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1. Introduction and statement of the results

Let O be a compact domain of Rd (d ≥ 1) with C∞ boundary � and � = R
d\O . Consider 

the following wave equation with localized nonlinear damping

⎧⎪⎨
⎪⎩

∂2
t u − �u + a (x) |∂tu|r−1 ∂tu = 0 in R+ × �,

u = 0 on R+ × �,

u (0, x) = u0 and ∂tu (0, x) = u1,

(1.1)
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here � denotes the Laplace operator in the space variables. a (x) is a nonnegative function in 
L∞ (�). Throughout this paper we assume that 1 < r ≤ 1 + 2

d
. Below r0 > 0 is a fixed constant 

such that O ⊂ Bro = {x ∈R
d ; |x| < r0}.

The existence and uniqueness of global solutions to the problem (1.1) is standard (see [16]). 
If (u0, u1) is in H 1

0 (�) ∩ H 2 (�) × H 1
0 (�), then the system (1.1), admits a unique solution u in 

the class

u ∈ C0
(
R+,H 1

0 (�)
)

∩ C1
(
R+,L2(�)

)
and ∂tu ∈ L∞ (

R+,H 1
0 (�)

)
∩ W 1,∞(

R+,L2 (�)
)
.

Let us consider the energy at instant t defined by

Eu (t) = 1

2

∫
�

(
|∇u (t, x)|2 + |∂tu (t, x)|2

)
dx.

The energy functional satisfies the following identity

Eu (T ) +
T∫

0

∫
�

a (x) |∂tu|r+1 dxdt = Eu (0) , (1.2)

for every T ≥ 0. Moreover, we have

‖∇∂tu‖2
L∞(

R+,L2(�)
) +

∥∥∥∂2
t u

∥∥∥2

L∞(
R+,L2(�)

)
≤ 2 (1 + ‖a‖L∞)

(
‖u0‖2

H 2 + ‖u1‖2
H 1 + ‖u1‖2r

H 1

)
.

(1.3)

The study of the behaviors of the energy decay of solutions of the damped wave equation has 
a very long history. First we give a summary of results on the asymptotic behavior of the energy 
of solutions of the nonlinear system (1.1) in the free space Rd and for a globally distributed 
damping. For the Klein–Gordon equation with localized nonlinear damping, under the Lion’s 
condition a polynomial decay rate is derived by Nakao [19] for compactly supported initial data 
and he show in this case that

Eu (t) ≤ C (1 + t)−γ , if 1 < r < 1 + 2

d
, (1.4)

where γ = 2+d−dr
r−1 and

Eu (t) ≤ C (ln (2 + t))−d , if r = 1 + 2

d
. (1.5)

Mochizuki and Motai [17] give a decay rate estimate for weighted initial data. More precisely,
they show that if 1 < r < 1 + 2

d
, the energy decays according to

Eu (t) ≤ C (1 + t)−γ , where 0 < γ <
2 + d − dr

and γ ≤ 1. (1.6)

r − 1
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If r > 1 + 2
d

, Mochizuki and Motai [17] establish a complementary non-decay result for a dense 
set of initial data in H 1

(
R

d
) × L2

(
R

d
)
.

For the wave equation we first quote the result of Ono [22], in which the author considers 
the wave equation with a damping term equal to ∂tu + g (∂tu) where g is superlinear and has a 
polynomial growth. He showed the polynomial decay of the energy. We note that in this case the 
L2 norm of the time derivative on R+ ×R

d of the solution is bounded by the energy of the initial 
data. Mochizuki and Motai in [17] obtained a logarithmic decay rate when 1 < r ≤ 1 + 2

d
and for 

a kind of weighted initial data. More precisely, they show that

Eu (t) ≤ C (ln (2 + t))−γ , with 0 < γ <
2

r − 1
. (1.7)

The corresponding non-decay result in [17] requires r > 1 + 2
d−1 . Todorova and Yordanov in 

[25] showed that for compactly supported initial data there exists a positive constant τ such that 
Eu (t) ≤ C (1 + t)−τ , when 1 < r ≤ 1 + 2

d+1 and d ≥ 3. The main idea in this paper is to use 
the “parabolic” effects coming from the presence of the damping term. Recently, Wakasa and 
Yordanov in [26] studied the energy decay for dissipative nonlinear wave equations in one space 
dimension with global distributed damping term. They established polynomial decay estimates 
for the energy for compactly supported initial data. More explicitly they show that Eu (t) ≤
C (1 + t)−τ , when 1 < r < 3 with τ < min

(
1
2 , 3−r

r−1

)
.

In the case of exterior domain we mention the result of Nakao and Jung [21] who con-
sider a dissipation which is allowed to be nonlinear only in a ball, but outside that ball the 
dissipation must be linear. For the generalized Klein–Gordon equation we quote the result of 
Nakao [20].

In the case of linear damping the literature is more furnished and the problem has been in-
tensively studied. Before going any further, let us mention some results. First we note that if we 
assume that a (x) ≥ ε0 > 0 in all of �, then we know that

Eu (t) ≤ C0 (1 + t)−1 and ‖u (t)‖L2 ≤ C0, for all t ≥ 0, (1.8)

for weak solution u to the system (1.1) with initial data in H 1
0 (�) × L2 (�) and r = 1. Nakao in 

[18] obtained the same estimates in (1.8) for a damper a which is positive near some part of the 
boundary (Lions’s condition) and near infinity. The same result has been proved by Daoulatli in 
[8] under the (GCC) condition.

Furthermore, Ikehata and Matsuyama in [10] obtained a more precise decay estimate for the 
total energy of solutions of the problem (1.1) with a (x) = 1, r = 1 and for weighted initial 
data

Eu (t) ≤ C2 (1 + t)−2 and ‖u (t)‖2
L2 ≤ C2 (1 + t)−1 for all t ≥ 0. (1.9)

Ikehata in [11] derived a fast decay rate like (1.9) for solutions of the system (1.1) with 
weighted initial data and assuming that a (x) ≥ ε0 > 0 at infinity and O = R

d\� is star shaped 
with respect to the origin. This result has been obtained by Daoulatli in [8] under the (GCC) 
condition.

Recently, Aloui et al. [1] showed that under the (GCC) condition and for compactly supported 
initial data
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Eu (t) ≤ C2 (1 + t)−γ and ‖u (t)‖2
L2 ≤ C2 (1 + t)−

d
2 for all t ≥ 0, (1.10)

where γ = min
(
1 + d

2 , 3d
4

)
.

Hence establishing decay estimates for the nonlinear problem is more delicate and leads to 
weaker decay rates. For another type of total energy decay property we refer the reader to [13,14,
24,2,23,12] and references therein. Finally, we note that to our knowledge no results seem to be 
known for the problem of the wave equation with localized nonlinear damping in the free space 
or in exterior domain.

Before introducing our results we shall state several assumptions:

Hyp A: There exists L > r0 such that

a (x) ≥ ε0 > 0 for |x| ≥ L.

Definition 1. Let ω be an open set of �.

(1) (ω,T ) geometrically controls �, i.e. every generalized geodesic travelling with speed 1 and 
issued at t = 0, enters the set ω in a time t < T .

(2) We say that ω satisfies GCC if there exists T > 0 such that (ω,T ) geometrically controls �.

This condition is called Geometric Control Condition (see e.g. [3]). We shall relate the open 
subset ω with the damper a by

ω ⊂ {x ∈ �;a (x) > ε0 > 0} .

We note that according to [3] and [4] the Geometric Control Condition of Bardos et al. is a 
necessary and sufficient condition for the exponential decay of solutions of the wave equation in 
bounded domain.

In this paper, we deal with real solutions, the general case can be treated in the same way. 
Throughout this paper we use the following notations

q (x) =
(

1 + |x|2
) 1

2
, for x ∈ �,

and

p =
{

2 (r + 1) if d ≤ 2
2d

d−2 if d ≥ 3.

Now we state the results of this paper.

Theorem 1. We assume that Hyp A holds and ω satisfies GCC. Let

γ > 0 if 1 < r < 1 + 2
d

0 < γ < d if r = 1 + 2 .

d
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Then there exists C0 > 0 such that the following estimate

Eu (t) ≤ C0 (ln (2 + t))−γ I0, for all t ≥ 0,

holds for every solution u of (1.1) with initial data (u0, u1) in H 1
0 (�) ∩ H 2 (�) × H 1

0 (�), such 
that ∥∥∥(ln (1 + q))

γ
2 ∇u0

∥∥∥2

L2
+

∥∥∥(ln (1 + q))
γ
2 u1

∥∥∥2

L2
< +∞,

where

I0 = ‖u0‖2
H 2 + ‖u1‖2

H 1 + ‖u1‖2r
H 1 + ‖u0‖r+1

Lr+1 +
∥∥∥(ln (1 + q))

γ
2 ∇u0

∥∥∥2

L2

+
∥∥∥(ln (1 + q))

γ
2 u1

∥∥∥2

L2
+

(
‖u0‖2

H 2 + ‖u1‖2
H 1 + ‖u1‖2r

H 1

) p
2 + 1.

Remark 1. When 1 < r < 1 + 2
d

, we obtain the result of Mochizuki and Motai in [17], for the 
problem in the free space with global distributed damping.

In the result above we see that when 1 < r < 1 + 2
d

, we can take any γ > 0, so we expect that 
we can obtain a rate of decay of the energy for a weight with a polynomial growth.

Theorem 2. We assume that Hyp A holds and ω satisfies GCC. We suppose that 1 < r < 1 + 2
d

. 
We take

0 < γ < min
(

r
r+2 , d+2−dr

r−1

)
.

Then there exists C1 > 0 such that the following estimate

Eu (t) ≤ C1 (1 + t)−γ I1, for all t ≥ 0,

holds for every solution u of (1.1) with initial data (u0, u1) in H 1
0 (�) ∩ H 2 (�) × H 1

0 (�), such 
that ∥∥∥(1 + q)

γ
2 ∇u0

∥∥∥2

L2
+

∥∥∥(1 + q)
γ
2 u1

∥∥∥2

L2
< +∞,

where

I1 = ‖u0‖2
H 2 + ‖u1‖2

H 1 + ‖u1‖2r
H 1 + ‖u0‖r+1

Lr+1 +
∥∥∥(1 + q)

γ
2 ∇u0

∥∥∥2

L2

+
∥∥∥(1 + q)

γ
2 u1

∥∥∥2

L2
+

(
‖u0‖2

H 2 + ‖u1‖2
H 1 + ‖u1‖2r

H 1

) p
2 + 1.

