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Abstract

We consider the incompressible inhomogeneous Navier–Stokes equations with constant viscosity coeffi-
cient and density which is bounded and bounded away from zero. We show that the energy balance relation 
for this system holds for weak solutions if the velocity, density, and pressure belong to a range of Besov 
spaces of smoothness 1/3. A density-dependent version of the classical Kármán–Howarth–Monin relation 
is derived.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Consider the density-dependent incompressible Navier–Stokes equations:

∂t (ρu) + div(ρu ⊗ u) − μ�u = −∇p + ρf, (1)

∂tρ + div(ρu) = 0, (2)

∇ · u = 0. (3)
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Here u(x, t) represents the d-dimensional velocity, f (x, t) is an external force (with values 
in R

d ), p(x, t) is the pressure, ρ(x, t) is the density, and μ is the viscosity coefficient (which 
we take to be constant). We consider (1)–(3) for x ∈ T

d and t ≥ 0. It is known, see [11,10,13], 
that if u0 is divergence-free and square-integrable, ρ ≤ ρ0 ≤ ρ for some positive constants ρ
and ρ, and if f ∈ L2([0, T ]; L2(Td)), then there exists a Leray–Hopf type global weak solution 
to the system (ρ, u) such that ρ ≤ ρ ≤ ρ, u ∈ L2([0, T ]; H 1(Td)), and (ρ, u) satisfies the energy 
inequality

E(t) − E(0) ≤ −μ

t∫
0

‖∇u‖2
L2(Td )

ds

+
t∫

0

∫
Td

ρu · f dx ds, where E(s) = 1

2

∫
Td×{s}

ρ|u|2 dx. (4)

Fluids with variable distribution of density arise in many physical contexts. In particular, they 
appear prominently in Rayleigh–Taylor mixing when a heavier layer fluid on top of lighter one 
gets mixed under the force of gravity, creating a non-homogeneous turbulent layer. Although 
an analogue of the classical Kolmogorov theory of turbulence for non-homogeneous fluids has 
not yet been developed, it appears to be evident that under proper self-similarity assumptions on 
the velocity increments δu = u(r + �) − u(r) and density δρ a limited level of regularity would 
be expected of u and ρ in the limit of vanishing viscosity. Such regularity should allow for a 
residual amount of energy to be dissipated in the limit by analogy with the Kolmogorov’s 0th 
law of turbulence, see [9]. Mathematical study of the question of what this critical regularity 
might be has been a subject of many recent publications centered around the so-called Onsager 
conjecture, which states that for the pure Euler equation Hölder exponent 1/3 gives a threshold 
regularity between energy conservation and existence of dissipative solutions that do not con-
serve energy (see [6,4,2,12,1,5]). In this paper we address the same question in the context of the 
full density-dependent forced system (1)–(3) with or without viscosity.

Let us recall that a weak solution to (1)–(3) is a triple (ρ, u, p) ∈ L∞
t,x × L2

t,x ×D′ (D′ is the 
space of distributions) such that for any triple of smooth test functions (η, ψ, γ ), one has

∫
Td×{s}

ρu · ψ dx

∣∣∣∣t
0
−

t∫
0

∫
Td

(
ρu · ∂sψ+(ρu ⊗ u) : ∇ψ + p divψ

)
dx ds

= μ

t∫
0

∫
Td

u · �ψ dx ds +
t∫

0

∫
Td

ρf · ψ dx ds,

(5)

∫
Td×{s}

ρη dx

∣∣∣∣t
0
=

t∫
0

∫
Td

(ρ∂sη + (ρu · ∇)η) dx ds, (6)

∫
d

u · ∇γ = 0. (7)
T
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In (5), we write A : B for 
∑d

i,j=1 aij bij , where A = (aij ), B = (bij ). If ρ and u are smooth, then 
using ψ = u we readily obtain the energy balance relation:

E(t) − E(0) = −μ

t∫
0

‖∇u‖2
L2(Td )

ds +
t∫

0

∫
Td

ρu · f dx ds. (8)

In the context of weak solutions even in the class u ∈ L2H 1, such a manipulation is not feasible 
due to lack of sufficient regularity to integrate by parts. This leaves room for additional mecha-
nisms of energy dissipation due to the work of the nonlinear term. In the case μ = 0, due to time 
reversibility the energy may also increase above the legitimate change resulting from the work of 
force. Our main result provides a sharp sufficient regularity condition on (ρ, u, p) to guarantee 
energy balance (8) to hold. We use Besov spaces to state our criteria as motivated by numer-
ous previous studies on Onsager conjecture, [4,2,7]. The definitions are standard and recalled in 
Section 2.2.

