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Abstract

The Fučík spectrum for systems of second order ordinary differential equations with Dirichlet or Neu-
mann boundary values is considered: it is proved that the Fučík spectrum consists of global C1 surfaces,
and that through each eigenvalue of the linear system pass exactly two of these surfaces. Further quali-
tative, asymptotic and symmetry properties of these spectral surfaces are given. Finally, related problems
with nonlinearities which cross asymptotically some eigenvalues, as well as linear–superlinear systems are
studied.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The notion of Fučík spectrum was introduced for the scalar Laplace problem in [1] and [2]. It
is defined as the set Σscal ⊆ R

2 of the points (λ+, λ−) for which there exists a nontrivial solution
of the problem {−u′′ = λ+u+ − λ−u− in (0,1),

Bu = 0 in {0;1}; (1.1)
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here u±(x) = max{0,±u(x)} and Bu = 0 represents Dirichlet or Neumann boundary conditions.
The Fučík spectrum Σscal for Eq. (1.1) is explicitly known and consists of unbounded curves
in R

2: more precisely, from every diagonal point (λk, λk) ∈ R
2 (where λk , k ∈ N, denote the

eigenvalues of −u′′ with boundary conditions B) emanate two curves C±
k , with the property

that the corresponding solutions have exactly k − 1 nodal points and are positive (respectively
negative) near zero. The two curves may coincide, and in fact they always do for the Neumann
problem, and for k even in the Dirichlet problem.

The corresponding partial differential equation{−�u = λ+u+ − λ−u− in Ω ,

Bu = 0 in ∂Ω ,
(1.2)

where Ω ⊂ R
n denotes a bounded domain, is more difficult to handle and the corresponding

Fučík spectrum is only partially known, namely:

– the so-called trivial part of the spectrum, corresponding to positive or negative solutions;
– if λk is a simple eigenvalue, it was proved in [3,4], that the Fučík spectrum in (λk−1,

λk+1)
2 ⊂ R consists of two curves (maybe coincident) which pass through the point (λk, λk);

this result was extended to a larger area in [5];
– if λk is a multiple eigenvalue, it can be proved that there still exist these two curves, but there

can be more points belonging to the spectrum between them: see [6,7], and in particular [5]
(which seems to be the most general result to this date);

– the first nontrivial curve, passing through the point (λ2, λ2), see [8].

In [9] the following generalization of the Fučík spectrum to nonlinear elliptic systems was
introduced: ⎧⎨⎩

−�u = λ+v+ − λ−v− in Ω ,

−�v = μ+u+ − μ−u− in Ω ,

Bu = Bv = 0 on ∂Ω .

(1.3)

It was shown there that, due to intrinsic symmetries of the system, one may assume that two of
the four values λ+, λ−, μ+, μ− coincide. Thus, setting λ+ = μ+, the Fučík spectrum of (1.3) can
be defined as: Σ̂ = {(λ+, λ−,μ−) ∈ R

3; (1.3) has a nontrivial solution}. It was also proved that
near a simple eigenvalue of the system the Fučík spectrum consists of exactly two (maybe coin-
cident) 2-dimensional surfaces, which can be parametrized as λ+

1,2(λ
−,μ−). Furthermore, by a

variational characterization, the existence of an unbounded continuum of points in Σ̂ containing
the point (λ2, λ2, λ2) was given.

Finally, it was shown that many of the properties of the scalar Fučík spectrum continue to hold
for its system counterpart (1.5), in particular, the properties related to the solvability of problems
with “jumping nonlinearities” (that is nonlinearities with asymptotically linear, but different,
growths at +∞ and −∞). In short, in dependence of the position of these asymptotic slopes
with respect to the Fučík spectrum Σ̂ one has: if these slopes lie in the regions in R

3 \ Σ̂ which
contain points λ+ = λ− = μ− of the diagonal, then one has solvability for every forcing term;
on the other hand, if these slopes lie between two spectral surfaces emanating from the same
eigenvalue (λk, λk, λk) (in the case they are distinct), one obtains existence or nonexistence of
solutions in dependence of the forcing terms.
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These properties show the importance of a good knowledge of the shape of the Fučík spec-
trum.

In this paper we consider the Fučík spectrum for a system of second order ordinary differential
equations: we consider the problem⎧⎨⎩

−u′′ = λ+v+ − λ−v− in (0,1),

−v′′ = λ+u+ − μ−u− in (0,1),

Bu = Bv = 0 in {0;1},
(1.4)

and we call Fučík spectrum the set

Σ̂ = {(
λ+, λ−,μ−) ∈ R

3such that λ±,μ− � 0 and (1.4) has nontrivial solutions
}
. (1.5)

Throughout the paper we will always denote by 0 � λ1 < λ2 � λ3 � · · · � λk � · · · the eigen-

values of − d2

dx2 in H 1
0 (0,1), when dealing with the Dirichlet problem, and in H 1(0,1) for the

Neumann problem; moreover {φk}k=1,2,... will be the corresponding eigenfunctions, taken or-
thogonal and normalized with ‖φk‖L2 = 1 and φ1 > 0.

We recall here that the linear spectrum of a system coupled like (1.4), namely⎧⎨⎩
−u′′ = λv in (0,1),

−v′′ = λu in (0,1),

Bu = Bv = 0 in {0;1},
(1.6)

is composed of the eigenvalues λk and −λk (k = 1,2, . . .), with corresponding eigenfunctions
the pairs (φk,φk) and (φk,−φk), respectively. As a consequence, the points (λk, λk, λk) belong
to Σ̂ for k � 1.

When restricting to dimension one, the techniques for ordinary differential equations become
available, and this will allow to obtain a much more detailed description of Σ̂ than was possible
for (1.3). In particular, the techniques which we use here are inspired from [10], where the
interest was the Fučík spectrum for a fourth order problem in dimension one with so-called
Navier boundary conditions. Indeed, we remark that this equation is a special case of system
(1.4) which is obtained by setting μ+ = μ−.

The results presented here will be in different directions. First (in Section 3) we will derive
some qualitative properties of the nontrivial solutions of (1.4):

Theorem 1.1. If (λ+, λ−,μ−) ∈ Σ̂ and (u, v) is a corresponding nontrivial solution of prob-
lem (1.4), then u and v have only simple zeros, of the same number, and of the same sign both in
a neighborhood of 0 and of 1.

The main result of the paper will be to obtain a good description of the Fučík spectrum Σ̂ : first,
through the implicit function theorem, we will obtain a local description of Σ̂ in a neighborhood
of one of its points (see Lemma 4.1), and then, as a consequence, also a global description (see
Proposition 4.4).

Finally, by joining the global description with the results in Theorem 1.1 and with the know-
ledge of the linear spectrum (1.6) and of the scalar Fučík spectrum Σscal, we will be able to
establish
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Theorem 1.2. Through any point (λk, λk, λk) ∈ R
3, with k � 2, pass two C1 surfaces in Σ̂ :

• the two surfaces corresponding to k � 2 are always coincident with Neumann boundary con-
ditions, and they are coincident if and only if k is even with Dirichlet boundary conditions;

• if the two surfaces corresponding to k � 2 do not coincide, then their intersection contains
an unbounded curve which passes through (λk, λk, λk);

• the surfaces corresponding to different values of k are disjoint;
• each of the surfaces is characterized by the number of (simple) interior zeros (in fact, k − 1)

of the corresponding nontrivial solutions and by their sign in a neighborhood of zero; they
will therefore be denoted by Σ̂+

k and Σ̂−
k ;

• these surfaces may be represented expressing the variable λ+ in terms of the other two, and
they are monotone decreasing in the two variables and unbounded in the three directions;

• all points in Σ̂ belong to one of these surfaces (except for those corresponding to solutions
which do not change sign, see relation (2.8));

• in the Neumann case, if (λ+, λ−,μ−) ∈ Σ̂±
k with k � 2, then√

λ−μ− > λk/4 and λ+ > λk/4;
in the Dirichlet case: if (λ+, λ−,μ−) ∈ Σ̂+

k (respectively Σ̂−
k ) with k � 2, then√

λ−μ− > λ[k/2] and λ+ > λ[(k+1)/2]

respectively √
λ−μ− > λ[(k+1)/2] and λ+ > λ[k/2]

(here [·] is the integer part of its argument).

In Section 4.3, we also present a result about the symmetries of the nontrivial solutions:

Proposition 1.3. The nontrivial solutions corresponding to points in Σ̂±
k with k odd are symmet-

ric, in the sense that (u, v)(x) = (u, v)(1 − x).
Moreover, for Neumann boundary conditions, one has that if j � 0 and k ≡ 1 (MOD 2j+1),

then (u, v) are (1/2)j periodic in [0,1].

Finally, in Section 5, we will analyze some properties of the set (R+)3 \ Σ̂ , motivated by the
fact that this set is related to the solvability of nonlinear problems with jumping nonlinearities
(see there for more details). Indeed, Proposition 5.3 presents regions where we may guarantee
solvability, as given in Theorem 5.4.