Remark 2. We note that, using the energy estimates (1.2) and (2.3), we can show that

∞∫ ∫
a (x) (1 + t)γ |∂tu|r+1 dxdt ≤ CI1.
0 �
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So we deduce that

∞∫
0

∫
�

a (x) (1 + t)γ−r−1 |u (t, x)|r+1 dxdt ≤ CI1,

and this allows us to obtain a bound of ‖u (t)‖Lr+1 . More precisely, we obtain

‖u (t)‖Lr+1 ≤ C (1 + t)
r−γ
r+1 I1.

The case of initial data with compact support.

Theorem 3. We assume that Hyp A holds and ω satisfies GCC. We suppose that 1 < r < 1 + 2
d

. 
We take

0 < γ < min
(

2r
r+3 , d+2−dr

r−1

)
.

Then there exists C1 > 0 such that the following estimate

Eu (t) ≤ C1 (R + t)−γ I2, for all t ≥ 0,

holds for every solution u of (1.1) with initial data (u0, u1) in H 1
0 (�) ∩ H 2 (�) × H 1

0 (�) such 
that the support of the initial data is contained in BR, where

I2 = ‖u0‖2
H 2 + ‖u1‖2

H 1 + ‖u1‖2r
H 1 + ‖u0‖r+1

Lr+1

+
(
‖u0‖2

H 2 + ‖u1‖2
H 1 + ‖u1‖2r

H 1

) p
2 + 1.

Remark 3.

(1) Our results are also valid for the case � = R
d , d ≥ 3, where the boundary condition is 

dropped.
(2) As in the case of weighted initial data, we can show that

‖u (t)‖Lr+1 ≤ C (1 + t)
r−γ
r+1 I2.

(3) When d = 1, we obtain that

1/2 < γ < 2r
r+3 if 1 < r ≤ 2

3

√
7 + 1

3

0 < γ < 3−r
r−1 if 2

3

√
7 + 1

3 < r < 3.

Our decay rate is better than or equal to the one obtained by Wakasa and Yordanov in [26].
(4) We remark that there is a gap between the rate of decay when r = 1 and r = 1 + ε for ε

positive and close to zero. In addition, when r is close to 1 the values of γ increase as r
increase. This fact is unusual in the literature and we are unable to prove the optimality of 
our results.
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(5) In Theorem 3 we assume that the initial data is with compact support so we don’t need to take 
a weight which depends on the space variable x. Therefore in the weighted energy estimate 
(2.3) we will take η = 0 and this fact give us a better decay estimate compared to the case of 
weighted initial data.

The main difficulty in establishing such results is the lack of control of the L2 norm of the so-
lution. This is an essential difference with the equation in a bounded domain or the Klein–Gordon 
equation or in the case of unbounded domain with finite measure [5]. The other difficulty is that 
the L2 norm of the time derivative on R+ × � is not controlled by the initial energy.

To prove our results it is sufficient to show the integrability of ϕ′Eu over (0, ∞). For this 
purpose we show an estimate on a Lyapunov functional X(t) (Lemmas 2, 5 and 7) which control 
the weighted energy functional (see, for example, [8] and [9] for similar idea). Also we prove a 
weighted observability estimate for the local energy of solutions the wave equation with external 
force (Proposition 2). Combining these results and making some computations we end up with 
the last problem which is how to control these two quantities

∫ ∫
�

a (x)ϕ′ (q (x) + s) |∂tu|2 dxds

and∫ ∫
�

a (x)ϕ′ (q (x) + s) |∂tu|2r dxds,

by

ε

∫ ∫
�

a (x)ϕ (q (x) + s) |∂tu|r+1 dxds + C (ε)

∫ ∫
�

g (s, x) dxds, for all ε > 0,

such that 

∞∫
0

∫
�

g (s, x) dxds < ∞.

The rest of the paper is organized as follows. In section 2 we present some results on the 
weighted energy and we give a weighted observability estimate for the local energy. Section 3 is 
devoted to the proof of Theorem 1 and in section 4 we give the proof of Theorem 2. In the last 
section we give the needed results to show Theorem 3.

2. Weighted observability estimate

The next result concerns the weighted energy estimate for solutions of (1.1) with initial data 
with finite weighted energy.

Proposition 1. Let ϕ be a positive function in C2 (R+) such that ϕ′ ∈ L∞ (R+) and ϕ′′ ∈
L∞ (R+). Let u be a solution of (1.1) with initial data (u0, u1) in H 1

0 (�) ∩ H 2 (�) × H 1
0 (�). 

We set
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Eϕ (u) (t) = 1

2

∫
�

ϕ (ηq (x) + αt)
(
|∇u|2 + |∂tu|2

)
dx. (2.1)

If Eϕ (u) (0) < ∞, then

√
ϕ∇u ∈ L∞

loc

(
R+,

(
L2 (�)

)d
)

and
√

ϕ∂tu ∈ L∞
loc

(
R+,L2 (�)

)
. (2.2)

Moreover, we have

Eϕ (u) (t + T ) +
t+T∫
t

∫
�

a (x)ϕ (s, x) |∂tu|r+1 dxds

≤ Eϕ (u) (t) + α+η
2

t+T∫
t

∫
�

∣∣ϕ′ (s, x)
∣∣ (|∇u (s)|2 + |∂tu (s)|2

)
dxds,

(2.3)

for every t ≥ 0 and T ≥ 0, where ϕ(j) (t, x) = ϕ(j) (ηq (x) + αt), for j = 0, 1, 2 and α, η ≥ 0.

Proof. We remind that

u ∈ L∞
loc

(
R+,H 1

0 (�) ∩ H 2 (�)
)

∩ W 1,∞ (
R+,H 1

0 (�)
)

∩ W 2,∞ (
R+,L2 (�)

)
.

To prove (2.2) we use the Yosida approximation of the nonlinearity to obtain some energy esti-
mates. Then using the fact that ϕ′ is in L∞ (R+) and ϕ′′ (1 + ϕ)−1/2 ∈ L∞ (R+), we obtain (2.2)
for the approximated solution. Then using classical method (see, for example, [16]) we show that 
(2.2) holds for the solution u.

Now we will prove the energy estimate (2.3). Let R 
 1 and set S (R) = ∂BR . It is easy to 
see that

1
2

d
dt

∫
�∩BR

ϕ
(
|∇u (t)|2 + |∂tu (t)|2

)
dx +

∫
�∩BR

a (x)ϕ |∂tu (t)|r+1 dx

= α
2

∫
�∩BR

ϕ′ (|∇u (t)|2 + |∂tu (t)|2
)

dx +
∫

�∩BR

ϕ∇u (t) · ∇∂tu (t) + ϕ∂tu (t) ∂2
t u (t) dx

+
∫

�∩BR

a (x)ϕ |∂tu (t)|r+1 dx

= α
2

∫
�∩BR

ϕ′ (|∇u (t)|2 + |∂tu (t)|2
)

dx +
∫

�∩BR

∇u (t) · ∇ (ϕ∂tu (t)) + ϕ∂tu (t) ∂2
t u (t) dx

+
∫

�∩BR

a (x)ϕ |∂tu (t)|r+1 dx − η

∫
�∩BR

ϕ′ x·∇u(t)
q(x)

∂tu (t) dx.
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Green’s formula along with the fact that u is a solution of (1.1),

1
2

d
dt

∫
�∩BR

ϕ
(
|∇u (t)|2 + |∂tu (t)|2

)
dx +

∫
�∩BR

a (x)ϕ |∂tu (t)|r+1 dx

= α
2

∫
�∩BR

ϕ′ (|∇u (t)|2 + |∂tu (t)|2
)

dx − η

∫
�∩BR

ϕ′ x·∇u(t)
q(x)

∂tu (t) dx

+
∫

S(R)

ϕ
x·∇u(t)

R
∂tu (t) dS.

Integrating the estimate above between t and t + T , we obtain

∫
�∩BR

ϕ
(
|∇u (t + T )|2 + |∂tu (t + T )|2

)
dx +

t+T∫
t

∫
�∩BR

a (x)ϕ |∂tu|r+1 dxds

≤ Eϕ (u) (t) + α
2

t+T∫
t

∫
�

∣∣ϕ′∣∣ (|∇u (s)|2 + |∂tu (s)|2
)

dxds

+ η

t+T∫
t

∫
�

∣∣∣ϕ′ x·∇u(s)
q(x)

∂tu (s)

∣∣∣dxds +
t+T∫
t

∫
S(R)

ϕ

∣∣∣ x·∇u(s)
R

∂tu (s)

∣∣∣dSds.

(2.4)

Using Young’s inequality

t+T∫
t

∫
S(R)

ϕ

∣∣∣∣x · ∇u

R
∂tu

∣∣∣∣dSdτ ≤ 1

2

t+T∫
t

∫
S(R)

(
|∂ru|2 + |∂tu|2

)
ϕdSdτ.

Moreover, using (2.2), we infer that

lim inf
R−→+∞

t+T∫
t

∫
S(R)

ϕ

∣∣∣∣x · ∇u

R
∂tu

∣∣∣∣dSdτ = 0.

Passing to the limit in (2.4), we get

Eϕ (u) (t + T ) +
t+T∫
t

∫
�

a (x)ϕ |∂tu|r+1 dxds ≤ Eϕ (u) (t)

+ α
2

t+T∫ ∫ ∣∣ϕ′∣∣ (|∇u (s)|2 + |∂tu (s)|2
)

dxds + η

t+T∫ ∫ ∣∣∣ϕ′ x·∇u
q(x)

∂tu (s)

∣∣∣dxds.
t � t �
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Young’s inequality gives

Eϕ (u) (t + T ) +
t+T∫
t

∫
�

a (x)ϕ |∂tu|r+1 dxds

≤ Eϕ (u) (t) + α+η
2

t+T∫
t

∫
�

∣∣ϕ′∣∣ (|∇u (s)|2 + |∂tu (s)|2
)

dxds. �

Remark 4. We note that the result above remains valid for

r ≥ 1 if d = 1,2

1 ≤ r ≤ d
d−2 if d ≥ 3.

The proofs of our results need a weighted observability estimate for the local energy and to 
show such result we need to prove a unique continuation result for the wave equation.

Lemma 1. We assume that Hyp A holds and (ω,T ) geometrically controls �. Then the only 
solution of the system ⎧⎪⎨

⎪⎩
∂2
t z − �z = 0 in (0, T ) × �,

z = 0 on (0, T ) × �,

a (x) ∂t z = 0 on (0, T ) × �,

(2.5)

in the class

C0 ([0, T ] ;HD (�)) ∩ C1
(

[0, T ] ;L2 (�)
)

,

is the null one, where HD (�) is the completion of C∞
c (�) with respect to the norm

‖ϕ‖2
HD

=
∫
�

|∇ϕ (x)|2 dx.