Theorem 1.1. Let (ρ, u, p) be a weak solution to the density-dependent incompressible Navier–
Stokes equations on Td , d > 1. Assume (ρ, u, p) satisfies

u ∈ L2([0, T ];H 1(Td)), 0 < ρ ≤ ρ ≤ ρ < ∞, and f ∈ L2([0, T ] ×T
d), (9)

ρ ∈ La([0, T ];B
1
3
a,∞), u ∈ Lb([0, T ];B

1
3
b,c0

), p ∈ L
b
2 ([0, T ];B

1
3
b
2 ,∞),

1

a
+ 3

b
= 1, b ∈ [3,∞]. (10)

Then (ρ, u, p) satisfies the energy balance relation (8) on the time interval [0, T ].
The assumption on the pressure in (10) is in natural correspondence to the condition on ve-

locity. In fact, it follows from the latter in the case of constant density (see Remark 2.4). Such a 
conclusion, however, cannot be made in the density dependent case when the density has limited 
regularity as ours. In general the pressure is only known to exist as a distribution. As the proof 
goes we will see that the first line of assumptions (9) pertains to the control of the viscous and 
force terms in the local energy budget relation, while (10) is used to control anomalous flux due 
to the transport term. So, as a byproduct of the proof we obtain energy conservation condition 
for the Euler equation.

Theorem 1.2. Suppose (ρ, u, p) is a weak solution to the density-dependent incompressible Eu-
ler equations on Td with zero force, the same set of assumptions (10), and 0 < ρ ≤ ρ ≤ ρ < ∞. 
Then the energy is conserved in time.

In the case when b = 3, we obtain the earlier obtained results in the homogeneous case, 
see [2]. However, in this case one must assume a rather strong regularity on the density: 
ρ ∈ B

1/3∞,∞ = C1/3, the usual Hölder class. It is shown in [6] that Besov space u ∈ B
1/3
3,∞ is sharp 

to control the energy flux in homogeneous fluid. It is therefore not expected to be improved in the 
above results. We also derive an extension to the density-dependent case of the classical Kármán–
Howarth–Monin relation for the energy flux due to nonlinearity in the statistically homogeneous 
turbulence. It suggests that any of the conditions in the range of (10) arise naturally.
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Finally, during the review period of this article, an alternative version of our condition ap-
peared in [8] that also applies to the compressible Euler system. Pertaining to the incompressible 
case the result claims energy conservation under the conditions

u ∈ Bα
p,∞((0, T ) ×T

d), ρ,ρu ∈ B
β
q,∞((0, T ) ×T

d), p ∈ Lp∗
((0, T ) ×T

d),

where 1 ≤ p, q ≤ ∞, 0 ≤ α, β ≤ 1, and 2
p

+ 1
q

= 1, 1
p

+ 1
p∗ = 1, 2α + β > 1. Notice that when 

p = q = 3 this gives a better base integrability, and with α = β = 1/3 + ε (the result is likely to 
be improved to 1/3 with vanishing c0-assumption on the LP pieces) it gives a weaker assumption 
on u and ρ in space. It also requires no regularity on the pressure. However all of the above is 
assumed in time as well, and also on the product ρu. Therefore there is no direct inclusion in 
either side between the results of the present paper and [8].

2. Preliminaries and preparations for the main theorem

In [2] it was shown that if u ∈ L3([0, T ]; B1/3
3,c0

(Rd)) ∩ Cw([0, T ]; L2(Rd)) is a weak solu-
tion to the (homogeneous) incompressible Euler equations, then u conserves energy. The authors 
define an energy flux 
Q(t) describing the energy dissipated from scales associated to wave 
numbers λq = 2q for −1 ≤ q ≤ Q. To prove their result, they bound 
Q(t) using the convolu-
tion of a sequence involving the Littlewood–Paley projections of the solution u with a localization 
kernel; they conclude by noting that their bound tends to zero in the limit. We follow a similar 
program in this section. After motivating our use of Besov spaces by generalizing the Kármán–
Howarth–Monin relation to the present context, we recall the definition of a Besov space and set 
some notation. Next, we derive an energy budget relation associated to the density-dependent 
Navier–Stokes equations. Finally, we define localization kernels and present some estimates that 
will streamline the proof of our theorem.

2.1. Kármán–Howarth–Monin relation

Let us motivate the use of Besov spaces and the choice of regularity classes by ideas from 
the turbulence theory. Our immediate goal is to extend the classical Kármán–Howarth–Monin 
relation to the density-dependent case, see [9]. Let us suppose that our fluid reached a state of 
fully developed turbulence in which statistical laws with respect to an ensemble average 〈·〉 are 
independent of a location in space where are measured.1 In order to measure how much regularity 
is needed to control the energy flux we derive a formula for the physical space energy flux due 
to the nonlinear transport term defined by

π(�) = 1

4
∂t 〈u(r + �) · u(r)(ρ(r + �) + ρ(r))〉T.

