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Abstract

This paper primarily studies the large-time behavior of solutions to the Cauchy problem on the com-
pressible micropolar fluid system which is a generalization of the classical Navier—Stokes system. The
asymptotic stability of the steady state with the strictly positive constant density, the vanishing velocity,
and micro-rotational velocity is established under small perturbation in regular Sobolev space. Moreover, it
turns out that both the density and the velocity tend time-asymptotically to the corresponding equilibrium
state with rate (1 4+ )~3/4 in L? and the micro-rotational velocity also tends to the equilibrium state with
the faster rate (1 + t)_S/ 4in L? norm. The proof is based on the spectrum analysis and time-weighted
energy estimate.
© 2016 Published by Elsevier Inc.
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1. Introduction

The theory of micropolar fluids introduced by Eringen deals with a class of fluids consisting of
dipole elements. Certain anisotropic fluids, such as liquid crystals, are of this type. Animal blood
happens to fall into this category. Other polymeric fluids and fluids containing minute amount
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additives belong to micropolar fluids [13]. The motion of these viscous isentropic compressible
micropolar fluids satisfies the following system [13]:

pr +div(pu) =0,
(pu) +divipu @u) + Vp(p) =+ )Au+ (u+Ar—¢)Vdivu +2¢V x w,  (1.1)
(pw); +diviou @ w) +4cw = p'Aw + (W +1)Vdivw +2¢V x u.

Here the unknown functions p = p(t,x) > 0, u = u(t,x) € R3, w = w(r, x) € R3 and p(p)
over {t >0, x € R3} are density, velocity, micro-rotational velocity and pressure, respectively.
The constants u, A are the shear and bulk viscosity coefficients of the flow, and they satisfy
the physical restrictions © > 0 and 2u + 3A — 4¢ > 0. The parameter ¢ > 0 means dynamics
microrotation viscosity. i’ and A" are the angular viscosity coefficients satisfying u’ > 0 and
2u' +3) >0.

Note that for 4’ = A" = ¢ = 0, the material derivative of w is zero and roughly, the above
micropolar fluid (1.1) reduces to the celebrated Navier—Stokes equation. In this sense, the mi-
cropolar theory can be viewed as a generalization of hydrodynamics. Note also for ¢ = 0 the
velocity and the micro-rotational velocity are uncoupled and the global motion is unaffected by
the micro-rotations [13].

The initial data are given by

(p, u, w)(0, x) = (po, ug, wo)(x) for x € R, (1.2)
with the far field behavior:
(o, u,w)(t,x) = (0,0,0) as |x|]—>o00,1>0, (1.3)

without loss of generality, we set p = 1 in the following.

Due to its importance in mathematics and physics, there is a lot of literature devoted to the
mathematical theory of the micropolar fluid system. For an incompressible fluid p = const.,
V - u =0, we can refer to [1,4,14] as well as references cited therein. For the compressible
equations of the micropolar fluids, Mujakovi¢ made a series of efforts for the model in one-
dimensional space or with spherical symmetry in three dimensional space. Mujakovi¢ considered
the local-in-time existence and uniqueness [20], the global existence [21] and regularity [22] of
solutions to an initial-boundary value problem with homogenous boundary conditions of the
compressible one-dimensional micropolar fluid system respectively. Similar results were proved
in [25-27] for the non-homogenous boundary problems. Besides, Mujakovi¢ [23] analyzed large
time behavior of the solutions based on a priori estimates independent of 7. Stabilization of
solutions to the Cauchy problem of the one-dimensional micropolar fluid system was established
by Mujakovi¢ in [24]. Other authors, such as Chen [2] proved the global existence of strong so-
lutions to the 1-D model with initial vacuum. For the three-dimensional model, Chen, Huang and
Zhang [5] proved a blowup criterion of strong solutions to the Cauchy problem. Chen, Xu and
Zhang [3] established the global weak solutions with discontinuous initial data and vacuum. Mu-
jakovi¢ and her collaborator DraZzi¢ developed a compressible spherically symmetric flow of the
isotropic, viscous and heat-conducting micropolar fluid, and for this model, they proved the local
existence theorem for homogeneous boundary data, the global existence, the large time behavior
of solution, uniqueness of solution respectively in [6—8,28].
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However, the global existence and uniqueness of solutions to the three-dimensional micropo-
lar fluid system remains an open problem. In the especial case where ' = A’ = ¢ = 0, our model
reduces to Navier—Stokes system. The global stability of the near-constant-equilibrium solu-
tions to Cauchy problem or initial boundary value problem of the Navier—Stokes equations has
been proved by Matsumura—Nishida [17-19] by using energy method. Meanwhile, Matsumura—
Nishida [18] obtained the convergence rates of solutions towards the equilibrium [1, 0] in R? as

o —Lullyz <Ci(1+0)7%, (1.4)

In this paper, we consider these problems for the three-dimensional micropolar fluid system.
Before stating the main results, we explain the notations and conventions throughout this
paper. C denotes a positive (generally large) constant and ¢ denotes a positive (generally small)
constant, where both C and ¢ may take different values in different places. For two quantities
A and B, A ~ B means cA < B < CA. For any integer m > 0, we use H", H™ to denote
the usual Sobolev space H™(R?) and the corresponding m-order homogeneous Sobolev space,
respectively. Set L2 = H™ when m = 0. For simplicity, the norm of H™ is denoted by || - ||,»
with || - || = - llo. We use (-, -) to denote the inner product over the Hilbert space L3R, ie.

(fog) = f FEg@dx,  f=f(), g=g(x) e LA®).
R3

For a nonnegative integer ¢, we denote Bf the total of all £-order derivatives with respect to
(x1, x2, x3). For simplicity, we set

LA, Blllx = [|Allx + | Bl x-

Now, we state our main result about the global existence and decay properties of solution to
the system (1.1)—(1.3) as follows.

