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Abstract

We provide a geometric assumption which unifies and generalizes the conditions proposed in [11,12], so 
to obtain a higher dimensional version of the Poincaré–Birkhoff fixed point Theorem for Poincaré maps of 
Hamiltonian systems.
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1. Introduction and main result

The seminal work of Henri Poincaré [21] gave rise to a huge amount of research, with the 
aim of better understanding the far-reaching consequences of the so-called Poincaré’s last geo-
metric Theorem or Poincaré–Birkhoff Theorem. Since then, however, a genuine generalization to 
higher dimensions of this planar fixed point theorem has never been found. We refer to [1,16]
for a classical introduction, and to [8,18] for recent reviews on this topic. Recently, however, 
the first author and Antonio J. Ureña proposed in [11,12] a higher dimensional version of the 
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Poincaré–Birkhoff Theorem which applies to Poincaré maps of Hamiltonian systems. The aim 
of this paper is to unify and generalize the geometrical conditions proposed there.

We consider the Hamiltonian system

ż = J∇H(t, z) , (HS)

where J =
( 0 IN

−IN 0

)
denotes the standard 2N × 2N symplectic matrix, and we assume the 

Hamiltonian function H : R ×R
2N → R to be C∞-smooth, and T -periodic in its first variable t . 

(Actually, such a regularity assumption can be considerably weakened, as will be discussed be-
low.) We denote by ∇H(t, z) the gradient with respect to the variable z.

For every ζ ∈ R
2N , we denote by Z(·, ζ ) the unique solution of (HS) satisfying Z(0, ζ ) = ζ . 

We assume that these solutions can be continued to the whole time interval [0, T ], so that the 
Poincaré map P : R2N → R

2N is well defined, by setting

P(ζ ) =Z(T , ζ ) ,

and it is a diffeomorphism. The fixed points of P are associated with the T -periodic solutions 
of (HS).

For z ∈ R
2N , we use the notation z = (x, y), with x = (x1, . . . , xN) ∈ R

N and y =
(y1, . . . , yN) ∈ R

N , and we assume that H(t, x, y) is 2π -periodic in each of the variables 
x1, . . . , xN . Under this setting, T -periodic solutions of (HS) appear in equivalence classes made 
of those solutions whose components xi(t) differ by an integer multiple of 2π . We say that two 
T -periodic solutions are geometrically distinct if they do not belong to the same equivalence 
class. The same will be said for two fixed points of P .

We now describe our geometrical setting, by introducing a family of closed cones associated 
to a particularly structured vector field.

Let F : RN → R
N be a C∞-smooth gradient function, i.e., there is a function h : RN → R

such that F = ∇h. We define, for every y ∈ R
N , the set AF (y) as follows: a vector v ∈ R

N

belongs to AF (y) if and only if there exist a sequence (yn)n of points in RN and a sequence 
(μn)n of non-negative real numbers such that

yn → y , and μnF(yn) → v .

It can be easily seen that AF (y) is a closed cone in RN .
Our main result is the following.

Theorem 1. Let F = ∇h : RN →R
N be a C∞-smooth function for which there are two constants 

K > 0 and C > 0 and a regular symmetric N × N matrix S such that

|F(y) − Sy| ≤ C , when |y| ≥ K , (1)

and set D := F−1(0). Writing

P(x, y) = (x + ϑ(x, y), ρ(x, y)) , (2)

suppose that
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ϑ(x, y) /∈ AF (y) , for every (x, y) ∈ R
N × ∂D . (AC)

Then, P has at least N + 1 geometrically distinct fixed points, all in RN ×D. Moreover, if all its 
fixed points are non-degenerate, then there are at least 2N of them.

Assumption (AC) is our avoiding cones condition. In other words, for every (x, y) ∈ R
N ×

∂D, one must have that ϑ(x, y) 	= 0, and that there isn’t any sequence (yn)n in RN \ D with

yn → y , and
F(yn)

|F(yn)| → ϑ(x, y)

|ϑ(x, y)| .

The proof of Theorem 1 is provided in Section 3. The geometrical meaning of the avoiding 
cones condition will be discussed extensively in Section 2, including the study of some substan-
tial cases.

We highlight that Theorem 1 unifies and extends the different boundary twist conditions pre-
viously considered, which we now recall in the case of a strongly convex set D ⊆ R

N . The 
first twist condition, proposed in [11], generalizes an assumption first introduced by Conley and 
Zehnder in [3].

(T1) There exists a regular symmetric N × N matrix B such that

〈ϑ(x, y),BνD(y)〉 > 0 , for every (x, y) ∈R
N × ∂D ,

where νD(y) denotes the unit outward normal vector to D at y.

Clearly, condition (T1) implies that the vector ϑ(x, y) has to avoid an entire half-space. Instead, 
as will be shown in Section 2, our condition (AC) requires to avoid only a half-line almost 
everywhere, and a two-dimensional half-plane in the remaining points.

The second twist condition in literature was introduced in [20], restricted to the case B = IN

and requiring a monotone twist of the map ϑ(x, y). These two assumptions have been dropped 
in [11].

(T2) There exist an involutory N × N matrix B and some point d0 ∈ intD with

〈ϑ(x, y),B(y − d0)〉 > 0 , for every (x, y) ∈R
N × ∂D .

As in the previous case, the avoiding cones condition (AC) replaces the half-spaces that have to 
be avoided by ϑ(x, y) with a half-line almost everywhere, and a half-plane elsewhere.

The third twist condition we want to recall, named avoiding rays condition, was introduced 
in [12], in the general case of sets D whose boundaries are diffeomorphic to a sphere.

