and therefore
wxxx ∈ L2(0, T ; H1(0,1)). Moreover, by using the equation, we get w ∈ H1(0, T ; L2(0,1)) and there-

fore wxxx ∈ H1(0, T ; H−3(0,1)). By interpolation, we obtain wxxx(t,0) ∈ H
1
8 −ε(0, T ) for any positive

number ε . In the same way we find wxx(t,0) ∈ H
3
8 −ε(0, T ). This regularity would allow us to consider

the direct Cauchy problem with boundary data h1 ∈ H− 1
8 +ε(0, T ) and h2 ∈ H− 3

8 +ε(0, T ). However, we
will stay within L2-regularity because of the control framework we will consider later.

2.2. Direct linear equation

Let us define what we mean by a solution of the linear KS equation.

Definition 2.5. Let y0 ∈ H−2(0,1), f ∈ L1(0, T ; W −1,1(0,1)) and h1,h2 ∈ L2(0, T ). A solution of the
equation

⎧⎪⎪⎨
⎪⎪⎩

yt + yxxxx + γ yxx = f ,

y(t,0) = h1(t), y(t,1) = 0,

yx(t,0) = h2(t), yx(t,1) = 0,

y(0, x) = y0(x),

(9)

is a function y ∈ L2(0, T ; L2(0,1)) such that for any g ∈ L2(0, T ; L2(0,1)),
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T∫
0

1∫
0

y(t, x)g(t, x)dx dt = 〈
y0, w(0, x)

〉
H−2(0,1),H2

0(0,1)
−

T∫
0

h1(t)wxxx(t,0)dt +
T∫

0

h2(t)wxx(t,0)dt

+ 〈 f , w〉L1(0,T ;W −1,1(0,1)),L∞(0,T ;W 1,∞(0,1)), (10)

where w = w(t, x) is the solution of (5).

Next theorem establishes that the solutions of (9) belong to the space

B := C
([0, T ]; H−2(0,1)

) ∩ L2(0, T ; L2(0,1)
)
.

Theorem 2.6. Let y0 ∈ H−2(0,1), f ∈ L1(0, T ; W −1,1(0,1)), and h1,h2 ∈ L2(0, T ). Then there exists a
unique solution y ∈ B of Eq. (9).

Proof. From Proposition 2.1 and Corollary 2.3, the right-hand side of (10) defines, for each h1,h2 ∈
L2(0, T ), f ∈ L1(0, T ; W −1,1(0,1)) and y0 ∈ H−2(0,1), a linear bounded functional

L0
h : g ∈ L2(0, T ; L2(0,1)

) �−→ L0
h(g) ∈ R,

and therefore, from the Riesz representation theorem, we obtain the existence and uniqueness of a
solution y ∈ L2(0, T ; L2(0,1)). By using the same results with g ∈ L1(0, T ; H2

0(0,1)), we prove that the
same L0

h defines a linear bounded functional on L1(0, T ; H2
0(0,1)). Thus, we see that in fact y ∈ B. �

2.3. Nonlinear equation

Theorem 2.7. There exists a positive real number r such that for any y0 ∈ H−2(0,1), h1,h2 ∈ L2(0, T ) and
f ∈ L1(0, T ; W −1,1(0,1)) satisfying

‖y0‖H−2(0,1) + ‖h1‖L2(0,T ) + ‖h2‖L2(0,T ) + ‖ f ‖L1(0,T ;W −1,1(0,1)) � r, (11)

the nonlinear equation

⎧⎪⎪⎨
⎪⎪⎩

yt + yxxxx + γ yxx + yyx = f ,

y(t,0) = h1(t), y(t,1) = 0,

yx(t,0) = h2(t), yx(t,1) = 0,

y(0, x) = y0(x),

(12)

has a unique solution y ∈ B.

Proof. Let us consider y0 ∈ H−2(0,1), h1,h2 ∈ L2(0, T ) and f ∈ L1(0, T ; W −1,1(0,1)) satisfying (11)
for r > 0 to be chosen later.

We define the following map

Π :� ∈ L2(0, T ; L2(0,1)
) �−→ y ∈ L2(0, T ; L2(0,1)

)
(13)

where y is the solution of

⎧⎪⎪⎨
⎪⎪⎩

yt + yxxxx + γ yxx = f − ��x,

y(t,0) = h1(t), y(t,1) = 0,

yx(t,0) = h2(t), yx(t,1) = 0,
(14)
y(0, x) = y0(x).
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Let us notice that a function y is a fixed point of this map Π if and only if y is a solution of our
nonlinear KS equation (12).

From Theorem 2.6 and by using ‖��x‖L1(0,T ;W −1,1) � 1
2 ‖�‖2

L2(0,T ;L2(0,1))
, we get

∥∥Π(�)
∥∥

L2(0,T ;L2(0,1))
� C

(‖y0‖H−2(0,1) + ‖h1‖L2(0,T )

+ ‖h2‖L2(0,T ) + ‖ f ‖L1(0,T ;W −1,1(0,1)) + ‖�‖2
L2(0,T ;L2(0,1))

)
.

For each R > 0, let us denote the ball of radius R and centered at the origin by

B(0, R) := {
� ∈ L2(0, T ; L2(0,1)

); ‖�‖L2(0,T ;L2(0,1)) � R
}
.