Theorem 1.1. Let N > 4. There are &9 > 0, Cy such that if

lloo — 1, uo, wollln < do,

then, the Cauchy problem (1.1)—(1.3) of the micropolar fluid system admits a unique global
solution [p(t, x), u(t,x), w(t, x)] with

[p(t,x) — 1,u(t,x), w(t, x)] € C([0, 00); HY (R?)),
Vp e L2([0,00); HY ' (R?),  Vu e L*([0, 00); HY (RY)),
Vw € L*([0, 00); HY (R?)),

and

t

Ip() = 1, u@), wol +/ (IVp @) -y + 191 + Vw1 ) ds
0

< Colllpo — 1, ug, wolll%. (1.5
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Moreover, there are §1 > 0, C1 such that if

[Loo — 1, ug, wollly + lileo — 1, uo, wolllz1 <81,

then, the solution [p(t, x), u(t, x), w(t, x)] satisfies that for any t > 0,

o —Lull <Ci(1+07%,  wl|<Ci(1+1)73. (1.6)

It is obvious that when N is large enough, the solution is classical belonging to C!([0, +00) x
R?) and particularly, the solution is smooth when initial perturbation is smooth. In general set-
ting, damping term w usually leads to the time—space integrability of the function w. However,
in our setting, (1.5) shows that micro-rotational velocity w itself is not time—space integrable be-
cause of the couple terms 2V x w in (1.1), and 2¢V x 1 in (1.1)3, see the proof of Theorem 4.1.

The time decay rates stated in Theorem 1.1 depend essentially on the spectral analysis of
the linearized system around the constant steady state. In fact, the solution to the linearized
homogenous system can be written as the sum of the fluid part and the electromagnetic part in
the form of

n(t, x) n(t, x) 0
u(t,x) | = u”(t,x) + | ui(t,x)
w(t, x) w) (¢, x) wy (¢, x)

The above decomposition is quite useful in dealing with complex linearized system containing
curl, such as Euler-Maxwell and Navier—Stokes—Maxwell system. We can refer [ 10—12] for the
detailed spectrum analysis with the use of a similar decomposition. Notice that the two terminolo-
gies, fluid part and electromagnetic part have been used in [10—12]. With the help of the above
decomposition, we give explicit representations of solutions to the two eigenvalue problems, see
more details in Section 3.

Notice that the micro-rotational velocity decays one-half faster than the time-decay rates for
Navier—Stokes system in (1.4). The damping term 4w plays a crucial role to obtain the faster
decay rate for w. The two decay rates in (1.6) are both optimal in the sense that they are the
same as those in the linearized case. The general approach for obtaining optimal convergence
rates of solutions in L? with p > 2, developed by Kawashima [15,16], is to apply Fourier energy
estimates to the linearized homogenous system. We will make Fourier energy estimates to the
linearized homogenous micro-polar fluid system in Section 2. Its dissipative structure can be
characterized by the following Lyapunov inequality

clef?e

U (t,€)| < Ce 2 |Up(£)],

which provides a clue to the more delicate spectral analysis.

The rest of the paper is organized as follows. In Section 2, we reformulate the Cauchy problem
on the micropolar fluid system around the constant steady state, and study the decay structure
of the linearized homogeneous system by the Fourier energy method. In Section 3, we present
the spectral analysis of the linearized system by two parts. The fist part is for the fluid part,
the second one for the electromagnetic part. In Section 4, we first prove the global existence of
solutions by the energy method, and then show the time asymptotic rate of solutions around the
constant states.
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2. Decay property of linearized system

In this section, we study the time-decay property of solutions to the linearized system based
on the Fourier energy method. The main motivation to present this part is to understand the
linear dissipative structure of such complex system in terms of the direct energy method and also
provide a clue to the more delicate spectral analysis to be given later on.

2.1. Reformulation of the problem

We assume that the steady state of the micropolar fluids system (1.1) is trivial, taking the form
of

p=1,u=0 w=0.

Letn = p — 1. Then U := [n, u, w] satisfies

ny +divu = Sy, 2.1)
ur+yvn — (W +)Au — (u+ 1 —¢)Vdivu —2¢(V x w = 83, 2.2)
wy +4iw — ' Aw — (W +A)Vdivw — 20V x u = S3, (2.3)

where the nonhomogeneous source terms S; (i = 1, 2, 3) are defined as
S1=-ndivu —u - Vn,
SH=—u-Vu— fm[(L+)Au+(u+xr—¢)Vdivu +2¢V x w]l —h(n)Vn, 2.4)
S3=—u-Vw— fm[uAw+ W +1)Vdivw —4cw +2¢V x ul,

and

p(1)7f(n): n h(n):p(nJrl)_p(l)Nn

1 n+1’ n+1 1

y =
The associated initial data is given by

(n,u, w)(x,0) = (ng, ug, wo)(x). (2.5)
2.2. Linear decay structure

In this section, for brevity of presentation we still use U = [n, u, w] to denote the solution to
the linearized homogeneous system

ny; +divu =0,
ur+yvn — (W +8)Au — (u+ 1 —¢)Vdivu —2¢V x w =0, (2.6)
wy +4cw — W' Aw — (U +A)Vdivw —2¢V x u =0,

with the initial data

(n,u, w)(x,0) = (ng, ug, wo)(x). 2.7
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The goal of this section is to apply the Fourier energy method to the Cauchy problem (2.6),
(2.7) to show that there exists a time—frequency Lyapunov functional which is equivalent with
|U (1, )|* and moreover its dissipation rate can also be characterized by the functional itself. Let
us state the main result of this section as follows.

Theorem 2.1. Let U(t,x), t >0, x € R3 be a weAll—deﬁned solution to the system (2.6)—(2.7).
There is a time—frequency Lyapunov functional E(U(t, §)) with

EW @, &)~ |0 =l a, d]]* 2.8)
satisfying that there is ¢ > 0 such that the Lyapunov inequality

cls?

= |§|25(U(t,é)) <0 (2.9)

d A
Eé(U(r, £)+

holds for any t > 0 and & € R3.

Proof. As in [10], we use the following notations. For an integrable function f : R3 — R, its
Fourier transform is defined by

3
7= [exp-iv- o) fwix. x-5i=Y g, £,

R3 J=1

where i = +/—1 € C is the imaginary unit. For two complex numbers or vectors a and b, (a|b)
denotes the dot product of a with the complex conjugate of b. Taking the Fourier transform in x
for (2.6), U = [n, i, w] satisfies

ﬁt+l$ 1220,
ﬁ,+yi§ﬁ+(u+§)|§|2ﬁ+(u+k—§)sé-12—2§i§ x =0, (2.10)
Wy + 450 + W EPD + (1 + 1)EE - — 2¢iE x i1 =0.