We remark that also problems with nonlinearities which are asymptotically linear at −∞
and superlinear at +∞ may be treated by exploiting the properties of the Fučík spectrum, as
done for the scalar equation in [11] and in [12]: what is important for these applications is the
knowledge of the asymptotic behavior of the curves in Σscal; in particular, the key point in order
to have the possibility to obtain existence results for such a nonlinearity, is the presence of a
“gap at infinity” between the surfaces in Σ̂ corresponding to consecutive eigenvalues; the results
in Proposition 5.5 will guarantee the existence of such gaps, at least for Neumann boundary
conditions.
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A result for the first of these gaps was already obtained in [13], that is, existence of solution
when the slopes at −∞ are positive and satisfy

√
λ−μ− < λ2/4. We are confident that the better

insight on Σ̂ obtained here will prove useful to improve this result.
To conclude this introduction, we remark that, although the results obtained here are much

more detailed than for the multidimensional case [9], we cannot obtain an explicit description
of Σ̂ as is possible for the scalar problem in dimension one. This is due to the fact that the
interaction of the two functions u and v gives rise to more complicated phenomena: just to give
an idea, observe that the nontrivial solutions of the scalar Fučík problem in dimension one can
be built by suitably gluing bumps of the form sin(

√
λ+ x) and − sin(

√
λ− x); on the other hand,

for the system, there appear intervals where u and v have opposite sign, and there the solutions
have a component of the form of the hyperbolic functions sinh and cosh.

2. Some useful results about the Fučík spectrum

For the scalar problem in dimension one, it is known that the Fučík spectrum Σscal may be
explicitly calculated: for Dirichlet boundary conditions it is composed by the curves

Σ+
2i ≡ Σ−

2i :
iπ√
λ+ + iπ√

λ− = 1, i � 1, (2.1)

Σ+
2i−1:

iπ√
λ+ + (i − 1)π√

λ− = 1, Σ−
2i−1:

(i − 1)π√
λ+ + iπ√

λ− = 1, i � 1; (2.2)

for Neumann boundary conditions it is given by the curves

Σ+
1 : λ+ = 0, Σ−

1 : λ− = 0, (2.3)

Σ+
j ≡ Σ−

j :
(j − 1)π

2
√

λ+ + (j − 1)π

2
√

λ− = 1, j � 2, (2.4)

where the curve Σ+
k (respectively Σ−

k ) corresponds to nontrivial solutions having k − 1 internal
zeros and starting positive (respectively negative); observe that Σ±

k passes through the point
(λk, λk) (recall that λk = (kπ)2 in the Dirichlet case and λk = ((k − 1)π)2 in the Neumann
case). Observe also that the asymptotes of these curves are located, for the Dirichlet case, at the
values

λ− = λi for Σ−
2i−1, Σ2i , Σ+

2i+1, (2.5)

λ+ = λi for Σ+
2i−1, Σ2i , Σ−

2i+1, (2.6)

and for the Neumann case at

λ− = λj

4
and λ+ = λj

4
for Σj . (2.7)

These simple computations may be found in [1], for Dirichlet boundary conditions, and
in [11], for the periodic case, which is very similar to the Neumann case.

We also refer to [2], where the most important properties of the (scalar) Fučík spectrum are
presented for what concerns its application to the solvability of related nonlinear equations.
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A survey of all these results was given in [14].
Since we are going to use several results from [9], we devote the last part of this section to

briefly summarize them.
First, we remark that in (1.4) (and hence in Σ̂ ) we are considering only nonnegative coeffi-

cients, and identical coefficients for u+ and v+; the reasons for this choice are widely discussed
in [9] and rely on the observation that, even if we use four parameters, the “interesting” points
of the spectrum have coefficients which are all of the same sign and which, through a suitable
rescaling, may be transformed into an equivalent point of this form (i.e. lying in Σ̂ ).

Furthermore, for points in Σ̂ , the following lemma was proved:

Lemma 2.1. Let (λ+, λ−,μ−) ∈ Σ̂ and (u, v) be a corresponding nontrivial solution, then:

• both u and v change sign or none of the two;
• if none of the two changes sign then λ+ = λ1 or

√
λ−μ− = λ1;

• if both change sign, then λ+ > λ1 and
√

λ−μ− > λ1.

This lemma implies that Σ̂ is composed of a trivial part

Σ̂t = {(
λ+, λ−,μ−) ∈ R

3 such that: λ+ = λ1 or
√

λ−μ− = λ1
}
, (2.8)

corresponding to solutions which do not change sign, and a nontrivial part Σ̂nt (to which we may
concentrate our attention) which we define as

Σ̂nt = {(
λ+, λ−,μ−) ∈ R

3 such that:

λ±,μ− > 0 and (1.4) has nontrivial solutions which (both) change sign
}
. (2.9)

Finally, we remark that Σ̂nt has several symmetries, in particular we have

Lemma 2.2. If (λ+, λ−,μ−) ∈ Σ̂nt with corresponding nontrivial solutions (u, v), then

1. (λ+,μ−, λ−) ∈ Σ̂nt with corresponding nontrivial solutions (v,u);

2. (
√

λ−μ−, λ+
√

μ−
λ− , λ+

√
λ−
μ− ) ∈ Σ̂nt , with corresponding nontrivial solutions (−u,−

√
λ−
μ− v).

For what concerns the relationship between Σscal and Σ̂ we recall

Lemma 2.3. If (λ+, λ−) ∈ Σscal with corresponding nontrivial solution u, then (λ+, λ−, λ−) ∈ Σ̂

with corresponding nontrivial solutions (u,u).

3. Some properties of the nontrivial solutions

In this section we will obtain some preliminary lemmas about the nontrivial solutions of a
system like (1.4); by joining these results, we obtain Theorem 1.1.

Lemma 3.1. Weak solutions of problem (1.4) are in fact classical solutions.
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Proof. Weak solutions of problem (1.4) are by definition in H 1(Ω), then the right-hand side in
the equations is in H 1 too; so one gets, by a boot strap argument, that the solutions are in H 3(Ω);
this, in dimension one, gives solutions in C2( �Ω), and so they are classical solutions. �
Lemma 3.2. Let c, d ∈ L∞(0,1) with c, d > 0 a.e. and (u, v) be a nontrivial solution of the
boundary value problem (BVP for short)

⎧⎨⎩
−u′′ = c(x)v in (0,1),

−v′′ = d(x)u in (0,1),

Bu = Bv = 0 in {0;1}.
(3.1)

Then for no point x∗ ∈ [0,1] may hold:

u(x∗) � 0, u′(x∗) � 0, v(x∗) � 0, v′(x∗) � 0, (3.2)

nor u(x∗) � 0, u′(x∗) � 0, v(x∗) � 0, v′(x∗) � 0, (3.3)

nor u(x∗) � 0, u′(x∗) � 0, v(x∗) � 0, v′(x∗) � 0, (3.4)

nor u(x∗) � 0, u′(x∗) � 0, v(x∗) � 0, v′(x∗) � 0. (3.5)

Moreover:

• for x̄ ∈ [0,1],
(Ai) if u(x̄) = 0 (or v(x̄) = 0) then u′(x̄)v′(x̄) > 0,
(Aii) if u′(x̄) = 0 (or v′(x̄) = 0) then u(x̄)v(x̄) > 0;

• for x1, x2 ∈ [0,1], x1 < x2,
(Bi) if u′(x1) = u′(x2) = 0 and u′(x) �= 0 for x ∈ (x1, x2) then u(x1)u(x2) < 0,
(Bii) if u(x1) = u(x2) = 0 and u(x) �= 0 for x ∈ (x1, x2) then u′(x1)u

′(x2) < 0,
and the same holds for v.

Proof. For the system (3.1), uniqueness of solution for the corresponding initial value problem
(IVP for short) holds and then we immediately see that a nontrivial solution may have u(x∗) =
v(x∗) = u′(x∗) = v′(x∗) = 0 in no point x∗ ∈ [0,1].

By integrating the equations in (3.1) we get, for x, x0 ∈ [0,1],

u(x) = u(x0) + u′(x0)(x − x0) −
x∫

x0

dξ1

ξ1∫
x0

c(ξ2)v(ξ2) dξ2, (3.6)

v(x) = v(x0) + v′(x0)(x − x0) −
x∫

x0

dξ1

ξ1∫
x0

d(ξ2)u(ξ2) dξ2, (3.7)

u′(x) = u′(x0) −
x∫
c(ξ1)v(ξ1) dξ1, (3.8)
x0
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v′(x) = v′(x0) −
x∫

x0

d(ξ1)u(ξ1) dξ1. (3.9)

We first prove (3.2) with strict inequalities: suppose the inequalities hold strictly in x∗ < 1 and
let x1 > x∗ be the first point (if any) where one of the two functions has zero derivative; observe
that u and v maintain their sign in (x∗, x1] and then by (3.8) u′(x1) > 0 and by (3.9) v′(x1) < 0:
this implies that u and v may never satisfy the boundary condition at 1.

By the same argument one sees that if (3.3) holds with strict inequalities in x∗ > 0 then u and
v may never satisfy the boundary condition at 0.

Then observe that if u(x∗) = 0, then in a right neighborhood of x∗ it assumes the sign of u′
in the same neighborhood; if u′(x∗) = 0, then in a right neighborhood of x∗ it assumes, by (3.8),
the opposite sign of v in the same neighborhood, and so on; then one may relax all inequalities
in (3.2) since even if only one of the four is strict then in a right neighborhood all become strict;
the same considerations for left neighborhoods of x∗ allow to do the same with (3.3).