We see that if r > 0 and R > 0 are chosen such that C(r + R2) � R , we obtain that Π |B(0,R) ⊂
B(0, R). Let us verify that we can choose R such that Π is a contraction. Let �, �̄ ∈ L2(0, T ; L2(0,1)).
The function ŷ := (Π(�̄) − Π(�)) is the solution of

⎧⎪⎪⎨
⎪⎪⎩

yt + yxxxx + γ yxx = �̄�̄x − ��x,

y(t,0) = 0, y(t,1) = 0,

yx(t,0) = 0, yx(t,1) = 0,

y(0, x) = 0.

(15)

From Theorem 2.6, we get

∥∥Π(�̄) − Π(�)
∥∥

L2(0,T ;L2(0,1))
� C‖�̄�̄x − ��x‖L1(0,T ;W −1,1(0,1))

and using that

‖�̄�̄x − ��x‖L1(0,T ;W −1,1(0,1)) = 1

2

∥∥�̄2 − �2
∥∥

L1(0,T ;L1(0,1))

� 1

2
‖�̄ + �‖L2(0,T ;L2(0,1))‖�̄ − �‖L2(0,T ;L2(0,1))

we obtain

∥∥Π(�̄) − Π(�)
∥∥

L2(0,T ;L2(0,1))
� C R‖�̄ − �‖L2(0,T ;L2(0,1))

and therefore the map Π is a contraction if C R < 1. By applying the Banach fixed point theorem, we
can conclude that Π has a unique fixed point which is the solution of Eq. (12). �
3. Linear control system

In this section, we study the boundary control of the linear system

⎧⎪⎪⎨
⎪⎪⎩

yt + yxxxx + γ yxx + uyx + ux y = f ,

y(t,0) = h1(t), y(t,1) = 0,

yx(t,0) = h2(t), yx(t,1) = 0,

y(0, x) = y0(x),

(16)

where u = u(t, x) is a given function.
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Let us take a well-posedness framework (U1, U2, X, Y , Z) for this system. By this we mean that
given h1 ∈ U1, h2 ∈ U2, f ∈ Y and y0 ∈ X , then there exists a unique y ∈ Z solution of Eq. (16). This
system is said to be null controllable if for any state y0 ∈ X and for any f ∈ Y , one can find controls
h1 ∈ U1, h2 ∈ U2 such that the solution y of (16) satisfies y(T ) = 0. It is a well-known fact that by
duality, this null-controllability property is equivalent to the existence of a constant C > 0 such that

‖w‖Y ∗ + ∥∥w(0, x)
∥∥

X∗ � C
(‖g‖Z∗ + ∥∥wxxx(t,0)

∥∥
U∗

1
+ ∥∥wxx(t,0)

∥∥
U∗

2

)
(17)

for every w T ∈ X∗ and g ∈ Z∗ , where ∗ stands for dual space and w is the solution of the adjoint
linear system given by

⎧⎪⎪⎨
⎪⎪⎩

−wt + wxxxx + γ wxx − uwx = g,

w(t,0) = 0, w(t,1) = 0,

wx(t,0) = 0, wx(t,1) = 0,

w(T , x) = wT (x).

(18)

Inequality (17) is called an observability inequality for Eq. (18).
In this section we prove a Carleman estimate for Eq. (18). Then we use it in order to prove the

observability inequality (17) within an appropriate framework (U1, U2, X, Y , Z). Thus, we get the null
controllability of Eq. (16).

3.1. Carleman estimate

In this part of the work we shall use an abbreviated notation for the derivatives and integrals. We

write, for k integer, wkx instead of ∂k w
∂xk and

∫∫
instead of

∫ T
0

∫ 1
0 , avoiding the symbols dx dt in the

last case.
In order to deduce a Carleman estimate for the differential operator

P w = −wt + w4x + γ w2x − uwx,

we take a function β ∈ C4([0,1]) and define ϕ(x, t) := β(x)
t(T −t) , called the weight function. For each

λ > 0 let us consider the space

Wλ := {
e−λϕ w; w is solution of (18) with g ∈ L2(0, T ; L2(0,1)

)}
and define for each v ∈ Wλ ,

Pϕ v = e−λϕ P
(
eλϕ v

)
. (19)

Thus, we can write Pϕ v = P1 v + P2 v + R v , where

P1 v = 6λ2ϕ2
x v2x + λ4ϕ4

x v + v4x + 12λ2ϕxϕ2x vx,

P2 v = −vt + 4λ3ϕ3
x vx + 4λϕx v3x + 5λ3ϕ2

x ϕ2x v,

R v = λϕ4x v + 2λ2ϕ3xϕx v − λϕt v + 3λ2ϕ2
2x v + 2λ2ϕxϕ3x v + λγ ϕ2x v + λ2γ ϕ2

x v

+ 6λϕ2x v2x + 4λϕ3x vx − uvx + 2λγ ϕx vx − λuϕx v + γ v2x. (20)

