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1. Introduction

In this paper we investigate control problems for a class of integro-differential equations
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(0 < B < n) with null initial data

u(0,x) =ue(0,x) =0, xe(0,m), (1.2)
and boundary conditions
0 ifx=0
ut,x)=4 px=E (1.3)
g, ifx=m.

If we regard g as a control function, our reachability problem consists in proving the existence of
g € L?(0,T) such that a weak solution of Eq. (1.1), subject to boundary conditions (1.3), moves from
the null state to a given one in finite control time. To be more precise, we adopt the same definition
of reachability problems for systems with memory given by several authors in the literature, see
for example [19,8,9,13,15,16,20,21]. Indeed, we mean the following: given T > 0, ug € L%(0, ) and
u; € H1(0,7), find g € L?(0, T) such that the weak solution u of problem (1.1)-(1.3) verifies the
final conditions

u(T,x) =ug(x), u(T,x) =ui(x), xe(0,m). (1.4)

Our goal is to achieve such result without any smallness assumption on the convolution kernel, as
suggested by J.-L. Lions in [19, p. 258]. Moreover, due to the finite speed of propagation, we expect
that the controllability time T will be sufficiently large. Indeed, we will find that T > 27 /y, where y
is the gap of a branch of eigenvalues related to the integro-differential operator, see Theorem 6.1.

As it is well-known, a common way for studying exact controllability problems is the so-called
Hilbert Uniqueness Method, introduced by Lagnese-Lions, see [12,17-19]. We will apply this method
to Eq. (1.1). The HUM method is based on a “uniqueness theorem” for the adjoint problem. To prove
such uniqueness theorem we employ some typical techniques of harmonic analysis, see [25]. This
approach relies on Fourier series development for the solution v of the adjoint problem, that exhibits
an expansion in the variable t like this

o0

v)= Y (Cae'™" + Rye™), (1.5)

n=—oo

where wp, Cp € C and 1y, R;; € R. In this framework Ingham type estimates [7] play an important role.
We need to establish for functions of the type (1.5) inverse and direct inequalities, obtaining them in
the same sharp time of the nonintegral case.

Theorem 1.1. Let {wn }nez and {rn}nez be sequences of pairwise distinct numbers such that r, # iwy, for any
n,m € Z. Assume that {Jwy}, {rn} are bounded sequences and

Rwn — Ropg—1 =2y >0 Vin|>n',

mlli_r)rlooi‘swn =a, 1m<—Sw, Vin|=n,
W / 4
IRnI<WICnI Vin| =n, [Rn|l < p|Cpl Vin| <1,

forsomen’ e N,«a € R, 4 > 0and v > 1/2. Then, forany T > 27/ we have

T

am Y lal< [

0

[e e}

‘ 2
Z (Cne”‘)"t—i—Rner"t)‘ dt,

n=-—00

where c1(T) is a positive constant.
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Theorem 1.2. Assume that {Swy}, {rn} are bounded sequences and

Rop —Rwp_1 =y >0 Vin|=n, lim S, =«,
In|—o0

[ / /

|Rn|<W|Cn| Vin| >n', [Rp| < w|Cp| Vin| <1,

forsomen’ e N,a € R, u > 0and v > 1/2. Then, forany T > 7/ we have

I

where ¢, (T) is a positive constant.

o0 . 2 o0
D (Cae™ ™t + Rpe™)| dt <ca(T) D |Cal,

n=—oo n=—o0

To prove the previous results, we need Haraux type estimates [6] for functions defined as in (1.5).

Proposition 1.3. Let {wy}nez be such that limy . o |wn| = +00. Assume that {Iwy}, {ry} are bounded se-
quences and there exists a finite set F of integers such that for any sequences {C} and {Rp} with C;, =R, =0
forn € F, the estimates

T

caZ|cn|2</

n¢F 0

2

de<ch ) |Cal®
n¢F

Z (Cneiwnt + Rnernt)
n¢F

are satisfied for some constants c’, ¢, > 0. Then, there exists c; > 0 such that for any sequences {C,} and {R;,}
the estimate

T

o0
2
o Y ai< |
n=-00

0

2
dt

oo

Z (Cneiw”t—}—Rner”t)

n=-—00

holds.

Proposition 1.4. Assume that there exists a finite set F of integers such that for any sequences {Cn} and {R;}
with C, = R, = 0 for n € F, the estimate

T 2

dt <cy ) 1Cal?
n¢F

Z (Cneiwnt + Rnernt)
n¢F

-T
is satisfied for some c’, > 0. Then, for any sequences {Cp} and {Rp} verifying
|Rn| < |Cal foranyne F,
for some > 0, the estimate

I

2 o0
dt<cy Y |Gl

n=—oo

oo

Z (Cneiwnt+Rnernt)

n=—o0

holds for some ¢y > 0.
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The proofs of these results are rather technical, see Sections 4, 5 and Appendix A. In particular,
to prove the inverse inequality we need to introduce a family of operators, which annihilate a finite
number of terms in the Fourier series. Our operators are slightly different from those proposed in [6]
and [10]. Given § > 0, w € C and r € R arbitrarily, we define the linear operators Is,, and Is . ; as
follows: for every continuous function u : R — C the function I5 ,u : R — C is given by the formula

5
1 .
Is ou(t) :==u(t) — 3 / e 'yt +s)ds, teR,
0

and

Is,or:=1Is,0p0 Ia,fir-

In [9] Eq. (1.1) has been studied for more general memory kernels, but the control is put on the
whole boundary, so that the abstract results obtained there cannot be directly applied to our problem.

Our non-harmonic analysis techniques, on the other hand, allow us to give precise estimates on
controllability time. The inverse and direct inequalities we get (see Theorems 1.1 and 1.2 respectively)
are interesting in themselves, because they could also be applied to other examples.

For Ingham’s type estimates, our results can be compared with those proved in [20], where func-
tions of the type

o0
vy = Y (Afe Ut pAeTw), >0 (16)

n=—oo

(at,a; € R, A, A; € C) are considered. Our analysis is different from that of [20], because our ad-
missible integral kernels are exponential functions. We have to prove Ingham estimates for functions
(1.5) under the assumptions of Theorems 1.1 and 1.2, so they are not of the type (1.6). The main dif-
ference is that the exponents in (1.5) have a nonvanishing real part. To overcome that problem, we
need two technical results (see Theorems 4.2 and 5.3 below).

Exponential kernels arise in linear viscoelasticity theory, such as in the analysis of Maxwell fluids
or Poynting-Thomson solids, see e.g. [22,24]. For other references in viscoelasticity theory see the
seminal papers of Dafermos [1,2] and [23,14].

Concerning Haraux’s type estimates, in [10] functions of the type

oo
v(t) = Z Cpelt. t>0
n=—oo

(wp, Cy € C) have been studied.

Our analysis of the estimates changes completely with respect to that of cited papers, because the
functions under study are different. Indeed, as we shall see in Section 6, exponential kernels lead
to a new form (1.5) of the functions, where the exponents iw, have also a nonvanishing real part
and some other real terms Rpe™ appear in the sum. Moreover, in the proofs of Ingham estimates
the choice of weight function is fundamental and we borrow from [3] the idea of a different weight
function with respect to the classical case [7], see also [11]. Other papers related to our problem are
[4,16,26,27], where the approach is different to that of Ingham type.

The plan of our paper is the following. In Section 2 we give some preliminary results. In Sec-
tion 3 we describe the HUM method in an abstract setting. In Section 4 we prove Theorem 1.2 and
Proposition 1.4 and in Section 5 we prove Theorem 1.1. In Section 6 we give a reachability result for
an integro-differential equation. Finally, in Appendix A we prove some technical results and Proposi-
tion 1.3.
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2. Preliminaries

Let X be a real Hilbert space with scalar product (-,-) and norm | - ||. For any T € (0, o] we
denote by L1(0, T; X) the usual spaces of measurable functions v : (0, T) — X such that one has

T
WVihr ::/”v(t)” dt < oo,
0

We shall use the shorter notation ||v||; for ||v|1,... We denote by L}OC(O, o0; X) the space of functions

belonging to L'(0, T; X) for any T € (0,c0). In the case of X =R, we will use the abbreviations
L(0,T) and L} (0, c0) to denote the spaces L!(0, T;R) and L] (0, co; R), respectively.
Classical results for integral equations (see e.g. [5, Theorem 2.3.5]) ensure that, for any kernel

Hell (0,00) and any g € L! (0, o0; X), the problem

loc loc
) —Hxpt)=g1t), t=0, (2.1)

1

1oc(0> 00; X). In particular, there is a unique solution o € Ll (0, 00) of

loc

o) —Hxo(t)=H(), t>0. (2.2)

admits a unique solution ¢ € L

Such a solution is called the resolvent kernel of H. Furthermore, the solution ¢ of (2.1) is given by the
variation of constants formula

pt)y=g)+oxg(t), t=0, (2.3)
where g is the resolvent kernel of H.

Lemma21.Given He L] _

(0,00) and g € L, (00, T; X), a function f € L} (=00, T; X) is a solution of

loc

T

f(t)—/ Hs-0f(s)ds=g(), t<T, (2.4)
t
if and only if
T
ﬂ0=ﬂ0+/m&4MSMst<1 (2.5)
¢

where o is the resolvent kernel of H.