Finally, Eqs. (3.4) and (3.5) follow by linearity (or by exchanging the role of u and v).
The proof of (3.2) and (3.4) in 1 and of (3.3) and (3.5) in 0 is superfluous by virtue of the

boundary conditions: as an example, observe that in the Dirichlet case (3.2) is equivalent to (3.5)
in 0 and 1.

Now, (Ai) and (Aii) follow by combining the four relations; we just give an example of this
(all the functions in the following will be evaluated in x̄): let u = 0; if v � 0 use (3.2) and (3.3)
and obtain that u′ = 0 gives contradiction for any v′, while u′ > 0 gives v′ > 0 by (3.2) and
u′ < 0 gives v′ < 0 by (3.3); for v � 0 the same is obtained by using (3.4) and (3.5).

To prove (Bi) observe that, by (Aii), v(x1) �= 0 �= v(x2) and, by (3.8),

0 = u′(x2) = −
x2∫

x1

c(ξ1)v(ξ1) dξ1, (3.10)

implying that v changes sign in (x1, x2); if it changes sign once then v(x1)v(x2) < 0 and then,
by (Aii), u(x1)u(x2) < 0 as claimed. Now observe that u may have no more than one zero in
(x1, x2) since otherwise there would exist also a point x̄ ∈ (x1, x2) with u′(x̄) = 0; then we just
need to show that it may not happen that v changes sign more then once in (x1, x2) while u

does not change sign: actually in this case, since uv > 0 in x1 and x2 by (Aii), there would
exist an interval [x3, x4] ⊆ (x1, x2) such that uv < 0 in (x3, x4) and v(x3) = v(x4) = 0; but
this contradicts (Aii) since then there would exist also a point x̄ ∈ (x3, x4) with v′(x̄) = 0 and
u(x̄)v(x̄) < 0.

Finally, (Bii) is trivial since by (Ai) the zeros of u are simple and in the given hypotheses u

has the same sign in a right neighborhood of x1 and in a left neighborhood of x2. �
Proposition 3.3. If (λ+, λ−,μ−) ∈ Σ̂ and (u, v) is a corresponding nontrivial solution of prob-
lem (1.4), then the same conclusions of the above lemma hold for (u, v); in particular u and v

have only simple zeros and the same sign both in a neighborhood of 0 and of 1.

Proof. The nontrivial solution satisfies problem (3.1) with c(x) = λ+χ{v�0}(x) + λ−χ{v<0}(x)

and d(x) = λ+χ{u�0}(x) + μ−χ{u<0}(x). (Here and in the following χA(x) is the characteristic
function of the set A, and then satisfies the hypotheses of Lemma 3.2.)
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In particular, (Ai) in Lemma 3.2 implies that the zeros are always simple, while (Ai) and (Aii)
imply that uv > 0 both in a neighborhood of 0 and of 1. �

The results in the previous lemmas allow to obtain the following important result:

Proposition 3.4. If (λ+, λ−,μ−) ∈ Σ̂nt and (u, v) is a corresponding nontrivial solution of prob-
lem (1.4), then u and v have the same number of (simple) zeros.

Proof. Let x1 be the first stationary point of u: for Neumann boundary conditions this is 0, while
for Dirichlet boundary conditions we may see that there is no zero of u or v in (0, x1]: actually
u and u′ maintain their sign in (0, x1), by (Ai) in Lemma 3.2 u′(0)v′(0) > 0, and then if v had a
zero x̄ ∈ (0, x1] we would have u′(x̄)v′(x̄) � 0 contradicting (Ai) in Lemma 3.2.

Now let x2 be the second stationary point of u: by (Bi) in Lemma 3.2 u(x1)u(x2) < 0 and then
u has exactly one zero xu ∈ (x1, x2): we claim that v has a unique zero in [x1, x2] too: actually it
may not have an even number of zeros since by (Aii) in Lemma 3.2 v(x1)v(x2) < 0, and if it had
three or more, then it would also have two stationary points and for at least one of them vu � 0,
contradicting (Aii) in Lemma 3.2. The same argument may be applied to the following intervals
between stationary points and, finally, we have no zero between the last stationary point of u and
1 by the same argument used above.

Then, we conclude that the zeros of u and v are exactly one for each interval between two
stationary points of u, and so we proved the claim. �
Remark 3.5. We observe that the results in this section may be described in terms of the phase
plane: actually, the equations from (3.2) to (3.5) simply say that u and v may never lie in opposite
(closed) quadrants of the phase plane.

With this interpretation, it is simple to deduce intuitively the properties in Lemma 3.2 and also
Proposition 3.4.

4. Construction of ̂Σnt

In this section, we will build the nontrivial part of the Fučík spectrum Σ̂nt ; in order to do this,
we will first construct a related set in R

4. We consider the initial value problem

(IVP)

⎧⎪⎨⎪⎩
−u′′ = λ+v+ − λ−v−,

−v′′ = λ+u+ − μ−u−,

(u, v,u′, v′)(0) = (u0, v0, u
′
0, v

′
0),

with λ+, λ−,μ− � 0.

Then we define, for Dirichlet boundary conditions, the sets

Σ̃± =
{

(λ+, λ−,μ−, s) ∈ (R+)3 × R: the solution (u, v) of IVP with

(u0, v0, u
′
0, v

′
0) = (0,0,±1, s) satisfies u(1) = v(1) = 0

}
(4.1)

and for Neumann boundary conditions

Σ̃± =
{

(λ+, λ−,μ−, s) ∈ (R+)3 × R: the solution (u, v) of IVP with

(u0, v0, u
′ , v′ ) = (±1, s,0,0) satisfies u′(1) = v′(1) = 0

}
. (4.2)
0 0
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Then we will denote by

Σ̂± = {(
λ+, λ−,μ−) ∈ (

R
+)3: ∃s ∈ R such that

(
λ+, λ−,μ−, s

) ∈ Σ̃±}
, (4.3)

and so Σ̂ = Σ̂+ ∪ Σ̂−.
In particular, we only need to study one of the two components (say Σ̃+), since the other one

may be found by exploiting the symmetry 2 in Lemma 2.2.

4.1. Local study of Σ̃+

In the following lemma we will use the implicit function theorem to describe Σ̃+ in a neigh-
borhood of one of its points.

Lemma 4.1. Given (λ̄+, λ̄−, μ̄−, s̄) ∈ Σ̃+ such that the corresponding nontrivial solutions (ū, v̄)

change sign (both), then Σ̃+ is locally of the form (λ+(λ−,μ−), λ−,μ−, s(λ−,μ−)), where (for
a suitable ε > 0) (

λ+, s
)
: (λ̄− − ε, λ̄− + ε) × (μ̄− − ε, μ̄− + ε) → R

2 (4.4)

is a C1 function of λ− and μ−; moreover

∂λ+

∂λ− (λ̄−, μ̄−) = − ∫ 1
0 (v̄−)2∫ 1

0 (ū+)2 + (v̄+)2
< 0, (4.5)

∂λ+

∂μ− (λ̄−, μ̄−) = − ∫ 1
0 (ū−)2∫ 1

0 (ū+)2 + (v̄+)2
< 0. (4.6)

Finally, the related nontrivial solutions have all the same number of (simple) zeros (hence
both change sign) and the both have same sign in a neighborhood of 0 and of 1.

Proof. We will give the proof for Dirichlet boundary conditions.
We will denote by (u, v)[λ+, λ−,μ−, s](x) the solution of the IVP⎧⎨⎩

−u′′ = λ+v+ − λ−v− in (0,1),

−v′′ = λ+u+ − μ−u− in (0,1),

(u, v,u′, v′)(0) = (0,0,1, s)

(4.7)

and we will apply the implicit function theorem to the system

(u, v)
[
λ+, λ−,μ−, s

]
(1) = (0,0), (4.8)

that is, we want to solve locally the set of its zeros with respect to the variables λ−, μ−.
We remark that (u, v)[λ+, λ−,μ−, s](x) is a C1 function of the five variables (λ+, λ−,

μ−, s) ∈ N and x ∈ [0,1], where N is a suitable neighborhood of the point (λ̄+, λ̄−, μ̄−, s̄);
actually the derivatives may be calculated through the differential equation, where the nonlinear-
ities λ+v+ − λ−v− and λ+u+ − μ−u− are C1 functions of the variables λ±, μ−.
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Denote by (ū, v̄) = (u, v)[λ̄+, λ̄−, μ̄−, s̄]; since the zeros of ū and v̄ are simple by Lemma 3.2,
we may restrict the neighborhood N such that this property is maintained for all the functions
(u, v)[λ+, λ−,μ−, s] with (λ+, λ−,μ−, s) ∈ N and such that the internal zeros do not disappear
and the sign in a neighborhood of 0 and of the last zero does not change. We remark also that
since ū and v̄ change sign then this property too is maintained in N .

Now let c(x) = λ̄+χ{v̄>0} + λ̄−χ{v̄<0} and d(x) = λ̄+χ{ū>0} + μ̄−χ{ū<0}: then (ū, v̄) also
satisfies the IVP ⎧⎨⎩

−ū′′ = c(x)v̄ in (0,1),

−v̄′′ = d(x)ū in (0,1),

(ū, v̄, ū′, v̄′)(0) = (0,0,1, s̄).

