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Abstract

In this paper, we consider the stability for line solitary waves of the two dimensional Zakharov—
Kuznetsov equation on R x T which is one of a high dimensional generalization of Korteweg—de Vries
equation, where T is the torus with the 27 L period. The orbital and asymptotic stability of the one soliton
of Korteweg—de Vries equation on the energy space was proved by Benjamin [2], Pego and Weinstein [41]
and Martel and Merle [30]. We regard the one soliton of Korteweg—de Vries equation as a line solitary wave
of Zakharov—Kuznetsov equation on R x T;. We prove the stability and the transverse instability of the
line solitary waves of Zakharov—Kuznetsov equation by applying the method of Evans’ function and the ar-
gument of Rousset and Tzvetkov [44]. Moreover, we prove the asymptotic stability for orbitally stable line
solitary waves of Zakharov—Kuznetsov equation by using the argument of Martel and Merle [30-32] and a
Liouville type theorem. If L is the critical period with respect to a line solitary wave, the line solitary wave
is orbitally stable. However, since this line solitary wave is a bifurcation point of the stationary equation,
the linearized operator of the stationary equation is degenerate. Because of the degeneracy of the linearized
operator, we can not show the Liouville type theorem for the line solitary wave by using the usual virial type
estimate. To show the Liouville type theorem for the line solitary wave, we modify a virial type estimate.
© 2017 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the two dimensional Zakharov—Kuznetsov equation

ur 43 (Au+u>) =0, (@t,x,y)eRxRxTy, (1.1)

where A = 8)% + 83, u = u(t,x,y) is an unknown real-valued function, T; = R/2x LZ and
L>0.

In [54], the Zakharov—Kuznetsov equation is derived to describe the propagation of ionic-
acoustic waves in uniformly magnetized plasma. In [23], Lannes, Linares and Saut proved the
rigorous derivation of the Zakharov—Kuznetsov equation from the Euler—Poisson system for uni-
formly magnetized plasmas. The Cauchy problem of the Zakharov—Kuznetsov equation has been
studied for the last decade. In [8], Faminskii proved the global well-posedness of the Zakharov—
Kuznetsov equation in the energy space H'(R?). This result has been pushed down to H*(R?)
for s > % by Linares and Pastor [24]. To study of the transverse instability of the N-soliton ¢"
of the Korteweg—de Vries equation, Linares, Pastor and Saut [26] have proved the global well-
posedness of the Zakharov—Kuznetsov equation in ¢~ + H L(R?%) and H*(R x Ty) for s > %
The result in [24] was recently improved by Griinrock and Herr [15] and Molinet and Pilod [36]
who proved local well-posedness in H* (Rz) for s > % In [36], Molinet and Pilod showed the
global well-posedness of (1.1) in H LR x T}). Moreover, the well-posedness of the Zakharov—
Kuznetsov equation in higher dimensions and the generalized Zakharov—Kuznetsov equation has
been studied by [14,24,25,27,42]. The equation (1.1) has the following conservation laws:

M®u) = / lu>dxdy, (1.2)
RXTL
1 2 1 3
Eu) = / (E|Vu| —5u )dxdy, (1.3)
RXTL

where u € H'(R x Tp).

In this paper, we show the orbital stability and the asymptotic stability of line solitary waves
of (1.1). By a solitary wave, we mean a non-trivial solution of (1.1) with form u(¢, x, y) = Q(x —
ct,y), where ¢ > 0 and Q € H' (R x T}) is a solution of

—AQ+cQ—-0*=0, (x,y)eRxTyL. (1.4)
We can write the equation (1.4) as S.(Q) = 0, where
Se(u) =E)+cM(u)

and S, is the Fréchet derivative of S.
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The orbital stability of solitary waves is defined as follows.

Definition 1.1. We say that a solitary wave Q(x — ct, y) is orbitally stable in H'(R x T ) if for
any & > 0 there exists § > 0 such that for all initial data ug € H'(R x Tp) with |ug — Qllg <6,
the solution u(¢) of (1.1) with u(0) = ug exists globally in positive time and satisfies

sup inf llu(t,-, ) — OC—x0,-—yo)ll g1 <e.
>0 (x0,50)€ERxTp,

Otherwise, we say the solitary wave Q (x — ct, y) is orbitally unstable in H!(R x T;).

The orbital stability of positive solitary waves of the generalized Zakharov—Kuznetsov equa-
tion on R" was showed by de Bouard [7] under the assumption of well-posedness on the energy
space. In [5], Cote, Muiioz, Pilod and Simpson have proved the asymptotic stability of positive
solitary waves and multi-solitary waves of the Zakharov—Kuznetsov equation on R? by adapting
the argument of Martel and Merle [30-32] to a multidimensional model.

The solution u to (1.1) does not depend on the variable of the transverse direction Ty if and
only if the solution u satisfies the Korteweg—de Vries equation

Uy + tyyy +2uu, =0, (t,x) eR xR. (1.5)

The Korteweg—de Vries equation describes the propagation of ionic-acoustic waves in unmagne-
tized plasma. The equation (1.5) has the soliton solution R (¢, x) = Q.(x — ct), where Q. is the
positive symmetric solution to

—32Q0+cQ—-0°=0, QecH'R). (1.6)

Here, Q. has the explicit form

«/Ex).

_ 3c _
0c(x) = 5 cosh ( :

The orbital stability of the soliton R, was proved by Benjamin [2]. In [41], Pego and Weinstein
have showed the asymptotic stability of the soliton R, on the exponentially weighted space by
investigating a spectral property of linearized operator around Q.. The argument of Pego and
Weinstein [41] is useful to prove the asymptotic stability on the exponentially weighted space for
nonintegrable equations. However, the assumption of the exponential decay of initial data yields
that the solution does not have a small soliton other than the main soliton. To treat solutions
including a small soliton other than the main soliton, Mizumachi [33] improved this result, using
polynomial weighted spaces. In [30-32], Martel and Merle proved the asymptotic stability of the
soliton for initial data on H'(R). To prove the asymptotic stability for initial data on H'(R),
Martel and Merle showed the Liouville type theorem for the Korteweg—de Vries equation. The
main tool to show the Liouville type theorem is the virial type estimate for solutions with some
decay in space.

We regard the soliton solution R, of (1.5) as a line solitary wave of (1.1), namely we define
the line solitary wave Iéc and the solution Qc of (1.4) by

Re(t,x,y) = Qc(x —ct,y) = Re(t,x) = Qc(x —ct), (t,x,y) eR xR x Ty.
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A natural question concerning R. is the stability of R. with respect to perturbations which are
periodic in the transversal direction. The stability of the line solitary wave R. on Kadomtsev—
Petviashvili equation was studied by many papers. The stability of R. on KP-II was confirmed the
heuristic analysis by Kadomtsev and Petviashvili [18]. In [48], Villarroel and Ablowitz showed
the stability of line solitons R. of KP-II against decaying perturbations by the inverse scattering
method. In [35] Mizumachi and Tzvetkov proved the orbital stability and the asymptotic stability
of R, on KP- II'in L%(R x T) by using the Biicklund transformation. The asymptotic stability for
line solitons R, of KP-II on R? has recently been proved by Mizumachi [34]. On R?, because of
finite speed propagations of local phase shifts along the crest of the modulating line soliton for
the transverse direction, the line soliton R, is not orbitally stable in the usual sense. To prove the
asymptotic stability, Mizumachi has showed that the local modulations of the amplitude and the
phase shift of line solitons behave like a self-similar solution of the Burgers equation. For KP-I
equation, Rousset and Tzvetkov proved the orbital stability and instability for line solitons R, of
KP-I on R x T in [44,46] and on R? in [43]. To study the relation between line solitary waves
and cylindrical solitary waves, the breakup of the line solitary wave R, of Zakharov—Kuznetsov
equation was studied numerically in [9,10,37]. The linear instability for line solitary wave R, of
Zakharov—Kuznetsov equation on R x Ty with large L was showed by Bridges in [3]. The non-
linear instability for line solitary wave R. of Zakharov—Kuznetsov equation on R? was proved
by Rousset and Tzvetkov in [43]. On Ty, x T, with sufficiently large L, the linear instability
of line periodic solitary waves of Zakharov—Kuznetsov equation was showed by Johnson [16] by
using the method of Evan’s function.
One of main results is the following:

Theorem 1.2. Let ¢ > 0. Then, the following hold.