Multiplying (2.10);, (2.10), and (2.10)5 by 7, # and w respectively, taking real part and taking
summation of three resultant equations, we have

2dt\(fn i, D)+ (w+ OEPIAR + (A — D& il

FAC D+ (W IEPID? 4 (1 + A)E - D1 = 4¢Re(iE x 4) < CIEP AL +4¢|D]%,
2.11)

which gives

!(fn )+ IERIAPR 4 (w4 — O1E -2 + @ JEPIBI? + (1 +1)E - B]* <0.
(2.12)

2dt
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By taking the complex dot product of the second equation of (2.10) with i&n,
d .. . 2, A2 DAjeen Alss A
E(ullén)JrVI%’I "+ (e + OIEI7ulisn) + ((w + A — $)EE - ulign)
= |- 0|* + (2CiE x W]ikn), (2.13)
where we have used the fact
Ao A aaen
(;ién) = E(“Mf”) — (uligny)
d (lign) + (& - uln,)
=—(ulién i&-uln
dt !
d

=5mwm—@ﬁﬁ

Taking the real part of (2.13), using Cauchy—Schwarz inequality, we have
d_ .. . . 14 . A N .
TRe(iligh) +yIEPIa < 2Pl + C (16 Par + 1141 + g Pl )
Dividing it by 1+ |£|? gives

HE
1+ [

d Re(ilign) y &

AD
— = . 2.14
dr T+ E2Z 21+ i (14

MWscmMF+
Finally, let’s define

Re(i|iER)

aﬁaf»=M¢%ii@ﬂ?+K1+Ep

for constant 0 < « <1 to be determined later. Notice that as long as 0 <« <1 is small enough,
then E(U (1, £)) ~ |U (1)|? holds true and (2.8) is proved. The sum of (2.12), (2.14) x k gives

2
&&an»+c@ﬂmeF+ch%FmFso, (2.15)
by noticing
2 2
2in a2 617 o clEP o~
c u,wl|“+c nl|* > Ul~.
EPI, D1 +eq eIl 2 71U

This completes the proof of Theorem 2.1. O

Theorem 2.1 directly leads to tpe pointwise time—frequency estimate on the modular |0 (t,8)]
in terms of initial data modular |Uy(&)|, which is similar to [10, Corollary 4.1].
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Corollary 2.1. Let U(t,x), t >0, x € R3 be a well-defined solution to the system (2.6)—(2.7).
Then, there are ¢ > 0, C > 0 such that

A 2 A
10, 8)] = Cexp (—£EE5 ) U @) 2.16)
holds for any t > 0 and & € R>.

Based on the pointwise time—frequency estimate (2.16), it is also straightforward to obtain
the LP—L9 time-decay property to the Cauchy problem (2.6)—(2.7). Formally, the solution to the
Cauchy problem (2.6)—(2.7) is denoted by

Ut) =[n,u,w]=etUy,

where el for t > 0 is said to be the linearized solution operator corresponding to the linearized
micropolar fluid system.

Corollary 2.2. (See [10] for instance.) Let 1 < p,r <2 <qg <00, £ >0 and let m > 0 be an
integer. Define

1 1 L, if € is integer and r = q =2,
[“3(———)} = 2.17)
roa/ 1y [£+ 3(% - :7)]_ + 1, otherwise,

where [-]_ denotes the integer part of the argument. Then e'L satisfies the following time-decay
property:

3
3G

3.1 1 . 1_1
IV"eX Uplla < CA+1) 27" @7 2| Ul s + Ce V" Pl a b g v

for any t > 0, where C = C(m, p,1,q).
3. Spectral representation
In fact, as in [10], the linearized micropolar fluid system (2.6) can be written as two decoupled

subsystems which govern the time evolution of n, V- u, V- w and V x u, V x w respectively.
We decompose the solution to (2.6)—(2.7) into two parts in the form of

n(t, x) n(t, x) 0
ut,x) =\ uyt,x) [+ | ur(t,x) |, 3.1
w(t, x) w) (t, x) w(t,x)

where u |, u are defined by
up=A"'VV-u, up=—A"'V X (Vxu),

and likewise for w), w_ . For brevity, the first part on the right of (3.1) is called the fluid part and
the second part is called the electromagnetic part, and we also write

Uy=lnup,w)], Ur=[ui,wyl

Please cite this article in press as: Q.Q. Liu, P.X. Zhang, Optimal time decay of the compressible micropolar fluids, J.
Differential Equations (2016), http://dx.doi.org/10.1016/j.jde.2016.01.037




YJDEQ:8251

Q.0. Liu, PX. Zhang / J. Differential Equations eee (eeee) eee—see 9

We now derive the equations of U and U, respectively. Taking the divergence of the last
two equations of (2.6), it follows that

on+V-u=0,
V-u)i+yAn—Qu+A)AV-u=0, 3.2)
(V-w); +4V-w—Q2u + M)AV -w=0.

Applying A1V to the last two equations of (3.2) and noticing V - u = V - u|, we see that the
fluid part U satisfies

orn + diVuH =0,
orw) +4sw) — Qu' + )»/)Awu =0.

Initial data is given by

.y, wylle=o0 = [no, uoy, woy I (3.4)

Taking the curl of the last two equations of (2.6) and then replacing —V x V x w by Aw —
VV - w, likewise for —V x V x u, it follows that

{(Vxu)t—(,u~|—§)AVxu+2§(Aw—VV-w)=O, 35)

(Vxw)+4Vxw— AV x w+2¢(Au—VV-u)=0.

Applying —A~!Vx to the above two equations and noticing V x u =V x u, we see that
electromagnetic part U satisfies

ouy — (U+8)Auy -2tV xwy =0, 3.6)
hwy +4cw, —pwAwy —2¢V xu; =0, '
with initial data
[u1, willi=0=[uoL, worl. (3.7)

3.1. Spectral representation for fluid part

Taking time derivative for the first equation of (3.3) and using the second equation of (3.3) to
replace d;u, it follows that

On —yAn+ Qu+ 1AV -u) =0.
Further noticing V - u| = —0,n, one has

opn —yAn — Qu+A)Adn =0. (3.8)
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Initial data is given by
nli=0o =no, nl=0=—V -uyp|.