Note that it coincides with the classical flux in the case when ρ is constant, and it is symmetric 
with respect to r + �, r . Let us use the notation ui = ui(r), u′

i = ui(r + �), ∂i = ∂
∂ri

, ∂ ′
i = ∂

∂�i
. 

From the transport term in the momentum equation (1) we obtain

−4π(�) = 〈∂j (ρ
′u′

j u
′
i )ui〉 + 〈ρ′u′

i∂j (ujui)〉 + 〈∂j (ρujui)u
′
i〉 + 〈ρui∂j (u

′
j u

′
i )〉. (11)

1 The common term homogeneous turbulence may be misleading in our settings as our density still remains variable.
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Note that ∂j (ρ
′u′

j u
′
i ) = ∂ ′

j (ρ
′u′

j u
′
i ), and 〈∂ ′

j (ρ
′u′

j u
′
i )ui〉 = ∂ ′

j 〈ρ′u′
j u

′
iui〉. Similarly,

〈ρui∂j (u
′
j u

′
i )〉 = ∂ ′

j 〈ρuiu
′
j u

′
i〉. As to the two terms in the middle we first perform integra-

tion by parts. This can be justified by first averaging over the fluid domain Td . Since the 
ensembles are independent of r , this does not change the quantities. Then switching the 
order of averaging, integrating by parts, switching again, and un-averaging produces the re-
sult. So, 〈ρ′u′

i∂j (ujui)〉 = −〈∂j (ρ
′u′

i )ujui〉 = −∂ ′
j 〈ρ′u′

iujui〉, and similarly, 〈∂j (ρujui)u
′
i〉 =

−〈ρujui∂j (u
′
i )〉 = −∂ ′

j 〈ρujuiu
′
i〉. We thus obtain

4π(�) = −∂ ′
j 〈ρ′u′

j u
′
iui〉 + ∂ ′

j 〈ρ′u′
iujui〉 + ∂ ′

j 〈ρujuiu
′
i〉 − ∂ ′

j 〈ρuiu
′
j u

′
i〉. (12)

Let us denote δu(�) = u(r + �) − u(r), and similar for ρ. The expression on the right can be 
shown to equal

−∇� · 〈(δ(ρu) · δu)δu〉. (13)

This can be proved directly by breaking the above into individual terms and noting that 
〈ρ′u′

j u
′
iu

′
i〉 = 〈ρujuiui〉 are independent of �, and ∂ ′

j 〈ρuiuiu
′
j 〉 = 0 by the divergence-free 

condition, and ∂ ′
j 〈ρ′u′

iu
′
iuj 〉 = 0 by the same reason after changing r → r − �. Applying the 

algebraic identity δ(fg) = 1
2 [(f + f ′)δg + (g + g′)δf ] to (13), we obtain

π(�) = −1

8
∇� · 〈δρδu((u(r + �) + u(r)) · δu)〉 − 1

8
∇� · 〈(ρ(r + �) + ρ(r))|δu|2δu〉. (14)

This is a direct generalization of the classical Kármán–Howarth–Monin relation. We note that 
is it seen from this relation that in order for the flux to vanish there are a few possibilities in terms 
of distribution of smoothness and integrability between ρ and u. Given that ρ ∈ L∞ is a natural 
assumption, the last term vanishes if u is 1/3 regular in L3-sense. Then for the first term to vanish 
one must also have u being 1/3 regular in Lb-sense and ρ being 1/3 regular in La-sense, where 
1
a

+ 3
b

= 1. This leads to the use of Besov spaces and suggests that the set of assumptions (10) is 
sharp.

2.2. Besov spaces via Littlewood–Paley decomposition

We follow the setup of [3] and [2] in defining the Littlewood–Paley projections of the func-
tions ρ, u, p. Fix χ ∈ C∞

0 (B(0, 1)) such that χ(ξ) = 1 for |ξ | ≤ 1
2 . Define φ(ξ) = χ(

ξ
2 ) − χ(ξ). 

Define length scales λq = 2q , and define ϕ−1(ξ) = χ(ξ), ϕq(ξ) = φ(λ−1
q ξ) for q ∈ N ∪ {0}. 

Then 
∑∞

q=−1 ϕq ≡ 1; in particular 
∑∞

q=−1 ϕq(k) = 1 for all k ∈ Z
d . We do not distinguish 

notationally between ϕq and its restriction to the integer lattice, but occasionally it will be 
necessary to interpret ϕq in the latter sense. Note that ϕq , ϕr have disjoint supports unless 
r ∈ {q − 1, q, q + 1}. Let F and F−1 denote the Fourier transform and inverse transform for 
T

d : F(f )(k) = ∫
Td f (x)e−2πik·x dx, F−1(g)(x) = ∑

k∈Zd g(k)e2πik·x .
Define the following functions:

hq =F−1(ϕq), h̃Q =F−1(χ(λ−1 · )),
Q+1
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uq =F−1(ϕqFu) = hq ∗ u, u≤Q =
Q∑

q=−1

uq =F−1(χ(λ−1
Q+1 · )Fu) = h̃Q ∗ u,

u∼Q =
Q+2∑

q=Q−2

uq, u>Q =
∞∑

q=Q+1

uq.