(1) If0<L < f then R. is orbitally stable.

@) IfL > \/_ then R is orbitally unstable.

In Theorem 1.2, the instability for line solitary waves follows the linear instability of the lin-
earized equation around R. for L > Ls In many cases [16,17,45,51] with periodic transverse
direction, the bifurcation of eigenvalues of linearized operators around line solitary waves gener-
ate the unstable mode of the linearized operator around the line solitary waves. In [1,22,29], they
remarked on the relation between the symmetry breaking instability and the transverse instabil-
ity. In [20,21], the symmetry breaking in ground states of nonlinear Schrodinger equations was
investigated and the instability of symmetric standing waves with a large L>-norm was proved
by applying the bifurcation theory for the stationary equations. In these papers [20,21], the insta-
bility of symmetric standing waves follows the bifurcation of eigenvalues of linearized operators
which yields the existence of unstable modes of the linearized operators. To prove the stability
of the line solitary wave R, on R x T, //5c» We recover the degeneracy of the linearized operator

around Q. of the stationary equation (1.4) on R x T, V5 by using also the bifurcation theory
for (1.4) and constructing the fourth order estimate of the Lyapunov function. In our case, the bi-
furcation of eigenvalues involves a symmetry breaking bifurcation of line solitary waves, which
is proved in the following proposition.

Proposition 1.3. Let co > 0 and L = F Then, there exist 6o > 0 and ¢, € C2((—80, 80)2,
H2(R x Tp)) such that for a = (a1, ay) € (— 80,80) we have (pco(a) > 0, (pco(a)(x,y) =
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Peo (@) (—x, ), ¢(a) = ¢(lal, 0),

—AQey (@) + E@)9ey (@) — (pey(@))* =0,

- .3 .3 .
ey (@) = Oy +a1 02, cos% 002 sin% +0(aP?) as|d— 0
and
= 1|2 5 |? Cocy =12 =12 =
[9e0@ |32 0m,, = | Cco vaer,, T3 1Al ol asldl =0,

where &(@) = co + @W +o(a?) as |al — 0, &"(0) > 0 and

3 2
2

y
5‘ o COS T

~ 2 ~

30 0a|,, 3|2
L —

260 2

2
L~ - 0.

CZ,CO =

Remark 1.4. The solution ¢, (a) is not constant in the transverse y direction. By applying the
Lyapunov—Schmidt reduction and the Crandall-Rabinowitz Transversality in [21,52], we can
show Proposition 1.3. In this paper, we only write the sketch of the proof Proposition 1.3 in
Appendix.

We define a semi-norm ||-|| g1~ 4) O H'(R x Ty) by

el ) = /(|Vu(x,y)|2+|u(x,y)|2)dxdy, ue H'(R x Tp).

xX>a

The following theorem is an main theorem for the asymptotic stability.
Theorem 1.5. Let ¢g > 0.

1 If0<L < ﬁ, then the following holds. For any B > 0, there exists g1 g > 0 such that for

wo € H'(R x Ty) with Huo o
satisfying that

. < é&L,p, there exist p(t) € C1([0, 00), R) and c+>0

u(t, ) = OerC=p0.0] = 0ast = oo,

pt)—cy —>0ast— oo

and |co — c4| S lup — QCO v where u is the unique solution of (1.1) with u(0) = uy.
Gi) If L = ﬁ, then the following holds. For any B > 0, there exists €g > 0 such that for

o € H' (R x T}) with Huo o

and a,. € R? satisfying that

o <P there exist p1(t), p2(t) € C1 ([0, 00), R), ¢4 > 0
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lut, ) = @y, c) — p1(®), - — P2l g1 (x5 pr) = 0 as t — o0,

01() — ¢4+ — 0, po(t) > 0 as t — o0,

lcy —collay| =0

where

and |¢o = ci| + [P 5 Juo = Oao |

N {C-Fs C_i-f— =(Ov O)v (17)

c(ay), cy=co,

Cy =
N c > Cc
0@ )(x.y) = ggoco(a)(\/gx, ¥).

and u is the unique solution of (1.1) with u(0) = u.

Remark 1.6. Since a neighborhood of QCO in H (R x T'r) contains the branch corresponding to
unstable line solitary waves in the case L = F Theorem 1.5 shows that solutions away from

unstable solitary waves approach one of solitary waves in the neighborhood of QC0 ast — ooin
the sense of the norm H!(x > Bt).

Remark 1.7. In Theorem 1.5, the unique solution u of (1.1) with #(0) = uo means that for 7 > 0
the function u|[—r,7] is a unique solution of (1.1) with u(0) =ug in C([-T, T, H' R xTy)N

1
Xy " which is defined in [36].

Remark 1.8. From Remark 1.4 and ¢”(0) > 0, we obtain

d a2
d—a”‘PCo(a) ”LZ(RxTL) >0

for small a. Therefore, we can show the orbital stability of the solitary wave ®cy (@) (x —¢@adt,y)
for small a by the argument in [12] (see the proof of Theorem 1.3 in [52]). Moreover, from (ii)
of Theorem 1.5, we can get the asymptotic stability of the solitary wave ¢, (a)(x — ¢(a)t, y) for
small a.

Let us now explain the argument to prove Theorem 1.2. Since the solution Q. of (1.4) is not
a minimizer of the functional S.(u) on {u € H'; M(u) = M(Q.)} for general ¢ > 0, we can
not apply the variational argument to prove the orbital stability. Therefore to prove the orbital
stability of QLO, we use the argument in [12,50] for 0 < L < \/? In the case L = J%To’ the

linearized operator of (1.4) around QCO has an extra eigenfunction corresponding to the zero
eigenvalue. Thus, we can not show the orbital stability of QCO by using the standard argument in
[12,13,50]. Since any neighborhood of QCO contains the two branches which are comprised of
line solitary waves Q. and solitary waves @¢, (@), we can not apply the argument for the linearized
operator of the evolution equation with an extra eigenfunction by Comech and Pelinovsky [6]
and Maeda [28]. Because of the degeneracy of the third order term of Lyapunov functional, we
can not use the argument for the instability of a standing wave on a point of interaction of two
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branches of standing waves in Ohta [39]. To prove the stability of QCO, we apply the argument in
[52,53].

To show the nonlinear instability of Q. from the existence of an unstable mode of the lin-
earized operator around Q., we apply the argument by Grenier [11] and Rousset and Tzvetkov
[44]. Since the simple criterion in [43.45] does not seem be applicable to the linearized operator
of (1.1) around QC, it is difficult to get the existence of an unstable mode of the linearized oper-
ator by the implicit function theorem. For sufficiently large L, Bridges [3] showed the existence
of an unstable mode by sophisticated arguments. To get the existence of an unstable mode of lin-
earized operator for all L > ﬁ, we use the method of Evans’ function by Pego and Weinstein
[40] for gKdV equation.

Next we explain the main ideas and difficulties in the proof of Theorem 1.5. Since the equa-
tion (1.1) is not complete integrable, we can not use the inverse scattering method to get the
asymptotic behavior of solutions. To prove the asymptotic stability, we apply the argument by
Martel and Merle [30-32] and Cote et al. [5]. This argument relies on a Liouville type theo-
rem for spatially decaying solutions around a solitary wave. From the orbital stability and the
monotonicity property, solutions near by a solitary wave converge to an exponentially decay-
ing function in H'(x > a) up to subsequence of time. Due to the Liouville type theorem, this
function must be solitary waves. The main tool to prove Liouville type theorem is the virial type

estimate. In the case 0 < L < ﬁ, the linearized operator of (1.4) around QCO is coercive on

ueH  Mu)=M (QCO)} by modulating translation. Thus, applying the estimate of [32] we

can show the virial type estimate. However, in the case L = —2—, the linearized operator of (1.4)

Nk
around QCO is not coercive on the function space with the standard orthogonal condition. To get
the coerciveness of linearized operator, we estimate the difference between the solution and ®
instead of the difference between the solution and solitary waves, where ® is defined in The-
orem 1.5. However, since ® is not a solution of the stationary equation (1.4), a term including
S..(®) appears in the virial type estimate. Therefore, we can not get the coerciveness of the virial
type estimate by the argument in [32]. To treat the term with S/(®), we investigate the virial
type estimate with a correction term Sé(@), where ¢ is the suitable propagation speed of ®. To
get the coerciveness of the virial type estimate with a correction, we use the precise estimate for
a quadratic form and interactions among main terms. Due to this virial type estimate with the
correction, we get the Liouville type theorem around the bifurcation point QCO.