Taking Fourier transformation of the second order ODE (3.8)—(3.9), we have

duit + 2u+ VIEPoA + y 1§17 =0,
fli=0 = Ao,
atVAl|t:() = —i‘E : ﬁ0\|~

By direct computation, the solution of (3.10) can be expressed as

eX+l — pX-1 ) . X eX-1 — X_6X+t .
= ————(—i& -up)) + +—”0’
X+ — X- X+ — X-

Y

where x4 is defined as

X = =+ A/ DIEP £\ (4 /220 - y I,

Similarly, taking time derivative for the second equation of (3.3), replacing n; by
follows that

O —yVdivuy — 2u +A)Adu =0.
Further noticing that —y Vdivu = —y Vdivu = —y Au, one has
Ot — Yy Auy — 2u 4+ A)Adsuy =0.
Initial data is given by
ulr=0 =uo, Oujli=0 =—yVno+ 2u + A)Aug.
Taking Fourier transformation of the second order PDE (3.12)—(3.13), we have
Byt + Qu+ MIEPD iy + yIE17d) =0,

deity =0 = —yi&ho — 2u + A)|E[*doy,
i) li=0 = il|-

By direct computation, the solution of (3.14) can be given as

. eXtl —ex-t on x+e'H — y_eX-"
)= ————(—yiéng) + ——iip).
X+ — X- X+ — X—

Taking Fourier transformation of the third equation of (3.3), we have

YJDEQ:8251

(3.9)

(3.10)

(3.11)

—diVM”, it

(3.12)

(3.13)

(3.14)

(3.15)

Differential Equations (2016), http://dx.doi.org/10.1016/j.jde.2016.01.037
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dW) + 4L+ Qu + A)IEIPD) =0,
Willr=0 = Wwoj-

The solution of the above first order ODE is
ﬁ)H = eMO[ﬁ)OH (3.16)

with po = — (4¢ + @u’ + 1) E?).
In summary, we deduce from (3.11), (3.15) and (3.16) that

n g
ay =G| dp |. (3.17)
wj w0,

where the matrix G1(7) is given by

X+EXJ_X—€X+t eX+l_eX—1 (_IET) 0
N at X;—*tX— X;;X— i
Gi(t) = %(‘W&) %13“ 0 . (3.18)
e I3, 3

Next, we use (3.18) to obtain some refined LP—L9 time-decay properties for U = [n, uy, wy].
For that, we first make the time—frequency pointwise estimates on 7, ﬂH, 12)“ in the follow-
ing
Lemma 3.1. Let U = [n, u, w] be the solution to the linearized homogeneous system (3.3)

with initial data Uy = [no, uo|, wo| . Then, there exist constants ¢ > 0, ¢ > 0, C > 0 such that
forallt >0, |&| <e,

A, €), iy (1, ]| < C exp(—cl€*D)I[A0(€), doy (6], (3.19)
) (1, §)] < Cexp(—ct) [woy (§)], (3.20)

and forallt >0, |§| > ¢,

(. &), iy (2, )1 < Cexp(—cn)|[Ao(§), oy ()], (3.21)
[ (1, )] = Cexp(—ct)|woy (). (3.22)

Proof. In order to get the upper bound of 7(¢, &) and (¢, &), we have to estimate (A;n, 6}12,
Gz 1 and (A;zz. Here we denote

N xreX=t — y_eX+!t eX+! — eX-1

Gn=""—-""— Gp=———(-ith)
X+ — X— X+ — X—
n eX+l — eX-1 ) n X+eX+T — X_gX—t
Gyy=——(-iy§), Gp=——"-—""-"-.
X+ — X— X+ — X—
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If (4 2/220E1* — y1E2 = 0, then ya = — (i + A/2)IE12 + /(i + A/2)%[E]F — & are real.
It is straightforward to obtain

x-=—0MIER, xr=—51—+0() (IE17%).

2u+ A

X = x =2+ 22201 — yIE12 = O(D)E

as |&] — 0o. And on the other hand, if (1t 4+ 1/2)?|£|* — y|&|*> < 0, then x4+ = —(u +A/2)|E|> +
i/y|E12 — (1 + 1/2)2|&|* are complex conjugate. Moreover, one has

Ix£l = O],

Yo = xe =20\ [V [EP — (u+ 2/2201 =i O (g,

)
as |&] — 0. Then, there exists ¢ < 7)/2 < R, with 0 <& <1 < R < 0o such that one
V Qu+2)

can estimate G as follows:
Gl +1G 12l + G| + |G| < Ce B,
as |&| <e,and
1G11l +1G 12l +1Ga1| + G| < Ce™,

as || > R.

A [ 4
In what follows we estimate only G, over ¢ < |§] < R. When |§| < 7)/2,
Cp+2)

Xl ettt DE in( /Y €7 = (u+ 1/2)2IE 1)
X+ — X- VYIER — (w+1/2)2E

and

p e i IR — (- A/2PERD) _
el [ VVIER = (u+2/2)2 e

@u+1)?

4y
When [] > | —
Cp+2)
eX+l — eX*Z 2

R __r
lim ST e m < Cem
£]— 4y X+ — X—

@u+1)?

Then there exists § > 0, if ‘|.§| - \/%

_ Y
te Z2uti §Ce 2p+r"

<, one has
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X+1 _ pX-1 X410 pX-1

e e e e

| <Ce™, | ———(—i&T)| < Ce™.
X+ = X—- X+ — X—

Next, let’s consider élz over {e < || <R,

— A
|$| (2M+)“)2

> §}. Notice that in this domain,

eX+t _ oX-1
(_lf;:T) SCe*Ct’
X+~ X-
where the fact that
x+ <0 whenever x.i real,
Re x+ = —(u+1/2)|£]*> whenever x4+ non-real and conjugate,

has been used. Therefore, in the completely same way, we can get

IGi1l+1G21| +1G22| < Ce™,

over ¢ < |&| < R. In summary,

~ N N 12
1G11] + |G 12| 4+ 1Ga1| + |G| < Ce B (3.23)

as |&€] <e, and

1Gijl <Ce ™, 1<i,j<2, (3.24)

as || > e.
Now, in terms of (3.23), we can estimate 7(t, &), @ (t, £) as
(2, )] = |G 1170(E) + Gradio) (£)]
<[Guillao@®)| +1Gr2lldoy )]
< Ce 1 |[7g(€), dioy (§)]], (3.25)
iy (¢, ) = |Ga1Ao (&) + Gty (€))]
< 1GallAo&)| + Gl €]

—elER A A
< Ce B |[Ag (&), doy (91, (3.26)
for |&| < &, which prove (3.19). Similarly, (3.21) directly follows from (3.24). Finally, (3.20)

and (3.22) directly follow from the expression of wj in (3.16). This completes the proof of
Lemma3.1. O

Asin [10,11], it is now a standard procedure to derive from Lemma 3.1 the LP—L4 time decay
property of the fluid part Uj.
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Theorem 3.1. Let 1 < p,r <2 <q < o0 and let m > 0 be an integer. Suppose that [n,u|, w]
is the solution to the Cauchy problem (3.3)~(3.4). Then U = [n, u), w|] satisfies the following
time-decay property:

_31_1Iy_m
IV [, uyllie < C(1+0)" 2% 272 |[[ng, ugylllLr + Cexp(—ct)||V

m+[3(%—

3l_1
B G ")]+[n0,u0\|]||Lr,

1
IV wyllLa < C exp (=eb)ll[no, uoylllLr + Cexp(—ct)|IV VY [ng, ugy il
for any t > 0, where C = C(m, p,r,q) and [3(% — é)]-ir is defined in (2.17).