Write A := N ∪ {0, −1}. The Besov space Bs
p,r (T

d) (s ∈ R, p, r ∈ [1, ∞]) is the space of 
tempered distributions u whose corresponding norm, defined by

‖u‖Bs
p,r (T

d ) =
∥∥∥(λs

q‖uq‖Lp(Td ))q∈A

∥∥∥
�r (A)

,

is finite. Clearly Bs
p,r (T

d) ⊂ Bs′
p′,r ′(Td) for s′ ≤ s, p′ ≤ p, r ′ ≥ r . Furthermore, Bs

a,∞ ⊂ La for 

all a ∈ [1, ∞), s > 0. We define Bs
p,c0

(Td) to be the space of tempered distributions u such that 

λs
q‖uq‖Lp(Td )

q→∞−→ 0, together with the norm inherited from Bs
p,∞(Td). Note that this space 

contains Bs
p,r (T

d) for all r ∈ [1, ∞). We will write Bs
p,r for Bs

p,r (T
d) unless the abbreviation 

could cause confusion.

2.3. Derivation of the energy budget relation

Define E≤Q(s) := 1
2

∫
Td×{s}

(ρu)2≤Q

ρ≤Q
dx, the energy associated to length scales λq for q ≤ Q. 

Defining U = (ρu)≤Q

ρ≤Q
and putting ψ = U≤Q in (5), we see that

2E≤Q(s)
∣∣t
0 =

t∫
0

∫ (
(ρu)≤Q · ∂sU + (ρu ⊗ u)≤Q : ∇U + p≤Q divU

)
dx ds

− μ

t∫
0

∫
∇u≤Q : ∇U dx ds +

t∫
0

∫
(ρf )≤Q · U.

(15)

On the other hand, we can rewrite the definition of E≤Q using the weak form of the density 
transport equation. We apply (6) in passing from the first to the second line below:

E≤Q(s)
∣∣t
0 = 1

2

∫
Td×{s}

ρ≤QU2 dx

∣∣∣∣t
0
= 1

2

∫
Td×{s}

ρ(U2)≤Q dx

∣∣∣∣t
0

= 1

2

t∫
0

∫ (
ρ∂s(U

2)≤Q + (ρu · ∇)(U2)≤Q

)
dx ds

= 1

2

t∫ ∫ (
ρ≤Q∂s(U

2) + ((ρu)≤Q · ∇)(U2)
)

dx ds
0
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=
t∫

0

∫ (
(ρu)≤Q · ∂sU + ((ρu)≤Q ⊗ U) : ∇U

)
dx ds.

Subtracting the result from (15), we obtain the energy budget relation at scales q ≤ Q:

E≤Q(t) − E≤Q(0) =
t∫

0


Q(s)ds − εQ(t) +
t∫

0

∫
(ρf )≤Q · U dx ds. (16)

Here 
Q(s) is the flux through scales of order Q due to the nonlinearity and the pressure, defined 
by


Q =
∫

FQ(ρ,u) : ∇U dx +
∫

p≤Q divU dx, (17)

FQ(ρ,u) = (ρu ⊗ u)≤Q − U ⊗ (ρu)≤Q, (18)

and εQ and 
∫ t

0

∫
(ρf )≤Q · U dx ds represent the energy dissipation due to heat loss and the ex-

ternal force, respectively, at scales q ≤ Q. Now εQ is given by

εQ(t) = μ

t∫
0

∫
∇u≤Q : ∇U dx ds.

Also denote

ε(t) = μ

t∫
0

‖∇u‖2
2 ds.

We aim to show that for appropriate (ρ, u, p) and all t ∈ [0, T ], we have (as Q → ∞) that 
E≤Q(t) → E(t), 

∫ t

0 
Q(s) ds → 0, εQ(t) → ε(t), and 
∫ t

0

∫
(ρf )≤Q · U dx ds → ∫ t

0

∫
ρu ·

f dx ds. These convergences will immediately imply that (8) holds for (ρ, u, p).

2.4. The localization kernel and estimates on the Littlewood–Paley projections

Let a, b ∈ [1, ∞], s ∈ (0, 1], and let f be a real-valued function. Define the following:

Ks
q =

{
λs−1

q , q ≥ 0;
λs

q, q < 0; ds
a,q(f ) = λs

q‖fq‖La ; Ds
a,Q(f ) =

∞∑
q=−1

Ks
Q−qds

a,q(f ).