Proof. If f is a solution of (2.4), then, substituting t with T — 7, 7 > 0, we get

T

f(T—r)—/H(s—T—i—t)f(s)ds:g(T—t), T

T-t

WV
o

Set p(t) = f(T — 1) and q(v) = g(T — 1), we have

T

MU—/HU—QMQ$ZMﬂ,r>O
0
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Thanks to (2.3) one gets

T

Mﬂzmw+/éa—wm9w,

0

where o is the resolvent kernel of H. Recalling that p(t) = f(T — ) and q(t) = g(T — 7), we have

T
f(T—r)=g(T—r)—i—/Q(t—s)g(T—s)ds
0

T

:g(T—t)+/Q(t—T+s)g(s)ds, T2>0.
T—1

Finally, substituting T — t with t, t < T, we obtain

T

ﬂﬂzﬂﬁ+/@@—0ﬂ®w,

t

that is (2.5) holds true.
Repeating the reasoning backward, we have that if f verifies (2.5), then (2.4) is satisfied. O

Corollary 2.2. The following are true.

(i) The resolvent kernel of t — Be " is t — BeB—Mt,
(ii) Given g € L} (—o0, T; X), a function f € L} (—oc, T; X) is a solution of

T
FO-p [ MO0 ds =80, t<T.
t
if and only if
T
O =20+ [#VOg)ds, t<T.
t
Proof. (i) The resolvent kernel of t — Be~"" is the solution of the integral equation
¢
o) B / e 1 o(s)ds = pe”, t>0,
0

whence, multiplying by e, we obtain
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t
Mo =p+5 [ rowids. t>0
0
Differentiating yields

%[e"fg(t)] = Beo(t), >0,

0(0)=48.
Solving the above Cauchy problem gives
e"o(t) = pe’",
whence, multiplying by e=", one gets
o(t) = pe~".
The point (ii) follows from Lemma 2.1. O

Lemma 2.3. Given A, 8, 11 € R, a function f € C2([0, o0)) is a solution of the integro-differential equation
t
() +rf(t) — AB / e 19 f(s)ds=0, t>0, (2.6)
0

ifand only if f is a solution of the problem

{ O +nf"®) +rf' O +r(n—-B)fE)=0, t=0,

(2.7)
f"(0)=—-1f(0).

Proof. Let f be a solution of (2.6). It follows that f”(0)+Af(0) =0 and f € C3([0, 00)). Differentiat-
ing (2.6), we get

t
£ 1O + 4 / e f(s)ds — 1B (6) = 0.
0

Substituting in the above equation the identity

t

AB / e 19 f(s)yds = f(t) + A f(©),

0

we obtain

f"O+ 'O +nf"O) +nrf ) —r18f () =0,

whence f is a solution of (2.7).
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On the other hand, if f is a solution of (2.7), multiplying the differential equation in (2.7) by e
and integrating from 0 to t, we obtain

t t t t

/e"sf/”(s)ds+77/e”ﬁ”(s)ds—i—k/e”‘ﬁ(s)ds+A(n—ﬂ)/e”sf(s)ds:o.
0

0 0 0

Integrating by parts the first term and the third one, we have
¢
e F7(0) — () + 2™ F(6) = 2.f(0) — AB / e £ (s)ds = 0.
0

Using f”(0) = —Af(0) and multiplying by e~", we obtain (2.6). O
It is easy to verify the following result.

Lemma 2.4. The third degree polynomial

243 729
F(t) := —32t> + 108t% — AT (2.8)

is strictly decreasing in [0, co). Moreover, the unique real zero of F(t) is %.

3. Hilbert Uniqueness Method

In this section we formally describe the method in an abstract setting.
We introduce a linear operator A: D(A) C X — X on X with domain D(A) and H € Ll (0, 00).

I
Let Y be another real Hilbert space with scalar product (-,-)y and norm | - |ly and B € ZC(XO; Y),

where Xp is a space such that D(A) C Xo C X. We consider the integro-differential equation

t
u”(t) + Au(t) —/ H(t —s)Au(s)ds=0, te(0,T), (3.1)
0

with null initial conditions
u(0)=u'(0)=0, (3.2)
and
Bu(t) =g(), te(0,T). (3.3)
In the applications B can be, for example, a trace operator. For a reachability problem we mean the
following: given T > 0, ug € X and u; € (Ker(B))', find g € L2(0, T; Y) such that the weak solution u
of problem (3.1)-(3.3) verifies the final conditions

u(T) = uo, u(T) =uy. (3.4)

To explain how the HUM method can be used to solve a reachability problem, we proceed dividing
the reasoning into several steps.



Step 1.

Step 2.

Step 3.
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A:D(A) C X — X denotes a self-adjoint positive linear operator on X with dense domain
D(A) C D(A) such that for any x € D(A) Ax = Ax and D(+~/A) = Ker(13). We define by induc-
tion

D(AY):={xe D(A¥"): A 'xe D(A)}, keN.

Given zg € D(A¥) and z; € D(A¥), we consider the adjoint equation of (3.1), that is

T
2/ () + Az(t) — / H(s —t)Az(s)ds =0, te][0,T], (3.5)
t
with final data
Z2(T) = zg, Z(T)=2z. (3.6)

Problem (3.5)-(3.6) admits a unique solution z € Ck=J([0, T]; D(AY)), j=0,1,...,k. Indeed,
set v(t) = z(T —t), problem (3.5)-(3.6) is equivalent to
t
v7(t) + Av(t) — / H({t—s)Av(s)ds=0, te[0,T],
0
v(0) =20, V'(0)=-z1,

(3.7)

and the above problem is well-posed, see e.g. [22]. We take k large enough to have the func-
tion z sufficiently regular.
We introduce another operator D), : Xo — Y such that the following identity holds

(Ap,§) = (@, A&) — (B, D\§)y, Vo €D(A), & € D(A), (3.8)
and the problem

t

@' (t) + AP (t) —/H(t—s)Ad)(s)ds:O, te[0,T],
0
T (3.9)
Bo(t) =Dyz(t) — f H(s—t)Dy,z(s)ds, te][0,T],
t

#(0)=¢'(0) =0,
admits a unique solution ¢. Then, we define the linear operator

(20, 21) = (¢'(T), —p(T)), (20,21) € D(A¥) x D(AF).
Let (%0, &1) € D(AK) x D(A¥) and & the solution of

T

S”(t)+A§(t)—/H(S—t)Aé-‘(s)dS=0, tel[0,T],
t

§(M) =&, &(T)=&.

(3.10)
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We prove that

(¥ (20, 21). (Bo0. &1)) . x

T T

=/<B¢(t),Dv‘§(t)—/ H(s—t)D,,é(s)ds> dt. (3.11)

0 t Y

Indeed, multiplying the equation in (3.9) by &(t) and integrating on [0, T] we have

T T T t
/(¢”(t),s(r))dt+/(A¢(r),s(r)>dt—//H(t—s)<A¢(s), £())dsdt =0.
0 0 00

Integrating by parts twice, in view also of (3.8) we have

T T

(¢’(T),E(T)>—(¢(T),E’(T))+/<¢(t),€”(t)+A§(t)—/H(s—t)Aé(s)ds>dt
0 t
T T T
—/<B¢(t),D,,S(t))Ydt+/<B¢(t),/H(s—t)Dvg‘(s)ds> dt =0.
0 0 t Y

Since £ is the solution of (3.10), we have that (3.11) holds.
Now, taking (&, &1) = (20, z1) in (3.11), we have

T 2
(¥ (20.21). (20.21)) . & / Dyz(t) — / H(s—t)D,z(s)ds| dt. (3.12)
Y
So, we can introduce the semi-norm
T T 2 1/2
| o z0) | == (/ Dyz(t) — / H(s — t)Dyz(s)ds dt) (313)
0 t Y
for any (2o, z1) € D(A¥) x D(AK).
Step 4. In view of Lemma 2.1, || - || is a norm if and only if the following uniqueness theorem holds.

Theorem 3.1. If z is the solution of problem (3.5)-(3.6) such that
Dyz(t)=0 Vtel[0,T],
then

z(t)=0 VvtelO0,T].
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If Theorem 3.1 holds true, then we can define the Hilbert space F as the completion of
D(A¥) x D(A¥) for the norm (3.13). Moreover, the operator ¥ extends uniquely to a continuous
operator, denoted again by ¥, from F to the dual space F’ in such a way that ¥ : F — F’ is an
isomorphism.

In conclusion, if we prove a result similar to Theorem 3.1 and F = D(+/A) x X, then we can solve
the reachability problem (3.1)-(3.4).

4. Ingham type direct inequality
In this section, we consider functions of the type
0 .
f@©) =) (Coe™" +Roe™), >0,

n=-—00

with wy, Cp € C and ry,, Ry € R such that the sequences {Jwy}, {rn} are bounded and

o0 o
> 1Cal* < +oo, > IRal? < +o0.
n=-—00 n=-—o00
Let T > 0.
Theorem 4.1. Assume
Ry —Rwp—1 =y >0 Vin|=n, (4.1)
lim Swp=a, (4.2)
[n|]—o0
1% ’ /
|Rn|<W|Cn| Vin| =n', [Rn| < p|Cn| Vin| <n, (43)

forsomen’ e N,a € R, u > 0and v > 1/2. Then, forany T > 7/ we have

T\ o 2 o
f S (Gl 4+ Ree')| de <ex(T) 3 ICal?, (4.4)
p I n=—00 n=—co

where ¢, (T) is a positive constant.

