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Abstract

In this paper we study the behaviors of the energy of solutions of the wave equations with localized
nonlinear damping in exterior domains.
© 2017 Elsevier Inc. All rights reserved.

MSC: primary 35L05, 35B40; secondary 35L70, 35B35

Keywords: Wave equation; Nonlinear damping; Decay rate; Exterior domain

1. Introduction and statement of the results

Let O be a compact domain of R? (d > 1) with C* boundary I" and Q = R?\ 0. Consider
the following wave equation with localized nonlinear damping

3t2u—Au+a(x)|8,u|r_18tu=0 inRy x Q,
u=20 onR; x T, (1.1)
u0,x)=uy and 0ou(0,x)=uy,
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here A denotes the Laplace operator in the space variables. a (x) is a nonnegative function in
L (2). Throughout this paper we assume that 1 <r <1+ %. Below rp > 0 is a fixed constant
such that O C B,, = {x e RY; |x| < ).
The existence and uniqueness of global solutions to the problem (1.1) is standard (see [16]).

If (uo, uy) isin H} () N H? (Q) x H| (), then the system (1.1), admits a unique solution u in
the class

ue CO(R+, H) (sz)) nc! (R+, LZ(SZ)) and d,u € L™ (R+, H} (sz)) N W1’°°<R+, L2 (sz)).

Let us consider the energy at instant ¢ defined by

1
E, (t)=§/(|Vu (t,x)|2+|8tu(t,x)|2>dx.
Q

The energy functional satisfies the following identity

T
E, (T)—i—//a(x)|8tu|’+1dxdt=Eu 0), (1.2)
0 Q

for every T > 0. Moreover, we have

2
Voul? 32 ”
I tu||L00(R+,L2(Q)) + |[0;u Lo (R, L2(9) (1.3)

<2(1+ llallz) (||uo||§,2 + i3 + ||u1||2,;1).

The study of the behaviors of the energy decay of solutions of the damped wave equation has
a very long history. First we give a summary of results on the asymptotic behavior of the energy
of solutions of the nonlinear system (1.1) in the free space R and for a globally distributed
damping. For the Klein—Gordon equation with localized nonlinear damping, under the Lion’s
condition a polynomial decay rate is derived by Nakao [19] for compactly supported initial data
and he show in this case that

2
Eqn)<CA+07 ifl<r <1+, (1.4)

where y = 244 angd

E,()<CnQ2+1)"?, ifr=1+§. (1.5)

Mochizuki and Motai [17] give a decay rate estimate for weighted initial data. More precisely,
they show thatif 1 <r <1+ %, the energy decays according to

2+d—dr
-1

Please cite this article in press as: M. Daoulatli, Energy decay rates for solutions of the wave equations with nonlinear
damping in exterior domain, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.12.009

E,0)<C(1+1)77, where0 <y < and y < 1. (1.6)




YJDEQ:9125

M. Daoulatli / J. Differential Equations eee (eeee) eee—eee 3

Ifr>1+ %, Mochizuki and Motai [17] establish a complementary non-decay result for a dense
set of initial data in H' (Rd) x L2 (Rd).

For the wave equation we first quote the result of Ono [22], in which the author considers
the wave equation with a damping term equal to d;u 4 g (d;u) where g is superlinear and has a
polynomial growth. He showed the polynomial decay of the energy. We note that in this case the
L? norm of the time derivative on R x R? of the solution is bounded by the energy of the initial
data. Mochizuki and Motai in [ 17] obtained a logarithmic decay rate when 1 <r <1+ % and for
a kind of weighted initial data. More precisely, they show that

2
E,0)<C(In2+1))77, with0<y < 1 (1.7)
F—

The corresponding non-decay result in [17] requires » > 1 + %. Todorova and Yordanov in
[25] showed that for compactly supported initial data there exists a positive constant t such that
E,0)<C(A+1)" ", whenl <r <1+ ﬁ and d > 3. The main idea in this paper is to use
the “parabolic” effects coming from the presence of the damping term. Recently, Wakasa and
Yordanov in [26] studied the energy decay for dissipative nonlinear wave equations in one space
dimension with global distributed damping term. They established polynomial decay estimates
for the energy for compactly supported initial data. More explicitly they show that E, () <

C(+1t)"", whenl <r <3withzt <min(%, f%{ .

In the case of exterior domain we mention the result of Nakao and Jung [21] who con-
sider a dissipation which is allowed to be nonlinear only in a ball, but outside that ball the
dissipation must be linear. For the generalized Klein—-Gordon equation we quote the result of
Nakao [20].

In the case of linear damping the literature is more furnished and the problem has been in-
tensively studied. Before going any further, let us mention some results. First we note that if we

assume that a (x) > €g > 0 in all of 2, then we know that
E,(t)<Cyo(l+ t)_1 and |ju (¢)||;2 < Co, forallt >0, (1.8)

for weak solution u to the system (1.1) with initial data in H(} () x L% () and r = 1. Nakao in
[18] obtained the same estimates in (1.8) for a damper a which is positive near some part of the
boundary (Lions’s condition) and near infinity. The same result has been proved by Daoulatli in
[8] under the (GCC) condition.

Furthermore, Ikehata and Matsuyama in [10] obtained a more precise decay estimate for the
total energy of solutions of the problem (1.1) with a (x) =1, r = 1 and for weighted initial
data

E,()<Cy(1+0)7% and lu ()3, <Ca(1+1)"" forallz > 0. (1.9)

Ikehata in [11] derived a fast decay rate like (1.9) for solutions of the system (1.1) with
weighted initial data and assuming that a (x) > €y > 0 at infinity and O = R\ is star shaped
with respect to the origin. This result has been obtained by Daoulatli in [8] under the (GCC)
condition.

Recently, Aloui et al. [ 1] showed that under the (GCC) condition and for compactly supported
initial data
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E,()<Ca(1+07 and u®)?, <Cy(1+41)"2 forall >0, (1.10)

where y = min (1 + ¢, 3¢)

Hence establishing decay estimates for the nonlinear problem is more delicate and leads to
weaker decay rates. For another type of total energy decay property we refer the reader to [ 13,14,
24,2,23,12] and references therein. Finally, we note that to our knowledge no results seem to be
known for the problem of the wave equation with localized nonlinear damping in the free space
or in exterior domain.

Before introducing our results we shall state several assumptions:

Hyp A: There exists L > rg such that
a(x)>e¢y>0for |x|>L.
Definition 1. Let w be an open set of 2.
(1) (w, T) geometrically controls €2, i.e. every generalized geodesic travelling with speed 1 and
issued at r =0, enters the set winatime ¢t < T.

(2) We say that w satisfies GCC if there exists T > 0 such that (w, T')) geometrically controls €2.

This condition is called Geometric Control Condition (see e.g. [3]). We shall relate the open
subset w with the damper a by

wC{xeQ;alx)>e>0}.
We note that according to [3] and [4] the Geometric Control Condition of Bardos et al. is a
necessary and sufficient condition for the exponential decay of solutions of the wave equation in
bounded domain.

In this paper, we deal with real solutions, the general case can be treated in the same way.
Throughout this paper we use the following notations

1
g(x) = (1 + |x|2)2 , forx e Q,
and

2004 1) ifd=<2
P2l 2 ifa=3,

Now we state the results of this paper.

Theorem 1. We assume that Hyp A holds and w satisfies GCC. Let

y >0 ifl<r<l+%
O<y<d ifr=1+32.

Please cite this article in press as: M. Daoulatli, Energy decay rates for solutions of the wave equations with nonlinear
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Then there exists Co > 0 such that the following estimate
E,t)<Co(InQ2+1)"" Iy, forallt >0,

holds for every solution u of (1.1) with initial data (ug, uy) in H& ()N H? (R2) x HO1 (2), such
that

2
2<+OO,

iz+”(ln(1+q))%u1 ]L

[ an 1+ 905 Vg

where

To = lluol?s + lurllZ + lurllZ) + luoll Tl + [ An (1 +¢))% Vu ’
0= 0 H? 1 H! 1 H! 0 Lr+l1 q 0 12

r o |? 2 2 )2
|+ anTun |+ (ol + iy + laal%)* +1.