(T3) ϑ(x, y) /∈ {μνD(y) : μ ≥ 0} , for every (x, y) ∈ R
N × ∂D .

As will be shown in Section 2, our condition (AC) extends (T3) to sets D with a non-smooth 
boundary. Moreover, (AC) covers also situations of indefinite twist, as those of (T1) and (T2)
when an indefinite matrix B is involved, which are not contemplated by (T3).
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Concerning the regularity assumptions, we could assume the Hamiltonian H to be continuous, 
with a continuous gradient ∇H . However, such a mild regularity requires a lot of technicalities 
in the proof, which have been carried out in [11]. On the contrary, we prefer here to avoid these 
difficulties, in order to focus on the different geometric features arising from the avoiding cones 
condition.

We notice that the cone AF (y) associated to a boundary point y ∈ ∂D generally depends only 
on the sign of the potential h in a neighbourhood of y (taking h = 0 on D), and can be expressed 
in terms of suitable normal cones, under some mild regularity assumption on the level sets of h. 
Yet, an abstract and general characterization of the cones AF (y) is definitely non-trivial, and has 
yet to be accomplished.

Another clue in this direction is provided by [6], where a similar avoiding cones condition has 
been provided and applied in a topological setting, leading to some fixed point theorems. Even 
if a different construction is adopted there, the strong resemblance between these two families 
of avoiding cones conditions, together with their links with Conley Index Theory, make us con-
jecture a common root for the two situations. This would mean a double interpretation of the 
avoiding cones conditions: as a condition of non-zero degree for continuous maps in RN , and 
as a twist condition for symplectic maps is R2N . This duality is well recognizable for N = 1, 
when the avoiding cones condition is reduced to a change of sign of a real valued map between 
the two endpoints of an interval D. For continuous maps f : D →R we recover Bolzano’s The-
orem; whereas, for symplectic maps ϑ : T × D → R, as considered in this paper, we get the 
Poincaré–Birkhoff Theorem with the classical twist condition on the planar annulus.

2. The avoiding cones condition, concretely

We now investigate the nature of our avoiding cones condition. We first present, in Sections 2.1
and 2.2, two particular cases which already include the most relevant features. Later, in Sec-
tion 2.3, we will show how these two special situations actually have a wider extent. Finally, 
in Section 2.4, we prove that the twist conditions (T1), (T2) and (T3) are included in (AC) and 
illustrate how the first two are indeed rather more restrictive.

In the following, we will start from a set D ⊆R
N and construct a suitable function F : RN →

R
N satisfying the assumptions of Theorem 1, for which D = F−1(0). Before proceeding in our 

analysis, a couple of remarks are in order.
It is useful to introduce, in relation to the cone AF (y), the set

αF (y) = {v ∈ AF (y) : ‖v‖ = 1} ,

so that

AF (y) = {μv : μ > 0 , v ∈ αF (y)} ∪ {0} .

Notice that, if y /∈ D, we have

AF (y) = {μF(y) : μ ≥ 0} , αF (y) =
{

F(y)

|F(y)|
}

;

on the other hand, if y belongs to intD, then
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AF (y) = {0} , αF (y) = ∅ ,

and vice versa. The case when y lies in ∂D is less trivial. We know that αF (y) 	= ∅ for every 
y ∈ ∂D. Indeed, if y ∈ ∂D, there exists a sequence of points yn ∈ R

N \ D such that yn → y

and, consequently, a sequence of vectors vn ∈ R
N , such that |vn| = 1 and αF (yn) = {vn}. By 

compactness, there exists a subsequence vnk
such that vnk

→ v for some v, with |v| = 1, and 
therefore v ∈ αF (y). This shows that, for y ∈ ∂D, the set αF (y) is non-empty, but, in general, it 
can be multivalued, as displayed below.

We observe that, under the additional condition (1) of Theorem 1, the set D is non-empty and 
bounded. Moreover, by a degree argument on ϑ , we deduce that condition (AC) can be satisfied 
only if D has non-empty interior.

In the following, we illustrate three particular situations which present the key features and 
provide quite natural tools for applications, minimizing at the same time the required computa-
tions. We remark however that our notion of AF has a wider extent (e.g. including disconnected 
or, generally, non-contractible sets D); the same techniques and ideas, presented here in a simple 
case, can be applied or adapted to more general situations.

In many constructions we will need to consider a C∞-smooth function γ : R →R, with

γ (s) =
{

0 , if s ≤ 0 ,

1 , if s ≥ 1 ,

and such that, for some εγ > 0,

γ ′(s) > 0 , for s ∈ ]0,1[ , γ ′′(s) > 0 , for s ∈ ]0, εγ [ .

We denote by 〈·, ·〉 the Euclidean scalar product in RN , with its associated norm |·|. We write 
BN(x0, r) for the open ball in RN centred at x0 with radius r > 0, and BN [x0, r] for the closed 
ball.

2.1. The closed ball

We consider a decomposition of the form RN = R
N1 × R

N2 , where N1 or N2 may possibly 
be zero, and we define the matrix

B =
(

IN1 0
0 −IN2

)
. (3)

Corollary 2. Let D = BN [0, 1] and assume that, for every (x, y) ∈R
N × ∂D,

ϑ(x, y) /∈

⎧⎪⎨⎪⎩
{μy : μ ≥ 0} , if 〈By, y〉 > 0 ,

{μ1y + μ2By : μ1 ∈ R,μ2 ≥ 0} , if 〈By, y〉 = 0 ,

{−μy : μ ≥ 0} , if 〈By, y〉 < 0 .