To proceed with the proof, we state the following two results, but the proof of the first one can
be found in Appendix A, as it is quite long and complex.

Theorem 4.2. Under assumptions (4.1)-(4.3), forany 0 < & < 1 and for any T > y\/% there exists ng =

no(e) € N such that if C,, = 0 for |n| < ng, then we have

T

/If(t)lzdt <a(l) Y |Gl (4.5)

-T [n|=ng

where c(T) > 0.
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Proposition 4.3. Assume that there exists a finite set F of integers such that for any sequences {C,} and {R}
verifying

Ch=Rp=0 foranyneF, (4.6)

the estimate

I

is satisfied for some c, > 0. Then, for any sequences {Cn} and {Ry} verifying

2
dt<ch Y |Cal? (4.7)

n¢gF

Z (Cneia)nt 4 Rnel‘nt)

n¢F

|Rn| < pICol  foranyne F, (4.8)
for some > 0, the estimate
/ > (Cre' 4+ Rpe™)| dt<cy Y [Caf (4.9)
S In=—00 n=-o00

holds for some c; > 0.

Proof. Assume that {C,} and {R;} verify (4.8). If we use (4.7), then we have

T
2
/ D (Coe™ " + Rpe™)| dt <y > |Cal®. (4.10)
°r n¢.7~‘ n¢F
Now, we prove that
T
/ > (Cre' " + Rpe™) dt <5 Y |Gl (4.11)
T neF neF

for some constant ¢, > 0. Indeed, applying the Cauchy-Schwarz inequality we get

2
< ( 3 (ICale™ et + |Rn|ef"f))

neF

2

Z(Cneiwnf + Rnernt)

neF

g 2|]_—| Z(|Cn|ze—2‘3wnt + |Rn|262rnt),
neF

where |F| denotes the number of elements in the set F. If we use the previous inequality and (4.8),

then we get
T
-T

whence (4.11) follows with ¢ = 2|F]| maxney:{ffT (e~ 23nt 4 y2e2Mmty dt}.

Z(Cneia)nt_"_Rnernf)

neF

2 T
dt<2|f|Z|Cn|2/(e_23w” + pre™t) de,

neF °r
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Finally, from (4.10) and (4.11) we deduce that

T 00 2
/ > (Cue™n" + Rye™)| dt
_T In==
T X I )
<2/ Z(Cneiwnt+Rnernt) dt+2/ Z(Cneiwnt+Rnernt) dt
- néF -T neF

<20 Y ICal* +2¢5 ) ICal?,

n¢F neF
so (4.9) holds with c; =2max{c},c}}. O

Proof of Theorem 4.1. Since T > 7 /y, there exists 0 < & < 1 such that T > ; \/% By applying The-

orem 4.2, there exist ng € N and c(T) > 0 such that if C, =0 for |n| < ng, then we have

T
/|f<t>|2dr<cz<r) > 1GaP
-T

[n|=no
Finally, thanks also to (4.3) we can use Proposition 4.3 to conclude. O
5. Ingham type inverse inequality
Again in this section, we consider functions of the type
0
F@©):= ) (Coe™" +Rne™), >0,
n=—00

with w,, Cp € C and r,, Ry € R such that the sequences {Jwy}, {rn} are bounded and

o0 o0
> Gl < +oo, > IRaf? < 4o0.
n=—o0 n=—00

In addition, the sequences {wn}nez and {r;}ncz are composed of pairwise distinct numbers such
that r, # iwy, for any n,m € Z.
Let T > 0.

Theorem 5.1. Assume

Reop —Rop_1 =y >0 Vn| =1, (51)
lim S, =«, m < —Sw, VYnl=n, (5.2)
In|—o00
Rol < o |Cal VInl=n',  [Ral S ulCal Vin|<n, (5.3)

In|”
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forsomen’ e N, @ € R, i > 0and v > 1/2. Then, forany T > 27 /v we have

T

e Y il < [

n=-—00 0

00 2

Z (Cneiw”t—f-Rner”t)

n=—o0o

dt, (5.4)

where c1(T) is a positive constant.

Remark 5.2. Since the sequence {Jwy,} is bounded the inverse inequality (5.4) can be written in the
form

T

o
am) Y (1+e?Ceemic < [

n=-00 0

00 2

Z (Cneiwnt_,’_Rnernt)

n=—oo

dt,

which is similar to that proved in [27, Lemma 4.1] by different techniques.
We note that the direct inequality holds under weaker assumptions respect to the inverse one.

To prove Theorem 5.1, we need the following results, whose proofs are given in Appendix A, as
they are quite long and complex.

Theorem 5.3. Under assumptions (5.1)—(5.3), forany0 <& <1and T > - 1+8 there existng =np(¢) e N
and ¢ (T, &) > 0 such that if C, = 0 for any |n| < ng, then we have

ci(T.e) Y (1+e 20Ty c, |2 f|f(t)| dt. (5.5)

[n|=no

In addition, the constant c1 (T, €) is given by

¢1(T, &) =min(1, e_Z“T)( Iz i a+ 8)).

2+ T2y2/8 Ty?
Proposition 5.4. Let {wy, }nez be such that

lim |w,| = 4o00. (5.6)

[n]—o0

Assume that there exists a finite set F of integers such that for any sequences {C,} and {R,} verifying

Ch=Ry=0 foranyneF, (5.7)
the estimates
I 2
¢t Y Gl < / > (Cre'r + Rpe™)| d, (5.8)
n¢F 0 neEF
T 2
f D (Cre'nt 4+ Rpe™)| dt<ch Y |Cal? (5.9)
0 n¢]—‘ n¢F
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are satisfied for some constants c’;, ¢, > 0. Then, there exists c; > 0 such that for any sequences {C,} and {R;,}
the estimate

T

o
2
ci Y Gl <f

n=—oo 0

00 2
> (Cre'rt + Rpe™)| dt (5.10)

n=—o0

holds.
Proof of Theorem 5.1. Since T > 27/, there exists 0 < & < 1 such that T > 27”‘/}%?. By applying

Theorems 5.3 and 4.1, there exist ng € N, ¢1(T, &) > 0 and c3(T) > 0 such that if C, =0 for |n| < no,
then we have

T

aTe Y |Cn|2<f!f<t>|2dt<cz(r) 3 Il

In|>no 5 In|>ng
Finally, we can use Proposition 5.4 to conclude. O

6. A reachability result

Before giving the result announced in the introduction concerning reachability problems for a class
of systems with memory, we first need to develop a detailed spectral analysis.

Let A: D(A) C X — X be a self-adjoint positive linear operator on X with dense domain D(A)
and let {A;};>1 be a strictly increasing sequence of eigenvalues for the operator A with A; > 0 and
Aj — oo such that the sequence of the corresponding eigenvectors {w};>1 constitutes a Hilbert basis
for X.

For any vg € D(+v/A) and vi € X there exists a unique weak solution v belonging to
C([0, 00); D(ﬂ)) N cl(0, co0); X) of equation

t
v(t) + Av(t) — ﬂ/e"’(t’s)Av(s) ds=0, t>0, (6.1)
0

verifying the initial conditions

v(0) = vq, v'(0) =vq. (6.2)
We have
o0 o
V()=ZO[]'W]', aj=(vg, Wj), Zajz-kj<oo, (6.3)
j=1 j=1
o x
V1=ZVjo, Vi ={v1, wj), ZJ/J'2<OO- (6.4)
j=1 j=1

First, we observe that we can approximate the initial data vy and vq{ by sequences {vq,} in D(A)
and {v1,} in D(+/A) respectively. So, the sequence of strong solutions v,(t) of (6.1), corresponding to
the initial conditions vg, and v1,, approximates v(t). Thanks to this remark, we can make our com-
putations considering v(t) as a strong solution, and then we go back to weak solutions by standard
approximation arguments.
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We want to write the solution v(t) as a sum of series, that is
o
vin=>_fiow;.  fi)={v(D), wj).
j=1

Substituting the above expression of v in (6.1) and multiplying the equation by w;, j € N, we have
that f;(t) is the solution of

t
fi®O+2jfi©) — 1B / e 19 fi(s)ds =0, (6.5)
0

with initial conditions given by
fiO®=aj  fi0)=y; (6.6)
Thanks to Lemma 2.3, problem (6.5)-(6.6) is equivalent to the Cauchy problem

'O +nfj©+xfj© + 20 =B fj©) =0, t>0,

6.7
fi®=a;. fiO)=y;. f{0)=-2ja;. (©7)

Therefore, we proceed to solve (6.7). To this end, we must compute the solutions of the characteristic
equation

A3+ A%+ AjA+ (- B) =0, (6.8)

following the well-known Scipione Del Ferro’s method to obtain the Cardano formula.
First, we transform equation (6.8) into one without second degree term. For this reason, we will
make a suitable change of variable. Indeed, set

A=0 — ﬁ,
3
we have

03 +pjo+q;=0, (6.9)

where

To solve (6.9), we look for solutions in the form
o=y+z
We observe that the cube of o = y + z satisfies the following equation

0®—3yzo — (y*+2%) =0. (6.10)
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Equalling the coefficients of similar terms in Egs. (6.9) and (6.10), we have

yz=-pj/3. ¥y +2=-q;.