3.2. Spectral representation for electromagnetic part

Recall that the electromagnetic part U = [u, w, ] satisfies the following equation

oul —(+8)Auy —20V xwy =0, (3.27)
wy +4cw; — ' Awy —2¢V xuy =0, '
with initial data
[ur, willt=0=[uoL, woLl. (3.28)

We first solve # | . Taking the time derivative of the first equation of (3.27), taking the curl for
second equation, we obtain

(3.29)

Orrtt L — (U +E)ABuy —280,(Vxwy)=0,
(Vxw)+4(Vxw)— WAV xw)+20Au; =0,

where we have used the fact that —V x V x u ) = Au . Using the second equation of (3.29) to
replace 9,V x w_ in the first equation of (3.29), and moreover, replacing V x w) by the first
equation of (3.27), taking Fourier transformation, we get

ety + [(+ OIEP + 4 + W/ IE1P)] i + [(4C + W IEPY (e + O)IEIP —4¢2|E1P]dL =0,
Qi1 =0 = — (1 + O)IEPloL +2¢i& x WL,
U i=0=1to.

(3.30)

Consider the character equation
[ Ol + e+ w16 i+ [0 s+ (1 + O)lel*] =0,

and its roots x4+ are denoted by

=~ Olg R+ de + 161 & VTG + 0162 + 4 +wgRT — 4[42uIe R + G+ O]
2

[t g 1P 40| VG ©— W)ZIEF 1687+ 8E (W +E — g 4

_ 5 . .
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Notice that

2
(¢ = WPlEL + 1682 + 85w + & — P = (w+¢ = w)lgP = 4| + 1682512 > 0.

Then x4 are both real roots. By direct computation, we give the solution to (3.30),

Kyt K_t Kol _ e okt

N e . A A Kie N
i = ————[2¢i€ xib1o = (u+ i |+ T————ilo.  (332)
Ky —K— Ky —K—

We solve W in the following. Taking the time derivative of second equation of (3.27), taking
the curl of the first equation, we get

(3.33)

0(Vxuy)—(u+ AV xuy +25Aw; =0,
wi +4¢0w — ' Adwy —289,(V xui)=0.

Replacing 9,(V x u) in the second equation by the first equation of (3.33), replacing V X u
by the second equation (3.27) and taking Fourier transformation of the resultant equation, we get

W1+ [(+OIEP + @ + 1 IEP] b+ [(4¢ + 1 EP) (1 + OIEP? — 4¢%E1*] b1 =0,
Wm0 = —(WIEI* + 4oL +2¢iE X oy,
W |r=0 = Wo -

(3.34)
In the same way as for solving it | , we give the solution of (3.34),
. el(+l‘ _ ekft ) . . K el(fl _ K,e'“rt .
i1 = ———— |28 x i1 — 161 +40yidoL |+ o1 (339)
K+ — K_— K+ — K_—

In summary, we deduce from (3.32) and (3.35) that

iy oL
< o ) G (1) ( ey ) (3.36)

where the matrix G2 (7) is given by

K ert_KieK+t 2 Kyt _ K1 /c+r_ K_t
& el (V0 O 1 e S 20iEX
2(t) - K+t_eK t K+€K*1—K,e +1 2 et k1
o 26iEx e — WP+ A=

Lemma 3.2. Let U] = [u,,w,] be the solution to the linearized homogeneous system (3.27)
with initial data U, o = [uo1, woL ] Then, there exist constants € > 0, ¢ > 0, C > 0 such that
forallt >0, || <&,

iy (1,8)] < Cexp(—cl&1*1)[[fioL (&), WoLll, (3.37)

[ (1, 8)] < ClE|exp(—cl&|*0)|[ioL (§), Worll + Cexp(—ch)|lhoL (), oL, (3.38)
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and forallt >0, |§| > ¢,

i1 (z,8)] < Cexp(—ct)|[itoL(§), woLll, (3.39)
[ (t,8)] < Cexp(—ct)|ligL(§), woLll. (3.40)

Proof. Here we use the same notations éll, élz, Gzl and ézz to denote the four elements of
G, for simplicity. By direct computation, we have

)

2 2
éll=K++(M+§)|5| ot _ K-+ (u+0)IE| i

Ky —K— Ky —K—
n N eK+l‘_eK7t )
G1p =Gy = ——2Ciéx,
Ky —K—
1112 1112
622=K++M|5| T3¢ o K WET AL
Ky —K— Ky —K—

Recall the definition of x4 in (3.31), one can easily find that when |£| is near 0,

Ky = —plEPP + O(E1Y), ko =—4¢+0(EP),

ks — ke = (4 &= PIER + 1682+ 82w + ¢ — g2 = O(1),

which implies,

1G11] < ClE e + Ce kP,

. a2
|G 12| +1Ga1] < ClEle™ + Clgle BT,
Gaa| < Ce™" + Clg[Pe P,

When |£] is near oo,

o —WE2+0(1), as u+¢—pu >0,
* —(n+OIEP+0(1), as u+¢—p <0,
_ -+ olEP+ o). as p+i—pu'>0,
| =rIEP+ 0, as p+¢—p <0,

ko — ko= € = WRIE 1687 + 801 +¢ — WP

_JowEP). as w0,
O(g), as u+¢—u =0,

which implies

IGi1l+ G2l + 1G24 |Gl < Ce™.
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When |&| is far from O and oo, k+ < O implies that there exist a constant ¢ > 0 such
that kx < —c and k1 — k— = O(1). Now, in terms of (3.36), one can estimate | (¢,£)| and
| (t,&)| directly from the above upper bounds of G;;, 1 <i, j <2. This completes the proof
of Lemma 3.2. O

Analogous to Theorem 3.1, we can deduce the LP—L9 time-decay property for the electro-
magnetic part U directly from Lemma 3.2.