In the following lemma, we develop the L2-product between P1 v and P2 v .
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Lemma 3.1. With the notation stated above, we have the decomposition∫ ∫
P1 v P2 v = I(v) + I(vx) + I(vxx) + I(v3x) + Ix

where

I(v) = −9λ7
∫ ∫

|v|2ϕ6
x ϕxx + 2λ4

∫ ∫
|v|2ϕ3

x ϕxt + 5λ5
∫ ∫

|v|2(ϕ4
x ϕ2x

)
2x

− 30λ5
∫ ∫

|v|2(ϕ3
x ϕ

2
2x

)
x + 5

2
λ3

∫ ∫
|v|2(ϕ2

x ϕ2x
)

4x,

I(vx) = −12λ5
∫ ∫

|vx|2ϕ4
x ϕxx − 6λ2

∫ ∫
|vx|2ϕxϕxt + 8λ3

∫ ∫
|vx|2

(
ϕ2

x ϕ2x
)

2x,

I(v2x) = −61λ3
∫ ∫

|v2x|2ϕ2
x ϕxx,

I(v3x) = −2λ

∫ ∫
|v3x|2ϕxx,

and

Ix = 10λ3

T∫
0

∣∣v2x(1, t)
∣∣2

ϕ3
x (1, t)dt − 10λ3

T∫
0

∣∣v2x(0, t)
∣∣2

ϕ3
x (0, t)dt

+ 2λ

T∫
0

∣∣v3x(1, t)
∣∣2

ϕx(1, t)dt − 2λ

T∫
0

∣∣v3x(0, t)
∣∣2

ϕx(0, t)dt.

Proof. See Appendix A. �
The next step is to estimate from below the L2-norm of Pϕ v . In order to do that, we ask the

function β to satisfy

0 < η � dkβ

dxk
(x), ∀x ∈ [0,1], for k = 0,1 (21)

and

d2β

dx2
(x) � −η < 0, ∀x ∈ [0,1], (22)

for some positive constant η.
Under this hypothesis, it is straightforward to see that the function ϕ(x, t) = β(x)

t(T −t) satisfies

1

C

∣∣∂k
xϕ(x, t)

∣∣ � ϕ(x, t) � C
∣∣∂k

x ϕ(x, t)
∣∣, ∀(x, t) ∈ [0,1] × (0, T ), for k = 1,2 (23)

and also ∣∣∂k
x ∂tϕ(x, t)

∣∣ � Cϕ2(x, t), ∀(x, t) ∈ [0,1] × (0, T ), for k = 1, . . . ,4, (24)

for some positive constant C .
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Remark 3.2. It is not difficult to show that such a weight function β actually exists. Take for instance
β(x) = −(x − 2)2 + 8.

Proposition 3.3. Let β ∈ C4([0,1]) satisfying (21) and (22). There exist δ > 0 and λ0 > 0 such that for every
λ � λ0 and v ∈ Wλ , we have

T∫
0

1∫
0

P1 v P2 v dx dt � δ‖v‖2
ϕ,λ + Ix (25)

where ϕ and Ix are defined above, and we have denoted

‖v‖2
ϕ,λ = λ7

∫ ∫
|v|2ϕ7 + λ5

∫ ∫
|vx|2ϕ5 + λ3

∫ ∫
|v2x|2ϕ3 + λ

∫ ∫
|v3x|2ϕ. (26)

Proof. Following the notation in Lemma 3.1 we have that

∫ ∫
P1 v P2 v =

3∑
k=0

I(vkx) + Ix. (27)

We will bound from below each integral at the right-hand side of (27). Taking into account (23)
and (24) it follows that there exist positive constants δ, C such that

I(v) = 9λ7
∫ ∫

|v|2∣∣ϕ6
x ϕxx

∣∣
+

∫ ∫
|v|2(2λ4ϕ3

x ϕxt + 5λ5(ϕ4
x ϕ2x

)
2x − 30λ5(ϕ3

x ϕ
2
2x

)
x + (5/2)λ3(ϕ2

x ϕ2x
)

4x

)
� 2δλ7

∫ ∫
|v|2ϕ7 − C

∫ ∫
|v|2(λ4ϕ5 + λ5ϕ5 + λ5ϕ5 + λ3ϕ3)

� 2δλ7
∫ ∫

|v|2ϕ7 − Cλ5
∫ ∫

|v|2ϕ7

� δλ7
∫ ∫

|v|2ϕ7 (28)

for λ large enough.
In the same way we have

I(vx) = −12λ5
∫ ∫

|vx|2ϕ4
x ϕxx +

∫ ∫
|vx|2

(−6λ2ϕxϕxt + 8λ3(ϕ2
x ϕ2x

)
2x

)
� 2δλ5

∫ ∫
|vx|2ϕ5 − C

∫ ∫
|vx|2ϕ3(λ2 + λ3)

� δλ5
∫ ∫

|vx|2ϕ5, (29)

I(v2x) � δλ3
∫ ∫

|v2x|2ϕ3 (30)
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and

I(v3x) � δλ

∫ ∫
|v3x|2ϕ (31)

for λ large enough.
From inequalities (27) to (31) we get (25). �

Proposition 3.4. Under the same hypothesis than Proposition 3.3, there exist C > 0, λ0 > 0 such that

‖P1 v‖2
L2((0,T )×(0,1))

+ ‖P2 v‖2
L2((0,T )×(0,1))

+ ‖v‖2
λ,ϕ

� C‖Pϕ v‖2
L2((0,T )×(0,1))

− C Ix (32)

for every λ � λ0 and v ∈ Wλ .