Our plan of the present paper is as follows. In Section 2, we show the well-posedness result
on the weighted space to prove the monotonicity property. The argument of this well-posedness
result follows Kato in [19]. In Section 3, we prove the properties of the linearized operator of
(1.1) and the estimate of the semi-group corresponding to the linearized operator. To show the
linear instability of the linearized equation, we use the argument by Pego and Weinstein [40].
In Section 4, we prove (ii) of Theorem 1.2 by the argument of Rousset and Tzvetkov [44]. In
Section 5, we show (i) of Theorem 1.2 by the argument of [12] and [52,53]. In Section 6, we
prove the coercive type estimate of a quadratic form and the Liouville property for orbitally
stable solitary waves. To get the monotonicity property, we use the Kato type local smoothing
effect in Section 2. In Section 7, we prove Theorem 1.5 by applying the Liouville property and
the monotonicity property in Section 6.
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2. Preliminaries

In this section, we show the regularity of solutions to (1.1) on the weighted space. For that
purpose, we apply the argument on KdV in [19].

From the result on well-posedness in H l(R x Tr) by Molinet—Pilod [36], for initial data
uo € H'(R x Tp) there exists the unique solution u(¢) of (1.1) such that u(0) = uo and for
T>0

L1+
uli-rr € CA-T. T, H' R x TL) N X577

Moreover, for any T > 0, there exists a neighborhood 2/ of ug in H' (R x Ty ), such that the flow
map of data-solution

1
voelU>veC(0.7), H R x T)n Xy 2"

is smooth. Here, the function space X 27 is defined in [36]. In this paper, we define H'-solution
by the solution in the function space C([0, co), H LR x T.)) satisfying the conservation laws
M(u(r)) = M(u(0)) and E(u(t)) = E(u(0)).

Let Up(t) = exp(—t(dx — b)((dx — b)> + 32)) for b > 0. Then, we have, for u € L>(R x Tp)
with e?*u € L2(R x T}), )

e U () u = Uy(t)u.
The following lemma is concerned with decay properties of the propagator Uy,.

Lemma 2.1.Let b >0, s,s' €R, s <s'" and n € Zy = {k € Z; k > 0}. Then, there exists C =
C(n,s,b) >0 such that forue HS(RxTy),0<j<nandt>0

_s'=s 43
1U(ull e < Ct= 7 e ull e, (2.1)
ooy Ub(t)uHL2 <Cr 3 ull o, 2.2)
_3 33
18, Up(t)uell 2 < Ct= 2" Jul| 2. (2.3)

Proof. By the factorization we have
Up(1) = exp(th”) exp(—3tb*dy) exp(th(397 + 07)) exp(—1d A).

Since exp(—3tb28x) and exp(—#dy A) are unitary in H*® and exp(tb(38§ + 8)2,)) is the heat semi-
group, we have the estimates (2.1)—(2.3). O

Proposition 2.2. Let u be an H'-solution to (1.1) with ¢**u(0) € L*(R x Ty) for some b > 0.
Then we have e"*u € C ([0, 00), L2(R x T1)) N C®((0, 00), H® (R x Ty)) with

Hebxu(t) eKl

P u(0) ‘

L= . (2.4)
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where K denotes various constant depending only on b and ||u(0)||;2. Moreover, for any T >0
and s > 0,

He’”“u(t) HH <K't7I, 0<t<T, (2.5)

513

Hebx(al)"u(t) HH <K't 0<t<T.neZ., (2.6)

where K’ depends on s,n,T,b,

" u(0)| ;2 M((0)) and Eu(0)).
Proof. Let
g(x)=e"(1+ 8€2bx)7%, r(x)=e* (14”7, p(x)=qx)>.
Then, we have ¢, r, p € L°(R x Tp) and
dep=2br%, |82p| <4b*r?, |33p| <1203, |3,r| <br.

Therefore, we have

d 2 2 2 2 8b 2

E(pu, w2 < =2bBlroyull;, + |[royul|;.) + 126%rull;, + ?(r u,ut)2. (2.7)
Then,

(rPu,u?) 2 < %nrwniz + Kollrul7,.

where Ko depend only b and [[u(0)||;2. From (2.7) and r < g, we obtain
d 2b 2b
Enquniz < —?urwuiz +K|rul?, < —?nrwuiz + Kllqull3,.

It follows from the above inequality that ||qu(?)|;2 < K qu )| 2. Applying the monotone
convergence theorem, we obtain that

Hebxu(t)H , <Kt e u(0)
L

9 t207
L2

where K depends only on b and |[u#(0)|| 2. Since ebx Up(t) = U;,(t)ebx, by Lemma 2.1 we have
fort >0

ebxu(t)‘

< |vseruc)|

drt
L2

L? L?

+j ”Ub(t—r)ebxax(u(f)2)‘
0

t

p +/C(M(u), E@) (=) | u(o)|

0

< ce?’t| et*u(0)

dr.
L2

Here, we use [lu(t)|| ;1 < C(M(u), E(u)). Therefore, e®*u(t) € C([0, 00), L*(R x Tr)).
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Next we show (2.5). By the Sobolev embedding and the Holder inequality, we have

S PR S PR
H H 4

1 3
7 H3

<C(M®), E(u))Hebxu

H
Thus,

t
5

P u(r) H 5 < Ct_§6b3THebxu(O) H + K/f(z — )1
H4 L2
0

ebxu(r)” de
Hl

5 .3
< Ct 3T

t
ebxu(O)H +K//(z—r)—% ebxu(r)H sdr,
L? H4
0

where K’ depends only on s,n, T, b, H eP*u(0) H 2o M(u(0)) and E(u(0)). Therefore, the prop-
erties that ¢?u € C((0, 00), Hf’t (R x Tz)) and (2.5) holds for s = %. By the interpolation, we
obtain (2.5) for0 <s < %. To prove s > %, we use the induction on s. Suppose (2.5) has been

proved for 0 <s < s’ — L where s’ > ZT' We shall show (2.5) for 0 < s < s’. By the Duhamel
formula, we have

t
13 u(r) = / Uy (t — r)(%r%—le’”u(r) - r%ebxax(u(r)z))dr.
0

Since [Up(t =0l -3 <Ct—0)73,

—H

t

/
e u(t)HHS,sc'/(t 0 (e | oy
0

s
12

P9, (u(0)?) HH% )dt.

(2.8)
From the assumption of the induction we have

.Y/
51
2

si_q_s .3 _1
ebx“(f)HHsuz <K't \"iti=K'rs

On the other hand, by Appendix A in [19] for f,g € H*(R x Tr)(s > %)

1

gl s +1lgl™ s Mgl s lf [l s

5
1

EN[N)

1 1 1 1
Ifglas SIAIZ SIFIZ s : :
H4 H4 H H

Thus, we have

/

1 1

bx 2 bx 2
e ocw@?)| Fu@| 2B um) s
H H4 H4

S [erruer
7

<]

bx
g1 ezu(f)H gL
B2 w2
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From the assumption of the induction, we obtain
[ aw@™) -
"

where K/, depends only on s, n, T, b, M (u(0)) and E (u(0)). Since
2

e”%u(O)‘

L2

[e%u@] , = du1,2

ehxu(O)‘

1
AL

K, depends only on s,n, T, b,
3

" u(0)| 2, M((0)) and E (u(0)). From (2.8) we obtain

.S'/
Hebxu(t)ﬂ C<K't77,
HS

where K" depends only on s,n, T, b,
0 < s <s’, completing the induction.