(4)

Then, the same conclusion of Theorem 1 holds.
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Proof. We define the function h : RN →R as

h(y) = γ (|y| − 1) 〈By, y〉 , (5)

and set F := ∇h, i.e.,

F(y) = C1(y)y + C2(y)By ,

with

C1(y) = γ ′(|y| − 1)

|y| 〈By, y〉 , C2(y) = 2γ (|y| − 1) .

We observe that F−1(0) = D. Indeed, when y /∈ D, one has γ (|y| − 1) > 0 and, whenever the 
two vectors 〈By, y〉y and By are on the same line, then they have also the same direction. We 
define, for every y /∈ D, a rescaling of the coefficients C1(y) and C2(y), namely

c1(y) = C1(y)√
C1(y)2 + C2(y)2

, c2(y) = C2(y)√
C1(y)2 + C2(y)2

, (6)

so that, for y /∈ D, we have αF (y) = {c1(y)y + c2(y)By}. We will prove that, for every y ∈ ∂D,

αF (y) =
⎧⎨⎩{sgn(〈By, y〉)y} , if 〈By, y〉 	= 0 ,{

τy + √
1 − τ 2 By : τ ∈ [−1,1]

}
, if 〈By, y〉 = 0 .

(7)

First, let y ∈ ∂D be such that 〈By, y〉 	= 0. We take a sequence (Yn)n of vectors Yn ∈ BN(0, 1 +
εγ ) \ D, with Yn → y. For s ∈ ]0, εγ [, having assumed γ ′′(s) > 0, it follows that γ (s) ≤ sγ ′(s), 
hence

lim
n

∣∣∣∣C2(Yn)

C1(Yn)

∣∣∣∣ = lim
n

2 |Yn|γ (|Yn| − 1)

γ ′(|Yn| − 1) |〈BYn,Yn〉| ≤ lim
n

2 |Yn| (|Yn| − 1)

|〈BYn,Yn〉| = 0 .

This implies (7) in the case 〈By, y〉 	= 0.
Let us now look at the case when y ∈ ∂D and 〈By, y〉 = 0. Since C2 ≥ 0, by the properties of 

the limit we deduce the ⊆ inclusion in (7). To check the ⊇ inclusion, let us take a sequence of 
positive real numbers ln ∈ ]0, εγ [, with ln → 0, and consider the two sequences of points

Pn = y + lny , Qn = y + lnBy .

We observe that Pn → y and Qn → y. We have C1(Pn) = 0, while

lim
n

∣∣∣∣C2(Qn)

C1(Qn)

∣∣∣∣ = lim
n

∣∣∣∣ 2|Qn|γ (|Qn| − 1)

γ ′(|Qn| − 1)〈BQn,Qn〉
∣∣∣∣ ≤ lim

n

√
1 + l2

n − 1

ln
= 0 .

Hence,
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Fig. 1. Visualization of AF (y) in the framework of Corollary 2, for different choices of the decomposition N = N1 +N2.

c1(Pn) = 0 , lim
n→+∞ c1(Qn) = 1 ,

c2(Pn) = 1 , lim
n→+∞ c2(Qn) = 0 ,

and so both y and By belong to αF (y). By continuity, for every τ ∈ ]0, 1[ and every sufficiently 
large n, there exists �n ∈ [0, 1] such that, setting Yn = �nPn + (1 − �n)Qn,

c1
(
Yn

) = τ , c2
(
Yn

) =
√

1 − τ 2 .

Since Yn → y, it follows that

τy +
√

1 − τ 2 By ∈ αF (y) , for every τ ∈ ]0,1[ .

We have thus proved that

αF (y) ⊇
{
τy +

√
1 − τ 2 By : τ ∈ [0,1]

}
.

The remaining part of the proof, i.e. the inclusion with τ ∈ [−1, 0], can be treated similarly, 
replacing in the construction above Qn with

Q−
n = y − ln By .

Hence (7) is established, and proof of the corollary is easily completed. �
The avoiding cones condition of Corollary 2 is visualized in Fig. 1.

Example 3. We take D = B2[0, 1] and define the Hamiltonian function

H(x1, x2, y1, y2) = y2
1 + y2

2 + 2 cos(πy1) .

The map ϑ(x, y) = (ϑ1(x, y), ϑ2(x, y)) is given by
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Fig. 2. Normalized Poincaré map for the Hamiltonian system of Example 3.

ϑ1(x, y) = T
∂H

∂y1
(x, y) = 2T [y1 − π sin(πy1)] ,

ϑ2(x, y) = T
∂H

∂y2
(x, y) = 2Ty2 .

As illustrated in Fig. 2, the avoiding cones condition as in (4) is verified, for N1 = 0 and N2 = 2. 
The same property is inherited by all the sufficiently small perturbations of H , satisfying the 
regularity and periodicity assumptions of Theorem 1.

2.2. The product of two closed balls

Let us consider, as before, a decomposition of the type RN = R
N1 × R

N2 , where N1 or N2
may possibly be zero. For every y ∈R

N1 ×R
N2 , we write y = ŷ1 + ŷ2, with ŷ1 ∈R

N1 × {0} and 
ŷ2 ∈ {0} ×R

N2 .

Corollary 4. Let D = D1 × D2, with D1 = BN1[0, 1] and D2 = BN2[0, 1], and assume that, for 
every (x, y) ∈ R

N × ∂D,

ϑ(x, y) /∈

⎧⎪⎪⎨⎪⎪⎩
{−μŷ2 : μ ≥ 0

}
, if y ∈ intD1 × ∂D2 ,{

μ1ŷ1 − μ2ŷ2 : μ1 ≥ 0,μ2 ≥ 0
}

, if y ∈ ∂D1 × ∂D2 ,{
μŷ1 : μ ≥ 0

}
, if y ∈ ∂D1 × intD2 .