(4.9)

Then let (us, vs)(x) = ∂
∂s

(u, v)[λ̄+, λ̄−, μ̄−, s̄](x): differentiating (4.9) with respect to s we
get (the dependence on s is just in the initial condition):⎧⎪⎨⎪⎩

−u′′
s = c(x)vs in (0,1),

−v′′
s = d(x)us in (0,1),

(us, vs, u
′
s , v

′
s)(0) = (0,0,0,1);

(4.10)

note here that by using Eqs. (3.6) and (3.7) one obtains that vs(x) > 0 and us(x) < 0 for x ∈
(0,1].

Now, multiplying the first equation in (4.10) by v̄, the second by ū and summing we have∫ −u′′
s v̄ − v′′

s ū = ∫
c(x)vs v̄ + d(x)usū; integrating by parts two times we obtain

1∫
0

−usv̄
′′ − vsū

′′ + [−u′
s v̄ − v′

s ū + usv̄
′ + vsū

′]1
0 =

1∫
0

c(x)vs v̄ + d(x)usū. (4.11)

Since (ū, v̄) is solution of the BVP too, it satisfies

ū(0) = v̄(0) = ū(1) = v̄(1) = 0 (4.12)

and so in Eq. (4.11) only the following term survives:

(us v̄
′ + vsū

′)(1) = 0. (4.13)

In the same way, let (uλ+ , vλ+)(x), (uλ− , vλ−)(x) and (uμ− , vμ−)(x) be defined like
(us, us)(x) above: differentiating (4.9) with respect to λ+, λ− and μ− respectively, we get (the
dependence on λ+, λ− and μ− is in the coefficients c(x) and d(x)):⎧⎪⎨⎪⎩

−u′′
λ+ = c(x)vλ+ + v̄+ in (0,1),

−v′′
λ+ = d(x)uλ+ + ū+ in (0,1),

(uλ+ , vλ+ , u′
λ+ , v′

λ+)(0) = (0,0,0,0),

(4.14)

⎧⎪⎨⎪⎩
−u′′

λ− = c(x)vλ− − v̄− in (0,1),

−v′′
λ− = d(x)uλ+ in (0,1),

(u − , v − , u′ , v′ )(0) = (0,0,0,0),

(4.15)
λ λ λ− λ−
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⎧⎪⎪⎨⎪⎪⎩
−u′′

μ− = c(x)vμ− in (0,1),

−v′′
μ− = d(x)uμ− − ū− in (0,1),

(uμ− , vμ− , u′
μ− , v′

μ−)(0) = (0,0,0,0);
(4.16)

then, proceeding as for (4.13), we get

(uλ+ v̄′ + vλ+ ū′)(1) =
1∫

0

(
ū+)2 +

1∫
0

(
v̄+)2

> 0, (4.17)

(uλ− v̄′ + vλ− ū′)(1) =
1∫

0

(v̄−)2 > 0, (4.18)

(uμ− v̄′ + vμ− ū′)(1) =
1∫

0

(ū−)2 > 0. (4.19)

We deduce by the above computations that the vector (us(1), vs(1)) is not zero, and by (4.13)
it is orthogonal to (v̄′(1), ū′(1)), while (uλ+(1), vλ+(1)) is not orthogonal to it; then

det

[
uλ+(1) vλ+(1)

us(1) vs(1)

]
�= 0, (4.20)

which is indeed the condition we need to apply the implicit function theorem to system (4.8),
that is to obtain the claimed function (λ+, s)(λ−,μ−).

Now we may also obtain the derivatives ∂λ+
∂λ− (λ̄−, μ̄−) and ∂λ+

∂μ− (λ̄−, μ̄−): by differentiating
(4.8) we get [

∂(u, v)

∂(s, λ+)

][
∂(s, λ+)

∂(λ−,μ−)

]
+

[
∂(u, v)

∂(λ−,μ−)

]
= 0, (4.21)

that is

[
us(1) uλ+(1)

vs(1) vλ+(1)

][ ∂s
∂λ− (λ̄−, μ̄−) ∂s

∂μ− (λ̄−, μ̄−)

∂λ+
∂λ− (λ̄−, μ̄−) ∂λ+

∂μ− (λ̄−, μ̄−)

]
= −

[
uλ−(1) uμ−(1)

vλ−(1) vμ−(1)

]
; (4.22)

by multiplying on the left by the vector [v̄′(1), ū′(1)] we get

[
(us v̄ + vsū)(1) (uλ+ v̄ + vλ+ ū)(1)

][ ∂s
∂λ− (λ̄−, μ̄−) ∂s

∂μ− (λ̄−, μ̄−)

∂λ+
∂λ− (λ̄−, μ̄−) ∂λ+

∂μ− (λ̄−, μ̄−)

]
= −[

(uλ− v̄′ + vλ− ū′)(1) (uμ− v̄′ + vμ− ū′)(1)
]
, (4.23)

that is (by Eqs. (4.13), (4.17)–(4.19))
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[
0

1∫
0

(
ū+)2 + (

v̄+)2

][ ∂s
∂λ− (λ̄−, μ̄−) ∂s

∂μ− (λ̄−, μ̄−)

∂λ+
∂λ− (λ̄−, μ̄−) ∂λ+

∂μ− (λ̄−, μ̄−)

]

= −
[ 1∫

0

(v̄−)2

1∫
0

(ū−)2

]
(4.24)

and then we get Eqs. (4.5) and (4.6).
The same results may be obtained for Neumann boundary conditions by applying the implicit

function theorem to the system

(u′, v′)
[
λ+, λ−,μ−, s

]
(1) = (0,0), (4.25)

where now (u, v) is the solution of the IVP with (u, v,u′, v′)(0) = (1, s,0,0). �
We remark that the hypothesis that the nontrivial solutions change sign was used to guarantee

the condition (4.20): in fact, the implicit function theorem (at least in this form) may not be
applied to Σ̂t .

4.2. Global study of Σ̃±

Now, we want to exploit the local information obtained in Lemma 4.1, in order to obtain
a qualitative description of the set Σ̃+; to do this we will need the following lemma and its
Corollary 4.3:

Lemma 4.2. Given {(λ+
n , λ−

n ,μ−
n , sn)} ⊆ Σ̃+ with (λ+

n , λ−
n ,μ−

n ) → (λ+
0 , λ−

0 ,μ−
0 ) ∈ R

3, there
exists a subsequence sn → s0 ∈ R such that (λ+

0 , λ−
0 ,μ−

0 , s0) ∈ Σ̃+.
Moreover, if the sequence (un, vn) of the corresponding nontrivial solutions is composed by

functions all with the same number of (simple) zeros, then the functions (u0, v0) corresponding
to the point (λ+

0 , λ−
0 ,μ−

0 , s0) have this number of (simple) zeros too.

Proof. Consider the Dirichlet boundary conditions. As seen in Lemma 3.1, the functions
un, vn ∈ H 2(0,1) ⊆ C1,1/2([0,1]).

Let (Un,Vn) = ( un‖un‖
H2

, vn‖vn‖
H2

): then, up to a subsequence, (Un,Vn) → (U0,V0) weakly in

[H 2(0,1)]2 and strongly in [C1([0,1])]2.
The variational equation for (Un,Vn) is

∫ 1
0 U ′

nφ
′ +V ′

nψ
′ = ∫ 1

0 (λ+
n V +

n −λ−
n V −

n )φ + (λ+
n U+

n −
μ−

n U−
n )ψ for all φ,ψ ∈ H 1

0 ; taking the limit gives

1∫
0

U ′
0φ

′ + V ′
0ψ

′ =
1∫

0

(
λ+

0 V +
0 − λ−

0 V −
0

)
φ + (

λ+
0 U+

0 − μ−
0 U−

0

)
ψ

for all φ,ψ ∈ H 1
0 , (4.26)

that is (U0,V0) is a solution of (1.4) with coefficients (λ+, λ−,μ−).
0 0 0
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Since the solutions are strong too by Lemma 3.1, we have

1∫
0

(−U ′′
n − U ′′

0

)2 =
1∫

0

[(
λ+

n V +
n − λ−

n V −
n

) − (
λ+

0 V +
0 − λ−

0 V −
0

)]2
, (4.27)

where the right-hand side goes to zero and so Un → U0 and (by the same argument) Vn → V0
strongly in H 2; this implies that ‖U0‖H 2 = ‖V0‖H 2 = 1 and so (U0,V0) is a nontrivial solu-

tion, that is (λ+
0 , λ−

0 ,μ−
0 ,

V ′
0(0)

U ′
0(0)

) ∈ Σ̃+ (observe that U ′
0(0),V ′

0(0) > 0 by Lemma 3.2 and the C1

convergence).

Moreover, since sn = v′
n(0) = V ′

n(0)

U ′
n(0)

, its limit exists (by the C1 convergence) and it is indeed
V ′

0(0)

U ′
0(0)

, so we proved the first part of the lemma.

To conclude, observe that (Un(x),Vn(x)) = (un(x), vn(x))U ′
n(0) and U ′

n(0) is (up to a sub-
sequence) bounded away from zero; this implies that if the sequence (un, vn) is composed by
functions all with the same number of simple zeros then the same is true for (Un,Vn) and, by the
C1 convergence, also for (U0,V0).