Finally we prove (2.6) by induction on 7. For the case n = 0, it is known by (2.5). Assuming
that it has been proved for all s > 0 up to a given n, we prove it for n 4+ 1. By the induction
hypothesis,

" u(0)| ;2. M((0)) and E(u(0)). This proves (2.5) for

y _s+3+3n
2 .

a,"axA(ehxu)H < [la7 et*u) <K't 2.9)
HS Hs+3
On the other hand,
n
n bx 2 n bx 2 bx ;qJ n—j
R W R S » P
j=0
By Appendix A in [19],
He”X(afu)(a”‘fu)H < He%x 8juH e%an_juH % Bn_juH
! ! Hs+1 ™ t Hs+!1 ! H% t H%
+ ehTXa,nfju e%atju 3 ebTXB,ju 5
Hs+1 Hi Hi
Therefore,
8" e 3, (u?) H S K5 (2.10)

From (2.9) and (2.10) we obtain (2.6) for n + 1, completing the induction. The property that
e u e C((0, 00), H®(R x T})) follows the estimate (2.6). O
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3. Linearized operator

In this section, we show the properties of the linearized operator of (1.1) around R.. We define
the linearized operator L. of (1.4) around Q. by

Le=S/(0c)=—A+c—20,
and the linearized operator L, of (1.6) around Q. by
Lo=—-02+c—20..

Then, the linearized operator of (1.1) around kc is 0yIL.. From Theorem 3.4 in [4], L. has the
only one negative eigenvalue

5¢

e = 2

3 .
and an eigenfunction (Q.)2 corresponding to —A..

Proposition 3.1. Let ¢ > 0.
() If0 < L < -2, then 8, has no eigenvalues with a positive real part.

\/2570)
() If0<L < N then

Ker(L.) = Span{d; O}

(i) If L= NeT then

Ker(Le) = Span{d; Oc. ()7 cos -, (Q0) T sin = .

@{v) If L > \/% then 0.1l has a positive eigenvalue and the number of eigenvalues of 01, with

a positive real part is finite.
Here, Span{uy, ..., u,} is the vector space spanned by vectors uy, ..., uy.

Proof. By the Fourier expansion, we have for u € H'(R x Tp)

s 2 iny
L. y) = Y (Lot T3 )unte ™, G.1)

n=—oo

where

o0

ulx,y) = Z un(x)emTy.

n=—oo
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From the equation (3.1), we obtain that d, L. has an eigenvalue A if and only if there exists n € Z
such that 9, (L. + n? / L2) has an eigenvalue A. By Theorem 3.4 in [40], the essential spectrum
of 9, L, is the imaginary axis. Moreover, from Theorem 3.1 in [40], the number of eigenvalues
of 8, (L. + n*/L?) with a positive real part is less than or equal to the number of negative

eigenvalues of £, + n2/L2. In the case L < \/%, since nz/L2 > Ac foralln #0, L, + nz/L2

has no negative eigenvalues and (i) is verified. The kernel of 9, (L. + n?/L?) is trivial if and only

if the kernel of £, + n? / L? is trivial. Therefore, for L > J% the kernel of d,LL. is spanned by

35 Oc. Inthe case L = \/% the kernel of 9, L is spanned by 9, O, (Qc)% cos % and (QC)% sin %
Thus, (ii) and (iii) are verified.

To prove (iv), we apply the method of Evans’ function in [40]. We consider the following
equation:

8x(£c+a)u —au=0. (3.2)

The equation (3.2) is equivalent to the first order system

U = A(a, , x)u, (3.3)
where
u 0 1 0
u=|\0ou |, A@,rx)= 0 1
32u —20,Qc(x) = A c+a—2Q:(x) 0

First, we show that A(a, A, x) satisfies the assumptions H1, H2, H3 and H4 in Section 1 of [40].
Then, the matrix A(a, A, x) is analytic in A and a for each x, so H1 holds true. Let

0 1 0
Ax(a, )=1] 0 0 1
—X c+a O

Then, lim|y|— 00 Aa, A, x) = Axo(a, 1) and A(a, X, x) satisfies H2 and H4. We define

wi(a, ) :=inf{Re w; w is an eigenvalue of Ao (a, A)},
ua(a, A) :=inf{Re u; Re u > Re u1(a, 1), u is an eigenvalue of Ay (a, 1)}.

Let

J ={(a, ») € C*; Axo(a, 1) has some purely imaginary eigenvalues}.

We define J be the connected component of C2\ J which contains {a > 0} x {* > 0}. From
the perturbation theory of matrices, the number of eigenvalues counting multiplicity of Axo(a, A)
having the negative real part is constant for (a, ) € J. Since the matrix As(0, A) has the only
one simple negative eigenvalue for A > 0, the number of eigenvalues counting multiplicity of
Ao (a, 1) having the negative real part is 1 for (a, 1) € J. Therefore, for (a, A) € J+
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mia, r) <0< pa(a, ).
Moreover, fora > —c/2
mi1(a,0) <0< ps(a,0).

By the perturbation theory of matrices, there exists a domain € in C2 such that {a > 0} x {A» >
0} € Q for (a,A) € 2 and A (a,A) has the unique eigenvalue with the smallest real part
w1(a, A), which is simple and

nila, A) < pz(a, r) (3.4)

Thus, H3 holds true. Therefore, A(a, A, x) satisfies the assumptions H1, H2, H3 and H4 in
Section 1 of [40], so we can define Evans’ function D(a, 1) for (a, 1) € by Definition 1.8 in
[40]. For (ag, Ag) € Q with Re Ap > 0, from Proposition 1.9 in [40] the kernel of the operator
9y (Lc 4 ag) — Ao is non-trivial if and only if D(ag, o) = 0. Since A(a, A, x) is analytic in a and
A for each fixed x, Evans’ function D(a, 1) is also analytic in a and A for (a, A) € Q.

Let

PW)=v}—(c+aw+2r
denote the characteristic polynomial of A, and
PO)=v +1r, 20)=—(c+a)v.

Then, the roots vy of @(v) = 0 are the cube roots of —A, and for |v — vg| = 0(1) as |A| &> oo we
have

QW) =—(c+a)vo(1+0(1)), 2_‘@(,))=3u(2)(1+0(1))’ oj;vo) =|C+?|'
b 12 )| 23

We choose p(A) = polc + a|/3|k|% for any pg > 1. Then, the assumption of Lemma 1.20 in [40]
is satisfied and the roots of &2 (v) =0 are given by

V= (=13 + O(lc+allxl~F) (3.5)
as A — oo. From (3.5) for any labeling v (a, 1), va2(a, 1), v3(a, 1) of roots of A (a, L) we have

Ik
= | |32(1+0(|C+a|))=0((1+|a|)|?»|_%),
3103

Vi
0
2 w))

as || = oo in Q. To apply Corollary 1.19 in [40], we obtain that the hypotheses of Proposi-
tion 1.17 in [40] hold. By Corollary 1.18 in [40], it follows that D(a, A) — 1 as |A| = oo in Q
for each fixed a. So for 0 <a < A,

D(a,\) — 1as A — oo. 3.6)
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Since
axﬁcach :07 £cax Qc =0
and
0y Qc(x)e“/gx — —6c% as x — 00, Qc(x)e_‘/a‘ — 6c as x — —o0,

from (1.35) in [40] and D(0, 0) = 0 we have

aD 1 Q 3.0
= 0.0 =55 = 0a[=0:(Le + @) + Ml@n=0.0— 5 dx
a o e n=(-ve00 %, O —6¢2
/ 18, Oc|?dx < 0. (3.7
7202

From Theorem 3.4 in [4] we have that the kernel of £, 4+ a on L%(R) is trivial for 0 < a < A.
If there exists 0 < ag < A, satisfying D(ag, 0) = 0, then there exists a solution ug of d,(L. +
ap)u = 0 such that for all ¢ > 0 there is C, > 0 satisfying that

o ()] + 18,10 (x)| + [8Fug(x)| < Ce™1T8% as x — oo
and
lug(x)| < Cee ™ as x — —oo.