(8)

Then, the same conclusion of Theorem 1 holds.

Proof. We define the function h : RN →R as

h(y) = γ (
∣∣ŷ1

∣∣) ∣∣ŷ1
∣∣2 − γ (

∣∣ŷ2
∣∣) ∣∣ŷ2

∣∣2 ,

and set F := ∇h, i.e.,

F(y) = C1(y)ŷ1 − C2(y)ŷ2 ,
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with

C1(y) = γ ′(
∣∣ŷ1

∣∣) ∣∣ŷ1
∣∣ + 2γ (

∣∣ŷ1
∣∣) , C2(y) = γ ′(

∣∣ŷ2
∣∣) ∣∣ŷ2

∣∣ + 2γ (
∣∣ŷ2

∣∣) .

We observe that F−1(0) = D. We will prove that, for every y ∈ ∂D,

αF (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
− ŷ2∣∣ŷ2

∣∣
}

, if y ∈ intD1 × ∂D2 ,{
τ

ŷ1∣∣ŷ1
∣∣ −

√
1 − τ 2 ŷ2∣∣ŷ2

∣∣ , τ ∈ [0,1]
}

, if y ∈ ∂D1 × ∂D2 ,{
ŷ1∣∣ŷ1

∣∣
}

, if y ∈ ∂D1 × intD2 .

(9)

First of all, we notice that, for every y ∈ D1 × R
N2 , the RN1 -component of F(y) is zero, since 

C1(y) = 0; hence, if y ∈ intD1 × ∂D2, being D1 ×R
N2 a neighbourhood y, we deduce that (9)

is verified in this case. The case y ∈ ∂D1 × intD2 is analogous.
Finally, let us consider the case y ∈ ∂D1 × ∂D2. The ⊆ inclusion follows from the fact that 

the functions c1 and c2, defined by a rescaling of C1 and C2 as in (6), take values in [0, 1] and the 
sum of their squares is always equal to one. To check the ⊇ inclusion, let us take any sequence 
of positive real numbers ln → 0 and consider the two sequences of points

Pn = (1 + ln)ŷ1 + ŷ2 , Qn = ŷ1 + (1 + ln)ŷ2 .

We have that Pn → y, Qn → y and

c1(Pn) = 1 , c1(Qn) = 0 ,

c2(Pn) = 0 , c2(Qn) = 1 .

By continuity, for every τ ∈ [0, 1] and every sufficiently large n, there exists a �n ∈ [0, 1] such 
that

c1
(
�nPn + (1 − �n)Qn

) = τ , c2
(
�nPn + (1 − �n)Qn

) =
√

1 − τ 2 .

Since �nPn + (1 − �n)Qn → y, it follows that

τ
ŷ1∣∣ŷ1

∣∣ −
√

1 − τ 2 ŷ2∣∣ŷ2
∣∣ ∈ αF (y) , for every τ ∈ [0,1] .

So (9) is verified, and the proof is easily completed. �
The avoiding cones condition (8) of Corollary 4 is visualized in Fig. 3(a). It can be restated 

as



JID:YJDEQ AID:8548 /FLA [m1+; v1.237; Prn:14/10/2016; 19:51] P.10 (1-21)

10 A. Fonda, P. Gidoni / J. Differential Equations ••• (••••) •••–•••
Fig. 3. Visualization of AF (y) in the framework of Corollaries 4 and 6, for N1 = N2 = 1.

Fig. 4. Normalized Poincaré map for the Hamiltonian system of Example 5.

ϑ(x, y) /∈

⎧⎪⎪⎨⎪⎪⎩
{0} × −ND2(ŷ2) , if y ∈ intD1 × ∂D2 ,

ND1(ŷ1) × −ND2(ŷ2) , if y ∈ ∂D1 × ∂D2 ,

ND1(ŷ1) × {0} , if y ∈ ∂D1 × intD2 .

Example 5. We take D = [−1, 1] × [−1, 1] and define the Hamiltonian function H : R2 ×
R

2 → R as

H(x1, x2, y1, y2) = y2
1 − y2

2 − y2 sin(2πy1) .

The map ϑ(x, y) = (ϑ1(x, y), ϑ2(x, y)) is such that

ϑ1(x, y) = T
∂H

∂y1
(x, y) = 2T [y1 − πy2 cos(2πy1)] ,

ϑ2(x, y) = T
∂H

∂y2
(x, y) = −T [2y2 + sin(2πy1)] .

As illustrated in Fig. 4, we see that the avoiding cones condition (8) is satisfied, for N1 = N2 = 1, 
cf. also Fig. 3(a). The same property is inherited by all the sufficiently small perturbations of H , 
satisfying the regularity and periodicity assumptions of Theorem 1.
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With a similar approach, we can also study the following situation.

Corollary 6. Let D = D1 × D2, with D1 = BN1[0, 1] and D2 = BN2[0, 1], and assume that

ϑ(x, y) /∈ND(y) , for every (x, y) ∈R
N × ∂D . (10)

Then, the same conclusion of Theorem 1 holds.

Proof. We define the function h : RN →R as

h(y) = γ (
∣∣ŷ1

∣∣) ∣∣ŷ1
∣∣2 + γ (

∣∣ŷ2
∣∣) ∣∣ŷ2

∣∣2 .