Proof. Let χ ∈ C∞
c

(
R

d
)

such that χ = 1 on {|x| ≤ L} and the support of χ is contained in 
{|x| ≤ 2L}. First we note that HD (�) ⊂ H 1

loc (�). Let z be a solution of the system (2.5). We set 
w = χz, we observe that⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∂2
t w − �w = −2∇χ∇z − z�χ in (0, T ) × � ∩ B2L,

w = 0 on (0, T ) × � ∪ {|x| = 2L} ,

(w0,w1) ∈ H 1
0 (� ∩ B2L) × L2 (� ∩ B2L)

a (x) ∂tw = 0 on (0, T ) × �.

From linear semi-group theory, we infer that

w ∈ C0
(

[0, T ] ;H 1
0 (� ∩ B2L)

)
∩ C1

(
[0, T ] ;L2 (� ∩ B2L)

)
.
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We set

vn (t, x) = n

(
w

(
t + 1

n
,x

)
− w (t, x)

)
.

Since

a (x) ≥ ε0 > 0 for |x| ≥ L,

and χ = 1 on {|x| ≤ L}, therefore, vn is a solution of

⎧⎪⎨
⎪⎩

∂2
t vn − �vn = 0 in (0, T ) × � ∩ B2L

vn = 0 on (0, T ) × � ∪ {|x| = 2L}
a (x) ∂tvn = 0 on (0, T ) × �.

We have (ω ∩ B2L,T ) geometrically controls � ∩ B2L and

vn ∈ C0
(

[0, T ] ;H 1
0 (� ∩ B2L)

)
∩ C1

(
[0, T ] ;L2 (� ∩ B2L)

)
,

thus using the observability estimate for the wave equation in bounded domain (see e.g. [7]), we 
end up with

Evn (s) = 0, for all s ∈ [0, T ] .

On the other hand,

vn −→
n→+∞ ∂tw in D′ ((0, T ) × �) .

We deduce that ∂tw = 0. Recalling that χ = 1 on {|x| ≤ L}, hence

∂t z (t, x) = 0, on {|x| ≤ L} .

Using a (x) ∂t z = 0 on (0, T ) × � along with a (x) > ε0 > 0 for |x| ≥ L, we infer that ∂tz ≡ 0
on [0, T ] × �. This means that z (t, x) = z (x) is independent of t . Therefore, we have

�z = 0 and z ∈ HD (�) ,

we conclude from this that z ≡ 0 on [0, T ] × �. �
In view of the fact that the energy doesn’t control the L2 norm of the solution, we do not 

expect to prove an observability estimate for the global energy and this is the essential difference 
with the equation in a bounded domain or the Klein–Gordon equation.

We remind that under our assumptions we have the following Poincaré inequality (see [6]
and [15])

‖f ‖L2(�∩B ) ≤ CR ‖∇f ‖L2(�) , for every f ∈ HD (�) and R ≥ r0. (2.6)

R
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Next we show a weighted observability estimate for the local energy of solutions of the sys-
tem (1.1).

Proposition 2. We assume that Hyp A holds and ω satisfies GCC. Let δ > 0 and R0 ≥ L. Let ϕ be 
a positive function in C2 (R+) such that ϕ′ in L∞ (R+). We suppose that there exists a positive 
constant K such that

sup
R+

∣∣∣∣ϕ′′ (t)
ϕ′ (t)

∣∣∣∣ ≤ K.

Moreover we assume that the function t �−→
∣∣∣ϕ′(t)

ϕ(t)

∣∣∣ is monotone decreasing and lim
t→+∞

∣∣∣ϕ′(t)
ϕ(t)

∣∣∣ = 0. 

There exist T , t0 > 0 and CT,δ = C (T , δ,R0) > 0, such that the following inequality

t+T∫
t

∫
�∩BR0

ϕ (q (x) + s)
(
|u|2 + |∇u|2 + |∂tu|2

)
dxds

≤ CT,δ

t+T∫
t

∫
�

a (x)ϕ (q (x) + s) |∂tu|2 dxds

+ CT,δ

t+T∫
t

∫
�

ϕ (q (x) + s) |g (s, x)|2 dxds

+ CT,δ

t+T∫
t

∫
�

(
ϕ′(q(x)+s)

)2

ϕ(q(x)+s)
a (x) |u|2 dxds

+ δ

t+T∫
t

∫
�

ϕ (q (x) + s)
(
|∇u|2 + |∂tu|2

)
dxds,

(2.7)

holds for every

g such that
√

ϕg ∈ L2
loc

(
R+,L2 (�)

)
,

for all

u ∈ C0
(
R+,H 1

0 (�)
)

∩ C1
(
R+,L2 (�)

)
,

solution of

⎧⎪⎨
⎪⎩

∂2
t u − �u = g in R+ × �,

u = 0 on R+ × �,

u (0, x) = u0 and ∂tu (0, x) = u1,

(2.8)

such that Eϕ (u) (0) < ∞.
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Proof. Let T > 0 such that (ω,T ) geometrically controls �.
To prove this result we argue by contradiction: If (2.7) were false, there would exist se-

quences (tn), (gn) such that 
√

ϕgn ∈ L2
loc

(
R+,L2 (�)

)
and a sequence of solutions (un) in 

C0
(
R+,H 1

0 (�)
) ∩ C1

(
R+,L2 (�)

)
with Eϕ (un) (0) < ∞ and such that tn −→

n→+∞ +∞ and

tn+T∫
tn

∫
�∩BR0

ϕ (q (x) + s)
(
|un|2 + |∇un|2 + |∂tun|2

)
dxds

≥ n

⎛
⎝ tn+T∫

tn

∫
�

a (x)ϕ (q (x) + s) |∂tun|2 dxds

⎞
⎠

+ n

tn+T∫
tn

∫
�

ϕ (q (x) + s) |gn (s, x)|2 dxds

+ n

⎛
⎝ tn+T∫

tn

∫
�

(
ϕ′(q(x)+s)

)2

ϕ(q(x)+s)
a (x) |un|2 dxds

⎞
⎠

+ δ

tn+T∫
tn

∫
�

ϕ (q (x) + s)
(
|∇un|2 + |∂tun|2

)
dxds.

(2.9)

We set

σ 2
n =

tn+T∫
tn

∫
�∩BR0

ϕ (q (x) + s)
(
|un|2 + |∇un|2 + |∂tun|2

)
dxds

and vn (t, x) = (ϕ(q(x)+tn+t))
1
2 un(tn+t,x)

σn
.

From (2.9), we infer that

1
σ 2

n

tn+T∫
tn

∫
�

ϕ (q (x) + t)
(
|∇un (t)|2 + |∂tun (t)|2

)
dxdt ≤ 1

δ

and

tn+T∫
tn

∫
�∩BR0

|vn (t)|2 dxdt ≤ 1,

(2.10)

and

1
σ 2

n

tn+T∫ ∫
a (x)ϕ (q (x) + s) |∂tun|2 dxds −→

n→+∞ 0
tn �
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1
σ 2

n

tn+T∫
tn

∫
�

ϕ (q (x) + s) |gn (s, x)|2 dxds −→
n→+∞ 0 (2.11)

1
σ 2

n

tn+T∫
tn

∫
�

(
ϕ′(q(x)+s)

)2

ϕ(q(x)+s)
a (x) |un|2 dxds −→

n→+∞ 0.

It is clear that vn is a solution of the following system

⎧⎪⎨
⎪⎩

∂2
t vn − �vn = fn (t, x) in R+ × �,

vn (t, x) = 0 on R+ × �,

(vn (0) , ∂t vn (0)) ∈ H 1
0 (�) × L2 (�) ,

where

fn (t, x) = 1
2σn

[(
ϕ′′ (ϕ)−

1
2 − 1

2

(
ϕ′)2

ϕ−3/2
) |x|2

q2

]
un (tn + t)

+ 1
2σn

[(
d
q

− |x|2
q3

)
ϕ′ (ϕ)−

1
2

]
un (tn + t)

+ 1
2σn

[
ϕ′′ (ϕ)−

1
2 − 1

2

(
ϕ′)2

ϕ−3/2
]
un (tn + t) − 1

σn
ϕ

1
2 gn (tn + t, x)

+ ϕ′(ϕ)
− 1

2

σn

(
∂tun (tn + t) + x·∇un(tn+t)

q

)
,

where ϕ(j) (t, x) = ϕ(j) (q (x) + t + tn), for j = 0, 1, 2. Now we will show that

T∫
0

∫
�

|fn (s, x)|2 dxds −→
n→+∞ 0. (2.12)

Using (2.11) and the fact that lim
t→+∞

∣∣∣ϕ′(t)
ϕ(t)

∣∣∣ = 0, we obtain

T∫
0

∫
�

∣∣∣ 1
2σn

[(
ϕ′′ (ϕ)−

1
2 − 1

2

(
ϕ′)2

ϕ−3/2
) |x|2

q2

]
un (tn + t)

∣∣∣2
dxdt

+
T∫

0

∫
�

∣∣∣ 1
2σn

[(
d
q

− |x|2
q3

)
ϕ′ (ϕ)−

1
2

]
un (tn + t)

∣∣∣2
dxdt

+
T∫ ∫ ∣∣∣ 1

2σn

[
ϕ′′ (ϕ)−

1
2 − 1

2

(
ϕ′)2

ϕ−3/2
]
un (tn + t)

∣∣∣2
dxdt
0 �
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≤ C
σ 2

n

tn+T∫
tn

∫
�

(
ϕ′(q(x)+s)

)2

ϕ(q(x)+s)

(
1 +

(
ϕ′(tn)
ϕ(tn)

)2
)

|un|2 dxds

≤ C
σ 2

n

(
ϕ′(tn)
ϕ(tn)

)2
tn+T∫
tn

∫
�∩BL

ϕ (q (x) + s) |un|2 dxds + C
ε0σ

2
n

tn+T∫
tn

∫
�

(
ϕ′(q(x)+s)

)2

ϕ(q(x)+s)
a (x) |un|2 dxds

≤ C
(

ϕ′(tn)
ϕ(tn)

)2 + C
ε0σ

2
n

tn+T∫
tn

∫
�

(
ϕ′(q(x)+s)

)2

ϕ(q(x)+s)
a (x) |un|2 dxds −→

n→+∞ 0.

Now we estimate the remaining term of fn. Turn into account of (2.10), we get

T∫
0

∫
�

∣∣∣∣ϕ′(ϕ)
− 1

2

σn

(
∂tun (tn + t) + x·∇un(tn+t)

q

)∣∣∣∣
2

dxdt

≤ C
σ 2

n

(
ϕ′(tn)
ϕ(tn)

)2
T∫

0

∫
�

ϕ (q (x) + (tn + t))
(
|∂tun (tn + t)|2 + |∇un (tn + t)|2

)
dxdt

≤ C
δ

(
ϕ′(tn)
ϕ(tn)

)2 −→
n→+∞ 0.