Proof. With the notation stated in (20) and Proposition 3.3 it is not difficult to check that

‖R v‖2
L2((0,T )×(0,1))

� C

(
λ4

∫ ∫
ϕ4|v|2 + λ2

∫ ∫
ϕ2|vx|2 + λ2

∫ ∫
ϕ2|vxx|2

)

� Cλ−1‖v‖2
λ,ϕ

. (33)

Then we have

‖P1 v‖2
L2 + 2

∫ ∫
P1 v P2 v + ‖P2 v‖2

L2 = ‖Pϕ v − R v‖2
L2

� 2‖Pϕ v‖2
L2 + 2‖R v‖2

L2

� 2‖Pϕ v‖2
L2 + Cλ−1‖v‖2

λ,ϕ

� 2‖Pϕ v‖2
L2 + δ

2
‖v‖2

λ,ϕ
(34)

for λ large enough. From (34) and Proposition 3.3 we get (32). �
We are now able to get a Carleman estimate for the solutions of Eq. (18).

Theorem 3.5. Let u ∈ L∞(0, T ; H2
0(0,1)) and ϕ(t, x) = β(x)

t(T −t) with β ∈ C4([0,1]) satisfying (21) and (22).
There exist C > 0 and λ0 > 0 such that

λ7
∫ ∫

|w|2e−2λϕϕ7 + λ5
∫ ∫

|wx|2e−2λϕϕ5 + λ3
∫ ∫

|w2x|2e−2λϕϕ3 + λ

∫ ∫
|w3x|2e−2λϕϕ

� C

(∫ ∫
|g|2e−2λϕ + λ3

T∫
0

∣∣w2x(0, t)
∣∣2

e−2λϕ(0,t)ϕ3
x (0, t)dt

+ λ

T∫
0

∣∣w3x(0, t)
∣∣2

e−2λϕ(0,t)ϕx(0, t)dt

)
(35)

for every λ � λ0 and g ∈ L2((0, T ); L2(0,1)), where w is the solution of Eq. (18).



E. Cerpa, A. Mercado / J. Differential Equations 250 (2011) 2024–2044 2035
Proof. This is a direct consequence of Proposition 3.4, after realizing that w = eλϕ v with v ∈ Wλ .
Indeed, developing the derivatives of (eλϕ v) and having in mind property (23) it is not difficult to
prove that

∫ ∫
e−2λϕ

(
λ7ϕ7

∣∣eλϕ v
∣∣2 + λ5ϕ5

∣∣(eλϕ v
)

x

∣∣2 + λ3ϕ3
∣∣(eλϕ v

)
2x

∣∣2 + λϕ
∣∣(eλϕ v

)
3x

∣∣2) � C‖v‖2
λ,ϕ.

(36)

On the other hand, Pϕ v = e−λϕ P w = e−λϕ g , and then from Proposition 3.4 we get

‖v‖2
λ,ϕ �

∫ ∫
C |Pϕ v|2 − C Ix = C

∫ ∫
e−2λϕ |g|2 − C Ix. (37)

Finally, since dβ
dx � 0, we have ϕx(1, t) � 0 for any t ∈ (0, T ) and therefore

−Ix � λ3

T∫
0

∣∣w2x(0, t)
∣∣2

e−2λϕ(0,t)ϕ3
x (0, t)dt + λ

T∫
0

∣∣w3x(0, t)
∣∣2

e−2λϕ(0,t)ϕx(0, t)dt. (38)

From (36), (37) and (38) we get inequality (35). �
Remark 3.6. We asked the function β to be increasing. The only place we use this hypothesis is
in (38), which allows us to obtain the Carleman inequality with boundary terms at x = 0. With the
choice of a decreasing function β , we would obtain an inequality with boundary terms at x = 1. As
we shall see below, the boundary terms in the Carleman inequality are related with the location of
the control in Eq. (16).

3.2. Null controllability

Recall that the reference trajectory u belongs to the space L∞(0, T ; H2
0(0,1)), in particular ux lies

in L∞((0, T ) × (0,1)). We prove the following energy estimate for Eq. (18).

Lemma 3.7. If g ∈ L2((0, T ); L2(0,1)) and w is the solution of Eq. (18) then

− d

dt

1∫
0

∣∣w(x, t)
∣∣2

dx �
(∥∥ux(·, t)

∥∥
L∞(0,1)

+ γ 2 + 1
) 1∫

0

∣∣w(x, t)
∣∣2

dt +
1∫

0

∣∣g(x, t)
∣∣2

dt (39)

for every t ∈ [0, T ].