The same arguments used in the proof of Corollary 4 can be successfully applied, simply chang-
ing the sign in front of the coefficient C2. �

We notice that, in Corollary 6, condition (10) can be replaced by

ϑ(x, y) /∈ −ND(y) , for every (x, y) ∈R
N × ∂D ,

by simply changing in the proof the sign of the potential h.
Combining the ideas of the previous two corollaries, let us consider the decomposition RN =

R
N+ × R

N−
, with N+ = N+

1 + · · · + N+
n and N− = N−

1 + · · · + N−
m , all summands being 

non-negative integers. For every y ∈ R
N+ ×R

N−
, we write y = ŷ+ + ŷ−, with ŷ+ ∈R

N+ × {0}
and ŷ− ∈ {0} ×R

N−
. We thus obtain the following more general result.

Corollary 7. Let D = D+ × D−, with

D+ =
n∏

i=1

BN+
i [0,1] , D− =

m∏
i=1

BN−
i [0,1] .

Assume that, for every (x, y) ∈R
N × ∂D,

ϑ(x, y) /∈

⎧⎪⎪⎨⎪⎪⎩
{0} × −ND−(ŷ−) , if y ∈ intD+ × ∂D− ,

ND+(ŷ+) × −ND−(ŷ−) , if y ∈ ∂D+ × ∂D− ,

ND+(ŷ+) × {0} , if y ∈ ∂D+ × intD− .

Then, the same conclusion of Theorem 1 holds.

2.3. Sets diffeomorphic to a ball

We now show how to apply our results to sets D which are diffeomorphic to a ball.
Let D ⊂ R

N be a compact set, and let D+ be a relatively open subset of ∂D. We define 
D− = ∂D \D+ and D0 = ∂D \ (D+ ∪D−).
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Definition 8. We say that the couple (D, D+) is twist-generating if there exist two regular sym-
metric matrices B, B∞, with B of the form (3), and a C∞-smooth diffeomorphism 
 : RN → R

N , 
such that

• 
 ′(w) = B∞ for |w| sufficiently large;

• 
(D) = BN [0, 1];
• 
(D+) = {y : |y| = 1, 〈y,By〉 > 0}.

Note that if (D, D+) is twist-generating, then D has smooth boundary and therefore, for every 
w ∈ ∂D, the outer normal cone ND(w) is well defined, and it is the half-line generated by the 
outer unit normal νD(w). Moreover, for every point w ∈ D0, we can define the vector

σ(w) = [
 ′(w)]T B
(w) .

We see that σ(w) is orthogonal to D0 and to νD(w) (therefore tangent to D).

Corollary 9. If (D, D+) is twist-generating and, for every (x, w) ∈R
N × ∂D,

ϑ(x,w) /∈

⎧⎪⎨⎪⎩
ND(w) , if w ∈ D+,

{μ1νD(w) + μ2σ(w) : μ1 ∈R ,μ2 ≥ 0} , if w ∈ D0,

−ND(w) , if w ∈ D−,

then the same conclusion of Theorem 1 holds.

Proof. We consider the function

hA(y) = γ (|y| − 1) 〈By, y〉 ,

as introduced in Section 2.1, and define h : RN → R as

h(w) = hA(
(w)) .

All the properties required to F = ∇h are inherited from hA, and Theorem 1 applies. �
We observe that, in the case D+ = ∂D, implying B = I , we have recovered exactly the twist 

condition (T3).
The same line of reasoning holds if we want to generalize other situations, such as those of 

Section 2.2, by the use of a diffeomorphism. We omit the details, for briefness.

2.4. Comparison with twist conditions in the previous literature

We now show how the following result obtained in [11,12] can be proved using Theorem 1.

Corollary 10 (Fonda–Ureña). Let D ⊂ R
N be a C∞-smooth strongly convex body, and assume 

that at least one of the twist conditions (T1), (T2) or (T3) holds. Then, the same conclusion of 
Theorem 1 holds.
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Proof. We denote by πD : RN → R
N the projection on the convex set D. Assume that (T1)

holds. Let F̃1 : RN \ D → R
N be the map defined as

F̃1(y) = BνD(πD(y)) .

We define h : RN → R by

h(y) =
{

0 , if y ∈ D ,

γ (|y − πD(y)|)〈B(y − πD(y)), y − πD(y)〉 , if y ∈R
N \ D .

It is clear that h is a C∞-smooth function. The function F = ∇h satisfies (1) with S = 2B, and 
F−1(0) = D, while

〈
F(y), F̃1(y)

〉
> 0 , for every y ∈R

N \ D .

(For the details, see [11, Sec. 4].) This implies that

〈υ,BνD(y)〉 ≥ 0 , for every y ∈ ∂D and υ ∈ AF (y) .

Combining this with (T1), we have (AC).
Assume now instead that (T2) holds. Without loss of generality, we set d0 = 0 and we define 

F̃2 : RN \ D → R
N as

F̃2(y) = By .

When B is orthogonal, we define h : RN →R by

h(y) =
{

0 , if y ∈ D ,

γ (|y − πD(y)|)〈By, y − πD(y)〉 , if y ∈R
N \ D .

The function F = ∇h satisfies (1) and F−1(0) = D, while

〈
F(y), F̃2(y)

〉
> 0 , for every y ∈R

N \ D .

The conclusion (AC) then follows as above. In the case of a general involutory matrix B, we can 
reduce to the above situation by a change of basis, since B is diagonalizable (see [11, Sec. 4]).

Finally, assume that (T3) holds. We define h : RN → R by

h(y) = γ (|y − πD(y)|)|y − πD(y)|2 .