The results above combined with (2.11), give (2.12).
The next step is to show the boundedness of the energy of vn. It is easy to see that

T∫
0

Evn (t) dt ≤ c
σ 2

n

tn+T∫
tn

∫
�

ϕ (q (x) + t)
(
|∇un (t)|2 + |∂tun (t)|2

)
dxdt

+ c
σ 2

n

tn+T∫
tn

∫
�

(
ϕ′(q(x)+t)

)2

ϕ(q(x)+t)
|un (t)|2 dxdt.

Now using (2.10) and (2.11) we infer that there exists a positive constant Cδ such that

T∫
0

Evn (t) dt ≤ Cδ, for n large enough. (2.13)

On the other hand, we have

Evn (t) ≤ c

t

⎛
⎝ T∫ ⎛

⎝Evn (s) + s

∫
|fn (s, x)|2 dx

⎞
⎠ds

⎞
⎠ ,
0 �
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for all 0 < t ≤ T . Turn into account of the estimate above along with (2.13) and (2.12), we obtain

Evn (T ) ≤ CT,δ, for n large enough. (2.14)

On the other hand, from the energy identity, we see that

Evn (t) ≤ Evn (T ) +
T∫

0

⎛
⎝Evn (s) +

∫
�

|fn (s, x)|2 dx

⎞
⎠ds,

for all 0 ≤ t ≤ T . The estimate above combined with (2.13) and (2.14) gives

sup
[0,T ]

Evn (s) ≤ CT,δ, for n large enough. (2.15)

The last step is to show that

T∫
0

∫
�

a (x) |∂tvn|2 dxdt −→
n→+∞ 0. (2.16)

We have

T∫
0

∫
�

a (x) |∂tvn|2 dxdt ≤ 2
σ 2

n

tn+T∫
tn

∫
�

(
ϕ′(q(x)+s)

)2

ϕ(q(x)+s)
a (x) |un (s)|2 dxds

+ 2
σ 2

n

tn+T∫
tn

∫
�

ϕ (q (x) + s) a (x) |∂tun|2 dxds.

Using (2.11), we get (2.16). For the rest of the proof we have only to argue as in [8, Proof of 
proposition 2] by taking into account Lemma 1. �
3. Proof of Theorem 1

3.1. Preliminary results

Throughout this section we use the following notations:
Let β be a real number such that

β > −1 if 1 < r < 1 + 2
d

−1 < β < 3−r
r−1 if r = 1 + 2

d
.

Let ψ ∈ C∞
0

(
R

d
)

such that 0 ≤ ψ ≤ 1 and

ψ (x) =
{

1 for |x| ≤ L

0 for |x| ≥ 2L.
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Finally we set

ϕ (s) = lnβ+1 (b + s) , f (s) = lnβ (b+s)
b+s

, f1 (s) = lnβ(b+s)

(b+s)2

and f2 (s) = lnβ−r+1(b+s)
(b+s)r

,

with

lnb = max
(
(2 (r + 1))r+1 ,

β+1−r
r−1 , (8 (r + 1) (β + 1))r+1

)
.

Lemma 2. We assume that Hyp A holds and (ω, T ) geometrically controls �. Let β > −1. Let 
δ > 0 and R0 > L. There exists CT,δ = C (T , δ,R0) > 0, such that the following inequality

t+T∫
t

∫
�∩BR0

f (q (x) + s)
(
|u|2 + |∇u|2 + |∂tu|2

)
dxds

≤ CT,δ

t+T∫
t

∫
�

a (x)f (q (x) + s)
(
|∂tu|2 + |∂tu|2r

)
dxds

+ CT,δ

t+T∫
t

∫
�

a (x)f ′
1 (q (x) + s) |u|2 dxds

+ δ

t+T∫
t

∫
�

f (q (x) + s)
(
|∇u (s)|2 + |∂tu (s)|2

)
dxds,

(3.1)

holds for every t ≥ t0 and for all u solution of (1.1) with initial data (u0, u1) in H 1
0 (�) ∩

H 2 (�) × H 1
0 (�).

Proof. In view of f ∈ L∞ (R+), we have Ef (u) (0) < ∞. On the other hand, it is clear that 
f ′ ∈ L∞ (R+) and there exists a positive constant K , such that

sup
R+

∣∣∣∣f ′′ (t)
f ′ (t)

∣∣∣∣ ≤ K.

In addition the function t �−→
∣∣∣f ′(t)

f (t)

∣∣∣ is decreasing and lim
t→+∞

∣∣∣f ′(t)
f (t)

∣∣∣ = 0. Moreover, there exists 

C > 0, such that

(
f ′(t)

)2

f (t)
≤ C

(−f ′
1 (t)

)
, for all t ≥ 0.

Since

∂tu ∈ L∞ (
R+,H 1

0 (�)
)

,
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therefore, from Sobolev imbedding, we deduce that

√
a (x)f (q (x) + s) |∂tu|r ∈ L2

loc

(
R+,L2 (�)

)
.

By taking into account of the results above, we can use Proposition 2 and we obtain (3.1). This 
finishes the proof of the proposition. �

In order to prove Theorem 1 we need the following result.

Lemma 3. Let T > 0 and u be the solution of (1.1) with initial data in H 1
0 (�)∩H 2 (�)×H 1

0 (�)

such that

Eϕ (u) (0) =
∫
�

ϕ (q (x))
(
|∇u0|2 + |u1|2

)
dx < ∞. (3.2)

We set χ = 1 − ψ and

X (t) =
∫
�

f (q (x) + t) χ2 (x)u (t) ∂tu (t) dx + k1
2

∫
�

a (x)f1 (q (x) + t) |u (t)|2 dx

+
∫
�

a (x)f2 (q (x) + t) |u (t)|r+1 dx + k
2

∫
�

lnβ+1 (b + q (x) + t)
(
|∇u|2 + |∂tu|2

)
dx,

(3.3)

where

k = 1

4 (β + 1)
, k1 > 0.

We have

X (t + T ) − X (t) + 1
4

t+T∫
t

∫
�

f (q (x) + s)
(
|∇u|2 + |∂tu|2

)
dxds

−
(

k1
4 − 2(1+|β|)

ε0

) t+T∫
t

∫
�

a (x)f ′
1 (q (x) + s) |u|2 dxds

− 1
2

t+T∫
t

∫
�

a (x)f ′
2 (q (x) + s) |u|r+1 dxds

+ 1
8(β+1)

t+T∫
t

∫
�

a (x) lnβ+1 (b + q (x) + s) |∂tu|r+1 dxds

≤
(

3 + 1
2

∥∥∥∇χ2
∥∥∥∞

) t+T∫ ∫
f (q (x) + s)

(
|u|2 + |∇u|2 + |∂tu|2

)
dxds
t �∩B2L
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+ 2

(
1
ε0

+ 4(1+|β|)
ε2

0k1
+ 4k1

) t+T∫
t

∫
�

a (x)f (q (x) + t) |∂tu|2 dxds. (3.4)

Proof. First (3.2) allows us to apply (2.3) and to obtain

Eϕ (u) (t + T ) +
t+T∫
t

∫
�

a (x)ϕ (q (x) + s) |∂tu|r+1 dxds

≤ Eϕ (u) (t) + (β + 1)

t+T∫
t

∫
�

f (q (x) + s)
(
|∇u|2 + |∂tu|2

)
dxds.

We set

X0 (t) =
∫
�

f (q (x) + t) χ2 (x)u (t) ∂tu (t) dx + k1
2

∫
�

a (x)f1 (q (x) + t) |u (t)|2 dx

+
∫
�

a (x)f2 (q (x) + t) |u (t)|r+1 dx.

Therefore, we have

d
dt

X0 (t) =
∫
�

(
|∂tu (t)|2 − |∇u (t)|2 − a (x) |∂tu (t)|r−1 u∂tu (t)

)
χ2 (x)f (q (x) + t) dx

−
∫
�

χ2 (x)f ′ (q (x) + t) u (t)
x·∇u(t)

q(x)
+ f (q (x) + t)∇χ2 (x)∇u (t) dx

+
∫
�

f ′ (q (x) + t) χ2 (x)u (t) ∂tu (t) dx

+ k1

⎛
⎝∫

�

a (x)f1 (q (x) + t) u (t) ∂tu (t) dx + 1
2

∫
�

a (x)f ′
1 (q (x) + t) |u (t)|2 dx

⎞
⎠

+
∫
�

a (x)f ′
2 (q (x) + t) |u|r+1 dx + (r + 1)

∫
�

a (x)f2 (q (x) + t) |u|r−1 u∂tudx.

(3.5)

A direct computation gives

(
f ′(s)

)2

f (s)
≤ (1 + |β|) lnβ (b+s)

(b+s)3 ≤ − (1 + |β|) f ′
1 (s)

and
(f1(s))

2 = lnβ (b+s)
3 ≤ −f ′

1 (s) .

f (s) (b+s)
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We note that ‖χ‖∞ ≤ 1. Using Young’s inequality and the fact that the support of χ is contained 
in {|x| ≥ L} and

a (x) > ε0 > 0 for |x| ≥ L,

we deduce that

∣∣∣∣∣∣
∫
�

f ′ (q (x) + t) χ2 (x)u (t) ∂tu (t) dx

∣∣∣∣∣∣
≤ − k1

8

∫
�

a (x)f ′
1 (q (x) + t) |u (t)|2 dx + 8(1+|β|)

ε2
0k1

∫
�

a (x)f (q (x) + t) |∂tu (t)|2 dx,

and

∣∣∣∣∣∣k1

∫
�

a (x)f1 (q (x) + t) u (t) ∂tu (t) dx

∣∣∣∣∣∣
≤ − k1

8

∫
�

a (x)f ′
1 (q (x) + t) |u (t)|2 dx + 8k1

∫
�

a (x)f (q (x) + t) |∂tu (t)|2 dx.

Using the same arguments we also deduce that

∫
�

χ2 (x)f ′ (q (x) + t) u (t)
x·∇u(t)

q(x)
dx

≤ 1
2

∫
�

f (q (x) + t) |∇u (t)|2 dx − 2(1+|β|)
ε0

∫
�

a (x)f ′
1 (q (x) + t) |u (t)|2 dx.