Theorem 3.2. Let 1 < p,r <2 < g < o0 and let m > 0 be an integer. Suppose that [u,w,] is
the solution to the Cauchy problem (3.27)—(3.28). Then U = [u_, w, ] satisfies the following
time-decay property:

v <Ccl+n3GD% e |V TBG =P
IV%uillpe <C(L+1t) 27 47 2 |[[ugL, worlllLr + Cexp(—ct)|| 2 ugr, worlllLr,

3.1 1 m+1 1 1
V™ llze < CA 40725727 oL, wor lllr + Cexp(—en) [V BT =D (g wo, 1)1,
forany t =0, where C = C(m, p,r,q) and [3(}+ — 5)]+ is defined in (2.17).

Based on the time-decay property for [, u), w)] in Theorem 3.1 and the time-decay property
for [u,w,] in Theorem 3.2, we have the following time-decay property for the full solution
[n,u, w].

Theorem 3.3. Let 1 < p,r <2 < g <00 and let m > 0 be an integer. Suppose that [n,u, w]
is the solution to the Cauchy problem (2.6)—(2.7). Then U = [n,u, w] satisfies the following
time-decay property:
_3(l_1y_m 1_1
IV"rlle < C(L+072%707 2 [ng, uolllr + Cexp(=en) V" 070 [ng, uglil -,
_3l_1ly_m 1_1
IV™ulla < C(1+0) 25772 [ng, uo, wolllLr + Cexp(—ct) V" PC =M [ng, g, wolll .
311y mpl 11
IV"wlize < C(L+072D 7272 |l[ug, wolllr + Cexp(—en) V" PG~ [ug, wol|l -,
forany t >0, where C = C(m, p,r,q) and [3(% — é)]Jr is defined in (2.17).
4. Asymptotic behavior of the nonlinear system
4.1. Global existence
In this section, we will establish the global existence of solution to the compressible microp-
olar fluid system (1.1)—(1.3). For later use and clear reference, the following Sobolev inequality
about the L? estimate on any two product terms with the sum of the order of their derivatives
equal to a given integer is listed as follows [9,29].
Lemmad.l.Letn> 1. Leta! = (Olll, e ,a,ll) and o* = (a%, e ,Ot,zl) be two multi-indices with

|a1| =k, ot2| =kyand setk =ki +ky. Let 1 < p,q,r <ocowith1/p=1/q + 1/r. Then, for
uj:R" =R (j=1,2), one has
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for a constant C independent of uy and u,.

v,

vk H 41
‘ 1 Lr(R")> ( )

1 2
0% u10%u H u n + ||u "
1 2|, (R) il La @ luzll g ey

r(Rn)

To the end, we assume that N > 4. We define the full instant energy functional Ey (U (¢)) by

ENU@) =Y f(p(”+1)|al 2+ (1 + D)0 [, w]] )dx—i-lc DG A

[[I=Np3 [[|<N—1

4.2)

where « is a constant to be properly chosen later. Notice that since the constant « is small enough,
one has

ENU @) ~ llln,u, wlly.
We further define the corresponding dissipation rate Dy (U (¢)) by
DnU @) = IVally-1 + [[V[u, w]||n. 4.3)

Then, the global existence of the reformulated Cauchy problem (2.1)—(2.5) with small smooth
initial data can be stated as follows.

Theorem 4.1. Let N > 4. If ||Uo|| y is small enough, then the Cauchy problem (2.1)—(2.5) admits
a unique global solution U = [n, u, w] with

U € C([0, 00); HY (RY)),

Vn e L*([0,00); HY'(R3)),  Vu e L*([0, 00); HY (RYY),

Vw e L2([0, 00); HY (R?)),

and

t

Iy +/ (19RO -y + VeI + 1Y) ) ds < CIU I}
0

To prove Theorem 4.1, it suffices to prove the following uniform-in-time a priori estimate,
cf. [10].

Lemma 4.2 (A priori estimates). Suppose that U = [n,u, w] € C([0, T); HN (R?)) is smooth for
T > 0 with

sup [U@®IIv <1,
0<t<T

and that U solves the system (2.1)—(2.5) over 0 <t < T. Then, there is Ex(-) in the form (4.2)
such that
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19
d 1
ESN(U(I)) +cDnU(1) <CIENWU )2 +EnU)IDN (U (1)) (4.4)
forany0 <t <T.
Proof. It is divided by three steps as follows.
Step 1. It holds that
1d pin+l) . 12 )
S (<ﬁ,|8xn| +<n+1,|8xu| >+<n+l,|8xw| >
[1I<N
+ 1l Vully + & IVwlyy < Cllin, w, wll v (VAR + IV, wllR). (4.5)
In fact, it is convenient to start from the following form of (2.1)—(2.3):
ny+m+1)divu = —u - Vn,
! 1 A— 2
u,+p(n+ )Vn—M_F;Au—M—l— ngivu— ¢ Vxw=—u-Vu, 4.6
n+1 n+1 n+1 n+1 (4.6)
4 ! T 2
w,+—§w—LAw—M + Vdivw — ¢ Vxu=—u-Vuw.
n+1 n+1 n+1 n+1

Zero-order energy estimates imply that

ld ([pPn+1) s s )
EEHﬁ"”' (n ) (n 4 1 wl) g

+ (1 +OIVul? + (e + 21— Ol divul® + £/ [ Vwl* + (W + 2) || divw]|?

— " . l p/(”‘l'l) 2
_4§(V><u,w)+<p (n+ Nu Vn,n)+2<<7n+l )t,|n|>

— <u . Vn, wn,>+ 1 <(n 1), |l w]|2) — (- Vi, (14 D) — (- Vw, (n+ Dw)
n+1 2

<z Vull® + 42wl + Clin, w, wlll g1 IV, u, w]||>.

Then, we obtain the zero-order energy estimate
1d / 1
2dr {<—p ,(,n++1 ), Inlz> (1 Jul) + {41, Iw|2>} + Va2

+ (1 + A= Ol divul® + @ I Vwl* + (' + 2) || divw]]?