Remark 1. When 1 <r <1+ %, we obtain the result of Mochizuki and Motai in [17], for the
problem in the free space with global distributed damping.

In the result above we see that when 1 <r < 1+ %, we can take any y > 0, so we expect that
we can obtain a rate of decay of the energy for a weight with a polynomial growth.

Theorem 2. We assume that Hyp A holds and w satisfies GCC. We suppose that 1 <r <1+ %.
We take

o _r d+2—dr
0<y<m1n(r+2, ] )

Then there exists C1 > O such that the following estimate

E,(t) <Ci(1+07"1, forallt >0,

holds for every solution u of (1.1) with initial data (ug, u1) in H& () NH?(Q) x HOl (2), such
that

2
’ < 400,
L2

y 2 2
H(I—HI)2 Vug L2+ ”(1+q)2 ui

where

2
2 2 2 +1 4
1= ol + luat Iy, + a1+ ol + | (0 +)% Vo

r o |? 2 2 )2
+lasrobu],+ (ol + 1wl + ) +1.

Remark 2. We note that, using the energy estimates (1.2) and (2.3), we can show that

o0
//a(x) A+ |gul T dxdr <CIL.
0 Q
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So we deduce that
o0
/fa(x) (I+07 " Mu @, 0 dxdt < C1I,
0 Q

and this allows us to obtain a bound of ||u (¢)||;-+1. More precisely, we obtain
lu ()| a1 < C (14177 1.
The case of initial data with compact support.

Theorem 3. We assume that Hyp A holds and w satisfies GCC. We suppose that 1 <r <1+ %
We take

0<y<min< 2r d+2—dr>

43’ r—1

Then there exists C1 > 0 such that the following estimate
E,0)<Ci(R+1t)7V D, forallt >0,

holds for every solution u of (1.1) with initial data (ug, u1) in H(} (Q)NHZ(Q) x H(} (2) such
that the support of the initial data is contained in Bg, where

2 2 2 1
I = lluol2ps + Nt 120 + et 125 + N7,
2 2 2, %
o (o + Nl 3y + Nt 1352 ) * + 1.
Remark 3.

(1) Our results are also valid for the case Q = R4, d > 3, where the boundary condition is
dropped.
(2) As in the case of weighted initial data, we can show that

lu @)1 < C(1+0)7T I,
(3) When d =1, we obtain that

1/2<y<% if1<r§%ﬁ+%

3—r e 2 1

O0<y<:i7 1f§«/7+§<r<3.
Our decay rate is better than or equal to the one obtained by Wakasa and Yordanov in [26].

(4) We remark that there is a gap between the rate of decay when r =1 and r =1 + € for €
positive and close to zero. In addition, when r is close to 1 the values of y increase as r
increase. This fact is unusual in the literature and we are unable to prove the optimality of
our results.
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(5) In Theorem 3 we assume that the initial data is with compact support so we don’t need to take
a weight which depends on the space variable x. Therefore in the weighted energy estimate
(2.3) we will take n = 0 and this fact give us a better decay estimate compared to the case of
weighted initial data.

The main difficulty in establishing such results is the lack of control of the L? norm of the so-
lution. This is an essential difference with the equation in a bounded domain or the Klein—Gordon
equation or in the case of unbounded domain with finite measure [5]. The other difficulty is that
the L% norm of the time derivative on R x  is not controlled by the initial energy.

To prove our results it is sufficient to show the integrability of ¢’'E, over (0, c0). For this
purpose we show an estimate on a Lyapunov functional X (¢) (Lemmas 2, 5 and 7) which control
the weighted energy functional (see, for example, [8] and [9] for similar idea). Also we prove a
weighted observability estimate for the local energy of solutions the wave equation with external
force (Proposition 2). Combining these results and making some computations we end up with
the last problem which is how to control these two quantities

f/a(x)go’(qu)+s)|atu|2dxds
Q

and

//a(x)go’(q () +9) |u” dxds,
Q
by

€ f / ax)e(gx)+s) |8,u|r+l dxds + C (¢) / / g (s,x)dxds, forall e >0,
Q Q

o0
such that//g(s,x)dxds < 00.
0 Q

The rest of the paper is organized as follows. In section 2 we present some results on the
weighted energy and we give a weighted observability estimate for the local energy. Section 3 is
devoted to the proof of Theorem 1 and in section 4 we give the proof of Theorem 2. In the last
section we give the needed results to show Theorem 3.

2. Weighted observability estimate

The next result concerns the weighted energy estimate for solutions of (1.1) with initial data
with finite weighted energy.

Proposition 1. Ler ¢ be a positive function in C* (R, such that ¢’ € L® (R,) and ¢" €
L> (Ry). Let u be a solution of (1.1) with initial data (uo, u1) in H} () N H*(Q) x H} ().
We set

Please cite this article in press as: M. Daoulatli, Energy decay rates for solutions of the wave equations with nonlinear
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1
Eo@®) = [ 00+ a0 (1VaP + ) dx. @
Q

If Ey (1) (0) < 0o, then

JoVu e L (R+, (L2 (Q))d> and \Jgdu € LS. (R+, L2 (Q)) . 2.2)

Moreover, we have

t+T
E,(u)(t+T)+ f /a(x)(p(s,x)latmr“dxds
Q
! S (2.3)
< E, () (1) + 252 / /|<p’(s,x>!(|w(s>|2+|atu(s>|2)dxds,
r Q

foreveryt >0and T > 0, where gp(j) (t,x)= ga(j) (ng (x) +at), for j =0,1,2 and o, n > 0.

Proof. We remind that
we LSS (]R+, H! (@) N H? (sz)) nwhe (R+, H] (sz)) A W2 (m, L2 (Q)) ,

To prove (2.2) we use the Yosida approximation of the nonlinearity to obtain some energy esti-
mates. Then using the fact that ¢ is in L% (R4.) and ¢” (1 4+ ¢)~/? € L*® (R,.), we obtain (2.2)
for the approximated solution. Then using classical method (see, for example, [ 16]) we show that
(2.2) holds for the solution .

Now we will prove the energy estimate (2.3). Let R > 1 and set S (R) = dBg. It is easy to
see that

[ e(vuwr+puoP)ax+ [ awelpunrta

QNBR QNBR

8=

=2 / ¢/<|Vu(z)|2+|a,u(t)|2)dx+ / OVu () - Vouu () + @du (1) 2u (t) dx
QNBr QNBg

+ / a (1) @ [0 (0" dx
QN B

=5 [ G(TuoP+auwP)art [ Vu® - @)+t w0 dx
QNBr QNBg

+ / a(x)lou @) Tdx —n / w/%atu(t)dx.

QNBgr QNBr

Please cite this article in press as: M. Daoulatli, Energy decay rates for solutions of the wave equations with nonlinear
damping in exterior domain, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.12.009




YJDEQ:9125

M. Daoulatli / J. Differential Equations eee (eeee) eee—eee 9

Green’s formula along with the fact that u is a solution of (1.1),

[ e(veorauor)ar [ awelbuort i

QNBR QNBR
=4 / o (19 P + 1o ) dx = 1 / o/ (1) dx
QNBRr QNBR
+ / @D 5 (1)dS.
S(R)
Integrating the estimate above between ¢ and ¢ + 7', we obtain
+T
/ ¢ (|w (1 + T + |0u (¢ + T>|2) dx + / / a ()¢ |oul™" dxds
QNBR t QNBg
+T
<E,w)®)+% / /|<p| |V ()| + |9;u (s)] )dxds (2.4)
t+T t+T
+7 // /xqv(';()s)atu(s))dxds—i—/ /(p ng(s)atu(s)‘des.
t S(R)
Using Young’s inequality
t+T +T
x-Vu 1 2 2
p Ohu|dSdr = 3 <|8ru| + 19ul )(pder.
t S(R) t S(R)

Moreover, using (2.2), we infer that
1+T

.. x-Vu
hmlnff /(p‘
R—> 400

t S(R)

dSdr =0.