Since ((L¢ 4+ a)up)(x) — 0 as x — 00, ug is a solution (L. + a)u = 0. By the property of
solutions of ordinary differential equations, any solution of (L. + a)u = 0 decays or grows
exponentially tend to —oo. Thus, there are no solutions of (L. 4+ a)u = 0 which grows subexpo-
nentially tend to —oo and decays exponentially tend to co. Hence, uq € L*(R). This contradicts
that the kernel of £, + a on L%(R) is trivial. Thus, D(a, 0) # 0 for 0 < a < A.. Since D(a, A) is
real and continuous for real numbers a and A in J4, by (3.7) D(a, 0) is negative for 0 < a < A..
From (3.6), for a there exists A(a) > 0 such that D(a, A(a)) = 0. Therefore, d, (L. +a) has a pos-
itive eigenvalue A(a) for 0 < a < A(a). Thus, 3,LL. has a positive eigenvalue for L > /A.. O

A (Leta)t

To prove the estimate of the propagator e , we apply the following Gearhart—Greiner—

Herbst—Priiss theorem, see [38].

Theorem 3.2. Let A be a generator of a strongly continuous semigroup on a complex Hilbert
space (H, ||-l3)- Then for each t > 0, the following spectral mapping theorem is valid

a(eA) \ {0} = {e": either wy := A + 2mik € o (A) for some k € Z

or the sequence {H (e — A HH H}kez is unbounded}.
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Proposition 3.3. Let a,s > 0 and s € Z. Then, for ¢ > 0 there exists C = C(g,s) > 0 for u €
HS(R) and t > 0,

H o (Letar,

< CeH@)ter . 38
oy = € Ml (38)

where p(a) is the maximum of the real pert of elements in o (3 (L. + a)).

Proof. By the compact perturbation theory the essential spectrum of 9, (L. + a) is the essential
spectrum of 8;, so the essential spectrum of 9, (L. + a) is the imaginary axis. If we show the
sequence {|| (A +27ik — 0, (Lo +a))~ ! | s s 1k 18 bounded for all Re A > u(a), we can show
the estimate (3.8) by applying Theorem 3.2 and Lemma 2 and 3 in [47] (see also the proof of
Lemma 3.2 in [51]). If s > 1, we have that for u € HS(R)

H O+ 27ik — 3 (Lo +a)) " u H y

< H O+ 27ik — 3 (Lo + @) dyu

| |o ik —acoran |

Here, we use the boundedness of (—2(Q¢)xx — 2(Q¢)x0x)(A + 2mwik — 0 (L + a))~! on
H*~1(R). Therefore, the boundedness of the sequence {|| A+ 2mik — 0, (L, +a))~ ! H H— Hs He
follows the boundedness of the sequence {H A+ 27ik — 3, (Lo +a))~ ! ||L2—>L2}k' Thus, we
prove the boundedness on L%(R). For B € C we have

(B — (i10:)(Le+a) ™ =T +AgB) (B — (18,)((18:)* +c+a)!,
where

Ap =2G9){ip — (i3 (180> +c+a)} 'V Q.
B=.0..

Since
(I+AgB)~'=1—As(I +BAp)~'B,

for Re A > pu(a) the sequence {||(A + 27ik — 9, (Lc +a)) " ,2_, 2}k is bounded if and only if
{|( + BAss2zi) ™" 2, 2}k is bounded. For u € L*(R) we have

1B Aszmicill 2 = V02680 (3 = 2wk = (8 (00 + ¢ + @) ™ (/e

L2

S |nx—2mk 4 0@+ c+an!| |l

Let

p(n,k)=—ImAr —27k + n(n2 +c+a).
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From (3.5) in the proof of Proposition 3.1, for k € Z there exist roots «;(k) (j =1,2,3) of
p(n, k) = 0 satisfies

aj(k) = 2rk) Sl + O(k|™5)

as |k| — oo, where w3 is a primitive root of 73 — 1 =0. Since |[Im (aj —a3)| = ‘/Tg(an)% +

O (k™) as |k| — oo for j = 1,2, we have

nl
. 5 dn
lix =27k +n(n*+c+a)l

1 Inl
<
a «/5_[0 |Rek|+|n—a1(k)||n—ag(k)||n—a3(k)|
V2lk|3 1
<—=—— sup 1§ + az(k)k™3]
Re Al _jyprcgopy
1 1
- ) + a3 (k)k~
n |\|/E / €] 1d§su£ [3 _0113( k™3| —
LUK §eR |& — (a1 (k) — a3 (k)k ™35 — (a2 (k) — a3 (k))k™ 3|
n k|3 1€ +a3(k)k™ 3| dt

IE11E — (orr (k) — 3 (k))k ™3 [|& — (2 (k) — a3 (k))k 3 |

(—00,—1)U(1,00)

< k|7 log JK].

Hence, we obtain there exists C > 0 such that

1
BAjss2rikullp2 = Clk|™3 (og k)l 2.

Since [|BAxtoxikll 212 — 0 as [k| = oo, {| (I + BAyyaxit) '] 2., ;2)k is bounded. Thus,
we obtain the conclusion. O

4. Orbital instability

In this section, we prove (ii) of Theorem 1.2 by applying the argument in [44]. We assume
L > 2/+/5¢. Let pimax be the largest elgenvalue of 9IL.. Then, there exists a positive integer kg
such that the largest eigenvalue of 9, (L, +k0 / L?)is max- Let x be an eigenfunction of 9, (L. +
k2 o/ L?) corresponding to fimax. Since tmax > 0, from the dichotomy for ordinary differential
equations x € H*(R) for s > 0 For § > 0 we define u® as the solution of (1.1) w1th initial data
8 x cos == k Y 4 Qc and we set v3(z, x, y) = ul (¢, x + ct, y) — Qc(x) Then, we have v%(0, x, y) =

koy

Sx(x)cos and

3 v’ + 0, Lo + 8, (v¥)? =0.



Y. Yamazaki / J. Differential Equations 262 (2017) 4336—4389 4353

We define Vi as the function space
5 X ijkoy
Vi = {u eL“ R xTp);ulx,y)= Z uj(x)e’ L ,uje HS(]R)},

j=—K

and we define a norm of VIS< as

ijkgy
L e Vg.

K
;= i f — Z .
lluellvg US“;I;( [ ||H5(]R)’ oru = uje

To show the smallness of the high frequency part of v°, we consider an approximate solution
M
U?u =231w1, w; € Vlsfl+1’

=1

where w is the solution of

k
dw+ 0, Lew =0, w(0,x,y) = x(¥) cos .
and wy is the solution of

8zw+achw+ax( Z wllwlz)zo» w(ov-xs y):O

l1,b>1,
L +1h=I

Then, v}, satisfies

dvd, + 0 Levs, + 8, (v5,)? = F,

where

F:BMax( Z 511+12—Mw11w12)_

1<l;,h<M,
Ii+lb>M

From Proposition 3.3, we have the following lemma.

Lemma 4.1. For K, s, & > 0 there exists Ck 5, > 0 such that foru € Vi

ezaleC U

s =< CK,s,se(Mmax+8)t [lze| V-
Vi
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Let w® =% — vﬁ,l. Then, we have
dw® + 3 Lew® + 28, (wvl,) + 8 (ww®) + F =0.
Therefore,
2
d u)(S 2 ~
% = / (W23 0c — w*)?8,v}, — Fw®)dxdy

RXTL

= (1 + “axU?W”Loo + ach

From Lemma 4.1 we have that for g9 > 0 there exists Cyy s,¢, > 0 such that
lwi @)l gs < Cpr sgg€’ Pmote0.
Therefore, there exists Cp ¢, > 0 such that we have

H ax U?W (t) || Lo° S CM’gO (Se(ll-max"ré‘())l —I— SMeM(I-Lmax+8())l)

”F”L2 < CM,SOSM'He(M+1)(“maX+8°)t.