< Cllin, u, wlll g1 1V In, u, wil|*. 4.7

Let1 <¢ < N.We apply Bﬁ to (4.6). The result is written as
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3, +(m+1ddivu = —u-3Vn + £/,
Ou, + @aﬁw —~ ‘;Iimfu Bt S u
— nz—flv X Bfwz—u-a)fVu—i—le,
dw, + ‘flaf n’i ] Adfw — %Vdivaﬁw —~ nzflv x 3lu = —u-Valw+ ff.
(4.8)
Here ff, ff and ff are defined as follows:
fl=—18u- V]n—[Bx,(n—l-l)dlv]u
+|:8f,%Vdiv}u+[8f,%Vx:|w, 49)

4¢
4 ¢ ¢
= — 8’— 3 —A
J3 ["n+1} +[ n+1 ]
vy 2
ot P Gdiv w0l 2 vx
n+1 n+1

and [, ] denotes the commutator defined by [A, B] = AB — BA. Multiplying the first equation
of (4.8) by £ r(l'_’:ql) d‘n, and taking integration in x give

1d[p
EE<P’in_:-l ) |8in|2>_<p/(n+l)aiu,aivn>_<p//(n+1)aiu.vn’3)1€n>
<< ’|8in|2 +§ v ni—}—lu s|3fn|2 + 1»ﬁ3xn .

(4.10)

Multiplying the second equation of (4.8) by (n + I)Bfu, and taking integration in x give

1 d .
S 1 10kul) + (P 0+ DB Blar) + Gu+ OI VDL + (a2 = Ol div ofu]?
1 1
= 26(V x 0fw, ofu) + 5 <(n +1),, |a§u|2> +5 <v ((n+ D), |af§u|2> n <ff, n + 1)afu>.
4.11)

Multiplying the third equation of (4.8) by (n + l)afw, and taking integration in x give
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d .
S 118k + 4 fofwl? + W VLI 4 (' + 3 div o w?
14 l 1 ! ’ 1 . . )
=200V fu, 0fw) 4 5 (014 Dy 0bw) + 5 (V- (O D 0w )+ (£, 64 D).

4.12)

Taking the summation of (4.10)—(4.12), we get
1d
2dt

+ (1 +OIVLull* + (4 — Ol divalul? + 1/ VALw |2 + (' + 1)l div dbw]|*

"(n+1
{<Pifl) |a§n|2> +(n +1, |a§u|2>+(n +1, |a§w|2>} +ac)otw]?

L[ pn+1
=4¢(V x L, fw) + (p (0 + Dl - Vi, o) + 5 <<%) , |a§n|2>
n t

1 Pn+1) Lo\ 1 l a1 , 5
+§<V-(ﬁu>,|8xn| >+E<(n+1),,|8x[u,w]| >+§<V-((n+l)u),|8x[u,w]| )

{1 2 D) {7 0 Dt + (£, 0+ D)

<z |Votull®> + 4210w + IV In, ulll Lo |0 n, w, wll|® 4 || £ R + 1| £ 1105w
+ LA w]. (4.13)

Noticing the similarity of the quadratically nonlinear terms in fj, f> and f3, we only estimate
four terms from Lemma 4.1 in the following,

ML, u-Vinl =Y CFo™ ' Vualvn||

k<t
< ClIVullg= 135" Va4 1 Val e 195 Vul,

=+
9, BT
H[ ntl }”

4
Bl
n+1

<C|)_cial T vnaf aul|
k<t

< C|IVallp= 195 Aull + | Aull = |05 Vnl,

<Cll Y Cro ™ Vndtw)
k<t

< CVallz= 35wl + w185 Val,

2C k ol—k— k
[af, mw} wH <C| écgaf 'Vnokv x w]|

< C|IVallz= 357V x wl| + |V x w] g 95 Vnl,

which implies that
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ld [[p(n+1)
2dt n+1
+ (A= Ol divarull® + 1/ I Vogwl* + (' + 1) divoyw|®

< IVIn, u, wll|zoo 1980, w, wll|* 4+ | Vall Lo |95 [ue, w)?

, |ajcn|2> +<n 1, |8iu|2>+<n 1, |a§w|2)} + | V9l

+ 1182w, wlll oo 1850, w, w4 | Va ] Lo 19 wll[8lw || 4 [Jwll Lo [[8n ] |85 w]]

< Cllin, u, wllly (1Vall3y_; + 1 VIu, wll3)- (4.14)

Taking summation of (4.7) and (4.14) over |£| < N, we obtain (4.5).

Step 2. It holds that
4 > (@u. oV 2
U, 0y n)+c||Vn||N_1
l|<N-1
< ClIVIu, wll3y + Cllin, u, w3 (1Vallay_; + 1 VIu, wll3)- (4.15)

In fact, recall the equations (2.1) and (2.2),

ny +divu = Sy, 4.16)
ur+yvn — (W +Au — (u+ 1 —¢)Vdivu — 20V x w = 83, '
with
Sl =-V. (nu)v
SH=—u-Vu— fm)[(u+)Au+ (u+r—¢)Vdivu +2¢V x w] — h(n)Vn.

Let 0 </ < N — 1, applying 8)16 to the second momentum equation of (4.16), multiplying the
resultant equation by 8)16 Vn, taking integrations in x, using integration by parts and replacing d,n
from (4.16);, one has

d l l 1 2
A0 8,9n) + 18,V

=V -8lul> = (V-8lu, 8 81) + (u + ) Adu, 3L Vn)
+ (41 —=)Vdivalu, 3. Vn) 422 (0LV x w, 8. Vn) 4 (3L S5, 8. Vn).

Then, it follows from the Cauchy—Schwarz inequality that

d 4
E(&iu, 3l vn) + 5||8iVn||2

< C(105 [, wll? 4 10521 ®) 4+ C (1L St 11> + 19 S211). (4.17)

Noticing that S, Sy are quadratically nonlinear, one has by using Lemma 4.1
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19L5111% + (18 521
= Cltm, i e (105 T, w, w4+ 107 2ul2) 4+ 1040, wl |2 (VD e, w1 e + Al )
< Clltn, u, wll} (IVallf_; + IV, wllIF).
Substituting this into (4.17) and taking the summation over |/| < N — 1 imply (4.15).