8;1,{

Passing to the limit in (2.4), we get

t+T
Ec @+ 1)+ [ [atog s dxds < £, 60 ()

t+T t+T

+5 f /|§0/|(|Vu(s)|2+|3;u(s)|2>dxds+n//
Q A

t

¢’ );'(Z’)‘ du (s)|dxds.
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Young’s inequality gives

t+T
E,u)(t+T)+ / /a(x)<p|8,u|r+ldxds
r Q

t+T

< E,(u) (1) + 452 / / l¢/| (IVu )+ 19,u (s)|2> dxds. O
tQ
Remark 4. We note that the result above remains valid for
r>1 ifd=1,2
d

The proofs of our results need a weighted observability estimate for the local energy and to
show such result we need to prove a unique continuation result for the wave equation.

Lemma 1. We assume that Hyp A holds and (w, T) geometrically controls Q. Then the only
solution of the system

3%27—Az=0 in (0,T) x L,
z=0 on (0,T) x T, (2.5)
a(x)dz=0 on (0,T) x Q,

in the class
(10, 71: Hp () N €' (10.71: L2 @),

is the null one, where Hp (2) is the completion of C2° (2) with respect to the norm

||¢||%,D=/|Vgo(x)|2dx.
Q

Proof. Let x € C° (Rd) such that y =1 on {|x| < L} and the support of x is contained in

{|x| < 2L}. First we note that Hp (2) C Hlluc (£2). Let z be a solution of the system (2.5). We set
w = xz, we observe that

8,2w—Aw=—2VXVz—zAX in (0,7)x 2N By,
w=0 on (0,T) x T'U{|x|=2L},
(wo, w) € Hy (2N Bar) x L* (RN By)

a(x)ow=0 on (0,7T) x Q.

From linear semi-group theory, we infer that

w e CO ([o, T1: HL (@n BZL)) nc' ([o, T1: L2(QN B2L)> .

Please cite this article in press as: M. Daoulatli, Energy decay rates for solutions of the wave equations with nonlinear
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We set

vn(t,x)=n<w (t—}—%,x)—w(t,x)).

a(x)>e¢y>0for |x| > L,

Since

and x =1 on {|x| < L}, therefore, v, is a solution of

32v, — Av, =0 in (0,T) x QN Byy
v, =0 on (0,7) x "'U{|x|=2L}
a(x)ov, =0 on (0,7T) x Q.

We have (w N By, T) geometrically controls 2N Byy, and
v € CO(10.T1; H) (2N B)) N C (10, T1: L2 (@0 Bay))

thus using the observability estimate for the wave equation in bounded domain (see e.g. [7]), we
end up with

E,, (s)=0, foralls € [0, T].
On the other hand,
n = dwin D' ((0,T) x Q).
We deduce that d;w = 0. Recalling that x = 1 on {|x| < L}, hence
0z (t,x)=0, on {|x| <L}.

Using a (x) 9,z =0 on (0, T) x 2 along with a (x) > ¢y > 0 for |x| > L, we infer that 9,z =0
on [0, T] x 2. This means that z (¢, x) = z (x) is independent of ¢. Therefore, we have

Az=0and z € Hp (),
we conclude from thisthat z=0on [0, T] x Q. O
In view of the fact that the energy doesn’t control the L? norm of the solution, we do not
expect to prove an observability estimate for the global energy and this is the essential difference
with the equation in a bounded domain or the Klein—-Gordon equation.

We remind that under our assumptions we have the following Poincaré inequality (see [6]
and [15])

I l2@nBr) < CRIV fliL2(q) . forevery f € Hp (S2) and R > ro. (2.6)

Please cite this article in press as: M. Daoulatli, Energy decay rates for solutions of the wave equations with nonlinear
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Next we show a weighted observability estimate for the local energy of solutions of the sys-
tem (1.1).

Proposition 2. We assume that Hyp A holds and w satisfies GCC. Let § > 0 and Ry > L. Let ¢ be
a positive function in C* (R4.) such that ¢' in L (R..). We suppose that there exists a positive
constant K such that

b @" (1)
R, | ¢ (7)

7 /
Moreover we assume that the function t — ‘ ZT(:)) is monotone decreasing and liI—P ‘ A
——+00

There exist T,to > 0 and Cr s = C (T, 8, Ro) > 0, such that the following inequality

=0.

o(t)

t+T

[ [ e@erss (ul+ 19 + ) dxas

I QNBg,
(+T

<Crs / /a ()9 (q () + 5) [Byul dxds

t+T

+Crs / /fp(q(x)+s)|g(s,x)|2dxds 2.7

t+T
()
+Crs f / WD) (2 juf? dvds
t+T

+5//<P(61(x)+s) (IVMI2+|8,u|2)dxds,

holds for every
g such that /g € L}, <R+, L? (Q)) ,
for all
ueC’ (R+, Hy (Q)) nc' (R+, L’ (Q)) ;
solution of

Ofu—Au=g inRy x Q,
u=0 onRy xT, 2.8)
u(O,x):uo and 8,14 (O,X):M],

such that E, (1) (0) < oo.

Please cite this article in press as: M. Daoulatli, Energy decay rates for solutions of the wave equations with nonlinear
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Proof. Let T > 0 such that (w, T') geometrically controls 2.

To prove this result we argue by contradiction: If (2.7) were false, there would exist se-
quences (f,), (g,) such that ,/pg, € le (R+, L? (Q)) and a sequence of solutions (u#,) in
C% (R4, H} () N C! (R4, L?(RQ)) with Ey, (u,) (0) < oo and such that t, —> +oo and

n—-+00

thw+T
/ ‘P(Q(x)+5)<|un|2+|Vun|2+|8;un|2>dxds
In QOBRO
tntT
> //a(x)go(q(x)+s)|atun|2dxds
o Q
tn 4T
+n / /(ﬂ(q(x)+s)|gn(s,x)|2dxds 2.9)
r,,+T
+
/ f ) (0l dds
tn+T
+9 f /¢(Q(x)+5)(|vun|2+|31un|2)dxds.
h Q
We set
tn+T
=/ [cp(q(x)+s>(|un|2+|wn|2+|azun|2)dxds
tn QNBg,
and Uy (t, x) — ((p(q(x)+tll+;)ﬂ)%un(tn‘l’t,x) .
From (2.9), we infer that
thw+T
- / fso(q(x)+t)(Ivun(z)|2+|a,u,,(z)|)dxd !
o Q
th+T (2.10)
and / / [, O)>dxdt <1,
tn QDBRO
and
T
(,17 / /G(X)fﬂ(QI(X)+S)|3zun|2dxdsn_:>w0
h Q
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ty+T

w2 / /‘p(“x)ﬂ) lgn (s, ) dxds —> 0 (2.11)

' n—+00

h Q
th+T .