Proof. Multiplying Eq. (18) by w and integrating in (0,1) we obtain

−1

2

d

dt

1∫
0

∣∣w(x, t)
∣∣2

dx +
1∫

0

∣∣wxx(x, t)
∣∣2

dx + γ

1∫
0

wxx(x, t)w(x, t)dx + 1

2

1∫
0

ux(x, t)
∣∣w(x, t)

∣∣2
dx

=
1∫

w(x, t)g(x, t)dx (40)
0
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for each t ∈ [0, T ]. By using
∫

wxx w � 1
2γ

∫ |wxx|2 + γ
2

∫ |w|2, we get that

− d

dt

1∫
0

∣∣w(x, t)
∣∣2

dx +
1∫

0

|wxx(x, t)|2 dx

�
(
γ 2 + ‖ux‖L∞(0,1)

) 1∫
0

∣∣w(x, t)
∣∣2

dx + 2

1∫
0

w(x, t)g(x, t)dx, (41)

for every t ∈ [0, T ]. From this last inequality, (39) directly follows. �
In order to get a Carleman inequality with the norm of w(0, x) at the left-hand side, we introduce

a new weight function ψ(x, t) = β(x)ψ0(t) where β ∈ C4([0,1]) satisfies hypothesis (21)–(22) and ψ0
is defined by

ψ0(t) =
{

4
T 2 if 0 � t < T /2,

1
t(T −t) if T /2 � t � T .

Proposition 3.8. There exist λ, C > 0 such that the solution w of (18) satisfies

λ7
∫ ∫

|w|2e−2λψψ7 +
1∫

0

∣∣w(x,0)
∣∣2

dx

� C

(∫ ∫
|g|2e−2λψ + λ3

T∫
0

∣∣w2x(0, t)
∣∣2

e−2λψ(0,t)ψx(0, t)3 dt

+ λ

T∫
0

∣∣w3x(0, t)
∣∣2

e−2λψ(0,t)ψx(0, t)dt

)
(42)

for every g such that
∫∫ |g|2e−2λψ < ∞.

Proof. Let η ∈ C∞(0, T ) be such that η(t) = 1 for all t ∈ [0, T /2] and η(t) = 0 for all t ∈ [3T /4, T ].
Multiplying inequality (39) by η we obtain

− d

dt

1∫
0

η(t)
∣∣w(x, t)

∣∣2
dx �

(∥∥ux(t, ·)
∥∥

L∞(0,1)
+ γ 2 + 1

)
η(t)

1∫
0

∣∣w(x, t)
∣∣2

dx

+ η(t)

1∫
0

∣∣g(x, t)
∣∣2

dx − ηt(t)

1∫
0

∣∣w(x, t)
∣∣2

dx.

For each t ∈ [0, T ] we apply Gronwall inequality in [t, T ]. Taking into account that η(T ) = 0 and
that ‖ux(t, ·)‖L∞(0,1) � ‖ux(t, ·)‖H1(0,1) , we get
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1∫
0

η(t)
∣∣w(t)

∣∣2
dx � eT (‖ux‖L∞(0,T ;H1(0,1))

+γ 2+1)

T∫
t

h(s)ds (43)

where h(t) = η(t)
∫ 1

0 |g(x, t)|2 dx − ηt(t)
∫ 1

0 |w(x, t)|2 dx.
Then we deduce that

‖w‖2
L∞(0, T

2 ;L2(0,1))
� eT (‖ux‖L∞(0,T ;H1(0,1))

+γ 2+1)(C‖w‖2
L2( T

2 , 3T
4 ;L2(0,1))

+ ‖g‖2
L2(0, 3T

4 ;L2(0,1))

)
. (44)

Recall that ψ(x, t) � ϕ(x, t) if t ∈ [0, T /2] and ψ(x, t) = ϕ(x, t) for t ∈ [T /2, T ]. Also, we have
e−2λϕ(x,t)ϕx(x, t)|t=0 = e−2λϕ(x,t)ϕ3

x (x, t)|t=0 = 0. From all this and (35) we get that

T∫
T /2

1∫
0

|w|2e−2λψψ7 dx dt � C

∫ ∫
|g|2e−2λψ dx dt + λ3

T∫
0

∣∣w2x(0, t)
∣∣2

e−2λψ(0,t)ψ3
x (0, t)dt

+ λ

T∫
0

∣∣w3x(0, t)
∣∣2

e−2λψ(0,t)ψx(0, t)dt (45)

for λ large enough.
On the other hand, using (44) and that e−2λψ(x,t) is strictly positive in [0,3T /4] we obtain

T /2∫
0

1∫
0

|w|2e−2λψψ7 +
1∫

0

∣∣w(x,0)
∣∣2

dx � C‖w‖2
L∞(0,T /2;L2(0,1))

� C
(‖w‖2

L2(T /2,3T /4;L2(0,1))
+ ‖g‖2

L2(0,3T /4;L2(0,1))

)

� C

( 3T /4∫
T /2

1∫
0

|w|2e−2λψψ7 +
3T /4∫
0

∫
|g|2e−2λψ

)
. (46)

Combining (45) and (46) we deduce (42). �
We will need an additional property of the weight function. We will ask the function β(x) to

satisfy

max
x∈[0,1]β(x) < 2 min

x∈[0,1]β(x), (47)

as well as the stated conditions (21), (22). Thus, for λ given by Proposition 3.8, we define

k1 := λ

T
min

x∈[0,1]β(x), k2 := λ

T
max

x∈[0,1]β(x) (48)

which satisfy the relationship k2 < 2k1, which will be used later in Section 4.