For Neumann boundary conditions, the proof goes in the same way, by proving that (up to a
subsequence) sn = vn(0) = Vn(0)

Un(0)
→ V0(0)

U0(0)
and that (λ+

0 , λ−
0 ,μ−

0 ,
V0(0)
U0(0)

) ∈ Σ̃+. �
Corollary 4.3. The set Σ̂+ is closed.

Proof. Actually, the previous lemma implies that if a sequence {(λ+
n , λ−

n ,μ−
n )} ⊆ Σ̂+ is such

that (λ+
n , λ−

n ,μ−
n ) → (λ+

0 , λ−
0 ,μ−

0 ) ∈ R
3, then (λ+

0 , λ−
0 ,μ−

0 ) ∈ Σ̂+. �
Now, a first qualitative description of the set Σ̃+ may be given:

Proposition 4.4. Let C be a connected component of Σ̃+ such that the corresponding nontrivial
solutions change sign; then there exists a connected open set Λ ⊆ {(λ−,μ−): λ−,μ− > 0} such
that C is of the form C = {(λ+(λ−,μ−), λ−,μ−, s(λ−,μ−)): (λ−,μ−) ∈ Λ} and the following
assertions hold:

1. (λ+, s) :Λ → R
2 is a C1 function of λ−,μ− and for any (λ−,μ−) ∈ Λ

∂λ+

∂λ− (λ−,μ−) < 0, (4.28)

∂λ+

∂μ− (λ−,μ−) < 0. (4.29)

2. There exist a real ρ � 0 and a nonincreasing function D : (ρ,+∞) → R
+ such that for any

λ̃− > 0,

Λ ∩ {
(λ̃−,μ−): μ− ∈ R

+} =
{∅ for λ̃− � ρ,

˜− − − ˜− ˜− (4.30)
{(λ ,μ ): μ > D(λ )} for λ > ρ;
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in the case λ̃− > ρ we have

lim
μ−→D(λ̃−)

λ+(λ̃−,μ−) = +∞, (4.31)

and

lim
μ−→+∞

λ+(λ̃−,μ−) = E(λ̃−) (4.32)

defines a nonincreasing function E : (ρ,+∞) → R
+.

Finally, the same holds if we exchange the role of the variables λ− and μ−.
3. The corresponding nontrivial solutions of (1.4) have all the same number of (simple) zeros.
4. ∃! (λ−∗ ,μ−∗ ) ∈ Λ such that λ+(λ−∗ ,μ−∗ ) = λ−∗ = μ−∗ , and then λ−∗ = μ−∗ = λk for some k � 2.

Proof. From Lemma 4.1 we deduce that C may be expressed as a function of λ−,μ− defined
on a open connected set and we obtain the point 3 and Eqs. (4.28) and (4.29); moreover, by point
3 and Lemma 2.1 we deduce that λ−,μ− and λ+(λ−,μ−) are all strictly positive.

Now remark that, by Lemma 4.2, if lim(λ−,μ−)→(λ−
0 ,μ−

0 ) λ
+(λ−,μ−) = λ+

0 ∈ R then for some

s0 ∈ R the point (λ+
0 , λ−

0 ,μ−
0 , s0) ∈ C and then (λ−

0 ,μ−
0 ) would be an interior point of Λ by

Lemma 4.1.
Once fixed λ̃− > 0, the variable μ− has to take values in an open subset of (0,+∞), but the

function λ+(λ̃−,μ−) has to be positive and decreasing in μ−; this and the above remark imply
that this open set has to be a halfline, that the limit of λ+(λ̃−

0 , ·) at +∞ exists and is nonnegative
while the limit at the initial point D(λ̃−) of the halfline must be +∞, proving the first part of
point 2.

The fact that one may exchange the role of the variables λ− and μ− follows by the symme-
tries of the Fučík spectrum and this implies that the function D is nonincreasing (otherwise the
sections in direction λ− would not be halflines). Finally E is nonincreasing by (4.28).

To prove point 4, consider the halfline {(λ−,μ−): λ− = μ− > 0} (observe that by point 2 it
may not have empty intersection with Λ): since the function λ+ is C1(Λ), by Eqs. (4.28) and
(4.29) we have that it is decreasing along this halfline and so we may deduce as above that it
has a nonnegative limit for λ− = μ− → +∞ and an asymptote where the halfline enters Λ; this
implies that there exists a (unique) point ξ where λ+(ξ, ξ) = ξ , proving point 4 (in fact in this
case problem (1.4) reduces to (1.6) and then ξ ∈ σ(−�) \ {λ1}). �

Proposition 4.4 allows us to characterize all the connected components of Σ̃±: actually, the
complete knowledge of the linear spectrum (1.6) and property 4 in Proposition 4.4 imply the
following:

Proposition 4.5. There exists a one to one relation between the eigenvalues {λk}k�2 of the Lapla-
cian and those connected components of Σ̃+ (respectively of Σ̃−) which correspond to nontrivial
sign changing solutions.

Proof. For any eigenvalue λk there exists a unique value s (namely s = 1) such that the point
(λk, λk, λk, s) ∈ Σ̃+ and, by Lemma 4.1, through this point passes one connected component
of Σ̃+; conversely, by point 4 in Proposition 4.4, we have that any connected component in Σ̃+
passes through a point of the form (λk, λk, λk, s) for some k � 2, s ∈ R.
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These facts give the one to one relation. �
Definition 4.6. In view of Proposition 4.5, we will use the notation Σ̃+

k (respectively Σ̃−
k )

for the component corresponding to λk and Σ̂+
k (respectively Σ̂−

k ) for its projection in
{(λ+, λ−,μ−) ∈ R

3}.
Moreover, we will denote by Λ±

k , D±
k , E±

k and ρ±
k , what was denoted by Λ, D, E and ρ for

Σ̃+
k , and by f ±

k the corresponding function λ+(λ−,μ−) (see in Proposition 4.4).

Looking at the set Σ̂ , Proposition 4.5 implies the following

Corollary 4.7. Trough any point (λk, λk, λk) ∈ Σ̂ with k � 2 pass exactly two surfaces in Σ̂nt ,
namely Σ̂+

k and Σ̂−
k , which may or may not coincide.

In particular, as happens for the eigenfunction corresponding to λk , the nontrivial solutions
corresponding to a point in Σ̂±

k have always k − 1 (simple) interior zeros.
Moreover, any point in Σ̂nt belongs to one of these surfaces.

Now we may also complete the result of Lemma 2.3 about the relationship between the Fučík
spectrum for the system considered above and the Fučík spectrum for the scalar case Σscal: we
may assert

Proposition 4.8. There exists a bijection between Σscal and the subset of Σ̂ with λ− = μ−;
in particular, if u is a nontrivial solution of the scalar problem (1.1) corresponding to a point
(λ+, λ−) ∈ Σscal, then the couple (u,u) is a nontrivial solution of problem (1.4) corresponding
to the point (λ+, λ−, λ−) ∈ Σ̂ and vice versa.

Proof. For λ+ = λ1 or λ− = μ− = λ1 the claim is trivial since we know explicitly the form
of Σ̂t .

In Lemma 2.3 it was already proved that to each point in Σscal corresponds a point in Σ̂ with
the claimed relation.

In fact, this relation is a bijection: actually, also for the scalar problem we may identify each
curve in the Fučík spectrum by the number of nodes and the sign near zero of the corresponding
nontrivial solutions, and hence each surface Σ̃+

k (respectively Σ̃−
k ) contains the corresponding

curve of Σscal; moreover, each surface Σ̃+
k (respectively Σ̃−

k ) contains a unique curve with λ− =
μ− (since we saw indeed that we can express the surface as a function of these two variables) so
that there are no points in Σ̂ with λ− = μ− other than those related to Σscal. �

We remark that in Lemma 2.3 we only could say that Σscal is contained in the subset of Σ̂

with λ− = μ−; here, for the one-dimensional problem, we can say that the converse is true: that
is, whenever λ− = μ− in Σ̂ then the corresponding nontrivial solution is composed by a pair
of functions which are also nontrivial solutions of the scalar Fučík problem with coefficients
(λ+, λ−).

This immersion of Σscal in Σ̂ gives us even more information about the structure of Σ̂ : by
combining its knowledge with the symmetries in Lemma 2.2 and the monotonicity result in
point 1 of Proposition 4.4, we obtain

Proposition 4.9. In the Dirichlet case (here [·] denotes the integer part of a real)
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(
λ+, λ−,μ−) ∈ Σ̂+

k with k � 2 ⇒
√

λ−μ− > λ[k/2] and λ+ > λ[(k+1)/2], (4.33)(
λ+, λ−,μ−) ∈ Σ̂−

k with k � 2 ⇒
√

λ−μ− > λ[(k+1)/2] and λ+ > λ[k/2]. (4.34)

In the Neumann case,(
λ+, λ−,μ−) ∈ Σ̂±

k with k � 2 ⇒
√

λ−μ− > λk/4 and λ+ > λk/4. (4.35)

In terms of the functions D,E defined in Proposition 4.4, (4.35) implies that
√

λ−D±
k (λ−) �

λk/4 and E±
k (λ−) � λk/4 for all λ− > ρ±

k ; analogous relations come from (4.33) and (4.34).