1 15 PP

4.1

4.2)

4.3)
(4.4)

We set Ts.. = (log(e) — 10g(8))/2/tmax. Since emaxt80! < /5 for 0 < t < Ty, by (4.2)~(4.4)

we have

2
ol

- 3 Oc

forany0 <e <1land 0 <t <Ts . Thus,

3 Oc

d g/ —a+ +26Ch.e) 2
(e e PO (1))

3 Oc

2(M+1) (lmax+e0)t—(1+
< C121,1’8082(M+1)e ( ) (e e0)t—(

If we choose large M and small ¢(M) satisfying
2(M + 1) (lmax + €0) — (1 + [10x Qxll Lo +26Cp1,69) > 0,
then we obtain
” w‘s(t) ”iz < C;w’so52(M+1)e2(M+1)(Mmax+80)l
for 0 <t < Ts .. Hence, there exists C ;{,, o> 0 such that

”wS(T(;’s) ”Lz =< C;(,],SOSM-i_l

Lo T2t

2
. + 28CM,8()> H w5 (t) H 12 + CIZM’SOCSZ(M+1)32(M+])(Mmax+80)t
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for small ¢ > 0. Let Py be a projection satisfying

(Pou)(x,y) =/u(x, 2)dz, for (x,y) e R x Ty.
TL
From the definition of vai and the estimate (4.1) we have
[(1d = Poyuyy ()] 2 = Vx| 28! — Cey (872 mt - 5M M imast
and
inf [0 (Tye.0) = Qe+ |, = [ (d = PO (Ts.0) = Re(Tso)

= [(Id — Po)(v* (T5.0)) |
> |[(1d — Poyviy(Ts.0) | ;> — || w’ (Ts.0)| .

2
> V7l 26 — Chp oy

Thus, if we choose

e
€1 = 7
Q’CM,sO

3

then we have for any § > 0

_ VElxlee
L

. S ~
inf [Ty ) = OcC )|, =

This completes the proof of (ii) in Theorem 1.2.
5. Orbital stability

In this section, we prove (i) of Theorem 1.2 by applying the arguments in [12] and [52]. We
write the outline of the proof of (i) of Theorem 1.2.
Theorem 3.3 in [12] yields the following coercive type lemma for L.

Lemma 5.1. Let ¢ > 0. There exists ko > O such that for u € HI(R) with (u, QCO)LZ(R) =
(u, 0y QcO)LZ(R) =0,

2
(Leott, u) g=1®y, 11 (®) = kollull g -
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5.1. Non-critical case L <

2
VSco

To show the orb1ta1 stability of RCO for L < «/_ we apply the argument in [12,49] (see also
[51,53]). Let L < J_ By the Fourier expansion (3.1) we have for u € H'(R x T)

o0 2
n
(LCOM’”)H*I(RXTL),HI(]RXTL): Z Lco+—2 Up, Up s
L —1 1
n=—00 H-1(R),H (R)
where
o0 .
u(x,y)= Y up(x)el .
n=—o00

Since A¢, < L2, Loy + n2/L2 is positive for |n| > 1. From Lemma 5.1 there exists Ko > 0 such
that for u € H' (R x Tp) with (u, Qco) 2R, ) = (2 0x Qco) 12,y = 0 we have

(Leou, u) i “I(RxT.),H (RxTr) = KO””“HI(RxTL) (5.1

Combining (~5.1) and the proofs of Theorem 3.4 and Theorem 3.5 in [12], we obtain the orbital
stability of R, .

5.2. Critical case L = JT
The proof of the orbital stability of ECO for L = % is similar to the proof of (i) of Theo-

rem 1.4 in [52] (see also the proof of (i) of Theorem 1.4 in [53]). Let L = «/_ In this case, from

(iii) of Proposition 3.1 the linearized operator L., has an extra eigenfunction corresponding to
the zero eigenvalue. Therefore, we have to recover the degeneracy of the kernel of L., from the
nonlinearity of (1.1). We define the action S.(#) by E () + cM (u).

Lemma 5.2. There exist a neighborhood U of (0,0) and a C? function y.(a) : U — R such that
v:(0,0) = c and for a € U and |c — co| < co/2

M(©(@, y:(@)) =M(Qp),

- cCre
yc<a>—c=——2| il +o(laP), (52)
3 0al,

where ©(a, c)(x,y) = ccalgoc() @)( cco_lx, y).

Proof. Let

2 =2\ 3
Llea@]3)"

7e@=cof |
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By the definition of ® we have

M(0@, ye(a))) = M(Q.).

Since Qc 22 QCO ;jzc%c(;%,we have
loa@lf: - | 0|
Yeld)=c—c ot - Pl =C—L’602|5|2+0(|5|2). o
lea @]} 3|0l

Next, we investigate the difference between ® and Qc on the action S..

Lemma 5.3. Fora € U and |c — cy| < co/2,

~3 2
5 AN 5c0Ca.c, || @ cOs 7 i
Sc(@@yc@»)—SC<QC>=(5 E il PP
48| Q¢
L2
C o R 2 .
+ (1 - a) |8,©@, ye@)| ;> +o(lal*) (5.3)

as |a| — 0.
Proof. First, we consider the case ¢ = cg. From the expansion
O (A, Yoo (@) = 9 (@) (x, ¥) + (Vey (@) = €0)8e Qg + O (1] + (v (@) — €0)) (Ve (@) — c0)),
54
we have
Seo (O @, veo(@))) = Sy () = Sea) (e (@) — Sy (D) + (o — E@) M (Quy)

1 s 1 ¢ A A A I
+ 5 ey @) = c0)*(S) (D) 8c Ocys 8 Q)12 +0(ldl"h),

where ¢ is defined in Proposition 1.3. Since %(o, 0) = 0 and %(0, 0) = &(0) > 0, there
exist 81 > 0 and the inverse function a;(c) of ¢(ay, 0) on from [cg, ¢(81, 0)) to [0, 81). For ¢y, c2
with ¢1 # ¢

SC[ (§060 (Cl)) - Scz (‘pco (62))
] —C

_ (82 (@eg (€2))(Peo (€1) = Pey (€2)), Pey(€1) = Pey(€2)) 2 - M)
2(c1 —¢2)
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L oley(eD) = ¢q (c2)?)
cl1—C

— M(@¢,(c2)) as c1 — ¢,

3
’ 2

where ¢, (c) = ¢y (ai(c),0). Since Sﬁ.o(Qco)aalwco (@1, a2)l(a1,a2)=(0,0) = Ly (03, cos 7) = 0,
for ¢ > ¢g

Se(9e(©)) = S0 (Dey)
c—co
(Sgo(QCo)(‘PCo(C) - QC())s Weo(C) — Qco)Lz
& ()ay () + o(aj(c)?) + M(@pc,(c)) +

— M(QCO) as c | cp.

0((@ey (€) — Ocp)?)
&M(0)ay (€)? + o(ai(c)?)

Therefore, S¢(¢¢,(c)) is C I and 0:S¢(@ey (€)) = M (@, (c)). By the same way we obtain that
M (e, (c)) is C! and

o M(ge(©) — M(Qc)  Cag
cleo c—co 280y

Thus, we have

Seqal.0)@eo (1dl, 0)) — Sey (Oey) + (co — ¢(lal, 0)M (D)

_ Coco a2 Y
= Jorgy €Ul 0) = o) +0((E(al, 0) = co)’)
= WW‘ +o(al®). (5.5)

From Lemma 5.2 and S (Q¢)3: Ocy = — Qco>»

0

2
COC2,00

(Veo @) — 0)* (S0 (D)0 Qg 8 Do) 2 = — —lal* +o(|a@l*). (5.6)
12

Q¢

12
Since
S @ey @) = Seo(Qey) + (co — @) M (Qcy)
= Sz(1a1,0) (@eo (@) — Sey (D) + (co — E(ldl, 0)M(Qcy).

from (5.5) and (5.6) we obtain (5.3) for ¢ = ¢y. 3
Next, we consider the general cases. Since M (©(a, y.(a))) = M(Q.), we have

Se(©(@, y(@))) — Se(Qe)

() (500 70 @) — 50 (D) + (1 - —ooa@ re@l;-

€0

Therefore, we obtain (5.3) forc > 0. O
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We define a distance dist. and neighborhoods N, . and N, é o of Qc by

diste() = inf JuC.) = OcC- =29 .
Nee={ue H'(R x Tp); dist. () < &},
N ={u € Nec; M(u) = M(Q)).
In the following lemma, to get a orthogonal condition we decompose functions in Ng ..