Remark 3.9. The function β(x) = −(x − 2)2 + 8, introduced in Remark 3.2, satisfies (47).
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Proposition 3.10. There exists C > 0 such that the solutions w of (18), satisfy

max
t∈[0,T ]

∥∥we− k2
(T −t) (T − t)−3/2

∥∥2
W 1,∞(0,1)

+
1∫

0

∣∣wxx(0, x)
∣∣2

dx

� C

{∫ ∫
|g|2e− 2k1

T −t +
T∫

0

∣∣w2x(t,0)
∣∣2

e− 2k1
T −t (T − t)−3 dt +

T∫
0

∣∣w3x(t,0)
∣∣2

e− 2k1
T −t (T − t)−1 dt

}

(49)

for every g such that
∫∫ |g|2e− 2k1

T −t < ∞.

Proof. Since H2
0(0,1) embeds continuously into W 1,∞(0,1), we will be done if we are able to get

inequality (42), with the term ‖w(t, x)e
−k2
T −t (T −t)− 3

2 ‖L∞(0,T ;H2
0(0,1)) at the left-hand side. Let us denote

ξ(t) = e
−k2
T −t (T − t)− 3

2 , and define w̃(t, x) = w(t, x)ξ(t). Notice that w̃ satisfies (18) with w T = 0 and
right-hand side equals to (ξ g − ξt w). Thanks to Proposition 2.1 we can write

‖w̃‖L∞(0,T ;H2
0(0,1)) � C

(‖ξ g‖L2(0,T ;L2(0,1)) + ‖ξt w‖L2(0,T ;L2(0,1))

)
.

We can easily check the existence of some positive constants C1 and C2 such that

∫ ∫
|ξ g|2 � C1

∫ ∫
|g|2e− 2k1

T −t

and ∫ ∫
|ξt w|2 � C1

∫ ∫
|w|2e− 2k2

T −t (T − t)−7.

Therefore, by using (42), we get (49). �
Inequality (49) directly implies an observability inequality like (17) in some weighted spaces. In

order to precise that, we introduce the following notations.

Definition 3.11. Given T > 0 and a function ρ : (0, T ) → R
+ , we denote

L2
t (ρ) :=

{
f ;

T∫
0

∣∣ f (t)
∣∣2

ρ(t)dt < ∞
}

and

L2
tx(ρ) :=

{
f ;

T∫
0

1∫
0

∣∣ f (x, t)
∣∣2

ρ(t)dx dt < ∞
}

endowed with their natural norms.
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Inequality (49) gives us the observability (17) in the spaces

U1 = L2
t

(
e

2k1
T −t (T − t)

)
, U2 = L2

t

(
e

2k1
T −t (T − t)3), X = H−2(0,1), Z = L2

tx

(
e

2k1
T −t

)
and

Y = {
y; (T − t)3/2e

k2
(T −t) y ∈ L1(0, T ; W −1,1(0,1)

)}
. (50)

As explained before, we get the null controllability for the linear system in the framework given by
these spaces. Moreover, we get further decreasing properties of the controlled solution, which will be
useful in dealing with the nonlinear equation. More precisely, we have the following result.

Proposition 3.12. For each f ∈ Y and y0 ∈ H−2(0,1) there exist controls

h1 ∈ L2
t

(
e

2k1
T −t (T − t)

)
, h2 ∈ L2

t

(
e

2k1
T −t (T − t)3) (51)

such that the solution of system (16) satisfies y ∈ L2
tx(e

2k1
T −t ). Furthermore, this solution fulfills

y ∈ E1 := {
y ∈ L2

tx

(
e

2k1
T −t

); (T − t)2e
k1

T −t y ∈ B
}
. (52)

In particular, y(T ) = 0.

Proof. Given the inequality (49) and the controllability-observability duality, we get the existence of

controls h1 ∈ U1 and h2 ∈ U2. Thus, the only fact we have to prove is (T − t)2e
k1

T −t y ∈ B. Let us define

ỹ := (T − t)2e
k1

T −t y, h̃1 := (T − t)2e
k1

T −t h1, h̃2 := (T − t)2e
k1

T −t h2 and f̃ := (T − t)2e
k1

T −t f . We can easily
check that

ỹt + ỹxxxx + γ ỹxx + u ỹx + ux ỹ = f̃ − 2(T − t)e
k1

T −t y + k1 ye
k1

T −t . (53)

Furthermore, from the regularity of controls we have h̃1, h̃2 ∈ L2(0, T ). By using that y ∈ L2
tx(e

2k1
T −t ) we

get

(T − t)e
k1

(T −t) y ∈ L2(0, T ; L2(0,1)
)
,

and therefore the right-hand side of (53) is in L1(0, T ; W −1,1(0,1)). From Theorem 2.6, we conclude
that ỹ ∈ B, which ends the proof of this proposition. �
4. Nonlinear control system

In this section we prove the null controllability of the nonlinear system. As usual in this kind of
problems, we use the null controllability of the linear equation and a local inversion theorem.

In order to obtain Theorem 1.1, we use the following result.

Theorem 4.1. (See [1].) Let E and G be two Banach spaces and let Λ : E → G satisfy Λ ∈ C1(E; G). Assume
that ê ∈ E, Λ(ê) = ĝ , and Λ′(ê) : E → G is surjective. Then, there exists r > 0 such that, for every g ∈ G
satisfying ‖g − ĝ‖G < r, there exists some e ∈ E solution of the equation Λ(e) = g.