Since y323 = —p?/27 and y3 +23 = —q;, it follows that y* and z3 are solutions of the second degree
equation
3
r2+q-r—ﬁ:0 (6.11)
"5 . .
Now, defining the discriminant A; of Eq. (6.9) as the }l—discriminant of the above equation, that is

A= +p?
1T Ty

we note that

2 2 3

G n° n_ B\ ,2, m(2

. LA IPY U (i) PO
4 (27)2+<3 2) Ytz 31— F )M

3 3
p; _ )‘j 772)\2 774 ] ’76
e Ae T A4 +_)"]_—7
27 27 277 81 (27)2
so we have
Aj 27
A,:Z—;<Af+<2n2—9nﬂ+zﬁ2>k,-+n3(n—ﬂ)>- (6.12)

Now, to have Aj > 0 it is sufficient that (2n% — 9np + & p%)? —4n*(n — B) <0, that is

3 2
F<Q> - —32<ﬁ> +108(E> 2 7,
B B B 2p 16
where F is the polynomial defined in (2.8). Thanks to Lemma 2.4 the above condition is satisfied for
n> %ﬂ, and hence Aj > 0 for n > %ﬂ.
If B<n< 3B then we can write n =tp, with 1 <t < 3. So, we have Aj > 0 for
Aj> P29t —2t2 — 2L + F(t)'/?)/2. Since 9t — 2t — 2L > 0 for 1 <t < 3, we get Aj > 0 if

2 1/2
p << 27 243, 729 1/2> ’
9t — 262 — & + (=323 4+ 108t2 — 2Pt + 22

(613)

Therefore, the solutions of Eq. (6.11) are given by

2 3

qj 9 Pj
np=——==+4—+=—=.
12=75 2 T3
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Now, to write the solutions ¢ = y + z of (6.9), we keep in mind not only that y> and z3 are solutions
of (6.11), but also that y and z must satisfy the condition yz = —p;/3. Accordingly, if we consider the
following real numbers,

2 3 1/3 2 3 1/3
g (cu [T ORI L
I 2 4 ' 27 ’ J 2 4 ' 27 ’

then the solutions of (6.9) are given by

o1i=yi+1;, (6.14)
, ‘ 1 3

02, j =y 3 4 zje I3 = —S itz +i = 7)), (6.15)
o ; 1 3

o3, j=yje 3 4 72?3 = —5 Witz iy = z)). (6.16)

We note that the numbers o7 j, 02 j, 03 ; are all distinct.
Now, in view of (6.12) we evaluate the quantity

3 3/2 2

n n_B Aj 2 B°  nB\27 1
LA S b - 1 i T L D 3(n — B)—
27 \3 2>1+(3> \/+<277’+4 3 A,-J”’(" mx?

3/2 3 2
Aj 27 27 ( 2 1 1
:(4> [_ﬂi”_<ﬁ_é>iv+1+i(i,,z+fi_@)i+o<7>]
3 /_27A/ 3 2) /% 2 \27 4 3 )xj 2

(A n o B\V27 , 27, 9 \1 n? 1
-(3) [-G-2)7 (e 5 ‘5”'3)71‘4@172*0(:?)}

for j — oo. Therefore, using also the well-known formula

1 1
(l+x)1/3:1+§x—§x2+o(x2), x— 0, (6.17)
we obtain
2 3 1/3
J 2 4 ' 27
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S O e R O E
-l
T (Bt e 30

1
+ o<3—/2> j— oo, (618)
Aj

D (32 (e - i B
( .)3/2\/1 (if} _i_%z_’g_ﬂ)Z na(n_ﬂ);_?
) [ (DG4 ) o(3)]
)3/2[1+<2—§>\/\/§+< 2,2 /3 = ﬁ) J_";/2+o<1>],
for j — oo. Therefore, using again (6.17), we have
o4 2:2)"
2 Va 27
)%+< i ﬁz"ﬂ) (3:;/”0(%?)}1/3
R R F
58 eo()]
- ﬁ—ngg—i(%ﬂ—n)LJr(;n ——n B+ nﬁ 9/3 )l

NGy Aj

3
1 .
+o<—2>, j— oo, (619)

Il
|
| —|
—
+
N
w3
|
N[
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By (6.18) and (6.19) it follows

2 4 9 , 1 ,
yitzj=—3n+p+2 fn -3 B+ nﬁ )t =) i—oe

) o)

In virtue of (6.14)-(6.16), the above relationships yield

2 5 3 4,9 5 95\1 1 ‘
o1j==3N+B+2(Zn =g B+ b= of” |-+ 0 aa) I
j .
J

n B 5 03 45,9 5 931 1
P N v B e _Z — 10—
9217373 (2777 3P+ 4N~ gh v 2372

3 1 1
e o) -
J
n B (5 L9\ 1 1

NN B

Finally, by using also the condition A =0 —n/3, we are able to write the solutions of Eq. (6.8), that is
Arj=p-n+2(2 2B+ —np* — gﬂ Lo
1,j= n 27 77 77 77 Py )\? /2

=ﬁ—n+0<l,>, j—> oo, (6.20)

1 1 .
_—§+O< >+l|:\/ i+ = < >—)\]+O<)L3T>i|’ ] — o0, (6.21)
B 5 3) 1 1
A3,j=—5—(—77 ——n Bt nﬂ ——ﬁ) +0<3—/2>
, 3 1 1
"[W+§(zﬂ‘")ﬁj+°(w)]

B 1 . B/(3 1 1 .
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Therefore, we can write the solution of (6.7) in the following way
fi(©) = Cq je" 1 + Cy jet42i 4 C5 jet3i, (6.23)

where Cy j, k=1,2,3, are complex numbers to determine. To find the coefficients Cy ; we impose
that f; verifies the initial conditions

[iO=aj,  fiO=y, [} =—aji; (6.24)
so we obtain the system

Cij+Cj+Gj=aj,

A1,jCrj+ A2,jCo j + A3,C3 j =), (6.25)
2 2 2

A]JCLJ + AZJCZ,]' + A3’jC3’j = —QjAj.

The matrix C of the coefficients of system (6.25) has determinant given by
det(C) = (Az,j — A1, j)(A3j — A1, j)(A3j — Az j),
so we obtain

_jAy A3 (A3 j— Az j) — Vi(A3 = A5 ) —ajrj(As j— Ay j)

Cii=
" (Agj— Aq,j)(A3j — A1,j)(A3j — A2 j)
_ ajAy i A3 j—Vj(A3j+ Az j) — ajhj
(Az,j — Aq,))(A3j — Aqj) '
yj(A%.j — A%,j) +aj)\.j(A3.j — A]gj) —Ole1’jA3,j(A3,j — Al,j)
2,j =
J (Ag,j— Aq,j)(A3j — A1,j) (A3 j — Az j)
Vi3 i+ Ay ) toajhy—ajijAs
(Az,j — Aq,j)(A3j — A3 ) '
—0jAj(Agj— A1 j) — V(45— AT ) +ajAy Ay (g — A1)
3,j=

(Agj— A1,j)(A3j — A1 j)(A3j — Az j)

—(X])\.] — y](A2,] + Al,j) + ajAl,jAZ,j
(Asj — A1, ))(A3j — Az,))

Plugging (6.20)-(6.22) into the above identities, we obtain the expressions of coefficients Cy ;. Indeed,

i[5+ 0 +[Va+5GE 1) g +0(3)]')

[1=38+ 0 +[Va+5GE-n) g+ 0(3)T
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O‘fﬂz_o‘f”ﬂ‘*)’fﬂ"‘o(,\l}-) B ajﬁz—amﬂ+yjﬁ+o(;—J)
(1= 36 + 2+ 32 —np+0(L)  Aj+n?+362—anp+0(3)

~ @jf* —ainf+yif+0(;;)
@32 —4nB) + 0 (%) A
]

;. (6.26)

We note that Cq ; € R. To write explicitly C; ; we observe that

1 1 3 1

A A — A = —2il e P (2oL 32 1
(Az,j— A1, j)(A3j — Az j) = 21[\/)‘71"‘2(4/3 )\/—]"‘ (3/2)]{'7 2ﬂ+o<kj>
T B3, N1 (1
i) o)l

o432 I\ il on = : 1
=24+ 38 Zﬁn—i—O(Aj) z[(zn 35)‘/7’+O<\/Tj>]’

whence
vith =n+0(H) —ilVai+5GA —n) - +0(F=) ]} + eyt
zxj+§ﬂ2—25n+o(%)—z[(2n—3ﬂ)ﬁ+0(ﬁ)]
aj[B-n+0(GH) -5 +0() —i[Va+5 (ﬁ—n)}—kﬁo(xgﬁ)]}
2Aj+%ﬂ2—Zﬂn—i-O(/\lj)—i[(Zn—Bﬂ)\/)Tj—i-O(ﬁ)]

Cj=

Therefore,

>’|_

ajrj+yi(5 —n) +aj(B—mb5 +ej0 (k) +y;0(
2xj+§ﬁ2—2ﬂn+o(;)—z[(2n 3ﬂ)f+o(

)
-)]

i[(vj — ojB +ojmy/Aj + ;0 (f)+V1 ()]
25+ 387280+ 0(L) —i[en- 3ﬂ)f+0(j—)]'

2,j =

S\* <Hs

(6.27)

Divide now numerator and denominator by A; and take the square modulus to get

_ 2
Lo+ 7i55t + 710 () + 0 ()]

240G +[*2 + 0(@%)]2

2
1C2,j1” =

| +a;0(37) + 150 (57)]

+ 2 2n-3 2
o) +[22F + 03]

whence
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il = (14 0( L)) (2~ a0 +aj0 ! +y2+ !
2jl" =7 Py § T Yiy e )\] ) v; 0 22

_1,p B 1 1 Y A
=2% Olj)/jEj‘FOlj'}/jO()\j)‘i‘Ol O( )—i—m—i—yjo g .