Since the support of ψ is contained in {|x| ≤ 2L} and

a (x) > ε0 for |x| ≥ L,

therefore we see that

∫
�

(
|∂tu (t)|2 − |∇u (t)|2

)
χ2 (x)f (q (x) + t) dx

=
∫
�

f (q (x) + t)
(

1 − 2ψ (x) + ψ2 (x)
)(

|∂tu (t)|2 − |∇u (t)|2
)

dx

≤ 2
ε0

∫
a (x)f (q (x) + t) |∂tu (t)|2 dx
�
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−
∫
�

f (q (x) + t)
(
|∂tu (t)|2 + |∇u (t)|2

)
dx

+ 3
∫

�∩B2L

f (q (x) + t)
(
|∂tu (t)|2 + |∇u (t)|2

)
dx.

We note that the support of ∇χ2 is contained in {|x| ≤ 2L}, using Young’s inequality, we deduce 
that ∣∣∣∣∣∣−

∫
�

f (q (x) + t) u (t)∇χ2 (x)∇u (t) dx

∣∣∣∣∣∣
≤ 1

2

∥∥∥∇χ2
∥∥∥∞

∫
�∩B2L

f (q (x) + t)
(
|u (t)|2 + |∇u (t)|2

)
dx.

Since

lnb ≥ β + 1 − r

r − 1
,

therefore a direct computation gives

−f2 (s) ≥ lnβ−r+1(b+s)

(b+s)r+1

(f (s))r+1 ln−r(β+1) (b + s) ≤ −f ′
2(s)

ln(b+s)

(f2 (s))
r+1
r ln− β+1

r (b + s) ≤ −f ′
2(s)

ln(b+s)
.

Now we can estimate the last term of the RHS of (3.5). Hölder’s inequality along with Young’s 
inequality, leads to∫

�

a (x)f (q (x) + s) |∂tu (t)|r−1 u∂tudx

≤ (lnb)−
1

r+1

⎛
⎝∫

�

a (x) lnβ+1 (b + q (x) + s) |∂tu|r+1 dx

⎞
⎠

r
r+1

×
⎛
⎝−

∫
�

a (x)f ′
2 (q (x) + s) |u|r+1 dx

⎞
⎠

1
r+1

≤ (lnb)−
1

r+1

∫
�

a (x) lnβ+1 (b + q (x) + s) |∂tu|r+1 dx

− (lnb)−
1

r+1

∫
�

a (x)f ′
2 (q (x) + s) |u|r+1 dx,
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and

(r + 1)

∫
�

a (x)f2 (q (x) + s) |u|r−1 u∂tudx

≤ (r + 1) (lnb)−
r

r+1

⎛
⎝∫

�

a (x) lnβ+1 (b + q (x) + s) |∂tu|r+1 dx

⎞
⎠

1
r+1

×
⎛
⎝−

∫
�

a (x)f ′
2 (q (x) + s) |u|r+1 dx

⎞
⎠

r
r+1

≤ (lnb)−
1

r+1

∫
�

a (x) lnβ+1 (b + q (x) + s) |∂tu|r+1 dx

− r (lnb)−
1

r+1

∫
�

a (x)f ′
2 (q (x) + s) |u|r+1 dx.

Thus

t+T∫
t

∫
�

a (x)f (q (x) + s) |∂tu|r−1 u∂tudxds

+ (r + 1)

t+T∫
t

∫
�

a (x)f2 (q (x) + s) |u|r−1 u∂tudxds

≤ (r + 1) (lnb)−
1

r+1

t+T∫
t

∫
�

a (x) lnβ+1 (b + q (x) + s) |∂tu|r+1 dxds

− (r + 1) (lnb)−
1

r+1

t+T∫
t

∫
�

a (x)f ′
2 (q (x) + s) |u|r+1 dxds.

Collecting the inequalities above, making some arrangement in (3.5) and integrating the result 
between t and t + T , we end up with

X (t + T ) − X (t) + ( 1
2 − (1 + β)k

) t+T∫
t

∫
�

f (q (x) + s)
(
|∇u|2 + |∂tu|2

)
dxds

−
(

k1
4 − 2(1+|β|)

ε0

) t+T∫ ∫
a (x)f ′

1 (q (x) + s) |u (s)|2 dxds
t �
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−
(

1 − (r + 1) (lnb)−
1

r+1

) t+T∫
t

∫
�

a (x)f ′
2 (q (x) + s) |u|r+1 dxds

+
(
k − (r + 1) (lnb)−

1
r+1

) t+T∫
t

∫
�

a (x) lnβ+1 (b + q (x) + s) |∂tu|r+1 dxds

≤
(

3 + 1
2

∥∥∥∇χ2
∥∥∥∞

)⎛
⎜⎝

t+T∫
t

∫
�∩B2L

f (q (x) + s)
(
|u|2 + |∇u|2 + |∂tu|2

)
dxds

⎞
⎟⎠

+
(

2
ε0

+ 8(1+|β|)
ε2

0k1
+ 8k1

) t+T∫
t

∫
�

a (x)f (q (x) + s) |∂tu|2 dxds.

Using the fact that k = 1
4(β+1)

and

lnb ≥ max
(
(2 (r + 1))r+1 , (8 (r + 1) (β + 1))r+1

)
,

we obtain (3.4). �
3.2. Proof of Theorem 1

We assume that Hyp A holds and ω satisfies the GCC. We set γ = β + 1. Let u be a solution 
of (1.1) with initial data in H 1

0 (�) ∩ H 2 (�) × H 1
0 (�) such that

Eϕ (u) (0) =
∫
�

lnβ+1 (1 + q (x))
(
|∇u0|2 + |u1|2

)
dx < ∞.

First we note that there exists a positive constant c such that

∫
�

lnβ+1 (b + q (x))
(
|∇u0|2 + |u1|2

)
dx ≤ cEϕ (u) (0) .

Let T , t0 > 0 such that the observability estimate (3.1) holds. First we estimate the first term of 
the RHS of (3.4). Using the observability estimate (3.1), we see that

X (t + T ) − X (t)

+
(

1
4 −

(
3 +

∥∥∥∇χ2
∥∥∥∞

)
δ
) t+T∫

t

∫
�

f (q (x) + s)
(
|∇u|2 + |∂tu|2

)
dxds

−
(

k1
4 − 2(1+|β|)

ε0
−

(
3 +

∥∥∥∇χ2
∥∥∥∞

)
CT,δ

) t+T∫ ∫
a (x)f ′

1 (q (x) + s) |u|2 dxds
t �
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− 1
2

t+T∫
t

∫
�

a (x)f ′
2 (q (x) + s) |u|r+1 dxds

+ 1
8(β+1)

t+T∫
t

∫
�

a (x) lnβ+1 (b + q (x) + s) |∂tu|r+1 dxds

≤ k3

t+T∫
t

∫
�

a (x)f (q (x) + s)
(
|∂tu|2 + |∂tu|2r

)
dxds, (3.6)

for every t ≥ 0, where k3 = 2 
(

1
ε0

+ 4(1+|β|)
ε2

0k1
+ 4k1 + 2

(
3 + ∥∥∇χ2

∥∥∞
)
CT,δ

)
.

On the other hand, using Young’s inequality we get

X (t) ≤
(

k1
2 + 1

ε0ε

)∫
�

a (x)f1 (q (x) + t) |u (t)|2 dx

+ (k + ε)

∫
�

lnβ+1 (b + q (x) + t)
(
|∇u (t)|2 + |∂tu (t)|2

)
dx

+
∫
�

a (x)f2 (q (x) + t) |u (t)|r+1 dx

(3.7)

and

X (t) ≥
(

k1
2 − 1

ε0ε

)∫
�

a (x)f1 (q (x) + t) |u (t)|2 dx

+ (k − ε)

∫
�

lnβ+1 (b + q (x) + t)
(
|∇u (t)|2 + |∂tu (t)|2

)
dx

+
∫
�

a (x)f2 (q (x) + t) |u (t)|r+1 dx,

(3.8)

for all ε > 0. We choose (by taking into account of the order below)

δ such that 1
4 −

(
3 +

∥∥∥∇χ2
∥∥∥∞

)
δ = 1

8 ,

ε such that k − ε ≥ 1
16(β+1)

,

k1 such that k1
2 − 1

ε0ε
≥ 1 and k1

4 − 2(1+|β|)
ε0

−
(

3 +
∥∥∥∇χ2

∥∥∥∞

)
CT,δ ≥ 1.

Therefore
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X (t) ≥
∫
�

a (x)f1 (q (x) + t) |u (t)|2 dx

+ 1
16(β+1)

∫
�

lnβ+1 (b + q (x) + t)
(
|∇u (t)|2 + |∂tu (t)|2

)
dx

+
∫
�

a (x)f2 (q (x) + t) |u (t)|r+1 dx,

(3.9)

and

X (t + T ) − X (t) + 1
8

t+T∫
t

∫
�

f (q (x) + s)
(
|∇u|2 + |∂tu|2

)
dxds

−
t+T∫
t

∫
�

a (x)f ′
1 (q (x) + s) |u|2 dxds − 1

2

t+T∫
t

∫
�

a (x)f ′
2 (q (x) + s) |u|r+1 dxds

+ 1
8(β+1)

t+T∫
t

∫
�

a (x) lnβ+1 (b + q (x) + s) |∂tu|r+1 dxds

≤ k3

t+T∫
t

∫
�

a (x)f (q (x) + s)
(
|∂tu|2 + |∂tu|2r

)
dxds,

(3.10)

for every t ≥ t0. Let n0 be the ceiling of 
(

T
t0

)
. Thus

X (nT ) + 1
8

nT∫
n0T

∫
�

f (q (x) + s)
(
|∇u|2 + |∂tu|2

)
dxds

−
nT∫

n0T

∫
�

a (x)f ′
1 (q (x) + s) |u|2 dxds − 1

2

nT∫
n0T

∫
�

a (x)f ′
2 (q (x) + s) |u|r+1 dxds

+ 1
8(β+1)

nT∫
n0T

∫
�

a (x) lnβ+1 (b + q (x) + s) |∂tu|r+1 dxds

≤ k3

nT∫
n0T

∫
�

a (x)f (q (x) + s)
(
|∂tu|2 + |∂tu|2r

)
dxds + X (n0T ) , for all n ≥ n0.