2040 E. Cerpa, A. Mercado / J. Differential Equations 250 (2011) 2024–2044
Let us define the spaces E , G and a map Λ whose surjectivity will be equivalent to the null
controllability for the KS equation. We denote

Ly = yt + yxxxx + γ yxx + uyx + ux y.

Keeping in mind (50) and (52) we define the spaces

E := {y ∈ E1: Ly ∈ Y } and G := H−2(0,1) × Y .

The map Λ is given by

Λ : E −→ G,

y �−→ (
y(0, ·), Ly + yyx

)
.

To see that Λ is well defined, we have to verify that yyx ∈ Y for each y ∈ E . We have the following
equivalences

yyx ∈ Y ⇐⇒ e
k2

(T −t) (T − t)3/2 yyx ∈ L1(0, T ; W −1,1(0,1)
)

⇐⇒ e
k2

(T −t) (T − t)3/2|y|2 ∈ L1(0, T ; L1(0,1)
)

⇐⇒
T∫

0

1∫
0

|y|2e
k2

(T −t) (T − t)3/2 dx dt < ∞.

Therefore, as k2 < 2k1 (see (47)–(48)) and y ∈ L2
xt(e

2k1
(T −t) ), we see that y ∈ E implies yyx ∈ Y .

Notice that (y, z) ∈ E × E �→ 1
2 (yz)x ∈ Y is a bilinear continuous map and then Λ is a C1 map.

As the functions y ∈ E satisfy y(T ) = 0, the local surjectivity of Λ around the origin is equivalent
to the local null controllability of the KS equation. Thus, by Theorem 4.1, the proof of Theorem 1.1
will be ended if we prove that the map Λ′(0) is surjective.

Proposition 4.2. The map Λ′(0) : E → G is surjective.

Proof. It is easy to see that this map is given by

Λ′(0) : E −→ G,

y �−→ (
y(0, ·), Ly

)
,

and therefore its surjectivity is equivalent to the null controllability of the linearized equation with a
right-hand side lying in Y . This control property was proved in Proposition 3.12. �
Appendix A. Proof of Lemma 3.1

Let us start by writing

∫ ∫
P1 v P2 v =

4∑
i, j=1

Ii, j,
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where Ii, j denotes the L2-product between the i-th term in the expression of P1 v and the j-th term
in the expression of P2 v in (20).

Integrating by parts in x we have

I1,1 = −6λ2
∫ ∫

vtϕ
2
x vxx = 12λ2

∫ ∫
vx vtϕxϕxx + 6λ2

∫ ∫
vxtϕ

2
x vx

and integrating by parts the second term with respect to t we deduce that

I1,1 = 12λ2
∫ ∫

vx vtϕxϕxx − 6λ2
∫ ∫

|vx|2ϕxϕxt .

The first term above will be simplified with I4,1, and the other one is part of I(vx).
Integrating by parts in x we are able to write

I1,2 = 24λ5
∫ ∫

vx vxxϕ
5
x = −60λ5

∫ ∫
|vx|2ϕ4

x ϕxx

which is part of the dominant term in I(vx), that is, it has the largest power of λ in that expression.
In the same way we obtain

I1,3 = 24λ3
∫ ∫

v2x v3xϕ
3
x = −36λ3

∫ ∫
|v2x|2ϕ2

x ϕ2x

+ 12λ3

T∫
0

∣∣v2x(1, t)
∣∣2

ϕx(1, t)3 dt − 12λ3

T∫
0

∣∣v2x(0, t)
∣∣2

ϕx(0, t)3 dt.

We will list the first term into I(v2x) and the two trace terms into Ix .
We integrate by parts in x and get

I1,4 = 30λ5
∫ ∫

v2x vϕ4
x ϕ2x = −30λ5

∫ ∫
|vx|2ϕ4

x ϕ2x + 15λ5
∫ ∫

|v|2(ϕ4
x ϕ2x

)
2x.

The first term belongs to the dominant part in I(vx) and the second one goes to I(v).
Writing v vt = 1

2 ∂t |v|2 and integrating by parts in t we obtain

I2,1 = −λ4
∫ ∫

v vtϕ
4
x = 2λ4

∫ ∫
|v|2ϕ3

x ϕxt,

which is listed in I(v).
By using the identity v vx = 1

2 ∂x|v|2, we see that

I2,2 = 4λ7
∫ ∫

v vxϕ
7
x = −14λ7

∫ ∫
|v|2ϕ6

x ϕ2x,

which is part of the dominant term in I(v).
Integrating by parts with respect to x we get

I2,3 = 4λ5
∫ ∫

v v3xϕ
5
x = −4λ5

∫ ∫
v2x vxϕ

5
x − 20λ5

∫ ∫
v v2xϕ

4
x ϕxx

= 30λ5
∫ ∫

|vx|2ϕ4
x ϕxx − 10λ5

∫ ∫
|v|2(ϕ4

x ϕ2x
)

2x,

terms which will appear in the dominant term of I(vx) and in I(v).
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We get directly that

I2,4 = 5λ7
∫ ∫

|v|2ϕ6
x ϕxx

is part of the dominant term in I(v). When adding I2,4 with I2,2, we will get the coefficient −9λ7

appearing at I(v).
We integrate by parts twice in x and once in t to get

I3,1 = −
∫ ∫

vt v4x = −
∫ ∫

v2xt v2x = −1

2

∫ ∫
∂t |v2x|2 = 0.