Taking into account

2 2
oV 9 Vi <1 o 1Y
Xj BEVERYER) A2/3 2,473
it i

it follows that there exist some constants cq, c2 > 0 such that, for sufficiently large j,

v} v}
c1 (af. + k—’}) <GP <e (af. + ﬁ) (6.28)
Similarly,
(A3,j— Aq1,j)(A3j — Az j)
3
=2Aj+§/32 2ﬂn+0< )—H[(Zn 3,3)\F+o<\f]>]
and hence
—ajij = vits =0+ 0 () +ilVAi+ 538 —n) & +0(32)]}
C3i= !
> 2Aj+§ﬂz—2ﬂn+o(kij)+i[(2n—3ﬂ)\/7j+o(%)]
aj[p—n+0GH){-5+0() +ilyA+5(38 )++O(A§%)]}
+ .
20+ 382 =280+ O (L) +i[2n —38) /A + O (f)]
Moreover,

ajirj+vi(5 —n) +aB-m5+aj0(E )+VJ (%)
24382280+ 0(+ -) +i[@n - 3ﬁ)\ﬁ+o(%)]

C3j=

i[(y; — B +ajn/ij+a;0 (f) +y;0 (%)]
1

- ) (6.29)
20+ 32 -2+ 0(+ )+z[(2n 35)f+o(7)]

Repeating the same steps as in the proof of (6.28), we have, for sufficiently large j,

¥} v}
1 (af. + k—’) <GP <e (af. + x_]> (6.30)
J

J
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By (6.26), (6.28) and (6.30), one deduces that there exists a positive constant ¢ such that for any j e N
we have

Cqi c Cqi c
| 1,]| < —, | 1,]| < —.
[Cojl ~ Aj IC3,jl ~ Aj

(6.31)

In conclusion, thanks into account (6.23) we have proved that the solution v(t) of the Cauchy problem
(6.1)-(6.2) can be written as

[e.¢]
v(t) = Z(C],]’em” + Cy,jet A2 + C3,j€tA3*j)Wj, t>0,
=1

where Ay j and Cp ; are given by (6.20)-(6.22) and (6.26)-(6.29) respectively, and condition (6.31)
holds.
We will show as the function v can be written in the form

o0

vty =Y (Cae' " + Rpe™ )Wy, £>0, (6.32)

n=—oo

where C,,wp, € C and Ry, 1, € R. Indeed, we define w, as the complex numbers having real and
imaginary parts given by

_ . B(3 1 1
Naop 1= p P(2p- 0 =1,
wn := sign(n)y/An + sign(n) ) (413 77) o + (A3/2> In|

n|

B 5 3 45,9 5 9.3)1 1
X = — — —_ = — - = — O QM ) n21
Soni=o gy T g g =g h ) T 202 !
Moreover, we set
5 4 9 9 1 1
mi=f-—n+2l =P —-n?B+-npt—<B)—+0(—=5), In>1,
=g -nt (27" EXRL L Fys 202 &
[ Can ifn>1,
T Caon ifn< -1,
Rp:=Cip, n2x1, wo=Co=Rp,=0, n<0

Finally, applying the abstract results of Sections 4 and 5 we can show our reachability result.

Theorem 6.1. Let > 38/2. For any T > 27, ug € L>(0, ) and uy € H='(0, ) there exists g € L%(0, T)
such that the weak solution u of problem

t
utf(t,x)—uxx(t,x)—i-ﬁ/ e 1=y, (s,x)ds =0, te(0,T), xe(0,m),

0 (6.33)
u(0,x)=u;(0,x) =0, xe(0,m),
ut,0=0, ut,m)y=gt), te(@©O,T),
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verifies the final conditions
w(T,x) =uo(x),  u(T,x)=u1(x), x€(0,m). (6.34)

Proof. To prove our claim, we apply the HUM method described in Section 3. Let X = L%(0, ) be
endowed with the usual scalar product and norm

.4 1/2
lull := (flu(X)|2dx> , uel?0,m).
0

We consider the operator A: D(A) C X — X defined by

D(A) = H?(0,w) N HA(0, ),

Au = —uy, ueD(A).

It is well known that A is a self-adjoint positive operator on X with dense domain D(A), {jz}];] is
the sequence of eigenvalues for A and the sequence of the corresponding eigenvectors is {sin(jx)};>1.
The fractional power /A of A is well defined and D(v/A) = H(l)(O, 7). Therefore, we can apply our
spectral analysis to the adjoint problem of (6.33). Indeed, the solution z of the adjoint problem can
be written in the form (6.32), that is

o0
Z(t,x) = Z (Ce'nT=0 4 Rye™T=D)sin(|n|x) (t,x) €[0, T x [0, 7],
n=—oo
whence
o0 .
z(t, )= Y (="l (Cae" T 4 Rae™T7Y) (6,20 €10, T1 x [0, 7],
n=—oo

Since 1 > 38/2 we can apply Theorems 4.1 and 5.1 to function zx(t, 7v). Therefore, thanks to inequal-
ities (4.4) and (5.4) Theorem 3.1 holds true. In addition, by estimates (6.28) and (6.30) we have that

T
2
ci(Ivollgy + lIval?) < f|zx<t,n)| de < ca(lIvoll, +1Ivall®),
0

whence the space F introduced at the end of Section 3 is H(‘)(O, ) x L%(0, 7). So, our proof is com-
plete. O
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Appendix A
To prove Theorem 4.2 we need to introduce an auxiliary function. Let T > 0. We define

t .
cos I if[t|<T

Al
0 if|t] > T. (A1)

k*(t) .= {

For the reader’s convenience, we list some easy to check properties of k* in the following lemma.

Lemma A.1. Set

4T
K*(u) := , ueC,
@) 4T2y2
the following properties hold for any u € C
oo
/ k*(t)e't dt = cos(uT)K*(u), (A2)
—0o0
K*(u) = K* (1), (A3)
|K*u)| = |K*@)]|. (A4)
AT
[K*w)| < i (A5)

[4T2(Ru)? — 4T2(Ju)? — 2|’

Proof of Theorem 4.2. First, without loss of generality, it may be assumed that the sequence {Jwp}
converges to 0, that is

a=0. (A.6)

Indeed, suppose for a moment that we have proved inequality (4.5) under this extra condition. For
the general case o # 0, we consider the function

X
gty =e"f(t)= Y (Coe™t" + Roemto)),

n=—c0
where w}, = w,; — iee and limyy|— o0 S, = 0. So, inequality (4.5) holds for g, that is
f g dt<cam) S |Cal?
In|=ng
Since f(t) =e *'g(t), we have
|f(©)] < max{e*, e™*T}|g(t)| Vte[-T,TI,

whence it follows
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T T
/|f(t)|2dt<max{eZ“T,e_Z“T}/|g(t)|2dt
-T T
<max{e®T, e ?*They(T) Y |Cal?,
In|>ng

that is (4.5) also holds for f.
Let k*(t) be the function defined by (A.1). If we use (A.2), then we have

[e¢] (e}
/ k*(0)| f 0] de = / K*(0) ) " (Cre' " + Rpe'™) > " (Cne ™™ 4 Rype™") dt
—00 —00 n m

=Y CuCin cos((wn — Dm)T)K* (@n — @)

n,m

+ ) CuRin cosh((iwn + rm) T)K* (@n — irm)

n,m

+ > RnC cosh((ry — i@m) T) K* (ir + &)

n,m

+ Y RaRm cosh((r + 1) T)K* (i(ra + m)).

n,m

We may write the first sum on the right-hand side as follows

> CaComcos((@n — @m)T)K* (@n — @m) = Y _ |Cal? cosh(2Swn T)K* (wn — @n)

n,m n

1737

(A7)

+ > CaCmcos((@n — Dm)T)K* (@n — @)

n,m, n#m
Plugging the above identity into (A.7) and using (A.3), we obtain

o0

/ k)| o) dt = > 1Cal® cosh23wa T)K* (wn — @n)

—00

+ Y CaCmcos((wn — @m)T)K* (@n — @)

n,m,n#m

+2) Ru[Cqcosh((iwn + rm) T)K*(@n — irm)]

n,m

+ ) RaRm cosh((r + 1) T)K* (i(ra + ).

n,m

Notice that the terms on the right-hand side of the previous identity are real. Therefore, applying the

elementary estimates 6 < |6|, # € R, and | coshz| < cosh(Nz), z € C, we obtain
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o0

/ k*(t)\f(r)\zdt < Z |Cn|? coshIwn T)K* (wn — @n)