(3.11)

Using Proposition 1, we deduce that there exists a positive constant C = C (n0, T )

X (n0T ) ≤ CI0 (3.12)

where I0 is defined in the statement of Theorem 1.
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Combining (3.11) and (3.12), we obtain

X (nT ) + 1
8

nT∫
n0T

∫
�

f (q (x) + s)
(
|∇u|2 + |∂tu|2

)
dxds

−
nT∫

n0T

∫
�

a (x)f ′
1 (q (x) + s) |u|2 dxds − 1

2

nT∫
n0T

∫
�

a (x)f ′
2 (q (x) + s) |u|r+1 dxds

+ 1
8(β+1)

nT∫
n0T

∫
�

a (x) lnβ+1 (b + q (x) + s) |∂tu|r+1 dxds

≤ k4

⎛
⎜⎝

nT∫
n0T

∫
�

a (x)f (q (x) + s)
(
|∂tu|2 + |∂tu|2r

)
dxds + I0

⎞
⎟⎠ ,

(3.13)

for all n ≥ n0 and for some k4 > 0. The next step is to control the first term of the RHS of the 
estimate above by the last term of the LHS. We remind that

p =
{

2 (r + 1) if d ≤ 2
2d

d−2 if d ≥ 3.

We have r + 1 < 2r < p, using interpolation inequality and Young’s inequality, we obtain

nT∫
n0T

∫
�

a (x)f (q (x) + s) |∂tu|2r dxds

≤
nT∫

n0T

f (s)

∫
�

a (x) |∂tu|2r dxds

≤
nT∫

n0T

f (s)

⎛
⎝∫

�

a (x) |∂tu|r+1 dx

⎞
⎠

p−2r
p−r−1

⎛
⎝∫

�

a (x) |∂tu|p dx

⎞
⎠

r−1
p−r−1

ds

≤
⎛
⎜⎝‖a‖L∞ ‖∂tu‖p

L∞(R+,Lp(�))

nT∫
n0T

(f (s))
p−r−1

r−1 (ln (b + s))−
(β+1)(p−2r)

r−1 ds

⎞
⎟⎠

r−1
p−r−1

×
⎛
⎜⎝

nT∫
lnβ+1 (b + s)

∫
a (x) |∂tu|r+1 dxds

⎞
⎟⎠

p−2r
p−r−1
n0T �
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≤ ε
− p−2r

r−1 (r−1)‖a‖L∞‖∂t u‖p

L∞(
R+,Lp(�)

)
p−r−1

+∞∫
0

(b + s)−
p−r−1

r−1 (ln (b + s))β− p−2r
r−1 ds

+ ε(p−2r)
p−r−1

nT∫
n0T

∫
�

a (x) lnβ+1 (b + q (x) + s) |∂tu|r+1 dxds,

for all ε > 0. Thus using (1.3) and Sobolev imbedding H 1 ↪→ Lp , we get

nT∫
n0T

∫
�

a (x)f (q (x) + s) |∂tu|2r dxds

≤ C ‖a‖L∞ ε− p−2r
r−1

(
‖u0‖2

H 2 + ‖u1‖2
H 1 + ‖u1‖2r

H 1

) p
2

+ ε(p−2r)
p−r−1

nT∫
n0T

∫
�

a (x) (ln (b + q (x) + s))β+1 |∂tu|r+1 dxds,

(3.14)

for all ε > 0. To estimate the last term, first we use Hölder’s inequality

nT∫
n0T

∫
�

a (x)f (q (x) + s) |∂tu|2 dxds

≤
⎛
⎜⎝‖a‖L∞

nT∫
n0T

∫
�

(f (q (x) + s))
r+1
r−1 ln− 2(β+1)

r−1 (b + q (x) + s) dxds

⎞
⎟⎠

r−1
r+1

×
⎛
⎜⎝

nT∫
n0T

∫
�

a (x) lnβ+1 (b + q (x) + s) |∂tu|r+1 dxds

⎞
⎟⎠

2
r+1

≤
⎛
⎝‖a‖L∞

+∞∫
0

∫
�

(b + q (x) + s)−
r+1
r−1 lnβ− 2

r−1 (b + q (x) + s) dxds

⎞
⎠

r−1
r+1

×
⎛
⎜⎝

nT∫
n0T

∫
�

a (x) lnβ+1 (b + q (x) + s) |∂tu|r+1 dxds

⎞
⎟⎠

2
r+1

.

By Young’s inequality, we end up with
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nT∫
n0T

∫
�

a (x)f (q (x) + s) |∂tu|2 dxds

≤ (r−1)ε
− 2

r−1 ‖a‖L∞
r+1

+∞∫
0

∫
�

(b + q (x) + s)−
r+1
r−1 lnβ− 2

r−1 (b + q (x) + s) dxds

+ 2ε
r+1

nT∫
0

∫
�

a (x) lnβ+1 (b + q (x) + s) |∂tu|r+1 dxds

≤ C ‖a‖L∞ (r−1)ε
− 2

r−1

r+1

+∞∫
0

+∞∫
0

lnβ− 2
r−1 (b + y + s) (b + y + s)−

r+1
r−1 +d−1 dyds

+ 2ε
r+1

nT∫
n0T

∫
�

a (x) lnβ+1 (b + q (x) + s) |∂tu|r+1 dxds,

for all ε > 0. In view of the fact that

− r+1
r−1 + d < −1 if 1 < r < 1 + 2

d

β − 2
r−1 < −1 and − r+1

r−1 + d = −1 if r = 1 + 2
d
,

(3.15)

we see that

nT∫
n0T

∫
�

a (x)f (q (x) + s) |∂tu|2 dxds

≤ Cε− 2
r−1 ‖a‖L∞ + 2ε

r+1

nT∫
n0T

∫
�

a (x) lnβ+1 (b + q (x) + s) |∂tu|r+1 dxds,

(3.16)

for all ε > 0. We choose ε such that

1
8(β+1)

− k4ε
(

p−2r
p−r−1 + 2

r+1

)
≥ 1

16(β+1)
.

We conclude that there exists a positive constant C1 such that

X (nT ) + 1
8

nT∫
n0T

∫
�

f (q (x) + s)
(
|∇u|2 + |∂tu|2

)
dxds

−
nT∫ ∫

a (x)f ′
1 (q (x) + s) |u|2 dxds − 1

2

nT∫ ∫
a (x)f ′

2 (q (x) + s) |u|r+1 dxds
n0T � n0T �
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+ 1
16(β+1)

nT∫
n0T

∫
�

a (x) lnβ+1 (b + q (x) + s) |∂tu|r+1 dxds ≤ C1I0,

for all natural numbers n ≥ n0. Therefore we obtain

∞∫
0

∫
�

f (q (x) + s)
(
|∇u|2 + |∂tu|2

)
dxds ≤ C1I0.

Now using the weighted energy estimate (2.3), we infer that

Eϕ (u) (t) =
∫
�

ϕ (q (x) + s)
(
|∇u (s)|2 + |∂tu (s)|2

)

≤ Eϕ (u) (0) + (β + 1)

∞∫
0

∫
�

f (q (x) + s)
(
|∇u (s)|2 + |∂tu (s)|2

)
dxds

≤ C0I0,

for some positive constant C0. The sought estimate follows from the estimate above and the fact 
that

lnβ+1 (2 + t)Eu (t) ≤ Eϕ (u) (t) .

4. Proof of Theorem 2

4.1. Preliminary results

Throughout this section we use the following notations: We set

τ (r, λ) = rδr−1
0 (λ+1)r−1(r+1)r

1+δr−1
0 (λ+1)r−1(r+1)r

(
rδ

r−1
r

0 (λ+1)(r+1)+1

) ,

λ is any positive constant and

δ0 = (λ + 1)
r2

r2−1 (r + 1)−
r

r−1 .

We take

0 < γ = 1 + β < min
(

r
r+2 , d+2−dr

r−1

)
,

and

k = (1 + λ) (r + 1) δ0.
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We set ϕ (s) = (1 + αs)β+1 where

α (r,λ) = rδ
r2−1

r
0 (1+λ)r (r+1)r+1+1

δr
0(r−τ)(1+λ)r (r+1)r+1 .

Finally, let ψ ∈ C∞
c

(
R

d
)

such that 0 ≤ ψ ≤ 1 and

ψ (x) =
{

1 for |x| ≤ L

0 for |x| ≥ 2L.

In order to obtain an explicit decay rate we need the following result.

Lemma 4.

(1) We have

min
(

r
r+2 , d+2−dr

r−1

)
= min

(
r

r+2 , d+2−dr
r−1 ,

p−2r
r−1

)
.

(2) There exists λ positive and close to zero such that γ < τ (r, λ).
(3) For all λ positive and close to zero and r ∈ (1, 3],

α (r,λ) ≥ 1 and lim
r→1

α (r,λ) = ∞.

Proof.

(1) For d = 1, 2, it easy to see that d+2−dr
r−1 ≤ 2

r−1 = p−2r
r−1 . When d ≥ 3, we have

d+2−dr
r−1 ≤ p−2r

r−1 if r ≥ 1 + 2(d−4)

(d−2)2

d+2−dr
r−1 >

p−2r
r−1 if r < 1 + 2(d−4)

(d−2)2 .

And the result follows from the fact that, for 1 < r < 1 + 2(d−4)

(d−2)2 , we have r
r+2 ≤ p−2r

r−1 .

(2) We have lim
λ→0

τ (r, λ) = r
r+2 . Then if γ < r

r+2 , then there exists λ positive and close to zero 

such that γ < τ (r, λ).
(3) A direct computation gives

α (r,λ) = 1
r
(λ + 1)

r−2r3

r2−1 (r + 1)
1

r−1

(
(λ + 1)

2r2−1
r+1 + r (λ + 1)2r + 1

)
.

For λ positive and close to zero, we have lim
r→1

α (r,λ) = ∞ and α (r,λ) ≥ 1. �
Proposition 3. We assume that Hyp A holds and (ω, T ) geometrically controls �. Let δ > 0, 
R0 > L and −1 < β ≤ 0. There exists CT,δ = C (T , δ,R0, α,β) > 0 and t0 > 0, such that the 
following inequality
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t+T∫
t

∫
�∩BR0

(1 + α (q (x) + s))β
(
|u|2 + |∇u|2 + |∂tu|2

)
dxds

≤ CT,δ

t+T∫
t

∫
�

a (x) (1 + α (q (x) + s))β
(
|∂tu|2 + |∂tu|2r

)
dxds

+ CT,δ

t+T∫
t

∫
�

a (x) (1 + α (q (x) + s))β−2 |u|2 dxds

+ δ

t+T∫
t

∫
�

(1 + α (q (x) + s))β
(
|∇u|2 + |∂tu|2

)
dxds,

(4.1)

holds for every t ≥ t0 and for all u solution of (1.1) with initial data (u0, u1) in H 1
0 (�) ∩

H 2 (�) × H 1
0 (�).

Proof. We set

f (s) = (1 + αs)β .

In view of f ∈ L∞ (R+), we have Ef (u) (0) < ∞. On the other hand, it is clear that f ′ ∈
L∞ (R+) and there exists a positive constant K , such that

sup
R+

∣∣∣f ′′(t)
f ′(t)

∣∣∣ ≤ K.