Proof. First observe that the inequalities in the claim are exactly those which hold for the corre-
sponding curves in Σscal (see in Section 2), and hence the lemma is trivially true if we restrict at
the points with λ− = μ−.

The inequalities for λ+ hold since f ±
k is decreasing in both variables and then it may not

assume a value lower than those assumed for λ− = μ−.
The inequalities for

√
λ−μ− are obtained by the symmetry 2 in Lemma 2.2: actually if

(λ+, λ−,μ−) ∈ Σ̂±
k then (

√
λ−μ−, λ+

√
μ−
λ− , λ+

√
λ−
μ− ) ∈ Σ̂∓

k , and then by the previously proven

inequalities for λ+ we obtain the analogous ones for
√

λ−μ−, observing that the value for Σ̂+
k

passes to Σ̂−
k and vice versa, since the considered symmetry changes the sign of the nontrivial

solutions. �
4.3. Relationship between the curves Σ̂±

k and symmetries of the nontrivial solutions

In this section we will prove two propositions dealing with the possible intersections between
the surfaces Σ̂±

k , and we will also obtain (in Proposition 4.12) the result about the symmetries of
the nontrivial solutions stated in Proposition 1.3.

Propositions 4.10 and 4.11, joined with the results of the previous section, will complete the
proof of Theorem 1.2.

Proposition 4.10. If h > k � 2, then (Σ̂+
k ∪ Σ̂−

k ) ∩ (Σ̂+
h ∪ Σ̂−

h ) = ∅.
Moreover (Σ̂+

k ∪ Σ̂−
k ) ∩ Σ̂t = ∅.

Proof. Let the function λ+(λ−,μ−) describe Σ̂+
k (or Σ̂−

k ): then λ+(λk, λk) = λk and since
it is strictly decreasing in both variables we get λ+(λk+1, λk+1) < λk < λk+1; then in λ− =
μ− = λk+1 the surfaces Σ̂±

k are lower than the surfaces Σ̂±
k+1.

Then, it is enough to prove that (Σ̂+
k ∪ Σ̂−

k ) ∩ (Σ̂+
k+1 ∪ Σ̂−

k+1) = ∅ to imply the claim for any
k � 2.

By contradiction, suppose (λ+, λ−,μ−) ∈ (Σ̂+
k ∪ Σ̂−

k ) ∩ (Σ̂+
k+1 ∪ Σ̂−

k+1), then we have the
corresponding nontrivial solutions (uk, vk) and (uk+1, vk+1), where the second ones change sign
once more than the first ones and so in one of the two endpoints (suppose in 0) the sign is the
same and we may choose a rescalement such that uk(0) = uk+1(0) and u′

k(0) = u′
k+1(0).

Then let y = uk − uk+1 and z = vk − vk+1: we have y(0) = y′(0) = 0 and

−y′′ = −(uk − uk+1)
′′ = λ+(

v+
k − v+

k+1

) − λ−(v−
k − v−

k+1)

= [
λ+χv++(x) + λ−χv−−(x) + cv1(x)χv+−(x) + cv2(x)χv−+(x)

]
z,
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−z′′ = −(vk − vk+1)
′′ = λ+(

u+
k − u+

k+1

) − μ−(u−
k − u−

k+1)

= [
λ+χu++(x) + μ−χu−−(x) + cu1(x)χu+−(x) + cu2(x)χu−+(x)

]
y (4.36)

where

χu±1,±2(x) = χ{±1uk>0,±2uk+1>0}(x), (4.37)

cu1(x) = λ+u+
k + μ−u−

k+1

u+
k + u−

k+1

χu+−(x), (4.38)

cu2(x) = −λ+u+
k+1 − μ−u−

k

−u+
k+1 − u−

k

χu−+(x); (4.39)

and analogous definitions for χv ±1,±2 , cv1 and cv2.
Since the functions in square brackets in (4.36) are L∞(0,1) and positive a.e., by Lemma 3.2

we get y ≡ z ≡ 0, a contradiction since in a neighborhood of 1 the signs of uk and uk+1 are
different and then y �= 0.

To conclude, observe that the same argument works also with Σ̂±
2 and Σ̂t in place of Σ̂±

k+1
and Σ̂±

k . �
Proposition 4.11. In the case of Neumann boundary conditions Σ̂+

k ≡ Σ̂−
k for all k � 2.

In the case of Dirichlet boundary conditions

• Σ̂+
k ≡ Σ̂−

k for all even k � 2,
• Σ̂+

k �≡ Σ̂−
k for all odd k � 3.

The proof of this proposition is relatively simple except for the Neumann case with odd k: to
obtain this result we will need some symmetry properties of the nontrivial solutions: in particular,
the proof of Proposition 4.11 will be given together with that of the following

Proposition 4.12. The nontrivial solutions corresponding to points in Σ̂±
k with k odd are sym-

metric, that is,

(u, v)(x) = (u, v)(1 − x). (4.40)

Moreover, for Neumann boundary conditions, one has that if j � 0 and k ≡ 1 (MOD 2j+1),
then

(u, v)(x) = (u, v)
(
(1/2)j − x

)
for x ∈ [

0, (1/2)j
]

(4.41)

and then u,v are (1/2)j periodic in [0,1].

Proof of Propositions 4.11 and 4.12. Let (λ+, λ−,μ−) ∈ Σ̂+
k and (u∗, v∗) be a correspond-

ing nontrivial solution (then (λ+, λ−,μ−, s) ∈ Σ̃+
k where s = v′∗(0)

u′∗(0)
for Dirichlet boundary

conditions and s = v∗(0)
u∗(0)

for Neumann boundary conditions); then define the new functions
(U(x),V (x)) = (u∗(1 − x), v∗(1 − x)).



E. Massa, B. Ruf / J. Differential Equations 234 (2007) 311–336 329
If k is even, the nontrivial solutions which start positive end negative and vice versa, then
(U(x),V (x)) both start negative, have k − 1 internal zeros and satisfy the Fučík problem with

coefficients (λ+, λ−,μ−) too, that is (λ+, λ−,μ−, s) ∈ Σ̃−
k where s = − v′∗(1)

u′∗(1)
(respectively s =

− v∗(1)
u∗(1)

for the Neumann case) which implies (λ+, λ−,μ−) ∈ Σ̂−
k too.

This gives Σ̂+
k ⊆ Σ̂−

k for the case k even; the inverse inclusion follows in the same way.
If k is odd, we have that the nontrivial solutions which start positive end positive and those

which start negative end negative. By Eq. (4.5) ∂λ+
∂λ− (λk, λk) = − ∫ 1

0 (φ−
k )2∫ 1

0 2(φ+
k )2

; for Dirichlet boundary

conditions this ratio is different if we consider φk starting positive or starting negative, since it
has a different number of positive and negative congruent bumps; this implies that Σ̂+

k and Σ̂−
k

are different in a neighborhood of (λk, λk, λk) and then Σ̂+
k �≡ Σ̂−

k .
Now we prove the first symmetry claimed in Proposition 4.12. We consider initially positive

solutions (the argument is the same for initially negative solutions): in this case also (U(x),V (x))

start positive, have k − 1 internal zeros as u∗, v∗ and are nontrivial solutions corresponding to
(λ+, λ−,μ−). This implies that in fact (U,V ) ≡ (u∗, v∗) (that is, they are symmetric), since
otherwise they would give rise to another branch of Σ̃+

k , which is excluded by Propositions 4.4
and 4.5.

Now we restrict to the case of Neumann boundary conditions: we just proved that, for k odd,
u∗, v∗ are symmetric and so

u′∗(1/2) = v′∗(1/2) = 0, u∗(1) = u∗(0) and v∗(1) = v∗(0); (4.42)

moreover, both have (k − 1)/2 zeros in (0,1/2).
Then we define the functions

(ũ, ṽ) : [0,2] → R
2: x �→

{
(u∗(x), v∗(x)) for x ∈ [0,1],
(u∗(x − 1), v∗(x − 1)) for x ∈ (1,2], (4.43)

w1 = (u1, v1) : [0,1] → R
2: x �→ (

ũ(x + 1/2), ṽ(x + 1/2)
)
. (4.44)

By (4.42), w1 is another nontrivial solution of the Fučík problem; now we have two possibilities
(remember that ũ(1/2)ṽ(1/2) � 0 is excluded by Lemma 3.2 since ũ′(1/2) = 0):

(a) if (k − 1)/2 ≡ 1 (MOD 2), then the number of zeros in (0,1/2) is odd and then ũ(1/2) <

0, ṽ(1/2) < 0; this implies that w1(x) is a nontrivial solution starting negative and so
(λ+, λ−,μ−) ∈ Σ̂−

k ;
(b) if (k − 1)/2 ≡ 0 (MOD 2), then the number of zeros in (0,1/2) is even and then ũ(1/2) >

0, ṽ(1/2) > 0; then consider the new functions (U(x),V (x)) = (ũ(3/2 − x), ṽ(3/2 − x))

with x ∈ [0,1]: they start positive, have k − 1 internal zeros and are nontrivial solutions
corresponding to (λ+, λ−,μ−) as u∗, v∗; then as before they must be the same and so we
prove that (u∗, v∗)(1/2 − x) = (u∗, v∗)(x) for x ∈ [0,1/2].
This now implies

u′∗(1/4) = v′∗(1/4) = 0, u∗(1/2) = u∗(0) and v∗(1/2) = v∗(0) (4.45)
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and both have (k − 1)/4 zeros in (0,1/4), which corresponds to what we had in Eq. (4.42),
and so allows us to repeat the argument with the function

w2 = (u2, v2) : [0,1/2] → R
2: x �→ (

ũ(x + 1/4), ṽ(x + 1/4)
)
. (4.46)

The procedure continues by splitting the interval, until we get i∗ for which (k − 1)/2i∗ ≡ 1
(MOD 2) and so we fall into case (a), implying that (λ+, λ−,μ−) ∈ Σ̂−

k and so Σ̂+
k ⊆ Σ̂−

k .
However, for j < i∗, we have (k − 1)/2j ≡ 0 (MOD 2) (or, which is the same, k ≡ 1

(MOD 2j+1)), then we fall into case (b) and so we prove (u, v)(x) = (u, v)((1/2)j − x) for
x ∈ [0, (1/2)j ].