T R I S

o / [ (g (x)+s) a(x)|uy|”dxds "—>_+)oo 0.
th Q

It is clear that v, is a solution of the following system

320y — Avy = f (,X) inR; x Q,
v, (t,x)=0 onR; x T,
(va (0), vy (0)) € Hy () x L* (),

where

fo 0 =3[ (¢ @72 =3 ()0 2) B [un 0+ 1)

q
+ ok [(4-) ¢ @ fun ta +0)

1 _ 1
+ [so”(w) ) 3/2]un (tn+1) = =028 (tn +1,X)

N W/(go) (3zun (4 1)+ xVLt,,(t,,th))’

where go(-/) (t,x) = go(-/) (g (x)+1t+1t,),for j =0,1,2. Now we will show that

T

//Ifn (s, x)|>dxds jooo. (2.12)

0 Q

Using (2.11) and the fact that hm ‘ AG) =0, we obtain

@)
T
1
/]l
0 Q

[ (4= 25) ¢ @72 |un +t))2dxdt

[(¢" @72 =5 () 072) 5 Jun 1 + 0 dxai

+
S—

_1 2 2
+ ﬁ[w @) T-3(¢) ¢ 3/2] iy (ln-l-l‘)’ dxdt

St~
SIS
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ln+T
C @' (q(x)+s)) o' (ty) 2 2
=5 / f PlaCFs) <1+(¢<tn>) Junl”dxds
m+T th+T
C w(tn) 2 w(q(X)+v) 2
=5 (4y / / ¢ (q () +9) lun|* dxds WD 4 (x) uy | dxds
tn  QNBL
tn“rT )
2 ’
@' (tn) c (¢ (@) +s)) 2
5C<w<zn)) t o [ / oot @ (X lunl"dxds = 0.
tll Q

Now we estimate the remaining term of f,,. Turn into account of (2.10), we get

r 2
//‘ 3zun (tn+t)+xVu,,(tn+t))
0 Q

dxdt

IA

T
, 2
S (593) [ [ @0+ o) (B -4 08 + 190, Gy 1))
0

, 2
C (¢ () N
=5 (‘/’(lﬂ)) n%+ooo

The results above combined with (2.11), give (2.12).
The next step is to show the boundedness of the energy of v,,. It is easy to see that

T th+T
/ Ey, (0d1 = 5 / / 0@ @) +0 (Vi OF + 18,0 0 ) dxdr
0 h Q
th+T
+
b [ [ 0 g
h Q

Now using (2.10) and (2.11) we infer that there exists a positive constant Cg such that

T

f E,, (t)dt < Cs, for n large enough. (2.13)

0
On the other hand, we have

T
C
Ey, (1) < - f Ey, (s) +sf | fu (s, )P dx | ds |,
0 Q
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for all 0 < ¢ < T. Turn into account of the estimate above along with (2.13) and (2.12), we obtain
E,, (T) < Cr,s, for n large enough. (2.14)

On the other hand, from the energy identity, we see that

T

Ey, (1) < Ey, (T) + / E,, (5)+ / (s, 02 dx | ds,

0

for all 0 <t < T. The estimate above combined with (2.13) and (2.14) gives

sup Ey, (s) < Cr s, for n large enough. (2.15)
[0,T]
The last step is to show that
T
//a(x)l&tvnlzdxdt — 0. (2.16)
n—-+0o
0 Q
We have
T tut T
+
f / a (x) 13,v, P dxdt < 2 / / WD (1)l (5) 2 dxds
0
tntT
+ fso(q(x)+s>a(x)|a,un|2dxds.
h  Q

Using (2.11), we get (2.16). For the rest of the proof we have only to argue as in [8, Proof of
proposition 2] by taking into account Lemma 1. O

3. Proof of Theorem 1
3.1. Preliminary results

Throughout this section we use the following notations:
Let B be a real number such that

B> -1 ifl<r<l1+432
—1<,3<f%{ ifr:l—l—%.
Let € C3° (R?) such that 0 < < 1 and

for |x| <L

v )_{0 for |x| > 2L.
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Finally we set
— a8+l _ Inf+s) _ WP b+s)
o) = Gts). £ o) =" fi () =0

lﬂ*r‘f’l b
and f> (s) = HTX():-M,

with

Inb = max (@ + 1))+ B @0+ 1) B+ 1)),

r—1 7

Lemma 2. We assume that Hyp A holds and (w, T) geometrically controls Q. Let § > —1. Let
8 > 0and Ry > L. There exists Ct s =C (T, 8, Ry) > 0, such that the following inequality

t+T

/ / flg @) +s) (Iul2 +|Vul® + |a,u|2) dxds

4 QQBRO
t+T

<Crs / /a(X)f(q (x) +9) (|31u|2+|8,u|2’>dxds
tQ

t+T (.1

+Crs / / a () £1(q () +9) lul> dxds
r Q

t+T

+3f/f(q(x)+s) (qu(s)|2+Iatu(s)|2>dxds,
Q

t

holds for every t > ty and for all u solution of (1.1) with initial data (uo,u1) in H& )N
H?(Q) x Hj (Q).

Proof. In view of f € L* (R, ), we have Ey (u) (0) < co. On the other hand, it is clear that
S’ € L*® (R4 ) and there exists a positive constant K, such that

£ (@
f @

<K

P
Ry

@

o] : .
is decreasing and [_lgrnoo ‘— [0

In addition the function t — )W
C > 0, such that

= 0. Moreover, there exists

<C (-f{ @), forallt > 0.
Since

du e L™ <R+, H] (Q)) ,
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therefore, from Sobolev imbedding, we deduce that

Va) f @@+ ol e L3, (R, L2 @)

By taking into account of the results above, we can use Proposition 2 and we obtain (3.1). This
finishes the proof of the proposition. O

In order to prove Theorem | we need the following result.

Lemma 3. Let T > 0 and u be the solution of (1.1) with initial data in Hj ()N H? () x H} (R)
such that

Eo ) 0) = [ ¢ ) (1Vu0F + s ) v < . (32)
Q

We set x =1 —r and

X(t)=/f(61(X)+I)X2(X)u(t)3zu(t)dX+]%/a(X)fl (q () + 1) lu @) dx
Q

Q

(3.3)
+fa<x>fz (4 (x>+t>|u(r>|’“dx+%flnﬁ“ (b+q @) +0) (1Vul + 19ul?) dx,

Q Q

where
1
k=—rr——, ki >0.
4B+1)
We have
t+T

Xt+T)-X®)+} / /f(q(x)+s)<|Vu|2+|8tu|2)dxds
t Q

t+T

— (4 — 20zieb) / / a () f{(q () + ) lul? dxds
r Q

t+T

-3 / / a(x) f3(q (x)+5) |ul""" dxds
t Q

t+T
+ 5@ / /a(x)lnﬂ“ (b+q () +5)|ul™* dxds
rQ

t+T

s(3+%HvX2HOO)/ /f<q<x>+s>(|u|2+|w|2+|afu|2)dxds

t QNByr
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t+T
+2 (%, + AP +4k1) / /a () £ (g &)+ 1) 18ul? dxds. (3.4)
0
r Q

Proof. First (3.2) allows us to apply (2.3) and to obtain

t+T
Ey(u)(t+T) + / f 0 ()9 (q () + ) |3l dxds
r Q

t+T

SE,(w)y@®)+(B+1D / /f(q(X)+s) (qu|2+|8,u|2)dxds.
t Q
We set

Q

Xo(t)=/f(61 (x)+t)x2(x>u(r)atu(t)dx+%/a(x)fl (g (xX) + 1) |u(t)|* dx
Q

+/a(X) g @) +0) |u@) ™ dx.