We can define these expressions analogously for the vector-valued f . Note that in view of 
summability of the kernel we have

lim sup
Q→∞

Ds
a,Q(f ) ∼ lim sup

q→∞
ds
a,q(f ) (19)

where the similarity constants depend only on s.
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Proposition 2.1. For f ∈ Bs
a,∞, g ∈ Bt

b,∞, a, b ∈ [1, ∞], s, t ∈ (0, 1), we have the following 
estimates:

‖(fg)≤Q − f≤Qg≤Q‖c � λ−s−t
Q Ds

a,Q(f )Dt
b,Q(g),

1

c
= 1

a
+ 1

b
, (20)

‖(fg)≤Q − f≤Qg≤Q‖a � λ−s
Q Ds

a,Q(f )‖g‖∞ (21)

‖∇f≤Q‖a � λ1−s
Q Ds

a,Q(f ), (22)

‖f>Q‖a ≤ λ−s
Q Ds

a,Q(f ). (23)

Remark 2.2. Let us note that (21) is still meaningful when s = 1. However, in this case, the 
kernel is not localized in the region q > 0, which meets finitely many terms in the convolution D. 
Nonetheless, uniform bounds on the convolution would be applicable under stronger summability 
assumption on Littlewood–Paley components of f . For example, when a = 2 and f ∈ H 1 we 
clearly have

D1
2,Q(f ) ≤ ‖f ‖H 1 .

Proof. Since

h̃Q ∗ f = f≤Q,

∫
h̃Q(y) dy = 1,

we can write

(fg)≤Q − f≤Qg≤Q = rQ(f,g) − f>Qg>Q,

where

rQ(f,g) =
∫

h̃Q(y)(f (· − y) − f (·))(g(· − y) − g(·)) dy. (24)

Therefore, to prove (20) it suffices to estimate rQ(f, g), f>Q, g>Q appropriately.
We can write

‖f>Q‖a ≤ λ−s
Q

∑
q>Q

λs
Q−qλs

q‖fq‖a = λ−s
Q

∑
q>Q

Ks
Q−qds

a,q(f ) ≤ λ−s
Q Ds

a,Q(f ).

This proves (23). The same reasoning yields ‖g>Q‖b ≤ λ−t
Q Dt

b,Q(g), and by Hölder,

‖f>Qg>Q‖c ≤ λ−s−t
Q Ds

a,Q(f )Dt
b,Q(g).

Next, we have

‖fq(· − y) − fq(·)‖a =
∥∥∥∥∥∥

1∫
(∇fq)(· − θy) · y dθ

∥∥∥∥∥∥ ≤ |y|‖∇fq‖a � |y|λq‖fq‖a. (25)
0 a
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We use (25) for q ≤ Q in the following estimate:

‖f (· − y) − f (·)‖a � λ1−s
Q

∑
q≤Q

λs−1
Q ‖fq(· − y) − fq(·)‖a + λ−s

Q

∑
q>Q

λs
Q‖fq(· − y) − fq(·)‖a

� λ1−s
Q

∑
q≤Q

λs−1
Q−qλs−1

q · |y|λq‖fq‖a + λ−s
Q

∑
q>Q

λs
Q−qλs

q‖fq‖a

= λ1−s
Q |y|

∑
q≤Q

Ks
Q−qds

a,q(f ) + λ−s
Q

∑
q>Q

Ks
Q−qds

a,q(f )

≤ (λQ|y| + 1)λ−s
Q Ds

a,Q(f ).

Clearly ‖g(· −y) −g(·)‖b ≤ (λQ|y| +1)λ−t
Q Dt

b,Q(g), by the same argument. Now we can easily 
estimate rQ(f, g):

‖rQ(f,g)‖c ≤
∫

|̃hQ(y)|‖f (· − y) − f (·)‖a‖g(· − y) − g(·)‖b dy

�
(∫

|̃hQ(y)|(λQ|y| + 1)2 dy

)
λ−s−t

Q Ds
a,Q(f )Dt

b,Q(g)

� λ−s−t
Q Ds

a,Q(f )Dt
b,Q(g).

This proves (20). The proof of (21) follows the same lines, except we apply ‖g>Q‖∞ ≤ ‖g‖∞, 
and ‖g(· − y) − g(·)‖∞ ≤ 2‖g‖∞. The latter results in the term (λQ|y| + 1) with power 1 inside 
the hQ-integral, which is also bounded uniformly in Q.