Finally, observe that the relations (u, v)(x) = (u, v)((1/2)j−1 − x) for x ∈ [0, (1/2)j−1] and
(u, v)(x) = (u, v)((1/2)j − x) for x ∈ [0, (1/2)j ] imply (just put (1/2)j − x in place of x in the
first one) that (u, v)(x) = (u, v)((1/2)j + x) for x ∈ [0, (1/2)j ] and then the functions are (by
induction over j ) also (1/2)i

∗−1-periodic (which is a minimal period since u∗((1/2)i
∗
) < 0). �

Proof of Theorem 1.2 and Proposition 1.3. Theorem 1.2 follows by joining Propositions 4.4,
4.5, Corollary 4.7 and Propositions 4.9–4.11.

Proposition 1.3 comes from Proposition 4.12. �
Remark 4.13. Observe that for the scalar case it is always true that the nontrivial solutions have
a periodicity and some sort of symmetry, since after a positive and a negative bump they start to
repeat.

For the system, we are able to assert a periodicity, by exploiting the above symmetries, only
for Neumann boundary conditions and for k of the form given in Proposition 4.12.

To conclude this section, we exhibit a curve in (Σ̂+
k ∩ Σ̂−

k ), whose existence is a consequence
of the symmetries of Σ̂ :

Proposition 4.14. (Σ̂+
k ∩ Σ̂−

k ) contains an unbounded curve which passes through (λk, λk, λk);
moreover, this is the unique point in (Σ̂+

k ∩ Σ̂−
k ) with λ− = μ−.

Proof. The last claim is a trivial consequence of Proposition 4.8.
First observe that by joining the two symmetries in Lemma 2.2, we obtain that if

(λ+, λ−,μ−) ∈ Σ̂+
k with corresponding nontrivial solutions (u, v), and λ+ = √

λ−μ−, then

(λ+, λ−,μ−) ∈ Σ̂ with corresponding nontrivial solutions (−
√

λ−
μ− v,−u), and then it belongs

to Σ̂−
k .

Now, arguing as for point 4 in Proposition 4.4, one gets that for any assigned ratio ξ > 0, there
exists a unique (λ+, λ−,μ−) ∈ Σ̂+

k such that λ−
μ− = ξ and λ+ = √

λ−μ−.

By continuity, this provides a curve in (Σ̂+
k ∩ Σ̂−

k ) parameterized by ξ , passing through
(λk, λk, λk) for ξ = 1. �
Remark 4.15. In the scalar case with Dirichlet boundary conditions, it is known that the branches
of Σ passing trough a point (λk, λk) with k odd intersect only in (λk, λk). For the system, we
were not able to prove an analogous result; that is, Σ̂+

k ∩ Σ̂−
k (with k odd) may contain other

points than (λk, λk, λk) and those given in Proposition 4.14.
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5. Systems with “eigenvalue intersecting nonlinearities”

In this section we study the solvability of systems with so-called “jumping nonlinearities,”
i.e. nonlinearities which asymptotically intersect some of the eigenvalue of the linear system. We
consider ⎧⎨⎩

−u′′ = g1(x, v) + h1(x) in (0,1),

−v′′ = g2(x,u) + h2(x) in (0,1),

Bu = Bv = 0 in {0;1},
(5.1)

where we assume h1,2 ∈ L2(0,1), and g1,2 ∈ C0([0,1] × R) with

lim
s→±∞

g1(x, s)

s
= λ±, lim

t→±∞
g2(x, t)

t
= μ±, λ+ = μ+, (5.2)

where the limits are uniform with respect to x ∈ [0,1]. As mentioned in the introduction, the
solvability properties of (5.1) depend on the location of λ+, λ− and μ− with respect to the
Fučík system. In particular, we need to analyze some properties of the complement of the Fučík
spectrum Σ̂ in (R+)3.

Throughout this section, when considering the complement of a set, it will be intended with
respect to (R+)3.

Also, we will denote by D = {(λ+, λ−,μ−) ∈ (R+)3: λ+ = λ− = μ−} the diagonal in (R+)3

and, in order to simplify the statement of the claims, we will consider the functions f ±
k , D±

k and
E±

k (see in Definition 4.6) to be defined in all (R+)2 (respectively R
+), assigning the value +∞

where they are not naturally defined; we also define, for uniformity of notation,

f ±
1 :

(
R+)2 → R ∪ {+∞}: f +

1 (x, y) ≡ λ1; f −
1 (x, y) =

{
0 for

√
xy > λ1,

+∞ otherwise.

First, we determine the connected components of Σ̂c which contain a segment of D: for this we
define

R1 =
⋃{

O: O is a connected component of Σ̂c and O ∩D �= ∅}
,

R2 =
⋃{

O: O is a connected component of Σ̂c and O ∩D = ∅}
.

We start this study with the following two lemmas:

Lemma 5.1. For k � 2, (Σ̂+
k )c (respectively (Σ̂−

k )c) has exactly two connected components.

Proof. All the points (λ+, λ−,μ−) such that λ+ > f +
k (λ−,μ−) are in the same connected com-

ponent, since Λ+
k is connected by definition.

Also, the points such that λ+ < f +
k (λ−,μ−) are in the same connected component, by the

shape of Λ+
k and the behavior of f +

k at its boundary.
Finally, consider a path starting from a point P with λ+ > f +

k (λ−,μ−) and reaching a point Q
with λ+ < f +

k (λ−,μ−): since the path is a compact set, we have that λ+ is bounded, say λ+ � d

along this path. Since f + is continuous one has for all points in the path with (λ−,μ−) ∈ Λ+ that
k k
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λ+ > f +
k (λ−,μ−), but since the limit of f +

k at the boundary of Λ+
k is +∞, for (λ−,μ−) to exit

from Λ+
k one would get λ+ > d somewhere, which is impossible; so Q may not be connected to

P and then the connected components are exactly two.
The same proof works for (Σ̂−

k )c. �
Lemma 5.2. For k � 2, (Σ̂+

k ∪ Σ̂−
k )c has exactly two connected components when Σ̂+

k ≡ Σ̂−
k

and at least four when Σ̂+
k �≡ Σ̂−

k .

Proof. The case Σ̂+
k ≡ Σ̂−

k is trivial by Lemma 5.1.
When Σ̂+

k �≡ Σ̂−
k , that is for Dirichlet boundary conditions and k odd, we know that when

λ− = μ− we have the same structure as Σscal; in particular, there exist points above Σ̂+
k and

below Σ̂−
k as well as points in (Σ̂+

k ∪ Σ̂−
k )c which lie above Σ̂−

k or below Σ̂+
k ; moreover, it is

a consequence of the above Lemma 5.1 that the points which are above one of the surfaces and
those below the same surface may not be in the same connected component, so we get at least four
components (there may be more than four, depending on the structure of the set Σ̂+

k ∩ Σ̂−
k ). �

We now state the main result concerning the structure of Σ̂c:

Proposition 5.3. For Neumann boundary conditions,

R1 = Σ̂c and R2 = ∅.

For Dirichlet boundary conditions, both R1 and R2 are not empty; in fact,

R1 = {
(x, y, z) ∈ (

R
+)3: max

{
f +

k , f −
k

}
(y, z) < x < min

{
f +

k+1, f
−
k+1

}
(y, z) for some k � 1

}
∪ {

(x, y, z) ∈ (
R

+)3: 0 < x < min
{
f +

1 , f −
1

}
(y, z)

}
, (5.3)

while

R2 = {
(x, y, z) ∈ (

R
+)3: min

{
f +

k , f −
k

}
(y, z) < x < max

{
f +

k , f −
k

}
(y, z) for some k � 1

}
.

Proof. By Proposition 4.10 and Lemma 5.2, the connected components which are delimited by
the surfaces Σ̂+

k ∪ Σ̂−
k on one side and Σ̂+

k+1 ∪ Σ̂−
k+1 on the other (or, by Σ̂t and Σ̂+

2 ≡ Σ̂−
2 for

k = 1), contain the nonvoid segment of the diagonal D with λ+ = λ− = μ− ∈ (λk, λk+1); then
these components are in R1.