Q

Therefore, we have

4 X, (r>=f(|a,u<t)|2—|w (O = a () o O ™ wdh (1)) 1% @) £ (g (6) + 1) dx
Q

—/xz(x)f/(q (@) + D u () S8+ f (g (0) + 1) Vo’ () Vi (1) dx

Q
/ 2
+/f (q(x)+1) x“(x)u(t)du(t)dx s
Q

+ ki /a(xm (g (x) +1)u(t) 8zu(t)dX+%/a(X)f{(q (x) + 1) |u (1)|* dx

Q Q

+/a(x)f2’ (q (X)+t)|u|’“dx+(r+1)/a(X)f2 (g (x) + 1) lul"" ududx.
Q Q

A direct computation gives

/ 2 B
VoL < (14180 2 < — 1+ 16D f{ )

and

(fi6)? _ Wlots) _ _ o
fs) — (b+s)3 = f] (S) .
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We note that || x ||, < 1. Using Young’s inequality and the fact that the support of x is contained
in {|x| > L} and

a(x)>ey>0for |x|>L,

we deduce that

/ F1(q () +1) X2 () u () du (t)dx

Q

<——fa(x)f1 (g (x) +1) lu(0)*dx +8<”"3'>/a<x).f(q () + 1) 3,u (1) * dx,
Q Q

and

b f a () f1 (g 0+ 1w (t) dyu (1) dx

Q

S——/a(x)fl (g (xX) + 1) Ju(2)] dX+8k1/a(X)f(q(X)+t)|3zu(t)|2dX-

Q Q

Using the same arguments we also deduce that

/ X200 f (@ () + D u (1) SV g

Q

/f(q ) + 1) [Vu (1) dx — 2“*"‘“/a(x)f{(q(x)+t>|u(r>|2dx.

Q
Since the support of v is contained in {|x| < 2L} and
a(x) > eqfor |x| > L,

therefore we see that

[ (1 0P = 190 @P) x>0 £ 0+

Q

= [ ra@+0(1-2000+ 9 w) (19 @F - Va0 dx

<2 [ams@+nBuoPa

Q
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- [ r@@+0 (0P + 19u0)P) dx
Q

+3 [ fa@n (0P + 19u0P)dx

QNByr

We note that the support of V x? is contained in {|x| < 2L}, using Young’s inequality, we deduce
that

—/f(q () + 0 u ) Vy? (x) Vu () dx

<i|ve|. / f @@ +0 (JuOF + Va0 ) dx

QNByy

Since

B+1—r
r—1

Inb >

therefore a direct computation gives

_ 1n,3—r+l(b+s)
f2 (S) z (b+3)r+1

(f ()'*! ln*“ﬂ*” (b +9) < mis
r+l1
(f2($) 7 I~

fz(“)
= In(b+s) "

Now we can estimate the last term of the RHS of (3.5). Holder’s inequality along with Young’s
inequality, leads to

/a (xX) f (g () +8) 19 (O™ ud,udx
Q

r+1
< (Inb) 7T /a(x)lnﬁ“ (b+q(x)+s)0ul" T dx

Q

1
r+l

y —/a(x)fz’ (q (0) +9) lul ™ dx
Q
< (nb)~ 71 / a ()P (b + g (v) + ) |ul™ dx
Q

—<1nb)*ri*1/a<x>f2’ (q (0) +5) lul ™ dx,

Q
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and

r+ l)fa<x) o (q () + ) lul""" udsudx
Q

1
41
<(r+1)(nb)~ 71 /a WP b+ g (x) +5) |9u" dx
Q
-

< |- [a g+

Q
< (lnb)fﬁ /a(x)lnﬂJrl (b+q(x)+s)|dul" " dx
Q
—r(lnb)‘%/a(x) fr(q (x) +5) lu) ' dx.
Q

Thus

t+T

/ /a(x)f(q (x) +5) [0l ududxds
t Q

t+T

+@F+D / /a(x) fa(q (x) + ) lul" "' ududxds
rQ

t+T
§(r+1)(lnb)*$//a(x)lnﬁ+‘ (b+q (x)+s)|9ul" dxds
r Q

t+T

—(r+1)(1nb)—%[/a(x)fg(q(x)+s)|u|’+1dxds.
t Q

Collecting the inequalities above, making some arrangement in (3.5) and integrating the result
between ¢ and ¢ + T, we end up with

t+T
Xa+D) =X +(G-+pk) [ [ 7@+ (19uP +10a) drds
r Q

t+T

— (4 — 2tieb) / / a () f] (@ () + ) lu () dxds
r Q

€0

Please cite this article in press as: M. Daoulatli, Energy decay rates for solutions of the wave equations with nonlinear
damping in exterior domain, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.12.009




YJDEQ:9125

M. Daoulatli / J. Differential Equations eee (eeee) eee—eee 23

t+T

—(1—(r+1)(lnb —ﬁ)//a(x)fz’(q(x)—i—s)Iul’“dxds
rQ

t+T
+(k—(r+1)(1nb)—%) / /a(x)lnﬁ“ (b+q (x) +5) |9ul"" dxds
r Q

t+T

5(3+§HVXZHOO) / /f(q(x)+s)(|u|2+|Vu|2+|8,u|2>dxds
! QNByy

t+T

- (% + 55 +8k1> / /a(x) (g () +5) |3ul? dxds.
rQ

Using the fact that k = m and

Inb = max (@ + 1) B¢+ 1B+ 1)),
we obtain (3.4). O
3.2. Proof of Theorem 1

We assume that Hyp A holds and w satisfies the GCC. We set y =  + 1. Let u be a solution
of (1.1) with initial data in H} () N H?(Q) x Hj () such that

Ey ) (0) =/lnﬂ+l (1 4+ @) (1Yol + 11 ) dx < oo.
Q

First we note that there exists a positive constant ¢ such that

/mf‘“ b+ (@) (1Vu0l® + 1) dx < ¢E, () (0).
Q

Let T, t9 > 0 such that the observability estimate (3.1) holds. First we estimate the first term of
the RHS of (3.4). Using the observability estimate (3.1), we see that

Xt+T)—-X@)
t+T
+(;{—(3+HVX2HOO)(S)//f(q(X)Jrs)(IVu|2+|81uI2)dxds
t Q

t+T

(-2 e |ve] Jens) [ [aesiae+ s uiasas
rQ

€0
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t+T

-3 / /a(x)fg’ (q (x) +5) ul""" dxds
t Q

t+T
+8<ﬂ1¥1‘> / /cz(x)lnﬁ+1 (b+q (x)+s5)9ul" T dxds
t Q

t+T

<ho [ a7 @w+9) (10l + aaf”) dxds, (.6)
roQ

€0

for every t > 0, where k3 =2 (L + 4(;;:% + 4k +2(3 + HV)(ZHOO) CT,s).

On the other hand, using Young’s inequality we get

xw=(4+L) [amfiqm+nups

Q
+k+e€) / I b +q(x)+1) (IVu O+ |9,u (t)|2) dx
Q

3.7

+[awp@@ouorta

Q
and
xoz(4- L) [awhaw+nuoP
Q
+k—e) f P b+ g () +0) (1Vu OF + [ (1)) dx (3.8)
Q

+fa<x)fz (g (x) + 1) Ju @) dx,

Q
for all € > 0. We choose (by taking into account of the order below)

1 2 1
s such that - (3+ | V2| )o=4,

1
e suchthat k — e > 6T

€0

k1 such that %] — GOLE >1 and%‘ — 20+ _ (S—i— HVXZHOO) Crs>1.