From two integrations by parts in x we deduce that

I3,2 = 4λ3
∫ ∫

vx v4xϕ
3
x = −4λ3

∫ ∫
v2x v3xϕ

3
x − 12λ3

∫ ∫
vx v3xϕ

2
x ϕ2x

= 18λ3
∫ ∫

|v2x|2ϕ2
x ϕxx − 2λ3

T∫
0

∣∣v2x(1, t)
∣∣2∣∣ϕx(1, t)

∣∣3

+ 2λ3

T∫
0

∣∣v2x(0, t)
∣∣2∣∣ϕx(0, t)

∣∣3 − 6λ3
∫ ∫

|vx|2
(
ϕ2

x ϕ2x
)

2x.

These terms will be written in I(v2x), Ix and I(vx).
By using the identity v3x v4x = 1

2 ∂x|v3x|2 we see that

I3,3 = 4λ

∫ ∫
v3x v4xϕx = −2λ

∫ ∫
|v3x|2ϕxx

+ 2λ

T∫
0

∣∣v3x(1, t)
∣∣2

ϕx(1, t)dt − 2λ

T∫
0

∣∣v3x(0, t)
∣∣2

ϕx(0, t)dt.

We will list the first term into I(v3x) and the two trace terms into Ix .

After several integrations by parts in x, we get

I3,4 = 5λ3
∫ ∫

v4x vϕ2
x ϕxx = −5λ3

∫ ∫
v3x vxϕ

2
x ϕxx − 5λ3

∫ ∫
v3x v

(
ϕ2

x ϕxx
)

x

= 5λ3
∫ ∫

|v2x|2ϕ2
x ϕxx + 10λ3

∫ ∫
vx v2x

(
ϕ2

x ϕxx
)

x + 5λ3
∫ ∫

v v2x
(
ϕ2

x ϕxx
)

xx

= 5λ3
∫ ∫

|v2x|2ϕ2
x ϕxx − 10λ3

∫ ∫
|vx|2

(
ϕ2

x ϕxx
)

xx + 5

2
λ3

∫ ∫
|v|2(ϕ2

x ϕxx
)

4x.

The resulting terms are included into I(v2x), I(vx) and I(v) respectively.
We have directly that

I4,1 = −12λ2
∫ ∫

vx vtϕxϕxx and I4,2 = 48λ5
∫ ∫

|vx|2ϕ4
x ϕxx.
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The term I4,1 vanishes when adding with the first term in I1,1 and I4,2 belongs to the dominant term
in I(vx).

From two integration by parts with respect to x we get

I4,3 = 48λ3
∫ ∫

vx v3xϕ
2
x ϕxx = −48λ3

∫ ∫
|v2x|2ϕ2

x ϕxx + 24λ3
∫ ∫

|vx|2
(
ϕ2

x ϕxx
)

xx,

terms listed into I(v2x) and I(vx).
Finally, one integration by parts in x gives us

I4,4 = 60λ5
∫ ∫

v vxϕ
3
x ϕ

2
xx = −30λ5

∫ ∫
|v|2(ϕ3

x ϕ
2
xx

)
x,

which is part of I(v).
It is not difficult to see that adding up the obtained expressions for terms Ii, j , we get the identity

stated in Lemma 3.1.
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[21] Wei-Jiu Liu, Miroslav Krstić, Stability enhancement by boundary control in the Kuramoto–Sivashinsky equation, Nonlinear

Anal. Ser. A: Theory Methods 43 (4) (2001) 485–507, MR 1807033 (2001m:35032).
[22] Basil Nicolaenko, Bruno Scheurer, Remarks on the Kuramoto–Sivashinsky equation, Phys. D 12 (1–3) (1984) 391–395,

MR 762813 (86d:80007).



2044 E. Cerpa, A. Mercado / J. Differential Equations 250 (2011) 2024–2044
[23] Basil Nicolaenko, Bruno Scheurer, Roger Temam, Some global dynamical properties of the Kuramoto–Sivashinsky equations:
nonlinear stability and attractors, Phys. D 16 (2) (1985) 155–183, MR 796268 (86k:35062).

[24] Lionel Rosier, Exact boundary controllability for the Korteweg–de Vries equation on a bounded domain, ESAIM Control
Optim. Calc. Var. 2 (1997) 33–55 (electronic), MR 1440078 (98d:93016).

[25] Lionel Rosier, Bing-Yu Zhang, Null controllability of the complex Ginzburg–Landau equation, Ann. Inst. H. Poincaré Anal.
Non Linéaire 26 (2) (2009) 649–673, MR 2504047.

[26] G.I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames – I. Derivation of basic equations, Acta
Astronaut. 4 (1977) 1177–1206.


	Local exact controllability to the trajectories of the 1-D Kuramoto-Sivashinsky equation
	Introduction
	The Cauchy problem
	Adjoint equation
	Direct linear equation
	Nonlinear equation

	Linear control system
	Carleman estimate
	Null controllability

	Nonlinear control system
	Proof of Lemma 3.1
	References