In the Neumann case these regions cover the whole of Σ̂c by Lemma 5.2. In the Dirichlet
case we have in addition the set {(x, y, z) ∈ (R+)3: 0 < x < min{f +

1 , f −
1 }(y, z)} which cov-

ers the segment of the diagonal D with λ+ = λ− = μ− ∈ [0, λ1) and hence lies in R1; all the
other connected components are in R2 since the above regions already cover all the points in
D ∩ Σ̂c. �

We now consider the nonlinear system (5.1), where g1, g2 ∈ C0([0,1] × R) satisfy (5.2).

Theorem 5.4. Suppose that (λ+, λ−,μ−) ∈ R1, where λ+, λ− and μ− are given by (5.2). Then
system (5.1) has solution for any forcing term (h1, h2) ∈ (L2(0,1))2.
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Proof. The proof is the same as in [9] (Theorem 4.5) and it is similar to the proof in [1] for the
scalar case. See also Corollary 4.6 in [9] for a more general result.

In short, the idea of the proof is to find a solution of (5.1) as a zero of a suitable map
S : [L2]2 → [L2]2. This is obtained by use of the Leray–Schauder degree, after having proved
an a priori estimate for the possible solutions; this allows to relate via homotopy the degree of
S to the degree of another map associated to the Fučík problem with coefficients (λ+, λ−,μ−).
Then, since this last degree is 1 whenever (λ+, λ−,μ−) belongs to a connected component like
those in R1, the claimed solution is obtained (see also Lemma 4.2 and Corollary 4.3 in [9], which
extend to the case of systems a known property of the scalar Fučík spectrum). �
5.1. A remark about “linear-superlinear” systems

In this section we investigate what can be said about the shape “at infinity” of the sets Σ̂

and Σ̂c. The motivation for this analysis is again system (5.1), but in the case in which one or
more of the limits in (5.2) are infinite, in particular, when at least one of the two nonlinearities is
asymptotically linear on one side and superlinear on the other side.

In order to clarify the kind of properties we want to investigate, we resume here briefly what
is known for the scalar problems: consider the scalar analogue of system (5.1){−u′′ = g(x,u) + h(x) in (0,1),

Bu = 0 in {0;1} (5.4)

with lims→±∞ g(x,s)
s

= λ±, and let now λ+ = +∞: it is known that the solvability of (5.4) is
related to the existence of “gaps at infinity” between the curves of Σscal.

In brief, in [11] and [12], an existence result with arbitrary h ∈ L2 was obtained in the situation
where λ− admits a neighborhood N(λ−) such that, for a suitable x̄, the set {x > x̄, y ∈ N(λ−)}
is contained in the same connected component of Σc

scal and this component contains a segment
of the diagonal {λ+ = λ−} (that is, components like those in R1 of the previous section). Also,
if instead of N(λ−) one has just a half-neighborhood of λ−, one still obtains existence results
under an additional nonresonance condition.

On the other hand, in [14] it was shown that the existence of a solution with arbitrary h ∈ L2

never holds for the case in which the set {x > x̄, y ∈ N(λ−)} is contained in a component of
Σc

scal which does not contain a segment of the diagonal (the analogues of the regions in R2 of the
previous section).

By looking at the shape of Σscal (see Section 2), one may observe that the first situation is
typical of the Neumann boundary conditions, while the second one is typical of the Dirichlet
case.

Going back to the system, we observe that its structure gives rise to more possibilities: ac-
tually (see also in [13]), one may have the superlinearity in both equations or in just one of
the two; since in this paper we are always considering the same coefficient for u+ and v+, the
case of superlinearity in both equations will be analyzed through the case of finite (λ−,μ−)

and λ+ = +∞, while the case of superlinearity in only one equation will be the case of finite
(λ+, λ−) and μ− = +∞.

Motivated by the above results, we define the following “neighborhoods of halflines”

Sx
ε (λ−,μ−)

[
λ+] = {

(x, y, z) ∈ R
3: x � λ+, |y − λ−| � ε, |z − μ−| � ε

}
, (5.5)

Sz
ε

(
λ+, λ−)[μ−] = {

(x, y, z) ∈ R
3: z � μ−, |y − λ−| � ε,

∣∣x − λ+∣∣ � ε
}
, (5.6)
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and we will investigate the following sets (i = 1,2):

Ax
i = {

(λ−,μ−) ∈ (
R

+)2
: ∃λ+ > 0, ε > 0: Sx

ε (λ−,μ−)
[
λ+] ⊆ Ri

}
, (5.7)

Az
i = {(

λ+, λ−) ∈ (
R

+)2: ∃μ− > 0, ε > 0: Sz
ε

(
λ+, λ−)[μ−] ⊆ Ri

}
, (5.8)

Bx
i = {

(λ−,μ−) ∈ (
R

+)2: ∃λ+ > 0: Sx
0 (λ−,μ−)

[
λ+] ⊆ Ri

}
, (5.9)

Bz
i = {(

λ+, λ−) ∈ (
R

+)2
: ∃μ− > 0: Sz

0

(
λ+, λ−)[μ−] ⊆ Ri

}
. (5.10)

In short, the set Bx
1 will contain those points (λ−,μ−) for which problem (5.1) is solvable for

λ+ large enough, the set Ax
1 will contain those for which problem (5.1) with λ+ = +∞ could

still be solvable, in analogy with the scalar case; the sets Bz
1 and Az

1 will be the analogues for the
case where we fix (λ+, λ−) and we consider μ− large or infinity; finally, the sets with index 2
will contain points for which the situation is analogous to that in which the scalar case is not
solvable for arbitrary forcing term.

The topological result of this section is the following

Proposition 5.5. For Neumann boundary conditions,

• the sets Ax
1 and Az

1 are open and dense in (R+)2,
• Ax

2 = Az
2 = Bx

2 = Bz
2 = ∅,

• Bx
1 = Bz

1 = (R+ \ {λ1})2.

For Dirichlet boundary conditions

• Ax
1 ∪ Ax

2 and Az
1 ∪ Az

2 are open and dense in (R+)2,
• Bx

1 ∪ Bx
2 = Bz

1 ∪ Bz
2 = (R+ \ {λ1})2,

• Ax
2 and Bx

2 are both not empty.

Proof. Let us consider first the Neumann case.
It is trivial that Ax

2 , Az
2, Bx

2 and Bz
2 are empty since for Neumann boundary conditions R2 is

empty.
Now, given (λ−,μ−) ∈ (R+)2, for any k � 2,

(1) if (λ−,μ−) ∈ Λ+
k then for λ̃+ > f +

k (λ−,μ−) there exists ε > 0 such that Sx
ε (λ−,μ−)[λ̃+]

does not intersect Σ̂+
k ,

(2) if (λ−,μ−) /∈ Λ̄+
k , then there exists ε > 0 such that for arbitrary λ̃+, Sx

ε (λ−,μ−)[λ̃+] does
not intersect Σ̂+

k ,
(3) if (λ−,μ−) ∈ ∂Λ+

k , then for arbitrary λ̃+, Sx
0 (λ−,μ−)[λ̃+] does not intersect Σ̂+

k , but for
any ε > 0 no λ̃+ exists such that Sx

ε (λ−,μ−)[λ̃+] does not intersect Σ̂+
k ,

and analogous results hold for the intersections with Σ̂+
k .

However, cases (1) and (3) may hold only for a finite number of k by Proposition 4.9: this
implies that one may choose a λ̃+ which does not depend on k, that is, (λ−,μ−) ∈ Bx .
1
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Also, if case (3) never happens then (λ−,μ−) ∈ Ax
1 , while if it happens for some k, then for

any δ > 0 small enough (λ− − δ,μ− − δ) ∈ Ax
1 : this indeed implies that Ax

1 is dense; finally, it
is easy to see by its definition that it is an open set.

For Az
1 and Bz

1 one proceeds in the same way, by comparing λ+ with E±
k (λ−) and again using

Proposition 4.9.
For the Dirichlet case, we argue in the same way to obtain that Ax

1 ∪Ax
2 and Az

1 ∪Az
2 are open

and dense and Bx
1 ∪ Bx

2 = Bz
1 ∪ Bz

2 = (R+ \ {λ1})2.
Finally, it is simple (by the knowledge of Σscal and the continuity of the surfaces in Σ̂ ) to see

that if λ− = μ− �= λk , then (λ−,μ−) ∈ Ax
2 ⊆ Bx

2 . �
6. Some interesting problems

We conclude the paper with some unanswered questions which we believe could be of some
interest.

• Asymptotic behavior of the surfaces Σ̂±
k : in Proposition 4.9 some bounds are given, but no

exact value (except for the case λ− = μ−, in which case the problem reduces to the scalar
one).
Is it possible to say more about these asymptotic values? In particular, it is known (see
Eq. (2.5)) that in the scalar Dirichlet case the asymptotes of Σ−

2i−1, Σ2i and Σ+
2i+1 coincide:

does the same happen for the surfaces in Σ̂?
Observe also that in Proposition 5.5, we obtained that in the Neumann case there indeed exist
gaps at infinity between the surfaces of Σ̂ , but we could not say exactly where these gaps
are located, and also we could not guarantee that a gap exists between an arbitrary pair of
consecutive surfaces Σ̂k , Σ̂k+1.
We believe that some results in these directions could be achieved by the analysis of the
behavior of the nontrivial solutions when one of the parameters goes to +∞, as was done in
[10] for the scalar fourth order problem.

• Do the nontrivial solutions have more symmetries than those proved in Proposition 1.3?

References
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