Therefore
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X(t)zfa(x)fl (@ () +0) lu ()P dx

Q

+m/mﬂ+‘ (b+qx)+1) (|w (t)|2+|8,u(t)|2> dx (3.9)
Q

+/a(x)f2 (@) +0) |u@)|tdx,

Q
and

t+T

X(@+T)=X(0)+} / /f(q ) +9) (1Vu +9ul?) dxds
Q
t+T t t+T

—f/a(x)f{<q<x>+s)|u|2dxds—%//a(x)fg(qoc)+s>|u|r+‘dxds
t Q t Q

t+T (3.10)

gt [ [ @t G4 q 0+ 5l dads
rQ

t+T

<k3 / /a(x)f(q(x)+s) <|8,u|2+|8tu|2r)dxds,
r Q

for every t > 1y. Let ng be the ceiling of (%) Thus

nT

xeny+ [ [ 7@+ (1P + o) axds

noT

nT nT
—//a(X)f{(q(X)+S)|ul2dxds—%//a(x)fz’(q(X)+S)Iu|’“dxds

noT Q noT
nT

-I-m//a(x)lnfﬂ1 (b+q(x)+s)0ul"T dxds

noT
nT

<ks / fa(x)f(q (x) +5) <|a,u|2+|3tu|2’) dxds + X (noT) , forall n > ng.
noT Q

@3.11)

Using Proposition 1, we deduce that there exists a positive constant C = C (ng, T)
X (noT) <Cly (3.12)

where [ is defined in the statement of Theorem 1.
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Combining (3.11) and (3.12), we obtain

nT

X(nT)+%f/f(q(x)+s) (1Vul + fou?) dxds

noT 2

nT nT
—ffa(x)f{(q(x)+s)|u|2dxds—%f/a(x)f5<q<x>+s>|u|’+1dxds

noT noT (313)

nT
+mﬁﬂ/1/Mmmm4w+quymn@mwuum
noT

nT
sta| [ [aes@o+s (P +lou®)dxds+1o |

nol Q

for all n > ng and for some k4 > 0. The next step is to control the first term of the RHS of the
estimate above by the last term of the LHS. We remind that

20+ 1) ifd<2
p:

2 if d >3.

We have r + 1 < 2r < p, using interpolation inequality and Young’s inequality, we obtain

nT
//a(x)f(q (x) + ) |8u|* dxds

noT
nT
< / f(s)/a<x>|atu|2’dxds
noT Q
nT pp—_% pr—jl—]
< / f(s) /a(x)|3zulr+ldx /a(x)latul”dx ds
n()T Q Q
r—1
nT p—r—1
» p—r—1 _ (B+D(p=2r)
= ”a”LOO ”atu”LooGR_th(Q)) (f (s)) 1 (]l’l (b+S)) =1 ds
noT
p=2r
nT p—r—1
X / Inft! (b+s)/a(x) |0,u| ! dxds
noT Q
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_p=2r »
e =1 (r=DllallLecl0rull;
=

+00
o8] —r— p—2r
@) / (b+5)" 7T (In(b+ )P~ 7T ds
0

nT

+ 615—11:—3? / /a ()C)lnﬂ‘f‘1 (b+q(x)+s) |atu|r+1 dxds.

noT

for all € > 0. Thus using (1.3) and Sobolev imbedding H! < L7, we get

nT
f/a(x)f(q(x)+s)|atu|2’dxds
noT
—2r

P
_r 2
<Cllallpoe™ =T (nuoni,z + 3, + ||u1||§;1) (3.14)

nT
+ G527 f /a(x) (In (b + g (x) + )P |8,ul ™ dxds,

noT

for all € > 0. To estimate the last term, first we use Holder’s inequality

nT
//a(X)f(q(X)+S)|3zu|2dxds

noT
ﬂ
nT r+l1
rl 2B+
< IIaIILoc//(f(q(X)JrS))"—l In" =T (b+q (x)+s)dxds
noT 2
2
nT r+1
X //a(x)lnﬂ"’](b—i—q(x)-i—s)latul’“dxds
nol
r=1
+00 r+l
r+1 2
< ||a||Loof/<b+q<x>+s>‘%1nﬁ‘ﬁ<b+q<x)+s>dxds
0 Q
2
nT r+1
x //a(x)lnﬁ"’l(b+q(x)+s)|8tu|r+ldxds

nolT

By Young’s inequality, we end up with
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//a(x)f(q(x)+s)|atu|2dxds
noT Q
+00

2
< (=D T T ale f/(b+q(x)+s)‘%lnﬂ‘% (b +q (x) + ) dxds

nT
= / f a ()W (b +q () +5) [dul™ dxds

—+00 +00

_2 ,
§C||a||Lm%/ /1nﬂ—%(b+y+s)(b+y+s)‘%+d—1dyds
0 0
nT
+ 75 f / a ()P b+ g (1) +5) 18ul"™ dxds,
noT

for all € > 0. In view of the fact that

—Htd<— ifl<r<l1+2
(3.15)
B—-2r<—land —H +d=-1 ifr=1+2,
we see that
nT
/fa(x)f(q(x>+s)|atu|2dxds
noT
o (3.16)
2
<Ce T |la|l g + r+1//a(x)lnﬂ“(b+q(x)+s)|alu|r+1dxds
noT

for all € > 0. We choose € such that

1 p—2r 2 1
s kae (p_r_1 + m) Z 6T

We conclude that there exists a positive constant C such that

nT

X(nT)+§//f(q(x)+s) (|W|2+|a,u|2)dxds

noT

nT nT
_ f /a(x)fl'(q (x)+s)|u|2dxds—% f /a(x)fé(q (x)+s)|u|r+ldxds

noT noT Q
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nT

+ 667D f /a @) I (b + g (x) +5) [dul T dxds < C1 I,
noT Q2

for all natural numbers n > n(. Therefore we obtain

o0
//f (@ () +9) (IVul + [ul?) dxds < Ci ko,
0 Q

Now using the weighted energy estimate (2.3), we infer that

Ec) 0= [0+ (IFu P + b )F)

Q
<E, @O +E+D [ [ @ +9 (I9u@P + o ©)F) duds
0 Q
< Colo,

for some positive constant Co. The sought estimate follows from the estimate above and the fact
that

WA Q4+ E, (1) <E,w) ().
4. Proof of Theorem 2
4.1. Preliminary results
Throughout this section we use the following notations: We set

8 ) T 1)

=1
1+56*‘(x+1)'*1(r+1)f(r50’ (A+1)(r+1)+1>

T(r,A) =

’

A is any positive constant and

2

S0= (4 )71 (r 4 1) 7.

We take

O<y=1+,3<min(rr?,dt2:1dr),

and

k=142 (r+1)do.
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We set ¢ (s) = (1 + ocs)/s'H where

r2,1
8~ (141 (r+1D 141

,
(1) = S r—T)(1+A) (r+1) L

Finally, let ¢ € C° (Rd) such that 0 < <1 and

V() = 1 for |x| <L
1o for x| >2L.
In order to obtain an explicit decay rate we need the following result.

Lemma 4.

(1) We have

: rod42—dr\ _ . : r_ d+2—dr p—2r
m1n<r+2’ r—1 >_m1n<r+2’ r—1 > r—l)'

(2) There exists A positive and close to zero such that y < t (r, L).
(3) For all ) positive and close to zero and r € (1, 3],

a(r,)) > 1and lirr{ot (r, ) = o0.
r—

Proof.

(1) Ford =1, 2, it easy to see that dtz:ldr < % = ’f_zlr . When d > 3, we have
d+2—dr p=2r . 2(d—4)
d+2—dr _ p=2r - 2d—4)
e B 1fr<1+(d_2)2.

2(d—4) _r_ - p=2r
-2 we have s By

then there exists A positive and close to zero

And the result follows from the fact that, for 1 <r <1+

-

(2) We have }ig})r r, ) = ﬁ Thenif y < 135,

such that y < 7 (r, A).
(3) A direct computation gives

r=r3 r2
a () =10+ )20 g Dy ((k+ DT 47 O DY+ 1).
For X positive and close to zero, we have limlot (ryA)=occanda(r,A)>1. O

Proposition 3. We assume that Hyp A holds and (w, T) geometrically controls Q2. Let § > 0,
Ro > L and —1 < B <O0. There exists Ct s = C (T, 8, Ro,«, B) > 0 and ty > 0, such that the
following inequality
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t+T

f / (1 +a (g @)+ (Il + 1Vul + 10,0 dxds
t QﬂBRO
t+T

<Crs f /a(x)(1+a(q(x)+s))ﬁ (|a,u|2+|a,u|2’)dxds
t Q

L 4.1)

+Crs / /a(x)(l+a(q(x)+s))ﬂ*2|u|2dxds
t Q

t+T

+6/f(1+a(q(x)+s))ﬁ (|Vu|2+|8,u|2>dxds,
Q

t

holds for every t > ty and for all u solution of (1.1) with initial data (uo,u1) in HO1 ()N
H*(Q) x H} (Q).