Lemma 5.4. Let ¢ > 0 sufficiently small. Then, there exist K1 > 0, C? functions p : Neco = R,
¢:Ngey — R, a=(ay,ar): Ngeo = U and n: Ng oy — HY(R x Ty) such that for u € Ng ¢,

u(-+p@), ) =0@@w), c@)(, ) +nw,-),
le@) = col +la@)| + In@)ll 1 < Kidiste, (), (5.7)

and (n(u), ©@®w),cw))),» = (), :O@w), c))),» = (W), 84O @), cw))),,» =
(n(w), 04, (@(u), c(u))),» =0.

Proof. We define

W+ p,) — O, c), O@. )2
(-4 p.) — O, ), 0, )2
W+ p.) = O@, ), 4, ©(@. )2
W+ p.) = O ), 3,0 (@. ) .2

G(u,c,p,ar,a2) =

Then, G(Q.,, ¢o, 0,0, 0) = 0. Since

G )

a(c, p,ay,a) u=Q0¢,c=co
p=a1=a=0

_(BCQC()v QCO)LZ O ) O 0

0 ax QCO L2 O O

.3 2
= 0 0 —H Q¢ cos 7 0
L2
-3 2
’ 0 0 —| Q& sin ¥
L2

is regular, from the implicit function theorem for small ¢ > 0O there exist C> functions
¢, p,ai,ay: Ng o, — Rsuch that for u € Ng ¢

Gu,c(u), p(u),ar(u),az(u)) =0.



4360 Y. Yamazaki / J. Differential Equations 262 (2017) 43364389

Therefore,

n@w) =u(-+p), ) —O@w), c(u))

satisfies the orthogonal conditions, where a(u) = (aj (1), a2 (u)). The inequality (5.7) follows the
implicit function theorem and the definition of . O

In the following lemma, we estimate ||® (@ (u), c(u)) — O (a@(u), y (@@)))|l 1 on Né!co.

Lemma 5.5. Let ¢ > 0 sufficiently small. There exists C > 0 such that for |l — co| < €'/? and
u e N!

£,c0’

|©(@w), @w)) — e@w), cw)| 4 < Clnel;.,

lyi(a)) —c)| S M(n(u)). (5.8)
Proof. For u € N!

£,00°

M(©@w), yi@w)))) = M(Qp) = M(n(w) + O @), c(u)))
=M(nu)) + M(@(Ei(u), c(u))).

For sufficiently small ¢ > 0, we have

le(u) — col + [y@u)) — col < %0

Therefore,

M) = M(©@Gw), y1@w)))) — M(O@w), cw))) = (n@w)? — cw)?)M (e @w)))
> yi@u)) — c() = 0.

Since
O (@), yi@wy)) — 0@, cw)) = (y1@w)) — cw))d. Qc, + oy (@)) — c(u)),
we obtain
|©(@@), yi@wy)) — 0@w), cw)|| ; < @) —cw) SMmnw). O
Next we show the coerciveness of S}, (Qc,) on a subspace of H!' (R x Tp).

Lemma 5.6. There exist ky > 0 and g9 > 0 such that for ay, ay € (—&o, €o) and ¢ € (co — €9, co +
eo), if w € HY(R x Ty) satisfies

(w, 0, 0) 2 = (W, 9:0(d, )2 = (W, 3, 0@, ¢)) 2 = (W, 3,0(d, ¢)) 12 =0,
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then
(Sgo(G(Ei’ C))w, w>H71(RXTL),H1(RXTL) > k2||w||%11 .

Proof. By the definition of S, S/ (QCO) = Ly,. Since L, + n?L~? is positive for |n| > 2,

0
from Lemma 5.1 we obtain that there exists k), > O such that for u € H 'R x Tp) satisfying

(4, Q)12 = W, 0, Oey)y2 = (0, Oy cos ) = (u, 02 sin )2 =0,
(Sé/o(Qco)”’ ”>H—1(RxTL)‘H1(RxTL) > ké”””i[l
By a continuity argument we obtain the conclusion. O
Next, we show the orbital stability result (i) of Theorem 1.2

Proof of (i) of Theorem 1.2. Let ¢ > 0 sufficiently small. Applying Lemma 5.2-5.6, we obtain
that for u € N;%,
Seo () = Sey (D)
= Seo (O@W), cw)) +n(w)) = S¢y(Ocy)
= Seo (O@W), Y @@)))) = Seq(Dcy)
+ (S (©@@W), yeo @@)))), n(w) + O @), c(u)) — O(aw), ye,(@w))) -1 g1

1 - -
5 (87, (O@(W). yey @D M) (@) g1 11 + 0N G)I150)
3 2
5¢0C2,¢, Q:?Ocos%
> ———— a1 + kalln@)I1%,
48” Qeo L2

+ (S0, (O W), yeo @w)))), n(w)) -1 g1 + oIl + la@)[*).
Since Sé’o (QCO)SC QCO =— QCO and the expansion (5.4), from Lemma 5.2 we have
(8., (® @), yeo (@)))). n(W)) -1 g1
= (S (O@W), vey @), n(w)) -1 g
= ((S¥ ) oo @))) = St (D)) (Ve (@(W)) = €0)e Qg N(W)) =1 g1
+ (Voo (@) — c0)(Qer 1)) 2 + 0(la@)|* + )13,
=o(la@)|* + @Il

Therefore, there exist e, k. > 0 such that for u € N, gcfyc()

Seo () = Seo(Qey) = ki (ja()[* + In ) 13,1). (5.9)
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Now we suppose there exist &g > 0, a sequence {u,}, of solutions to (1.1) and a sequence
{ta}n such that t,, >0, u,(0) —> QCO as n — oo in H! and diste, (uy (1)) > €o. Let v, =
M(QCO)2M(un) 2u,,(tn). Then we have M (v,) = M(QCO), limy— o0 |lUn — un(ty) |l 1 =0 and
1imy— 00 Seg (Un) = Sey(Qey)- Thus, by (5.9) lim,,_, o0 @(vy,) = 0 and 1(v,) — Oasn — ooin H'.
Since lim;, 00 V¢, (@(vp)) = cg, we have lim,,_, o ¢(v,) = co. Hence, lim,— oo diste, (u, (2,)) =0
This is a contradiction. We complete the proof of (i) of Theorem 1.2. O

In the following corollary, we estimate the size of the modulation parameters.

Corollary 5.7. Let co > 0 and L = ﬁ Then, there exist 8y, C > 0 such that for 0 < § < 8o and
uo € H' (R x 1) with [uo — Oy "

data ug satisfies

< §, the solution u of (1.1) corresponding to the initial

le@) — col +la@)> <C8, 1€R,
where c(u) and a(u) are defined in Lemma 5.4.