—00

+ > [CallCml cosh((Swn + Swm)T)|K*(@n — @m)|

n,m,n#m

+2) " |CallRm| cosh((Sewn — 1) T) |[K* (@n — irm) |

nm

+ Z [Rnl[Rm| cosh((ra + rm) T)K*(i(ra + 1m)). (A.8)

n,m

Since the sequences {Jwy} and {r,} are bounded, there exists a positive constant ¢(T) such that, for
any n,m € Z, we have

cosh((Jwp + Swm)T) + cosh((Swy — rm)T) + cosh((rn + rm)T) < c(T),

and hence from (A.8) it follows

/k | f O de < c(T>Z|cn| K*(@n — @n) +¢(T) Y |Cal|Cl|[K* (@n — @) |
—00 n,m, n#m

+2¢(T) Y Cal Rl |[K* (@n — itm)| +¢(T) Y [Rul R | K* (i + ).

n,m n,m
In virtue of the definition of K* we have

4T 4T

K* (@ — @) = o 2
(@n = 0n) = T2 Gan? < 7

whence

/k*(t)lf(t)l dr < —c<T>Z|cn| +c(M Y 1CallCal |K* (@n — @)
0 n,m,n#m

+2¢(T) Y Cal Rl [K* (@n — i)

n,m

+¢(T) D IRl Rm|K* (i(rn + ). (A.9)

n,m

To evaluate the second sum on the right-hand side of the above inequality, we note that, in virtue
of (A.4), we have

|K*(wn — @m)| = |K*(@n —

whence
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> IClICnl|K* (@n — @m))|

n,m,n#m
1 _
<5 > (Gl + (Cnl?) [K* (n — @)
n,m,n#m
1 _ 1 _
=52 1Gl* X K @n = @m)| +5 3 ICnl Y K" (@n — @)
n m,m#n m n,n#m
1 _
=521l D K @n —@m)| + 5 Z ICnl* Y [K* (@ — @)
n m,m#n n,n#m
=Y 1G> [K* (n — @) (A10)
n m,m#n
Now, using (A.5) we get
1
*
m%n“( (n —&m)| < 4T7 Z 1472 (Rwn — Rom)? — 4T2 Swn + Som)? — 72|’ (A1)
From assumption (4.1) it follows
|Rwp — Row| = yIn—m| V|, |m| >n'. (A12)

Fix 0 < & < 1, thanks to (A.6), there exists ny € N, ny >n’, such that for any n € Z, |n| > ny,
€
S| < VY.
4
Therefore, for any n,m € Z, |n|, |m| > n1, we have
4T? Ry — Rom)? — 4T (Swy + Son)? — 72 > 4722 —m)? — T?y%e — 2.

we have T?y2e + 2 < T?y2, so from the above inequality it follows, for

Now, for any T >

m#n,

b4
yV1-¢

AT? (Rowp — Rom)? — 4T (Swn + Som)? — 1% > 4T%y2(h—m)? — T?y? > 0.
Putting the previous formula into (A.11), we obtain
1 A 1
K*(wn — @m)| <ATT = -
2, K (n— o) 2 4T2y2(m —n)2 — T2y2  Ty?2 4(m—n)2 -1

[m| >nq,m#n m,m#n

m,m#n

8T &

1 ar (1 1 4
<= Y 1 — 5 T - < | =7
Tyzj_14]2—1 T)/Zj_1 2j—1 2j+1 Ty?
Assuming C, =0 for |n| <ny and putting the above formula into (A.10), we get

_ 4
Y GGl K @ —@w)| < 5 D ICal (A13)

[nf,Im|=nq, n#m [n|=n
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Notice that, thanks to (4.3), we have R, =0 for |n| < nj. Therefore, from (A.9) and (A.13) it follows

[ee)

AT  An ,
/k*(t)lf(t)lzdtgc(T) — 4 — | DGl +2e(T) Y (CallRml |[K* (@ — irm)|
T Ty
“0 [n|>ny [n],Im|=n
+cT) Y [RallRm|K*(i(ra +1m)). (A14)
[n],Im|=ny

To estimate the second term on the right-hand side, we use (4.3) to obtain

. |Crnl )
2 ) IGlIRml|K*(0n —irm)| <200 Y |cn||m“|1v}1<*<wn—zrm>|
[n],|m|>=nq In|,Im|>nq
2 [K*(wn — irm)|
< Y lgp Y el
In|>ny ml>ny
+u Y Gl D K (wn — i) (A15)
[m|>nq [n|=n4

Applying (A.5), one gets

4T

K*(wn — irm)| < '
(K n = im)| < 2T —aT2an T 7]

(A16)

Now, we observe that, by (A.12) it follows
[Rwn| = yIn—n'| — |Rwy| YneZ, nl=n,

whence
14 / [Reop |
Ifﬁwn|>5|n| Vin| > 2n" + 2 — +1.

Therefore, since the sequences {Jwy}, {ry} are bounded, there exists ng € N,

NRwy
nogmax{n1,2n’+2|:| @n |:| —|—1}
14

such that, for any n,m € Z, |n|, |m| > ng, we have
1
AT? (Rop)? — 4T (Swp — ) — 2 > irzyznz;

so, plugging the above inequality into (A.16) we have

8

|K*(wn — irm)| < Ty

Assuming C, =0 for |n| <np, and hence also R; =0 for |n| <ng, by (A.15) it follows
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2 > [CallRml|K*(@n — im)]

Inl.Im| >no
ST SJTI,L
<72 |Cal? th 72 > ICnl Z
In|>ng m#0 Im|>=ng n;éO
167m 1
2
= (Z — Z]—2> > Gl (A17)
J j=1 |n|>=ng

At last, we must consider the term

> RallRmK* (i(rn + ).

[nl,Im|=no
Recalling the definition of K* we have

ATm < 4T
T2+ A4T2(ry+1m)2 7

K*(i(rn + 1)) =
so, in virtue of (4.3) we get

> IRallRm|K* (i(rn + rm))

[n].lm|=no

AT y LGl Gl

= v v
[nf,Im|=ng iml” In|
2T u? 1 2T p? 1
S Gl o Y (Gl
m#0 [n|=ng n#0 [m|>=ng
4T,u STM
Y Y (G = Z 7 2 Gl (A18)
n;éO [n|>=ng J [n|=ng

Putting (A.17) and (A.18) into (A.14), we obtain

N 4T 4m 16 T
/k*(t)|f(t)|2dt<c(T)<? i ””Z +8 <—”+7“)Z ) > Gl
j= l

T ‘
— 00 )/ j=1 In|>ng

Now, if we consider the auxiliary function k* defined by (A.1) with T replaced by 2T, then from the
above inequality we get

2T
mt 2
/cosﬁ|f(t)| dt
—2T
8T 2m  8mu - 1 T 2T —
<cen( =+ 22 4 2k ,—+su<_+_ 1) S e
<7T T'J/Z Ty2 j=1 ]2 T)/2 T ;Jz |n\2>;10 n
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whence

/T\f(t)\zdt<ﬁc(zr)(8—T —“i L (L+ ZT“)Z ) > IGl?
J = T Ty = 2 Ty?2 s j2v i "
So, the proof is complete. O

As for the direct inequality, to prove Theorem 5.3 we need to introduce an auxiliary function. We
define

sin 7t ift e [0, T,

] (A19)
0 otherwise.

k() = {

For the reader’s convenience, we list some easy to check properties of k in the following lemma.

Lemma A.2. Set

T
Ku) = P B RPE uecC, (A.20)
the following properties hold for any u € C

o
/ k(tye™ dt = (1+e"T)K ), (A.21)

—00
Ku) =K (@), (A.22)
|Kw)|=| (A23)

Tw

|Kw)| < (A.24)

IT2(Ru)2 — T2(Su)2 — 72|

Proof of Theorem 5.3. As in the proof of Theorem 4.2, without loss of generality, it may be assumed
that

o =0. (A25)

Indeed, suppose for a moment that we have proved inequality (5.5) under this extra condition. For
the general case o # 0, we consider the function

[o.¢]
gy =e"f(t)=Y  (Coe™t" + RoemFo)),

n=—oo

where w;, = wp — i and limpy— o0 Sy, = 0. So, inequality (5.5) holds for g, that is

[n|=no

T
Tm 4r S
/|g(t)|2dt = (m — T—yz(l +8)) Z (] +e_2\\w"T)|Cn|2~
0
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Since f(t) =e % g(t), we have

|f@®)|>min{1,e"*T} vt [0, T],
whence it follows
/ |F©O*dt > min{1,e72T} f s dt>ci(T.e) Y (1+e 20,2,
In|=>ng

that is (5.5) also holds for f.
Let k(t) be the function defined by (A.19). If we use (A.21), then we have

oo
[ kolroP a
—00
oo
/ k(t)Z (Cae™ " + Rpe™) > " (Cne ™™ 4 Ripe™") dt
=Y CaCin(1 4" mT) K (wn — @) + Y CaRimn (1 + "™ T K (@ — i)
n,m n,m
+ D RuCon (14 WK (i + @)
nm

2
dt. (A.26)

oo
o]
—00

We may write the first sum on the right-hand side as follows

> " Calm(1+ € PWTYK (00 — @)

n,m

=Y IGP(1+e 2K (@n—@n) + Y, CaCm(1 4T K (wy — o).
n

n,m,n#m

Plugging the above identity into (A.26) and using (A.22), we obtain

o8]
/ kO] F©O dt =Y 1CaP (1 + €727 ) K (@n — @n)
—00 n
+ Y GCn(14 €@K (w0, — @)
n,m,n#m
+2)  Ra[Ca(1 + eI K @y — irm)]
n,m

dt.

oo
-]
—00
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Notice that, by difference, the second term on the right-hand side of the previous identity is real.