Proof. We set

fs)=0+as)f.

In view of f € L* (R4), we have Ey (1) (0) < co. On the other hand, it is clear that f" €
L*> (R ) and there exists a positive constant K, such that

Q)
sup |4
R, S

<K

ol . . (0
is decreasing and t_l)lgrnoo ‘—f(t)

{0 = 0. Moreover, there exists

In addition the function ¢t — }
C > 0, such that

<C (=f' (), forallt > 0.
Since
e L (Ry, Hi ().

then from Sobolev imbedding, we deduce that

Va@ (1 +aq@+s) ol L, (e 12 (@)

By taking into account of the results above, we can use Proposition 2 and we obtain (4.1). This
finishes the proof of the proposition. O
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In order to prove Theorem 2 we need the following result.

Lemma 5. Let u be a solution of (1.1) with initial data in H} () N H? () x HJ (Q2) such that

2

148 2 148
Ep )0 = | (1 +ag) 2 Vuo| |+ |1 +ag) > w|

< +00.
L2

We set x =1 — 1 and
X(r>=/<1+a<q )+ )P 2 ) u (1) du (1) dx
Q

+'%/(1 +a(@@)+)Pax)|u@)dx
Q

4.2)
+ / a @) (L+a(q @) +0) " u@) ! dx
Q
+ %/(Ha(q @)+ 0V (190 + 0u?) dx,
Q
where ki > 0. Then
t+T
X(t+T)— X (1) + et f f<1+a<q<x)+s>>ﬂ (1Vul + fou?) dxds
rQ
t+T
+(W—%)/fa(x)(l+a(q(x)+s))ﬂ—2|u(t)|2dxds
r Q
t+T
+ A8 / /a(x)(1+a(q(x)+s))ﬂ+‘|a,u|’+‘dxds 4.3)
t Q
t+T
5(3+HVXZHOO)/ / (1 +a () +5)F <|u|2+|Vu|2+|8tu|2)dxds
i QNByy

t+T
8 2
* <% + aglim + eékﬁlim) ,/ /a @) (1 +a (g (x) + )7 [8ul* dxds,
r Q

forall t > 0, where A is any positive constant.

Proof. We have

[ oo (19uof + ) ax < .

Q
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Then from (2.3), we infer

t+T
E,(u)y(t+T)+ / fa @A +a(@x)+ S))ﬁ'H |0;u|" T dxds
r Q

t+T

§E¢,(u)(t)+(,3~|-1)oz//(l—i—a(q(x)—i-s))ﬂ (IVulz—i—latulz)dxds.
Q

t

We set

Xo<t)=/(1+a(q ) 4+ ) 2 o) u (1) du (1) dx
Q
+"7‘/(1 +a(q@)+0)P a ) u@)dx
Q

+ / a(x)(A+a(g )+ @ dx.
Q

Using the fact that u is a solution of (1.1), we deduce that

4 x, (r>=f(|atu<t)|2— V)P —a ()l OF 1 1) 3, (1))
Q
x x> () (1 +a(gx)+0)Pdx
—/(1 +a (g @) +0)Pu@) Ve ) Vu ) + Ba (1 +a (g (x)+1)»!
Q
X Xz(x)u(t) %d}c
+ﬂa/(1+a(q )+ )P w2 () u (1) dpu (1) dx
Q

4.4)
iy /a(x)(l+a<q(x)+t))ﬂ‘1u<r)atu(r)dx
Q

+ %a/a(x)(l +a(q @) +0)P 2 u?dx
Q
—i—(,B—l—l—r)a/a(x)(l +a (g @) +0)P " judx
Q
+o+ 1>/a(x)<1 Far(q )+ 0Pl ududx,
Q

We note that || x| o, < 1. Using Young’s inequality and the fact that the support of x is contained
in {|x| > L} and
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a(x)>ey>0for |x|>L,

we infer that

ap / (I +ag () +an)f ™ 2 () u t) du (1) dx
Q

< Wfa(xm +a(g @ +0)P 2 u@)dx

Q
88%a B 2
+7s§k1(1—ﬁ)/a(x) A+a(gx)+1))" |0u @) dx
Q

and

ky /a(x)(l+05(61(X)+t))ﬂ_1”(t)at”(t)dx
Q
< W/d(@(ua@ () +0)7 7 u (1) dx
Q
+%/d(ﬂ(l +a (g )+ )P du @) dx.
Q

Using the same arguments, we also deduce that

/ﬂa A+a(@@) +)P 2@ u@) %dx

€o€

Q
< £ / a(x)(+a(q @) +0)2 u@)?dx
Q
+ef(1+ot(q x) + )P |Vu @) dx,
Q

for all € > 0. Using the fact that the support of ¥ is contained in {|x| < 2L} and

a(x)>e¢ey>0for |x|>L,

we get

[ 2@ (1@ = 19u0P) 1 +a g @)+ ) dx
Q

YJDEQ:9125

= [(1-20 04 v2 ) A+ atg@ +0) (10 @F - 190 0F ) dx

Q
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< ifa(x)(wa(q () + 0P 13y (D) dx

€0
Q

- [asa@e -+ (P + 19u0)P) dx
Q

+3 [ a0 (18u@F + 190 0F) dx.
QNByy,

We note that the support of V x2 is contained in {|x| < 2L}, using Young’s inequality, we deduce
that

—/(1 +a(@ @) +0)Pu@) V() Vu (r)dx
Q

=1|ve|. / (+a (g @ +0) (Ju P +1Vu 0 ) dx.
QNByy,

Young’s inequality combined with the fact that || x ||, < 1, gives

fa ) (1 +a (g () + )P x ) 18 ()~ udu (1) dx
Q

< %fa(x)(l o (g )+ 0P B (0 dx
Q

+E55 [ a A +alg )+ ) u@) ™ dx

Q

and

r+1) /a @) (I +a(g @)+ u @)~ udou (1) dx
Q
<5 / a (o) (1+a (g )+ 0P [ ()1 dx
Q
_1
+réy " fa(x) (I+a@ @)+ u@) ™ dx.
Q

By taking into account of the estimates above, making some arrangement in (4.4) and integrating
the result between ¢ and ¢t + 7', we obtain

t+T
X(t+T)—X(t)+(1—6—(1—I—/3)ka)//(1+a(q(x)+s))ﬂ<|Vu|2+|8tu|2)dxds
r Q
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t+T

+ (e 2 / / a () (14 a (g (x) + )P 2 ul dxds

t+T

+<<a—80 )r—(ﬁ+1)a—m>/fa(x)(l—i—a(q(x)—i—s))ﬁ " u|" dxds

t+T
+(k—r+1 f / a(x)(1+a(q )+ gul ! dxds
t+T
5(3+Hvx2” )/ / (1+a(q(x)+s))f‘(|u|2+|vu|2+|a,u|2)dxds
o0
t QNByy

+T
2 8k 84> 2
+(5+a(llﬁ)+65kl(l‘iﬁ)> f /a(x>(1+a<q<x>+s)>ﬂ|a,u| dxds,
t Q

for all € > 0.
We have

- B+ Dka>1—r1tka=0.

1—(14+-8)ka
2

So we can choose € = . It is easy to see that

(a—S ’)r—(,B—i—l)a kT

1

_1 o

r J—
>(a—80 )r—ta—rH—O

and

k — <25 — 80 = Ado-
Collecting the estimates above, we get (4.3). O
4.2. Proof of Theorem 2

We assume that Hyp A holds and w satisfies the GCC. Let u be a solution of (1.1) with initial
datain HJ () N H?(Q) x H () such that

b2 2 r |
[a+9tvuo| +|a+abu|

< +00.