The conclusion follows, similarly as above. �
We remark that, in general, assumptions (T1) and (T2) are strictly stronger than the avoiding 

cones condition (AC), as shown in the following example.
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Example 11. Let us set D = B3[0, 1] and B = diag(1, 1, −1). We want to compare the avoid-
ing cones condition (AC) induced by F = ∇h, with h as in (5), with the conditions (T1)
and (T2), for d0 = 0, which are equivalent, in this situation. For every y ∈ ∂D, if 〈y,By〉 > 0
(resp. 〈y,By〉 < 0), the avoiding cones condition (AC) requires that ϑ(x, y) is not contained in 
the outer (resp. inner) normal cone of D in y, a half-line, whereas (T1) requires that ϑ(x, y)

avoids an entire half-space containing this half-line. If instead 〈y,By〉 = 0, then the avoiding 
cones condition (AC) requires that ϑ(x, y) avoids the half-plane generated by By and ±νD(y), 
whereas (T1) requires that ϑ(x, y) avoids a half-space that includes that half-plane.

3. Proof of Theorem 1

The proof follows the one given in [13].
Let us recall that Z : R × R

2N → R
2N is the C∞-map associating to each couple (t, ζ ) the 

value at time t of the unique solution Z(·, ζ ) of (HS) satisfying Z(0, ζ ) = ζ . For ζ ∈ R
2N , we 

write ζ = (ξ, η), with ξ = (ξ1, . . . , ξN) ∈ R
N and η = (η1, . . . , ηN) ∈ R

N .
Since D is a compact set and the Hamiltonian H(t, x, y) is 2π -periodic in the variables xi , 

the continuous image by Z of [0, T ] × (RN/2πZN) × D is contained in (RN/2πZN) × Br , for 
some open ball Br . Thus, after multiplying H by a smooth cutoff function of y, there is no loss 
of generality in assuming that there is some R > r for which

H(t, x, y) = 0 , if |y| ≥ R .

Consequently, there is some constant c > 0 such that∣∣∣∣∂H

∂y
(t, x, y)

∣∣∣∣ < c , for every (t, x, y) ∈ R×R
N ×R

N .

As a consequence, we will have that

|ϑ(ξ, η)| < cT , for every ξ, η ∈ R
N . (11)

For any t , we write Zt := Z(t, ·) : R2N → R
2N . The following properties hold.

(i) Z0 is the identity map in R
2N ;

(ii) Zt (ζ + p) =Zt (ζ ) + p, if p ∈ 2πZN × {0};
(iii) Z(t, ξ, η) = (ξ, η), if |η| ≥ R;
(iv) each Zt is a symplectic C∞-diffeomorphism of R2N on itself.

This last property is standard in Hamiltonian dynamics. Nevertheless, let us provide a brief proof 
of it, for the reader’s convenience. For any fixed ζ , let

b(t) = ∂Z
∂ζ

(t; ζ ) , A(t) = ∂2H

∂ζ 2
(t;Z(t; ζ )) .

Since Z(·; ζ ) is a solution of the Hamiltonian system, differentiating we have

J ḃ(t) = A(t)b(t) ,
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and, since A(t)∗ = A(t), J ∗ = −J , and JJ = −I ,

d

dt
(b(t)∗Jb(t)) = ḃ(t)∗Jb(t) + b(t)∗J ḃ(t) = 0 ,

for every t . Then, b∗Jb is constant, and since b(0) = I , we conclude that b(t)∗Jb(t) = J , for 
every t , thus proving (iv).

By the use of the Ascoli–Arzelà Theorem, we can find some constant ε ∈ ]0, 1[ such that

ϑ(ξ, η) /∈ {μF(η) : μ ≥ 0} , if 0 < |F(η)| < ε . (12)

Recalling that F = ∇h and that (1) holds, we can assume without loss of generality that

h(y) = 1
2 〈Sy, y〉 , when |y| ≥ K .

Indeed, choosing R̃ large enough and defining

F̃ (x) =

⎧⎪⎨⎪⎩
F(x) , if |x| ≤ R̃ ,

F (x) + γ (|x| − R̃)(Sx − F(x)) , if R̃ ≤ |x| ≤ R̃ + 1 ,

Sx , if |x| ≥ R̃ + 1 ,

we will have that D ⊆ BN(0, R̃) and F̃−1(0) = D, while the cones AF (y) will not be changed 
for y ∈ BN(0, R̃).

We define the function R : R2N →R as

R(ξ, η) := −c

ε
h(η) ,

the function R : [0, T ] ×R
2N → R by

R(t, z) := R(Z−1
t (z)) ,

and the modified Hamiltonian H̃ : [0, T ] ×R
2N → R as

H̃ (t, z) := H(t, z) + R(t, z) .

It is a C∞-smooth function, and satisfies the following properties:

(j) H̃ (t, z + p) = H̃ (t, z), if p ∈ 2πZN × {0};
(jj) H̃ (t, x, y) = 1

2 〈̃Sy, y〉, if |y| ≥ R, where S̃= −(c/ε)S;

(jjj) H̃ and H coincide on the set

{
(t,Z(t, ξ, η)) : t ∈ [0, T ], ξ ∈R

N,η ∈ D
}
.
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We consider the modified Hamiltonian system

ż = J∇H̃ (t, z) , (H̃S)

and look for solutions satisfying z(0) = z(T ). These will be obtained as critical points of a 
suitably defined functional.

Consider the Hilbert space H 1/2
T , whose elements are those functions z ∈ L2(0, T ; R2N), ex-

tended by T -periodicity (in the a.e. sense), with the property that, writing the associated Fourier 
series

z(t) ∼
+∞∑

k=−∞
ake

2πkit/T ,

one has that

+∞∑
k=−∞

(1 + |k|)|ak|2 < +∞ .