In addition the function t �−→
∣∣∣f ′(t)

f (t)

∣∣∣ is decreasing and lim
t→+∞

∣∣∣f ′(t)
f (t)

∣∣∣ = 0. Moreover, there exists 

C > 0, such that

(
f ′(t)

)2

f (t)
≤ C

(−f ′ (t)
)
, for all t ≥ 0.

Since

∂tu ∈ L∞ (
R+,H 1

0 (�)
)

,

then from Sobolev imbedding, we deduce that

√
a (x) (1 + α (q (x) + s))β |∂tu|r ∈ L2

loc

(
R+,L2 (�)

)
.

By taking into account of the results above, we can use Proposition 2 and we obtain (4.1). This 
finishes the proof of the proposition. �
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In order to prove Theorem 2 we need the following result.

Lemma 5. Let u be a solution of (1.1) with initial data in H 1
0 (�) ∩ H 2 (�) × H 1

0 (�) such that

Eϕ (u) (0) =
∥∥∥(1 + αq)

1+β
2 ∇u0

∥∥∥2

L2
+

∥∥∥(1 + αq)
1+β

2 u1

∥∥∥2

L2
< +∞.

We set χ = 1 − ψ and

X (t) =
∫
�

(1 + α (q (x) + t))β χ2 (x)u (t) ∂tu (t) dx

+ k1
2

∫
�

(1 + α (q (x) + t))β−1 a (x) |u (t)|2 dx

+
∫
�

a (x) (1 + α (q (x) + t))β−r+1 |u (t)|r+1 dx

+ k
2

∫
�

(1 + α (q (x) + t))β+1
(
|∇u|2 + |∂tu|2

)
dx,

(4.2)

where k1 > 0. Then

X (t + T ) − X (t) + 1−kα(1+β)
2

t+T∫
t

∫
�

(1 + α (q (x) + s))β
(
|∇u|2 + |∂tu|2

)
dxds

+
(

k1α(1−β)
4 − β2α2

ε0ε

) t+T∫
t

∫
�

a (x) (1 + α (q (x) + s))β−2 |u (t)|2 dxds

+ λδ0

t+T∫
t

∫
�

a (x) (1 + α (q (x) + s))β+1 |∂tu|r+1 dxds

≤
(

3 +
∥∥∥∇χ2

∥∥∥∞

) t+T∫
t

∫
�∩B2L

(1 + α (q (x) + s))β
(
|u|2 + |∇u|2 + |∂tu|2

)
dxds

+
(

2
ε0

+ 8k1
α(1−β)

+ 8β2α

ε2
0k1(1−β)

) t+T∫
t

∫
�

a (x) (1 + α (q (x) + s))β |∂tu|2 dxds,

(4.3)

for all t ≥ 0, where λ is any positive constant.

Proof. We have ∫
ϕ (q (x))

(
|∇u0|2 + |u1|2

)
dx < ∞.
�
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Then from (2.3), we infer

Eϕ (u) (t + T ) +
t+T∫
t

∫
�

a (x) (1 + α (q (x) + s))β+1 |∂tu|r+1 dxds

≤ Eϕ (u) (t) + (β + 1)α

t+T∫
t

∫
�

(1 + α (q (x) + s))β
(
|∇u|2 + |∂tu|2

)
dxds.

We set

X0 (t) =
∫
�

(1 + α (q (x) + t))β χ2 (x)u (t) ∂tu (t) dx

+ k1
2

∫
�

(1 + α (q (x) + t))β−1 a (x) |u (t)|2 dx

+
∫
�

a (x) (1 + α (q (x) + t))β−r+1 |u (t)|r+1 dx.

Using the fact that u is a solution of (1.1), we deduce that

d
dt

X0 (t) =
∫
�

(
|∂tu (t)|2 − |∇u (t)|2 − a (x) |∂tu (t)|r−1 u (t) ∂tu (t)

)

× χ2 (x) (1 + α (q (x) + t))β dx

−
∫
�

(1 + α (q (x) + t))β u (t)∇χ2 (x)∇u (t) + βα (1 + α (q (x) + t))β−1

× χ2 (x)u (t)
x·∇u(t)

q(x)
dx

+ βα

∫
�

(1 + α (q (x) + t))β−1 χ2 (x)u (t) ∂tu (t) dx

+ k1

⎛
⎝∫

�

a (x) (1 + α (q (x) + t))β−1 u (t) ∂tu (t) dx

+ β−1
2 α

∫
�

a (x) (1 + α (q (x) + t))β−2 |u|2 dx

⎞
⎠

+ (β + 1 − r)α

∫
�

a (x) (1 + α (q (x) + t))β−r |u|r+1 dx

+ (r + 1)

∫
�

a (x) (1 + α (q (x) + t))β−r+1 |u|r−1 u∂tudx.

(4.4)

We note that ‖χ‖∞ ≤ 1. Using Young’s inequality and the fact that the support of χ is contained 
in {|x| ≥ L} and
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a (x) > ε0 > 0 for |x| ≥ L,

we infer that ∣∣∣∣∣∣αβ

∫
�

(1 + αq (x) + αt)β−1 χ2 (x)u (t) ∂tu (t) dx

∣∣∣∣∣∣
≤ k1α(1−β)

8

∫
�

a (x) (1 + α (q (x) + t))β−2 |u (t)|2 dx

+ 8β2α

ε2
0k1(1−β)

∫
�

a (x) (1 + α (q (x) + t))β |∂tu (t)|2 dx

and

k1

∣∣∣∣∣∣
∫
�

a (x) (1 + α (q (x) + t))β−1 u (t) ∂tu (t) dx

∣∣∣∣∣∣
≤ k1α(1−β)

8

∫
�

a (x) (1 + α (q (x) + t))β−2 |u (t)|2 dx

+ 8k1
α(1−β)

∫
�

a (x) (1 + α (q (x) + t))β |∂tu (t)|2 dx.

Using the same arguments, we also deduce that

∣∣∣∣∣∣
∫
�

βα (1 + α (q (x) + t))β−1 χ2 (x)u (t)
x·∇u(t)

q(x)
dx

∣∣∣∣∣∣
≤ β2α2

ε0ε

∫
�

a (x) (1 + α (q (x) + t))β−2 |u (t)|2 dx

+ ε

∫
�

(1 + α (q (x) + t))β |∇u (t)|2 dx,

for all ε > 0. Using the fact that the support of ψ is contained in {|x| ≤ 2L} and

a (x) > ε0 > 0 for |x| ≥ L,

we get

∫
�

χ2 (x)
(
|∂tu (t)|2 − |∇u (t)|2

)
(1 + α (q (x) + t))β dx

=
∫ (

1 − 2ψ (x) + ψ2 (x)
)

(1 + α (q (x) + t))β
(
|∂tu (t)|2 − |∇u (t)|2

)
dx
�
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≤ 2
ε0

∫
�

a (x) (1 + α (q (x) + t))β |∂tu (t)|2 dx

−
∫
�

(1 + α (q (x) + t))β
(
|∂tu (t)|2 + |∇u (t)|2

)
dx

+ 3
∫

�∩B2L

(1 + α (q (x) + t))β
(
|∂tu (t)|2 + |∇u (t)|2

)
dx.

We note that the support of ∇χ2 is contained in {|x| ≤ 2L}, using Young’s inequality, we deduce 
that ∣∣∣∣∣∣−

∫
�

(1 + α (q (x) + t))β u (t)∇χ2 (x)∇u (t) dx

∣∣∣∣∣∣
≤ 1

2

∥∥∥∇χ2
∥∥∥∞

∫
�∩B2L

(1 + α (q (x) + t))β
(
|u (t)|2 + |∇u (t)|2

)
dx.

Young’s inequality combined with the fact that ‖χ‖∞ ≤ 1, gives∣∣∣∣∣∣
∫
�

a (x) (1 + α (q (x) + t))β χ2 (x) |∂tu (t)|r−1 u∂tu (t) dx

∣∣∣∣∣∣
≤ rk

r+1

∫
�

a (x) (1 + α (q (x) + t))β+1 |∂tu (t)|r+1 dx

+ k−r

r+1

∫
�

a (x) (1 + α (q (x) + t))β−r |u (t)|r+1 dx

and

(r + 1)

∣∣∣∣∣∣
∫
�

a (x) (1 + α (q (x) + t))β−r+1 |u (t)|r−1 u∂tu (t) dx

∣∣∣∣∣∣
≤ δ0

∫
�

a (x) (1 + α (q (x) + t))β+1 |∂tu (t)|r+1 dx

+ rδ
− 1

r

0

∫
�

a (x) (1 + α (q (x) + t))β−r |u (t)|r+1 dx.

By taking into account of the estimates above, making some arrangement in (4.4) and integrating 
the result between t and t + T , we obtain

X (t + T ) − X (t) + (1 − ε − (1 + β)kα)

t+T∫ ∫
(1 + α (q (x) + s))β

(
|∇u|2 + |∂tu|2

)
dxds
t �
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+
(

k1α(1−β)
4 − β2α2

ε0ε

) t+T∫
t

∫
�

a (x) (1 + α (q (x) + s))β−2 |u|2 dxds

+
((

α − δ
− 1

r

0

)
r − (β + 1)α − k−r

r+1

) t+T∫
t

∫
�

a (x) (1 + α (q (x) + s))β−r |u|r+1 dxds

+
(
k − kr

r+1 − δ0

) t+T∫
t

∫
�

a (x) (1 + α (q (x) + s))β+1 |∂tu|r+1 dxds

≤
(

3 +
∥∥∥∇χ2

∥∥∥∞

) t+T∫
t

∫
�∩B2L

(1 + α (q (x) + s))β
(
|u|2 + |∇u|2 + |∂tu|2

)
dxds

+
(

2
ε0

+ 8k1
α(1−β)

+ 8β2α

ε2
0k1(1−β)

) t+T∫
t

∫
�

a (x) (1 + α (q (x) + s))β |∂tu|2 dxds,

for all ε > 0.
We have

1 − (β + 1) kα > 1 − τkα = 0.

So we can choose ε = 1−(1+β)kα
2 . It is easy to see that

(
α − δ

− 1
r

0

)
r − (β + 1)α − k−r

r+1

>

(
α − δ

− 1
r

0

)
r − τα − k−r

r+1 = 0

and

k − kr
r+1 − δ0 = λδ0.

Collecting the estimates above, we get (4.3). �
4.2. Proof of Theorem 2

We assume that Hyp A holds and ω satisfies the GCC. Let u be a solution of (1.1) with initial 
data in H 1

0 (�) ∩ H 2 (�) × H 1
0 (�) such that

∥∥∥(1 + q)
γ
2 ∇u0

∥∥∥2

L2
+

∥∥∥(1 + q)
γ
2 u1

∥∥∥2

L2
< +∞.