Step 3. Let us define

EnU®)) = Z/( (”+1)|a’ 1>+ (n + D8 [u, w]| )dx—i—/c > (dlu. 0\ Vn),

|l|<N [[|<N-1
for constant 0 < k¥ < 1 to be determined. Notice that as long as 0 < k¥ < 1 is small enough, then

EnWU()) ~ ||U(t)||%V holds true. Moreover, the sum of (4.5), (4.15) x « implies that there are
¢ >0, C > 0 such that

d
ZENWU D)+ Dy (U e) = (Ilin,u,wll + N wll) VA1, + 19T w]I3).

which implies (4.4). The proof of Lemma 4.2 is completed. O

Since (4.6) is a quasi-linear symmetric hyperbolic—parabolic system, the local-in-time exis-
tence follows from much more general case showed in [15, Theorem 2.9, in Chapter II]. As long
as the above estimate is proved, Theorem 4.1 follows in the standard way by combining the
local-in-time existence and uniqueness as well as the continuity argument.
4.2. Asymptotic rate to constant states

Moreover, the solutions obtained in Theorem 4.1 indeed decay in time with some rates

under some extra regularity and integrability conditions on initial data. For that, given Uy =
[no, uo, wol, set €, (Vo) as

€m(Uo) = 1Uollm + l1U0oll 1, (4.18)
for the integer m > 0.

4.2.1. Time rate for the full instant energy functional
Under the smallness of ||Up||n, (4.4) implies that

%EN(U(I)) +cDyU(1)) <0, (4.19)

for any ¢ > 0. We now apply the time-weighted energy estimate and iteration to the Lyapunov
inequality (4.19). Let £ > 0. Multiplying (4.19) by (1 +)¢ and taking integration over [0, ] give
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t
A+ ENWU @) + c/(l + 5Dy (U (s))ds
0

t
<En(Uy) + ¢ /(1 +)LEN (U (5))ds.
0

Noticing

ENU @) < C(DNU @) + [ITn, u, wll?),

it follows that

t
A+ ENWU@)) + cf(l +5) Dy (U (s))ds
0
t
ssN(Uo>+czf(1 + 95 (i, wlP)ds
0

t
+ CK/(] + 9Dy (U (s))ds.
0

Similarly, it holds that

t
A+l e) + cf(l +5) DN (U (s))ds
0
t
<EnUp) +CL — 1)](1 +9)2(l1n, u, wl[|*)ds
0

t
+CU—1) /(1 +9) 2Dy (U (s))ds,
0
and
t
EnU @) +C/DN(U(S))dS < &y (Up).
0

Then, for 1 < £ < 2, it follows by iterating the above estimates that
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t
A+0ENU®) + c/(l +5)Dy(U(s))ds
0

t
<CENWUp) +C /(1 + 9 I, u, wl?)ds. (4.20)
0

On the other hand, to estimate the integral term on the r.h.s. of (4.20), let’s define

ENooU (D) = sup (1+5)2ExU(s)). (4.21)

0<s<t

Lemma 4.3. For any t > 0, it holds that
2 -3 2 2
In@1*<CA+1) 2(Il[no,bto]IImLz+C5N,OO(U(t))>,
3
lu@I? = €1+ 073 (o, u0, woll i + CER oo U @) 4.22)
5
lw@®l* <CA+1)"2 (||[no, wo, wolll7 1,2 + csﬁ,o@wm)) :

Proof. Recall that the solution U = [n, u, w] to the Cauchy problem (2.1)—(2.5) with initial data
Uo = [no, uo, wo] can be formally written as

t
U(r) :e’LU0+/e(’—S>L[Sl(s),Sz(s),s3(s)]ds, (4.23)
0

where ¢! is the linearized solution operator. By applying the linear estimates on [n, u, w] in
Theorem 3.3 withm =0, g =r =2, p =1 to the mild form (4.23) respectively, one has

t
[n@ <CA+ t)fg [0, wolllp1nz2 + C/(l +1- S)*% ILS1(s), S2()1ll 1 2ds,
0
(4.24)
t
lu@®| <C1 +t)7% llr0, o, wolllL1qL2 +C/(1 +t_s)7%||[sl(5)’ $2(5), S3() I 1n2ds,
0

(4.25)

and

t
5 5
lwll < C(+1)"#l[no, uo, wolll L 1nr2 + C/(l +1—5)"2[S1(s), S2(5), S3(H] L1~z 2ds.
0

(4.26)
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Recall the definition (2.4) of S, S and S3. It is straightforward to verify that for any 0 <s <1,

1181(5), $2(5), S5l 12 < CENWU() < (145) 2 En. e (U D))

Here we have used (4.21). Putting the above inequality into (4.24), (4.25) and (4.26) respectively
gives

In@l < CA+07F (Ino, uoll 12 + CEN U @) |
lu@l < A+ (Ino, uo, wolll L1nz2 + CEN (U 1)),
lw)ll < €1+~ (lltno, uo, wolll 12 + CEN,oo U (1)),
which imply (4.22). This completes the proof of Lemma 4.3. O

Now, the rest is to prove the uniform-in-time bound of Ex (U (¢)) which yields the time-
decay rates of the Lyapunov functional £y (U (¢)) and thus ||U (¢) ||?\,. In fact, by taking £ = % +e€
in (4.20) with € > 0 small enough, one has

3 p 3
1+ D3y U ) +c / (1 493Dy (U (s))ds
0

t
=C&v o) + C/(l +9) 24 n(s), u(s), w(s)]| ds.
0

Here, using (4.22) and the fact that £y o (U(#)) is non-decreasing in ¢, it further holds that

1
/(1 +9) 7 n(s), u(s), w(s)]| ds
0

= (1 +0° (o uo, wolll3 2 + CEF (U @)

Therefore, it follows that
t
3 3
(1+02TENU @) +C/(1 +5)2TDy (U (s))ds
0

< CEN U0 + €1+ (I, 0, w0l 112 + CEF (U 1))
which implies

(1+02ENWU 1) = C (EnU0) + oo U ) + im0, o, woll21 2 )

Thus, one has
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ENoo(U(1) = C (€ (Wo) + &} 1 (U(1))

Here, recall the definition of ey (Up). Since ey (Up) > 0 is sufficiently small, En oo (U () <
CeZZV(UO) holds true for any ¢ > 0, which implies

U@y < CENWU )2 < Cey(Up)(1+1)73,

for any ¢ > 0. Combining Lemma 4.3 with En 0o (U (1)) < C ejzv (Up), one can immediately obtain
(1.6) in our main Theorem 1.1.
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