We refer to [17, Section 3.3] for the main properties of H 1/2
T . The functions in H 1/2

T are not 
necessarily continuous, but their restriction to [0, T ] belongs to Lp(0, T ; R2N), for every p ∈
[1, +∞[ . On the other hand, let H 1

T be the space of those functions z ∈ H
1/2
T for which

+∞∑
k=−∞

(1 + |k|2)|ak|2 < +∞ .

These are absolutely continuous T -periodic functions. In particular, they are such that z(0) =
z(T ).

We define an auxiliary function Ĥ : R ×R
2N → R as follows:

Ĥ (t, z) = H̃ (τ, z) , with τ ∈ [0, T [ and t = τ + kT , for some k ∈ Z .

By construction, Ĥ (t, z) is T -periodic in t , but not necessarily continuous. In view of (j) and (jj)
above, it is possible to define the functional ϕ : H

1/2
T →R as

ϕ(z) =
T∫

0

[
1
2 〈J ż(t), z(t)〉 + Ĥ (t, z(t))

]
dt .

It can be seen that it is continuously differentiable, and its critical points correspond to the weak 
T -periodic solutions of

ż = J∇Ĥ (t, z) . (13)

Let z be a critical point of ϕ. Following [22], we will show that the restriction of z to the closed 
interval [0, T ] is a classical solution of (H̃S) satisfying z(0) = z(T ).
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Since z is a critical point of ϕ, we have 〈∇ϕ(z), w〉 = 0, for every w ∈ H
1/2
T . Then, taking w

in H 1
T , we have

T∫
0

[〈z(t), J ẇ(t)〉 + 〈∇Ĥ (t, z(t)),w(t)〉]dt = 0 . (14)

In particular, taking as w the constant functions with all zero components except one of them, 
we deduce that

T∫
0

∇Ĥ (t, z(t)) dt = 0 .

Hence, denoting by [·] the mean of a function defined on [0, T ],

[J∇Ĥ (·, z(·))] = 1

T

T∫
0

J∇Ĥ (t, z(t)) dt = 0 . (15)

It is known that, for every fixed vector u ∈ R
2N and every function g ∈ L2(0, T ; R2N), with 

[g] = 0, there is a unique υ ∈ H 1
T satisfying [υ] = u and υ̇ = g in L2(0, T ; R2N). Hence, 

from (15) we deduce that there is a unique function υ ∈ H 1
T such that [υ] = [z] and υ̇ =

J∇Ĥ (·, z(·)) in L2(0, T ; R2N). Therefore, for any w ∈ H 1
T , integrating by parts and using (14),

T∫
0

〈υ,J ẇ〉 = −
T∫

0

〈υ̇, Jw〉 = −
T∫

0

〈∇Ĥ (t, z(t)),w(t)〉dt =
T∫

0

〈z, J ẇ〉 .

We deduce that υ = z in H 1
T , and

ż(t) = J∇Ĥ (t, z(t)) , (16)

for almost every t ∈ [0, T ]. Moreover, since z belongs to H 1
T , it is continuous, hence ż has to be 

continuous, too, and z satisfies (16) for every t ∈ [0, T [ . Furthermore, z(0) = z(T ). Hence, by 
continuity, z is a classical solution of (H̃S) on [0, T ] : when restricted to that interval, it belongs 
to C1([0, T ], R2N). A bootstrap argument now shows that z ∈ C∞([0, T ], R2N).

For any z(t) = (x(t), y(t)) in H 1/2
T , we write x(t) = x̄ + x̃(t), where x̄ = [x] ∈ R

N . We thus 

have the decomposition H 1/2
T = R

N ⊕ E, where E is a Hilbert space. By (j), we can identify 
x̄ ∈ R

N with its projection on the N -torus TN and define the functional ϕ̃ : TN × E →R as

ϕ̃(x̄, (x̃, y)) = ϕ(x̄ + x̃, y) .

By [23, Theorem 4.2] and [24, Theorem 8.1], the functional ̃ϕ has of at least N +1 critical points, 
and 2N of them if all its critical points are nondegenerate. As we saw above, these critical points 
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correspond to geometrically distinct solutions of (H̃S) belonging to C∞([0, T ], R2N), satisfying 
z(0) = z(T ).

As a consequence of (jjj), the Hamiltonian systems (HS) and (H̃S) have the same solutions 
z(t) = (x(t), y(t)), with t ∈ [0, T ], departing with y(0) ∈ D. Thus, in order to complete the 
proof of Theorem 1, it will suffice to check that (H̃S) does not have solutions z(t) = (x(t), y(t)), 
satisfying z(0) = z(T ), departing with y(0) /∈ D.

We argue by contradiction, and assume that such a solution z(t) exists. Let us define the 
C∞-function ζ : [0, T ] → R

2N by

ζ(t) := Z−1
t (z(t)) .

Differentiating in the equality z(t) =Z(t, ζ(t)), we find

ż(t) = ∂Z
∂t

(t, ζ(t)) + ∂Z
∂ζ

(t, ζ(t))ζ̇ (t) ,

so that

∂Z
∂ζ

(t, ζ(t))ζ̇ (t) = J∇H̃ (t, z(t)) − J∇H(t, z(t)) = J∇R(t, z(t)) . (17)

By (iv), Zt is symplectic, so

∂Z
∂ζ

(t, ζ(t))∗J ∂Z
∂ζ

(t, ζ(t)) = J , for every t ∈ R .