First we note that from Lemma 4 we have

O<y—1+,3<m1n(r(rk) d+2 dr p= 2r>

> or—1

Please cite this article in press as: M. Daoulatli, Energy decay rates for solutions of the wave equations with nonlinear
damping in exterior domain, J. Differential Equations (2017), https://doi.org/10.1016/j.jde.2017.12.009




YJDEQ:9125

M. Daoulatli / J. Differential Equations eee (eeee) eee—eee 37
It is easy to see that
v 2 r |2
Ja-vens sl + [ santuf, <soe
Then, using (4.3) and (4.1) and arguing as in the proof of Theorem 1 we obtain

Xt+T)—X@)

t+T
+ (M - (3 n HVX H / /(1 fa(g @) +5)f <|Vu|2 + |atu|2) dxds
t+T
(M gl _ (3+ Hvx H c” / /a(x)(1+ot(q @)+ )2 |u? dxds
(4.5)
t+T
+ Ao / /a(x)(l +a (g )+ )P ou) M dxds
t+T
<k [ [aa+atg+s)? (I + auP) dsds,
t
for all ¢ > ¢, and for some kp > 0.

Using Young’s inequality we get

xo=(%+ %)fa () (L +a (g @) + )P u () dx
Q
+(k+e) / (e (g @)+ (1Vu P + [ 1)) dx 46)
+/a(x)(1 +a(g @ +0) 7 u @) dx
Q
and
Xz (% - eo%)/a(x)(l +a (g () +0)" " u ()2 dx
Q

t—o [Ataqu+0/ " (FumP + 0P dx @)

+ f a(x)(I4+a(@@)+))" u@)|+dx,
Q

for all € > 0. We choose (by taking into account of the order below)
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e such that k — e > §g
8 such that M — (3 + HVXZHOO) 5> I*kailJrﬁ)

_ 2
ky such that & — 5L > 8 and 908 250 <3+ ”VXZHOO) Cr.s = 8.

Therefore

X(@t)> ao/a(x) (I+a(g@) +0)P u@)?dx
Q

0 [ +atw+ 0 (9P + b 0P dx 48)
Q

+ / ax)(1+a(g @)+ u@itdx,
Q

and

t+T

X (1 +T)— X (1) + e+ / f(l +a(q (0 +9) (19u + 19 dxds

roQ
t+T

+50//a(x)(l+a(q(x)+s))ﬂ*2|u|2dxds
r Q

t+T
+A80f/a(x)(l—}—a(q(x)—i—s))’gﬂ|8tu|r+1dxds
t Q

t+T

<k / /a(x)(l Fartg o)+ (Il + ) dxds.
r Q

for all ¢ > 9. Let ng be the ceiling of (%) Proceeding as in the proof of Theorem | and using
the fact that

r—1 > r—1

| + B < min (d+2—dr p—2r>7

we obtain

nT
/ /a(x)(l +a(q () +9) dul® dxds

noT Q

P
—_p=r 2 2 2w\ 2
< Ce™ T Nall oo (Nl s + Nt 30 + et 12 (4.9)

nT
+ S5 / /a(x)(1+“(q x) + )P+ |9,u) ! dxds,
noT
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and

nT
/ /a ) (A +a(g &) +5)P10,u>dxds

noT £ (4.10)

nT
2
<Ce 7 llallp + 25 / /a ) +a(g @)+ oul T dxds
noT Q

for all € > 0. To finish the proof we have to proceed as in the proof of Theorem 1.
5. Proof of Theorem 3
5.1. Preliminary results

Throughout this section we use the following notations: We set

2857 A D T 1)

T—1
14857 G D e+ (rao T (x+1)<r+1)+2)

71 (r, L) =

)

X is any positive constant and

2

So= (k4 DT (4 7T

We take

0<y=1+p<min (25, 250),

and

k=(14+2)(r+1)do.

We set ¢ (s) = (1 + as)Pt! where

r2-1

r8y T (14 r+D 1
S r—t)A4+0)" (r+ 1)

a(r, )=
Finally, let ¢ € C° (R?) such that 0 <y <1 and

1 for |x|<L

Wx)z{o for |x| > 2L.
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Lemma 6.

(1) We have

: 2r  d42—dr\ _ ; 2r  d+42—dr p=2r
m1n<r+3’ r—1 >_m1n<r+3’ r—1 r—l)'

(2) There exists A > 0 and close to zero such that y < 11 (r, A).
(3) For all A positive and close to zero and r € (1, 3],

a(r,)) > 1and lima (r, \) = oco.
r—1

For the proof of the lemma above we have to use the same arguments of the proof of Lemma 4.
From Proposition 2 we deduce the following result.

Proposition 4. We assume that Hyp A holds and (v, T) geometrically controls Q2. Let § > 0,
R,Ro > L and —1 < B <O0. There exists Ct s =C (T, 8, Ro, R, a, B) > 0, such that the follow-
ing inequality

t+T

/ / (R+as)ﬂ(|u|2+|vu|2+|a,u|2)dxds

! QNBg,
(+T

<Crs / /a(x) (R + as)P (|a,u|2+ |a[u|2’) dxds
t Q

(+T -1

+Crs f /a(x)(R-l-OtS)ﬁ_zluIdeds
r Q

t+T

+a//(R+as)ﬂ (IVuIZ—i—Iatulz)dxds,
Q

t

holds for everyt > 0 and for all u solution of (1.1) with initial data (ug, u1) in HO1 (QNH?(Q) x
Hl ().
0

As in the proof of Theorem 2 we need to define and to show an estimate for an auxiliary
function X (¢).

Lemma 7. Let u be a solution of (1.1) with initial data in H} () N H* (Q) x H] () such that.
We set x =1 — 1 and

X(t):/(R—f-o:t)ﬂ Xz(x)u(t)a,u(t)der%'/(R+at)ﬁ*1a(x)|u(t)|2dx

@ @ (5.2)
+/a(x) (R +anp—r+l |u(¢)|r+1dx+§/(R+az)ﬂ+1 <|Vu|2+ |8tu|2> dx,
Q

Q
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where ki > 0. Then

t+T
X (t+T) = X (1) + Zhed+d) / /(R+as)ﬁ (IVu|2+|8,u|2)dxds
r Q

t+T
+ (kla(i—ﬁ) _ %) / /a(x) (R+as)ﬂ_2|u (t)lzdxds
r Q
t+T
+ Ao f /a(x)(RJras)ﬁ“|a,u|r+‘dxds (5.3)
t Q
t+T
5(3+Hvx2” )/ / (R + as)? (|u|2+|vu|2+|a,u|2)dxds
o0
t QNByy

t+T
2 8k 8p2 2
+ (a + a(l—lﬁ) + eékl(liﬂ)> / /a(x) (R +as)ﬂ |atu| dde’
o Q

forallt >0 and any A > 0.

Proof. For the proof we have to argue as in the proof of Lemma 5 and to use the fact that

t+T
Eyu)(t+T)+ / /a(x)(R—i—as)ﬂ“ |0;u|" T dxds
r Q

t+T
5E¢(u)(z)+(ﬁ+%//(1e+as)ﬂ (IVuIZ—l—Iatulz)dxds. O
r Q

5.2. Proof of Theorem 3

For the proof we have to proceed as in the proof of Theorem 2 and to use the finite speed
propagation property and the fact that the support of the initial data is contained in B and

0<1+ﬂ<min<M ﬂ)

r—1 > r—1
to show that

nT
—2r

_r
f(R+as)ﬂ/a(x)|afu|2fdxdssCe P lallzee (lol3 + i3 + a1
noT Q

nT

+€ / fa (x) (R + )P [9,ul dxds,
noT

]
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and

nT

/ (R +as)ﬂfa (x) |8;u|? dxds

noT Q
nT
<Clallwe =T ¢ / (R + as)Pt! /a(x) [0,ul" T dxds,
noT Q

for some positive constant C and for all € > 0.
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