Therefore, using the elementary estimate 6 > —|6|, 6 € R, we obtain

o0
f k®)| £ de >3 [Cal? (1 + 72T ) K (n — @)
—00 n

— Y 1CallCal (14 e~ S tSemT) [K (0 — @) |

n,m,n#m
— 2 " |Cal Rl (1 + €3 T) | K (co — i) |
nm
co 2
+ / k(t)| > " Rpe™| dt.
n

—00

Now, arguing as in the proof of (A.10) and using |K(w, — @n)| = |K (@, — wp)|, we have

> 1GlICal K (@n = Bm) | <D Gl Y |[K(wn — @)

n,m,n#m m,m#n

Similarly, we get

Y ICallCmle” CentSemT K (wy — @)

n,m,n#m
<D lCaPe e S K (@n — @m))-
n m,m#n

Therefore, plugging (A.28) and (A.29) into (A.27) and being k a non-negative function, we have

o0

fk(t)|f(t)|2dt> > 1Gl*(1 +e—2‘~“‘wnT)<1<(w,1 —o))— Y |K(wn— &)

-0 m,m#n

=2 " CallRm| (1 + e 3TY | K (ao — irm) .

n,m

Now, fixed n € Z, we have to estimate the sum

> K (wn — @m)].-

m,m=#n
Using (A.24), we get

1

K (wn — @m)| < Tr :
2 K@ —am)| 2 IT2(Rwn — Rom)? — T2(Swn + Som)? — 72|

m,m#n m,m#n
From assumption (5.1) it follows

[(Rewn — Rewm| = yIn—m|, Vin|, |m|>n'.

(A27)

(A28)

(A.29)

(A.30)

(A31)

(A32)
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Moreover, if we fix 0 < & < 1, then, thanks to (A.25), there exists ny € N, n; > n’, such that for any

nez, |n|>nq,
&
Sewp] <% & (A33)

Therefore, for any n,m € Z, |n|, |m| > n1, we have

&
T2 (R — Rom)* — T*(Swn + Swom)? — 72 > T2y2(n—m)? - szzz — 2

2

yJ1—¢

Now, for any T > we have T?y2g +4m? < T?y2, so from the above inequality it follows, for

m#n,
1
T2 Ry — Rom)? — T2Swn + Som)? — 72 > T2 Y2 —m)? — Zlsz2 > 0.
Putting the previous formula into (A.31), we obtain
1 47 1

Z K (wn — @m)| <AT7 Z 2,2 2 _T72,2 T2 2
4T2ys(m—n)= =Ty Ty m,m¢n4(m—n) -1

|m|>nq, m#n m,m#n

8T &

1 47 & 1 1 a7
<= Yy 1 — T Y T T =7
Ty? = 4j2 -1 Ty2 = 2j—1 2j+1 Ty2

If we assume C, =0 for |n| < ny, then due to (5.3) we also have R, =0 for |n| < ny. Therefore, putting
the above estimate into (A.30), for T > —2Z— we get

y/1-¢
[ 4
[ kolrofac ¥ icro +efmnr><z<<wn - T—”)
y
—00 [n|>nq
—2 3 (CallRml(1 4T K (@ — ). (A.34)
[n],Im|=n

It remains to estimate the second sum on the right-hand side. Thanks to (5.3) we have

|Cim|

2 Y IGlIRml|K(@n —irm)| <21 ) |cn||m|vyl<(wn—irm)y
[n],|m|=nq [n],|m|=nq
2 |K (wn — irm)|
<oy Gl Y e
[n|=ny |m|=nq
i Y (Ol Y [K(@n—irm)|.  (A35)
[m|=ny [n|=nq

Again by (A.24) we have

Tn
IT2(Rwn)2 — T2(Swp — rm)2 — 72|

|K (wn — irm)| < (A.36)
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Now, we observe that, by (A.32) it follows
[Rwn| = yin—n'| — [Roy|, YneZ, n|=n,
whence

, y yn' + | Roy |
R > —=In|, V¥in| > [7
"2 y(1—1/v2)

Therefore, for any n € Z, |n| > ny, we get
1
T2 (Rwn)? — T?(Swn —1m)? — 2 > T2<Ey2n2 — (Jwp — rm)z) —?

1 (Swn — rm)z
T2y2n?( - - 22 ) 72, A37
v ( = (A37)
Since the sequences {Jwy} and {ry} are bounded, there exists n3 € N, such that

1 (Swn—rm)?

Vin|, |m| > n3. A.38
> o Inl. Im| > n3 (A38)

= Z )
Choosing ng € N such that
np > max{ny, nz,n3, 2}, (A.39)

and putting (A.38) into (A.37), for any |n|, |m| > ng we have
1
T2(Rwn)? — T*(Swn — rm)? — 7% > Z(szzn2 —47?).

. 172
Moreover, since T > 27 /y we have 4% < T2y?n,, 2 so

. 1 1/2 12

Therefore from (A.36), thanks to the above inequality, we get

4

1/2 ’
Ty2n)/?(In3/2 - 1)

|K (@n — irm)| < ¥inl, jm| > no, (A40)

and hence, assuming C, = 0 for |n| < ng, (A.35) can be written as

2 > [CallRml|K (@n — irm)|

[n],Im|Z=ng
4 4w 2 1
1/2 Z [Cal Z |m|2v + Ty2nl/? |Coml Z n3/2 —1
Ty2ng™™ j>n m#£0 Y9 jmizng In|>2
8T 2
T 9 1/2(2 i2V +Z]3/2 ) Z |Cnl. (A41)
yon j=1 [n|>ng
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Moreover, by (5.2) and (5.3) we have

2 )" (CallRmle 0T [K (ay — ir)]

], Im|=no
sont [Cmle” .

<2 ) ICale” “”"TmIT|K(a)n irm)|

], [m] Zng

2,-230nT |K (@n — irm)|

Sw ) IGltet 3 T

ini>no mizn M
i Y CmlPe T Y K (wn — irm).

im|=no Inl>no

If we use again (A.40), then, reasoning as in (A.41), we obtain

2 )" (CallRmlem T K (n — irm)|

[nl,Im|=no

Smfﬂ(Z 2 Z 3/2 ) Z |Cyl?e™ 23T, (A42)

[n|=no

Set
1 o= 1
=2,U«<ij+27j3/2_1>,
j=1 j=2
(A.41) and (A.42) yield

S 4
2 Z |Cn||Rm|(l+e(*\sa)n+rm)T)’K(a)n_irm)’ Tv2n 1/2 Z |Cn l—}-e*ZanT)

n].Im|=no Ny nj=ng

Plugging the above formula into (A.34), we get

o0
2 o _ 47 S
fk(t)!f(t)| de> ) ICil*(1+e 2~‘"’"T)(1<(wn—wn)—ﬁ<1+1—/2>>.
s In|>ng Y L)
Now, in virtue of (A.20) we note that
K (wn — @) Iz
Wy —Wp) = —5——5——5,
YT 72 L AT (Swp)?
SO
o0
/ k(t)\f(t)|2 de> ) |GIP(1 +3723wnr)<% — %(1 + %)) (A43)
o inl>no e+ AT (S wn) Y ng
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If we use (A.33) and take
ng > S?/e%,

then we get, for any |n| > no,

T 4 S Tm 4
S S (T | LS P A44
72 +4T2(Sw,)? Tyz( +n(1)/2> o sl ol (A44)

Now, we prove that for T > 2—”1 /1L

Tm

—— 14+¢)>0.
w2+ T2y2%¢/8 Tyz( +e)>

Indeed,

Lk T 1+
T2+ T2y2¢/8 Ty?

T?y2 —4(1 +&)(w* + T?y%e/8) _ T?y?(1—(1+¢6)e/2) —4n?(1 +¢)
(T2 +T2y2¢/8)Ty? N (m2 4+ T2y2¢/8)Ty?

Since & < 1, we have (1+¢)e/2 < ¢, whence for T > 2—”\%

Tn 47 d+6)> 2y2(1—g)—4n2(1+s)
n2+T2y2/8 Ty? (w2 + T2y2¢/8)Ty2

Finally, by (A.43), (A.44) and the definition of k(t) we obtain

T 5
/If(t)l dt > <7ﬂ2”f %28 T 2(1+s)> DI (1+ e 2Ty,

[n|Zng
so the proof is complete. O

To prove Proposition 5.4, we first introduce some auxiliary tools. Indeed, we introduce a family
of operators, which will be needed to annihilate a finite number of terms in the Fourier series. Our
operators are slightly different from those introduced in [6] and [10]. For that reason and for the
reader’s convenience, we then proceed to recall and prove some of their properties.

Given § > 0 and w € C arbitrarily, we define the linear operator Is , as follows: for every contin-
uous function u : R — C the function Is ,u : R — C is given by the formula

8
1 .
Is ou(t) :==u(t) — 3 / e 'yt +s)ds, teR. (A45)
0

The following result states some properties connected with operators Is 4.
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Lemma A.3.

() Ifu(t) = €', then I5 ,u =0.
(b) Ifu(t) = et with ' # w, then

(W —w)s _
Is.ou(t) = <1 - ;)u(t).

i(w —w)d
(c) The linear operators 15 o, commute, that is

Is.wlsy ot =ly ols ol
forall §,w, &, o and u.