Finally, we write

‖∇f≤Q‖a � λ1−s
Q

∑
q≤Q

λs−1
Q ‖∇fq‖a � λ1−s

Q

∑
q≤Q

λs−1
Q−qλs−1

q · λq‖fq‖a

= λ1−s
Q

∑
Q−q≥0

Ks
Q−qds

a,q(f ) ≤ λ1−s
Q Ds

a,Q(f ). �

Proposition 2.3. Let f ∈ Bs
a,∞, g ∈ Bs

b,∞, a, b ∈ [1, ∞], s ∈ (0, 1), 1
c

= 1
a

+ 1
b

. Then

‖∇(fg)≤Q‖c � λ1−s
Q (Ds

a,Q(f )‖g‖b + Ds
b,Q(g)‖f ‖a). (26)

Proof. First, notice that if p or r is greater than Q + 2 and |p − r| > 2, then the Fourier support 
of fpgr lies outside the ball of radius λQ+1 centered at 0. In particular, (fpgr)≤Q vanishes. 
Therefore

(fg)≤Q = (f≤Q+2g≤Q+2)≤Q +
∑

max{p,r}>Q+2

(fpgr)≤Q,
|p−r|≤2
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so we have

‖∇(fg)≤Q‖c ≤ ‖∇(f≤Qg≤Q)‖c +‖∇(f∼Qg≤Q +f≤Qg∼Q)‖c +
∑

p,r>Q
|p−r|≤2

‖∇(fpgr)≤Q‖c. (27)

We estimate each of the terms on the right side of this inequality. First, we have

‖∇(f≤Qg≤Q)‖c ≤ ‖∇f≤Q‖a‖g‖b + ‖∇g≤Q‖b‖f ‖a

� λ1−s
Q

(
Ds

a,Q(f )‖g‖b + Ds
b,Q(g)‖f ‖a

)
. (28)

Next,

‖∇(f∼Qg≤Q)‖c � ‖∇f∼Q‖a‖g‖b + ‖∇g≤Q‖b‖f ‖a

� λ1−s
Q

(
Ds

a,Q(f )‖g‖b + Ds
b,Q(g)‖f ‖a

)
,

where we note that ‖∇f∼Q‖a ∼ λ1−s
Q Ds

a,Q(f ) and use (22) in order to obtain the second in-
equality. We can estimate ‖∇(f≤Qg∼Q)‖c similarly, concluding that

‖∇(f∼Qg≤Q + f≤Qg∼Q)‖c � λ1−s
Q (Ds

a,Q(f )‖g‖b + Ds
b,Q(g)‖f ‖a). (29)

By differential Bernstein’s and Hölder inequalities we have

‖∇(fpgr)≤Q‖c � λQ‖fp‖a‖gr‖b.

Using this we obtain

∑
p,r>Q
|p−r|≤2

‖∇(fpgr)≤Q‖c � λ1−s
Q

∑
p>Q

λs
Q−qλs

q‖fp‖a‖g‖b ≤ λ1−s
Q Ds

a,Q(f )‖g‖b.

Combining this estimate with (27), (28), and (29) immediately yields the desired statement. �
Remark 2.4. One can also show (by a proof nearly identical to the above) that if f, g ∈ Bs

a,∞ ∩Lb

with 1
a

+ 1
b

= 1
c

and a, b ∈ [1, ∞], then ‖∇(fg)≤Q‖c � λ1−s
Q (Ds

a,Q(f )‖g‖b + Ds
a,Q(g)‖f ‖b).

Remark 2.5. Recall the following result for the classical Navier–Stokes equations (i.e. (1)
and (3), with ρ ≡ 1, f ≡ 0): If (u, p) is a weak solution, with u ∈ Cα for some α ∈ (0, 1), then 
p = �−1(div div(u ⊗ u)) ∈ Cα . We can generalize this result using Proposition 2.3: Assume 
u ∈ Bs

a,∞, with a ∈ [2, ∞] and s ∈ (0, 1); then p ∈ Bs
a/2,∞. Indeed, we have

λs
Q‖pQ‖a/2 ∼ λ

−(1−s)
Q ‖div(u ⊗ u)Q‖a/2 � (Ds

a,Q(u))2.

This observation motivates our integrability assumption on p in Theorem 1.1.
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3. Estimates on the flux

First, we give a decomposition of FQ(ρ, u) which is more conducive to estimates. In order to 
do so we define, in analogy with (24), the quantity

rQ(ρ,u,u) =
∫

h̃Q(y)[ρ(x − y) − ρ(x)][u(x − y) − u(x)] ⊗ [u(x − y) − u(x)]dy.

Lemma 3.1. FQ(ρ, u) can be written as

FQ(ρ,u) = rQ(ρ,u,u)

− 1

ρ≤Q

[(ρu)≤Q − ρ≤Qu≤Q] ⊗ [(ρu)≤Q − ρ≤Qu≤Q] + ρ>Qu>Q ⊗ u>Q

+ 2Sym([(ρu)≤Q − ρ≤Qu≤Q] ⊗ u>Q) + ρ[(u ⊗ u)≤Q − u≤Q ⊗ u≤Q].