First we note that from Lemma 4 we have

0 < γ = 1 + β < min
(
τ (r, λ) , d+2−dr ,

p−2r
)

.

r−1 r−1
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It is easy to see that

∥∥∥(1 + αq)
γ
2 ∇u0

∥∥∥2

L2
+

∥∥∥(1 + αq)
γ
2 u1

∥∥∥2

L2
< +∞.

Then, using (4.3) and (4.1) and arguing as in the proof of Theorem 1 we obtain

X (t + T ) − X (t)

+
(

1−kα(1+β)
2 −

(
3 +

∥∥∥∇χ2
∥∥∥∞

)
δ
) t+T∫

t

∫
�

(1 + α (q (x) + s))β
(
|∇u|2 + |∂tu|2

)
dxds

+
(

k1α(1−β)
4 − β2α2

ε0ε
−

(
3 +

∥∥∥∇χ2
∥∥∥∞

)
CT,δ

) t+T∫
t

∫
�

a (x) (1 + α (q (x) + s))β−2 |u|2 dxds

+ λδ0

t+T∫
t

∫
�

a (x) (1 + α (q (x) + s))β+1 |∂tu|r+1 dxds

≤ k2

t+T∫
t

∫
�

a (x) (1 + α (q (x) + s))β
(
|∂tu|2r + |∂tu|2

)
dxds,

(4.5)

for all t ≥ t0, and for some k2 > 0.
Using Young’s inequality we get

X (t) ≤
(

k1
2 + 1

2ε0ε

)∫
�

a (x) (1 + α (q (x) + t))β−1 |u (t)|2 dx

+ (k + ε)

∫
�

(1 + α (q (x) + t))β+1
(
|∇u (t)|2 + |∂tu (t)|2

)
dx

+
∫
�

a (x) (1 + α (q (x) + t))β−r+1 |u (t)|r+1 dx

(4.6)

and

X (t) ≥
(

k1
2 − 1

ε0ε

)∫
�

a (x) (1 + α (q (x) + t))β−1 |u (t)|2 dx

+ (k − ε)

∫
�

(1 + α (q (x) + t))β+1
(
|∇u (t)|2 + |∂tu (t)|2

)
dx

+
∫
�

a (x) (1 + α (q (x) + t))β−r+1 |u (t)|r+1 dx,

(4.7)

for all ε > 0. We choose (by taking into account of the order below)
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ε such that k − ε ≥ δ0

δ such that 1−kα(1+β)
2 −

(
3 +

∥∥∥∇χ2
∥∥∥∞

)
δ ≥ 1−kα(1+β)

4

k1 such that k1
2 − 1

2ε0ε
≥ δ0 and k1(1−β)

4 − 2β2

ε0δ0
−

(
3 +

∥∥∥∇χ2
∥∥∥∞

)
CT,δ ≥ δ0.

Therefore

X (t) ≥ δ0

∫
�

a (x) (1 + α (q (x) + t))β−1 |u (t)|2 dx

+ δ0

∫
�

(1 + α (q (x) + t))β+1
(
|∇u (t)|2 + |∂tu (t)|2

)
dx

+
∫
�

a (x) (1 + α (q (x) + t))β−r+1 |u (t)|r+1 dx,

(4.8)

and

X (t + T ) − X (t) + 1−kα(1+β)
4

t+T∫
t

∫
�

(1 + α (q (x) + s))β
(
|∇u|2 + |∂tu|2

)
dxds

+ δ0

t+T∫
t

∫
�

a (x) (1 + α (q (x) + s))β−2 |u|2 dxds

+ λδ0

t+T∫
t

∫
�

a (x) (1 + α (q (x) + s))β+1 |∂tu|r+1 dxds

≤ k2

t+T∫
t

∫
�

a (x) (1 + α (q (x) + s))β
(
|∂tu|2r + |∂tu|2

)
dxds,

for all t ≥ t0. Let n0 be the ceiling of 
(

T
t0

)
. Proceeding as in the proof of Theorem 1 and using 

the fact that

1 + β < min
(

d+2−dr
r−1 ,

p−2r
r−1

)
,

we obtain

nT∫
n0T

∫
�

a (x) (1 + α (q (x) + s))β |∂tu|2r dxds

≤ Cε− p−2r
r−1 ‖a‖L∞

(
‖u0‖2

H 2 + ‖u1‖2
H 1 + ‖u1‖2r

H 1

) p
2

+ ε(p−2r)
p−r−1

nT∫ ∫
a (x) (1 + α (q (x) + s))β+1 |∂tu|r+1 dxds,

(4.9)
n0T �
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and

nT∫
n0T

∫
�

a (x) (1 + α (q (x) + s))β |∂tu|2 dxds

≤ Cε− 2
r−1 ‖a‖L∞ + 2ε

r+1

nT∫
n0T

∫
�

a (x) (1 + α (q (x) + s))β+1 |∂tu|r+1 dxds

(4.10)

for all ε > 0. To finish the proof we have to proceed as in the proof of Theorem 1.

5. Proof of Theorem 3

5.1. Preliminary results

Throughout this section we use the following notations: We set

τ1 (r, λ) = 2rδr−1
0 (λ+1)r−1(r+1)r

1+δr−1
0 (λ+1)r−1(r+1)r

(
rδ

r−1
r

0 (λ+1)(r+1)+2

) ,

λ is any positive constant and

δ0 = (λ + 1)
r2

r2−1 (r + 1)−
r

r−1 .

We take

0 < γ = 1 + β < min
(

2r
r+3 , d+2−dr

r−1

)
,

and

k = (1 + λ) (r + 1) δ0.

We set ϕ (s) = (1 + αs)β+1 where

α (r,λ) = rδ
r2−1

r
0 (1+λ)r (r+1)r+1+1

δr
0(r−τ1)(1+λ)r (r+1)r+1 .

Finally, let ψ ∈ C∞
c

(
R

d
)

such that 0 ≤ ψ ≤ 1 and

ψ (x) =
{

1 for |x| ≤ L

0 for |x| ≥ 2L.
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Lemma 6.

(1) We have

min
(

2r
r+3 , d+2−dr

r−1

)
= min

(
2r

r+3 , d+2−dr
r−1 ,

p−2r
r−1

)
.

(2) There exists λ > 0 and close to zero such that γ < τ1 (r, λ).
(3) For all λ positive and close to zero and r ∈ (1, 3],

α (r,λ) ≥ 1 and lim
r→1

α (r,λ) = ∞.

For the proof of the lemma above we have to use the same arguments of the proof of Lemma 4.
From Proposition 2 we deduce the following result.

Proposition 4. We assume that Hyp A holds and (ω, T ) geometrically controls �. Let δ > 0, 
R, R0 > L and −1 < β ≤ 0. There exists CT,δ = C (T , δ,R0,R,α,β) > 0, such that the follow-
ing inequality

t+T∫
t

∫
�∩BR0

(R + αs)β
(
|u|2 + |∇u|2 + |∂tu|2

)
dxds

≤ CT,δ

t+T∫
t

∫
�

a (x) (R + αs)β
(
|∂tu|2 + |∂tu|2r

)
dxds

+ CT,δ

t+T∫
t

∫
�

a (x) (R + αs)β−2 |u|2 dxds

+ δ

t+T∫
t

∫
�

(R + αs)β
(
|∇u|2 + |∂tu|2

)
dxds,

(5.1)

holds for every t ≥ 0 and for all u solution of (1.1) with initial data (u0, u1) in H 1
0 (�)∩H 2 (�)×

H 1
0 (�).

As in the proof of Theorem 2 we need to define and to show an estimate for an auxiliary 
function X (t).

Lemma 7. Let u be a solution of (1.1) with initial data in H 1
0 (�) ∩ H 2 (�) × H 1

0 (�) such that. 
We set χ = 1 − ψ and

X (t) =
∫
�

(R + αt)β χ2 (x)u (t) ∂tu (t) dx + k1
2

∫
�

(R + αt)β−1 a (x) |u (t)|2 dx

+
∫

a (x) (R + αt)β−r+1 |u (t)|r+1 dx + k
2

∫
(R + αt)β+1

(
|∇u|2 + |∂tu|2

)
dx,

(5.2)
� �
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where k1 > 0. Then

X (t + T ) − X (t) + 2−kα(1+β)
2

t+T∫
t

∫
�

(R + αs)β
(
|∇u|2 + |∂tu|2

)
dxds

+
(

k1α(1−β)
4 − β2α2

ε0ε

) t+T∫
t

∫
�

a (x) (R + αs)β−2 |u (t)|2 dxds

+ λδ0

t+T∫
t

∫
�

a (x) (R + αs)β+1 |∂tu|r+1 dxds

≤
(

3 +
∥∥∥∇χ2

∥∥∥∞

) t+T∫
t

∫
�∩B2L

(R + αs)β
(
|u|2 + |∇u|2 + |∂tu|2

)
dxds

+
(

2
ε0

+ 8k1
α(1−β)

+ 8β2α

ε2
0k1(1−β)

) t+T∫
t

∫
�

a (x) (R + αs)β |∂tu|2 dxds,

(5.3)

for all t ≥ 0 and any λ > 0.

Proof. For the proof we have to argue as in the proof of Lemma 5 and to use the fact that

Eϕ (u) (t + T ) +
t+T∫
t

∫
�

a (x) (R + αs)β+1 |∂tu|r+1 dxds

≤ Eϕ (u) (t) + (β+1)α
2

t+T∫
t

∫
�

(R + αs)β
(
|∇u|2 + |∂tu|2

)
dxds. �

5.2. Proof of Theorem 3

For the proof we have to proceed as in the proof of Theorem 2 and to use the finite speed 
propagation property and the fact that the support of the initial data is contained in BR and

0 < 1 + β < min
(

d+2−dr
r−1 ,

p−2r
r−1

)
,

to show that

nT∫
n0T

(R + αs)β
∫
�

a (x) |∂tu|2r dxds ≤ Cε− p−2r
r−1 ‖a‖L∞

(
‖u0‖2

H 2 + ‖u1‖2
H 1 + ‖u1‖2r

H 1

) p
2

+ ε

nT∫ ∫
a (x) (R + αs)β+1 |∂tu|r+1 dxds,
n0T �
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and

nT∫
n0T

(R + αs)β
∫
�

a (x) |∂tu|2 dxds

≤ C ‖a‖L∞ ε− 2
r−1 + ε

nT∫
n0T

(R + αs)β+1
∫
�

a (x) |∂tu|r+1 dxds,

for some positive constant C and for all ε > 0.
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