Proof. (a) By definition, we have
. 8
Iso(®) =u(t) = < / e 1Se! ) ds = u(r) — ' = 0.
0
(b) Again by definition, we obtain

8

1 s i 1T el@—-w)s 75
Is pu(t) =u(t) — E / e lws i (t+5) go — ut) — - |:_j| e

dLi(w —w) |y

0
ei(a)’—a))é -1
=(1— ——— Ju(®.
i(w — w)é

(c) It follows at once by definition of operators Is . O

LemmaAd4. Forany T > 0,8 € (0, T), w € C and every continuous function u : R — C we have

T+6

T
/‘Is,wu(t)‘Z dr < 2(1 +82|‘3w\5) /' |u(t)]2dt,
° 0

Proof. For every t € [0, T], by (A.45) one has

8

1 .
3 / e 'Syt +s)ds

0

2
5. ou®)|* < 2u®)]* +2

) 8
<20u®]* + 832/|e—iw5|2ds/|u(t+s)|2ds
0 0

5 5
gz\u(t)|2+S%femms/|u<t+s)|2ds
0 0
t+6
<2|u(t)|2+§e2‘3“’|5/|u(x)|2dx.
t

1749

(A.46)



1750 P. Loreti, D. Sforza / J. Differential Equations 248 (2010) 1711-1755

Integrating the above inequality from O to T, we obtain

T T 5 T t48
/|13,wu(t)|2dt<2fyu(t)\2dt+ gez‘f‘w"‘/ / luo)|* dxdt. (A47)
0 0 0 ¢t
Since § € (0, T) we have that
T t+8 ) X T X T+8 T
/ / u(o)|* dxdt = /\u(x)f/ dtdx—i—/\u(x)]z / dtdx + / lu|? / dtdx
0t 0 0 ) Xx—68 T Xx—68
T+6 min{x, T}
= / ‘u(x)]2 / dtdx
0 max{0,x—§}
T+35 x T+8
< / |u(x)|2 / dtdx =34 / |u(x)}2dx.
0 x—38 0
Plugging this inequality into (A.47), we get
T T T+8 T+8
/|15,wu(t)|2dt<2/|u(t)|zult+2e2"~”“"“S / |u(o)|* dx < 2(1 + e2319) / luo)|” dt,
0 0 0 0
that is (A.46). O
We now proceed to define another operator, namely:
Ié,a),r:z 15@015,,”, §>0, a)e(C, reR. (A.48)

Some properties of that operator are collected in the following results.
Lemma A.5.

(@) Ifu(t) = e or u(t) = e, then I5 4 u =0.
(b) Ifu(t) = e with ' # w and @' # —ir, then

pi@-®)3 _ 1 eli®'—nd _q
awu®=(1-—— ) (1= ——Jue).
sart®) ( i@ — w)b )( (i —1)8 )”()

(©) Ifu(t) ="t withr' %1 and 1’ # iw, then

e(r’—r)é -1 e(r’—ia))é -1
1 H={1-— |1 - — t).
ort© ( r—ns )( i) )”( )
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(d) The linear operators I5 o, , commute, that is
Is,orly vt =l oy r 15,000l
foralls,w,r, 8, ,r and u.
Proof. (a) Thanks to (c) and (a) of Lemma A.3, we have
Is.0r () =Is.0 (s, —ir(€")) =I5, —ir(Is.0(€"")) = I5,~ir(0) =0,
Is,wr(€") = Is,0(Is,—ir(€")) = I5,(0) = 0.
(b) By Lemma A.3(a) we get

- ei(a)’—a))& -1
I, (®) =I5 —ir (I5.0(e)) = (1 -

>15,—ir (eiw’t)

i(w —w)é

_(i_ ei(a)’_a))& -1 1 ei(a)’+ir)8 -1 eiw't
i(w —w)é i(w +ir)d

(4. ei(w’—a))5 -1 L e(ia)/—r)é -1 eiw’t.
i(w — w)é (iw' —r1)8

(c) It follows by (b) with @’ = —ir’.
(d) It is a consequence of Lemma A.3(c). O

Corollary A.6. Forany T > 0,8 € (0, T), w € C, r € R and every continuous function u : R — C we have

T T+28
f|15,w,ru(t)|2dt < 4(1 + 2ROl (1 4 e2119) / luco)| dt. (A.49)
0 0

Proof. Applying (A.46) two times, first to function Is _;u(t) and next to u(t), we obtain

T T T+6
/\Is,w,ru(t)yzdt:/|15,w15,_,-ru(t)|2dt<2(1+e2'3“"5) / |15 _iru(o)] dt
0 0 0

T+26
< 4(1+ 2R (1 4 ¢2Ir) / ]u(t)|2dt,
0

that is (A.49). O

Proof of Proposition 5.4. To begin with, we will transform the function

oo

f= Z (Cneiwnt + Rner"t)

n=—oo

in a series such that the terms corresponding to indices in F are null, so we can apply assump-
tion (5.8).
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To this end, we fix ¢ > 0 and choose § € (0, ﬁ AT), where |F| indicates the number of elements
in the set F. Let us denote by I the composition of all linear operators I, r;, Where j € F; by
Lemma A.5(d) the definition of I does not depend on the order of the operators Is,wjrj Therefore, we
can use Lemma A.5 to get

ei(wnfwj)(i -1 e(iwnfrj)é -1 .
Ifth=> C 1-— 1-— el@nt
f® Z ”H< i(wn — )8 )( (iwn — )8 >

n¢F  jeF
(rn—rj)8 _ (m—iwj)§ _
e j 1 e j 1
+ZRHH<1— ‘8)(1_ , '(S)er”t.
ngF  jeF (rp —17j) (m — iwj)

If we define for any n ¢ F

ei(wn—a)j)5 -1 e(iwn—rj)fS —-1
G=G[[(1-——— 1 - —— ).
i(wn — )8 (iwp —1j)8

jeF
(r—rj)8 (rp—iwj)s
e -1 e 0 —1
w= i [1(1- G55 ) (- i)
jeF o n 1

then we have

If(t) =) (Che'" + Rpe™™).
n¢F

Therefore, applying estimate (5.8) to If(t) we obtain

T
/|1f(t)]2dt > Y|l (A.50)
0

n¢F

Next, we choose § € (0, ﬁ A T) such that none of the products

ei(a)n—a)j)é -1 e(iwn—rj)éi -1
M-Sy (o)
ior i(wn — wj)3 (iwg — )8
vanishes. This is possible because the analytic function 1 — 52;1 does not vanish identically and, since
the numbers w, — w; and iw,; — r; are all different from zero, we have to exclude only a countable

set of values of é.
Now, we note that there exists a constant ¢’ > 0 such that

ei(wnfa)j)B -1 e(iwnfrj)ﬁ -1
1- 1-
1_[( i(wn — wj)é )( (iwn —1})8 >

jeF

2
>c Vng¢F. (A.51)

Indeed, it is sufficient to observe that for any fixed j € F we have
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< — 0 as|n|— oo,

eil@n—w)s _ ‘ e~ S@n-wjs 4 1
|wn — wj|é

i(wpn — wj)é

elion—r)s _q e~ Qon+r)d | 1
— 0 as|n| — oo,

(iwg — )8 |wn + 1|8

in view of (5.6). As a result, the product
1_[ < ei(a)n—wj)a -1 >< e(iwn—rj)é _ 1)
jeF i(wn — wj)d (iwn —r1j)é

tends to 1 as |n| — oo, so that it is minorized, e.g., by 1/2 for all sufficiently large |n|. Therefore,
(A.50) and (A.51) yield

T

f|1f(t)|2dt > Y Ical?. (A.52)

0 n¢F

On the other hand, applying (A.49) repeatedly with w =wj and r =rj, j € F, we have

T+2|F|8
/|If(t)| dt <47 TT (1 4€R2iP) (1 4 €2111%) / |Fo] dt,
jeF 0
from which, using (A.52) and 2|F|$ < ¢, it follows
T+e
5 4171 Swile/|F Je/\F 2
DI < = [0 +eResle/ 7y (1 4 elriter! ‘)fIf(t)I dt,
n¢F €€ JjeF 0
whence
4217
Y Gl < —— % dt. (A53)
cic

n¢F

In addition, thanks to the triangle inequality, (5.9) and (A.53) we get

T 2 T 2
/ C eiw”t+Rner"t) dt:/'f(t) _ Z(Cneiw”t—i-Rner"t) dt
0 ne]—‘ 0 n¢gF
T T 2
<2/|f(t)|2dt+2/ > (Cre'rt + Rpe™)| dt
0 0 n¢F
/|f(t) dt+2ch Y " |Cal®
n¢F

2(1+c2 )/|f(t)| de. (A.54)
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Let us note that the expression
2

C e'nt + Rpe™")| dt
ne]—'

T
0
is a positive semidefinite quadratic form of the variable ({Cp}ner, {Rulner) € C! x RIZ1. Moreover,

it is positive definite, because the functions e'®, e n e F, are linearly independent. Hence, there
exists a constant ¢” > 0 such that

Jlx

so, from (A.54) and the above inequality we deduce that

2
dt>c" ) (ICul” +Rnl?).
neF

C ei“’"[+Rner"t)
_7_'

ne

DIl < <+c2 >/|f(t) |°dt.

neF
Finally, from the above estimate and (A.53) the desired inequality (5.10) follows. O
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