(30)

Proof. We can write

rQ(ρ,u,u) = (ρu ⊗ u)≤Q − 2Sym[(ρu)≤Q ⊗ u] + ρ≤Qu ⊗ u − ρrQ(u,u)

= (ρu ⊗ u)≤Q − 2Sym[((ρu)≤Q − ρ≤Qu≤Q) ⊗ u]
+ ρ≤Q(u ⊗ u − u≤Q ⊗ u − u ⊗ u≤Q) − ρrQ(u,u)

= (ρu ⊗ u)≤Q − 2Sym[((ρu)≤Q − ρ≤Qu≤Q) ⊗ u]
− ρ≤Qu≤Q ⊗ u≤Q + ρ≤Qu>Q ⊗ u>Q − ρrQ(u,u)

= (ρu ⊗ u)≤Q − 2Sym[((ρu)≤Q − ρ≤Qu≤Q) ⊗ u] − ρ≤Qu≤Q ⊗ u≤Q

− ρ[(u ⊗ u)≤Q − u≤Q ⊗ u≤Q] − ρ>Qu>Q ⊗ u>Q,

where Sym denotes the symmetric part. Therefore

(ρu ⊗ u)≤Q = rQ(ρ,u,u) + 2Sym([(ρu)≤Q − ρ≤Qu≤Q] ⊗ u)

+ ρ[(u ⊗ u)≤Q − u≤Q ⊗ u≤Q] + ρ≤Qu≤Q ⊗ u≤Q + ρ>Qu>Q ⊗ u>Q.

Since we also have

(ρu)≤Q ⊗ (ρu)≤Q

ρ≤Q

= 1

ρ≤Q

[(ρu)≤Q − ρ≤Qu≤Q] ⊗ [(ρu)≤Q − ρ≤Qu≤Q]

+ 2Sym([(ρu)≤Q − ρ≤Qu≤Q] ⊗ u≤Q) + ρ≤Qu≤Q ⊗ u≤Q,

subtracting the right sides of the last two equations gives the desired representation. �
Theorem 3.2. Assume that 0 < ρ ≤ ρ ≤ ρ < ∞ and that (ρ, u, p) satisfies

ρ ∈ B
1/3
a,∞, u ∈ B

1/3
b,c0

, p ∈ B
1/3
b/2,∞,

1

a
+ 3

b
= 1, b ∈ [3,∞]. (31)

Then the flux 
Q defined by (17) tends to zero as Q → ∞.
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Proof. Clearly

‖rQ(ρ,u,u)‖b/2 �
∫

|̃hQ(y)|‖u(· − y) − u(·)‖2
b dy,

and we can follow the proof of Proposition 2.1 to conclude ‖rQ(ρ, u, u)‖b/2 � λ
−2/3
Q (D

1/3
b,Q(u))2.

Using (21), we can estimate

∥∥∥∥ 1

ρ≤Q

[(ρu)≤Q − ρ≤Qu≤Q] ⊗ [(ρu)≤Q − ρ≤Qu≤Q]
∥∥∥∥

b/2
� ρ−1(λ

−1/3
Q D

1/3
b,Q(u)ρ)2

� λ
−2/3
Q (D

1/3
b,Q(u))2.

Using ‖ρ>Q‖∞ ≤ ρ and (23), we get

‖ρ>Qu>Q ⊗ u>Q‖b/2 � λ
−2/3
Q (D

1/3
b,Q(u))2.

Combining (21) and (23) yields

‖[(ρu)≤Q − ρ≤Qu≤Q] ⊗ u>Q‖b/2 ≤ (λ
−1/3
Q D

1/3
b,Q(u)ρ)(λ

−1/3
Q D

1/3
b,Q(u)) � λ

−2/3
Q (D

1/3
b,Q(u))2.

Finally,

‖ρ[(u ⊗ u)≤Q − u≤Q ⊗ u≤Q]‖b/2 � ρλ−2/3(D
1/3
b,Q(u))2 � λ−2/3(D

1/3
b,Q(u))2.

Therefore,

‖FQ(ρ,u)‖b/2 � λ
−2/3
Q (D

1/3
b,Q(u))2.

We also have ∇U = ρ−1
≤Q∇(ρu)≤Q − ρ−2

≤Q(ρu)≤Q ⊗ ∇ρ≤Q. Write 1
a

+ 1
b

= 1
c
. Then using 

the two Propositions of the previous section, we estimate:

‖∇U‖c � ‖∇(ρu)≤Q‖c + ‖ρu‖b‖∇ρ≤Q‖a � λ
2/3
Q

(
D

1/3
a,Q(ρ)‖u‖b + D

1/3
b,Q(u)

)
.

Therefore

∫
FQ(ρ,u) : ∇Udx � (D

1/3
b,Q(u))2(D1/3

a,Q(ρ)‖u‖b + D
1/3
b,Q(u)

)
. (32)

Next, we deal with the pressure term. Note that by (7), we have

∫
p≤Q divU dx = −

∫
∇p≤Q · (U − u≤Q)dx.
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So∫
Td

p≤Q divUdx � ‖∇p≤Q‖b/2‖(ρu)≤Q − ρ≤Qu≤Q‖c

� λ
2/3
Q D

1/3
b/2,Q(p) · λ−2/3D

1/3
a,Q(ρ)D

1/3
b,Q(u) = D

1/3
a,Q(ρ)D

1/3
b,Q(u)D

1/3
b/2,Q(p).