Hence, if we multiply both sides of (17) by −J (∂Z/∂ζ )∗J , we get

ζ̇ (t) = J
∂Z
∂ζ

(t, ζ(t))∗ ∇R(t, z(t)) = J∇R(ζ(t)) ,

the last equality coming from the fact that R(t, Z(t, ζ )) = R(ζ ). Then, recalling that ζ(t) =
(ξ(t), η(t)),

ξ̇ (t) = −c

ε
F (η(t)) , η̇(t) = 0 ,

and consequently, by (i), writing z(t) = (x(t), y(t)),

η(t) = η(0) = y(0) , ξ(t) = x(0) − ct

ε
F (y(0)) ,

for every t ∈ [0, T ], i.e.,

ζ(t) =
(
x(0) − ct

ε
F (y(0)) , y(0)

)
.

Being z(t) = Z(t, ζ(t)) and ZT =P , we thus have
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z(T ) =P
(
x(0) − cT

ε
F (y(0)) , y(0)

)
,

and in particular

x(T ) = x(0) − cT

ε
F (y(0)) + ϑ

(
x(0) − cT

ε
F (y(0)), y(0)

)
.

In order to obtain the desired contradiction, we shall show that x(T ) 	= x(0), i.e.,

ϑ
(
x(0) − cT

ε
F (y(0)), y(0)

)
	= cT

ε
F (y(0)) . (18)

We distinguish two situations, according to the initial point of the solution. If 0 < |F(y(0))| < ε, 
by (12) we have

ϑ
(
x(0) − cT

ε
F (y(0)), y(0)

)
/∈ {αF(y(0)) : α ≥ 0} ,

implying (18). On the other hand, if |F(y(0))| ≥ ε, by (11) we get∣∣∣ϑ(
x(0) − cT

ε
F (y(0)), y(0)

)∣∣∣ < cT ≤
∣∣∣cT

ε
F (y(0))

∣∣∣ ,
implying (18), again. The proof is thus completed.

4. Final remarks

With the same strategy adopted for Theorem 1, we can prove the following more general 
result.

As before, we assume the Hamiltonian function H : R × R
2N → R to be C∞-smooth, and 

T -periodic in its first variable t . Let M be an integer such that 0 ≤ M < N , and assume that 
H(t, x, y) is 2π -periodic in x1, . . . , xN and in y1, . . . , yM . We still write as in (2) the Poincaré 
map P associated to the system (HS), and we define the projection π : RN →R

N−M as

π(y1, . . . , yN) = (yM+1, . . . , yN) .

Theorem 12. Let F = ∇h : RN−M → R
N−M be a C∞-smooth function for which there are two 

constants K > 0 and C > 0 and a regular symmetric (N − M) × (N − M) matrix S such that

|F(w) − Sw| ≤ C , when |w| ≥ K ,

and set D := F−1(0). If

π(ϑ(x, y)) /∈ AF (π(y)) , for every (x, y) ∈R
N+M × ∂D ,

then P has at least N + M + 1 geometrically distinct fixed points, all in RN+M × D. Moreover, 
if all its fixed points are non-degenerate, then there are at least 2N+M of them.
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Proof. The proof is similar to that of Theorem 1, with the following changes. The construction 
is based on the yM+1, . . . , yN coordinates, in the sense that first we assume H(t, x, y) = 0 if 
|π(y)| ≥ R, and later we use the function

R(ξ, η) = −c

ε
h(π(η)) ,

to define the modified Hamiltonian.
Then, when looking for the critical points of the functional ϕ, we use the decomposition 

H
1/2
T = R

N+M ⊕ Ê, where RN+M is the subspace associated to the constant functions with 
values in RN+M × {0RN−M }, and Ê is a Hilbert space. The projection RN+M → T

N+M will 
lead to a functional ϕ̃ : TN+M × Ê → R, having at least N + M + 1 critical points, or at least 
2N+M of them if all critical points are non-degenerate. With the same line of reasoning used 
for Theorem 1, it can be shown that such critical points correspond to geometrically distinct 
solutions of (HS). �

We notice that, if we extend Theorem 12 to the case M = N , no avoiding cones condition is 
required any longer and we recover a celebrated result on the existence of fixed points for a sym-
plectic map on the torus, as conjectured by Arnold and proved by Conley and Zehnder [3]. Thus 
Theorem 12 covers the intermediate cases between this result and Theorem 1, corresponding to 
M = 0. We finally notice that we could have assumed the periodicity along a different basis than 
the usual one in RN+M . Similar situations have also been considered in [2,4,7,15,19].

We have assumed the Hamiltonian function H to be C∞-smooth, not to care about the tech-
nical problems arising when less regularity is required. However, as already mentioned in the 
Introduction, using the methods introduced in [11], it is sufficient to assume H(t, z) to be contin-
uous, with a continuous gradient ∇H(t, z) with respect to z. Notice also that, slightly modifying 
the proof, it would have been sufficient to assume the Poincaré map P to be defined only on the 
set D.

The results in [11,12] have already found several applications to some concrete periodic prob-
lems: differential systems associated with relativistic or mean-curvature operators were already 
studied in [11], superlinear systems were treated in [9,11], systems with singularities in [10], and 
perturbations of Hamiltonian systems in [5]. Other applications are next to appear. We are con-
fident that our avoiding cones condition, besides its theoretical importance, will be successfully 
implemented in the study of more specific problems.

Addendum. After the submission of this paper, a selection of the main results in [11,12] has 
been re-organized in [14] for the Annales de l’Institut Henri Poincaré.
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