Thus

|
Q| � D
1/3
b,Q(u)

[
D

1/3
b,Q(u)

(
D

1/3
a,Q(ρ)‖u‖b + D

1/3
b,Q(u)

) + D
1/3
a,Q(ρ)D

1/3
b/2,Q(p)

]
.

In view of (19) and our assumptions on ρ, u, p, the bracketed term in each estimate is uni-
formly bounded in Q, while D1/3

b,Q(u) tends to zero as Q → ∞. Therefore limQ→∞ 
Q = 0, as 
claimed. �

Note that we obtain Theorem 1.2 as a Corollary: By Theorem 3.2, as well as (19) and the 
Dominated Convergence Theorem, we have

E≤Q(t) − E≤Q(0) =
t∫

0


Q(s)ds
Q→∞−→ 0.

Now we prove Theorem 1.1:

Proof. As noted above, we have 
∫ t

0 
Q(s) ds → 0. It remains to show εQ(t) → ε(t) and ∫ t

0

∫
(ρf )≤Q · U dx ds → ∫ t

0

∫
ρu · f dx ds. So, let us make the following observation:

∫
∇u≤Q : ∇Udx =

∫
∇u≤Q : ∇(U − u≤Q)dx + ‖∇u≤Q‖2

2.

Clearly,

t∫
0

‖∇u≤Q(s)‖2
2ds →

t∫
0

‖∇u(s)‖2
2ds.

Next,

∫
∇u≤Q : ∇(U − u≤Q)dx = −

∫
�u≤Q : ((ρu)≤Q − ρ≤Qu≤Q)ρ−1

≤Qdx.

Using (21) and the remark following Proposition 2.1 we estimate

∣∣∣∣
∫

�u≤Q : ((ρu)≤Q − ρ≤Qu≤Q)ρ−1
≤Qdx

∣∣∣∣ ≤ ‖�u≤Q‖2λ
−1
Q ‖u‖H 1‖ρ‖∞ρ−1.
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Then

‖�u≤Q‖2λ
−1
Q ≤

⎛
⎝∑

q≤Q

λ2
q−Q‖∇uq‖2

2

⎞
⎠

1/2

.

Since the latter vanishes as Q → ∞ a.e. in time and is uniformly bounded by the dominant 
H 1-norm of u we obtain

t∫
0

‖�u≤Q‖2λ
−1
Q ‖u‖H 1ds ≤ ‖u‖L2H 1

⎛
⎝ t∫

0

∑
q≤Q

λ2
q−Q‖∇uq‖2

2ds

⎞
⎠

1/2

→ 0.

Finally, the convergence 
∫ t

0

∫
(ρf )≤Q · U dx ds → ∫ t

0

∫
ρu · f dx ds is rather straightforward. 

Indeed, write

ρf · u − (ρf )≤Q · U = (ρf − (ρf )≤Q)u + (ρf )≤Q(u − U).

Note that u, ρf ∈ L2
t,x , hence (ρf )≤Q → ρf strongly in L2

t,x , and hence 
∫
(ρf −(ρf )≤Q)u → 0. 

Similarly, u −U = 1
ρ≤Q

(ρ≤Qu − (ρu)≤Q) = 1
ρ≤Q

(ρ≤Qu≤Q − (ρu)≤Q) +u>Q. Again, u>Q → 0

in L2
t,x , while for the difference ρ≤Qu≤Q−(ρu)≤Q we can use (21) with s = 1, a = 2 to conclude 

that it also tends to zero in L2
t,x . This finishes the proof. �

Remark 3.3. Let us discuss a few extensions. First, one can see from the proof that the full 
strength of the integrability in time assumption on u was not used. Rather, the hypothesis u ∈
Lb(0, T ; B1/3

b,c0
) can be replaced by the weaker assumption that

lim
q→0

T∫
0

λ
b/3
q ‖uq‖b

b ds = 0.

This is equivalent to a space–time averaged increment condition

lim
y→0

1

|y|b/3

∫
Td×[0,T ]

|u(x + y, t) − u(x, t)|bdxdt = 0.

Second, time integrability in (10) can be replaced with its own exponents

ρ ∈ La′
B

1
3
a,∞, u ∈ Lb′

B
1
3
b,c0

, p ∈ L
b′
2 B

1
3
b
2 ,∞,

1

a
+ 3

b
= 1,

1

a′ + 3

b′ = 1.

Finally, it appears possible to extend the results to the system with density-dependent kinematic 
viscosity μ = μ(ρ) with sufficiently smooth μ. We leave calculations pertaining to this case to 
future research.
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