Proof. We choose ¢ > 0 which is sufficiently small. By (i) of Theorem 1.2, there exists §; > 0

such that for any solution u# with Hu(O) — QCO o= 8 < & satisfies u(t) € Ng, fort € R. We

define ¢, > 0 as

luolz2 = | G|,
Applying Lemma 5.2-5.5, we obtain
Se () = Se,, (Qc,)

1 - -
= §<Sé’0(®(a(u), Ven (@@)))) @), nw)) -1 g1

()

+o(ja)!* + o)l

2

pd
5 5¢0C2,¢ QC0 cos

- ol + (1= =) [9,0(G). e, @) |12
0l ’

as § — 0. Since |co — ¢;n| <8 and

23
O, 76, @)+, y) = a1(u)J/cm(a(u)) cho( J/cm(a(u))
L ©2Wye, (@) (@(w)) ng /)/L,,, (a(u)) COS_ L ogawP).
colL
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there exist k3, k4 > 0 such that k3 and k4 are not depend on ¢;,, and

Sep @) = Se, (De,,) = kalln@)[7,1 + kala @) *(a@w)> — 8kg) + o(la@)[* + In@)lI3,1).-

(5.10)
Using the conservation laws and (5.7), we obtain
Sep () = S, (D) = S, (0) — S, (Dc,)
S In@o)ll3, + lauo)* < 8°. (5.11)

From (5.10) and (5.11), we have that there exist §4, k5 > 0 such that if 0 < § < §, then
@12, + 1a @) > (@) — 8ks) — kss* < 0.
Therefore, there exists C(k4, k5) > 0 such that
@) > + In@)ll g1 < C (ks ks)S.
Applying (5.8), we have
lco — c@)] S Iz + e, @w) — el + lco — cm| S8, O
6. Liouville property

In this section, we prove the Liouville property of (1.1). First, we show the following equation
of the integration of Q..

Lemma 6.1. Let p, ¢ > 0. Then, we have

p+1 3pc p
= dx. 6.1
/Q =2 +1/Q X (6.1)
R
Proof. Since
—02Q.4c0Q. — 0} =0, 6.2)

we have

/Qé’“dx /QP ‘a2QCdx+c/Q£dx
R R

=(p—1 / 0r (0, 00)%dx + ¢ / Qldx.
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Multiplying (6.2) by 9, Q. and integrating this, we obtain

(00 +cQ? ~ 20} =0

Thus,

[orttar=w-v [ or?(co2~502)ax+c [ ofax
R R R

which implies (6.1). O
Let

% Q) = /ctanh g

Ge(x) = — 0.0v)

Then, ¢¢(x) — %4/c as x — F00 and

_ AfCX 1
1

depe(x) = = cos
2
We introduce the following coerciveness type lemma in [32].

Lemma 6.2. For u € H'(R)

- [suutcwsoar=3 [(a(5)) Qnseas

R R

. %(/3|u|2ax¢cdx —110cll 3 g, (/uQ?dx)2>'

R R

Proof. Let v = & Since

Le(ugpe) = L8, 0c) = —28,002 Q¢ — 8209, O,

we have

- [t = [ a0 Lu(w, 00 = ; [ @02 otax
R

R R

3
Let w =vQ¢. Using

20, =cQc— 02, (8:0c)* =cQ?— %QS,

(6.3)
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we obtain that

w(=82w+ 202000 0+ 30,0020, 2w)dx

R
/ w wdx
R

Nl'—‘

/(8 v) de—

l\)lH

5c

From the propertles of L., the operator L. + > is non- negative and the kernel of L. + 54—C is

spanned by Qc Moreover, the second eigenvalue of £, + cis 3 5” . Therefore, we have

[ 2 Y= 2 (11~ 10003 ([ wolan))

R R

- %(/3|u|28x¢cdx— ||QC||Z§(R)(/qudx)2>. D

R R

6.1. Monotonicity properties

In this subsection, we show the monotonicity properties of (1.1). By Proposition 2.2, the
equation (1.1) has the Kato type local smoothing effect. Therefore, the proof of the monotonicity
properties is similar to one in [5,32]. Thus, we omit the detail of proofs in this subsection, see
Section 3 in [5].

We define g € C*°(R, R) by

Yr(x) == arctan(ex/ Ry, xeR. (6.4)

Then, we have limy 00 Yr(x) = 1, limy— _ oo Yr(x) =0,

_ ! 3 1
O YRr(x) = 7R cosh(x/R) and [0 Yr(x)| < 72 OxYR(X).

Let ¢, B, co > 0 and u be a solution to (1.1) satisfying that there exists p € C(R, R) such that

ut, )= Ol = p0,)|  <eo, 1R (6.5)
and
6(t) —col <co/2. 1€R. (6.6)

For xg, ty, t € R we define

~ ~ fo—1t
x=x(x07l0,l)=x—p(to)+% — X0,

i— :2(_)60’ t, tOs)
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Lo.10 (1)) = f lu(t, x, Y)PYr(E())dxdy,

RxTy
and
I, ()= f e, x, )PYrGE-(1)dxdy.
RxTy

In the following lemma, we show the property of the parameter p (see Lemma 3.2 in [5]).

Lemma 6.3. Assume that u € C(R, H' (R x T1)) is a solution to (1.1) satisfying (6.5), (6.6) and
that there exist p € C(R,R) and C, 8y > 0 such that

f lut, x + p@), y)>dy < Ce ™™ (1, x) e R%. (6.7)
TL

1f0<80<%HQc0

, then u satisfies
L2(|x|<1)

f (. x + (), ) Pdy S e, (1, x) e B2, 638)
T,
where
I3 ey = [ Pdrdy.
|x|<R

The following two lemmas show the L2-monotonicity property of (1.1).

Lemma 6.4. Let 0 < 8 < co/2. Assume that u € C(R, H' (R x T1)) is a solution to (1.1) satis-
fying (6.5) and (6.6). Then, for xo >0, Hh e R, R>2//Bandt <t

Lug.10 @ (10)) — Ly 1o (u(2)) S e 0/, (6.9)

ifeo > 0in (6.5) is chosen small enough. Moreover, if u satisfies the decay assumption (6.8), then

/ Juto, x, )k GEl))dxdy
RxT,
fo
+/ /(|vu|2+|u|2)(t,x,y)awa(;z(r))dxdydtge—XO/R. (6.10)

—00RxTp
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Lemma 6.5. Let 0 < 8 < co/2. Assume that u € C(R, H'(R x Tp)) is a solution to (1.1) satis-
fying (6.5) and (6.6). Then, for xg >0, tp e R, R>2//B andt > 1,

I o () = 17 (i) S e /K, ©6.11)
if eg > 0in (6.5) is chosen small enough.

The proof of Lemma 6.4 follows the proof of Lemma 3.3 in [5]. The proof of Lemma 6.5 is
similar to the proof of Lemma 4.9 in [5].
We define a functional J by

2
Lo = [ (1VuP = 20°)t.x. y)weirdrdy.

RXTL
In the following lemma, we show the monotonicity property for J.

Lemma 6.6. Let 0 < 8 < co/2. Assume that u € C(R, H' (R x Tp)) is a solution to (1.1) satis-
fying (6.5) and (6.6). Then, for xo >0, to € R, R>2//Bandt <t

Jxoo W(10)) = Jgto (1)) S e /R, (6.12)

Moreover, if u satisfies the decay assumption (6.8), then

/ |Vul* (t0) ¥ & (3 (10))dxdy 6.13)
RxT,

0]
+/ /(|V2u(t)|2+|Vu(t)|2+u(;)4)(ax¢R)(;z(r))dxdydtge*xo/R. (6.14)

—00RxTy,

The proof of Lemma 6.6 is similar to the proof of Lemma 3.4 in [5].
The following proposition shows the boundedness of higher Sobolev norm of solutions satis-
fying the decay assumption (6.8).

Proposition 6.7. Let 0 < 8 < co/2 and k € Z.. Assume that u € C (R, HY(R x T})) is a solution

to (1.1) satisfying (6.5), (6.6) and the decay assumption (6.8). If &g > 0 in (6.5) is sufficiently
small, there exist §, C = C (k) > 0 such that

sup / %) (t, x + p(1), y)eMldxdy < C, (6.15)
IGRRXTL

for o € (No)? satisfying || < k.

The proof of this proposition is same as the proof of Corollary 3.9 in [5].
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.. 2
6.2. Critical case L = Ve

In this section, we show the Liouville property for L = -z,

VAT

Lemma 6.8. There exist ey, Ko > 0 such that for any 0 < ¢ < gq the following is true. For any
solutionu € C(R, H'(R x T1)) of (1.1) satisfying

inf Jlu(t, ) = Qg = b, )|y =&
there exist d = (aj, az) € CY(R, R?) and p,CE Cl(R,R) uniquely such that
n(t,x,y) =u(t,x +p(t),y) — O@@@), c(t)) (6.16)
satisfies for all t e R

le() — col + a1 (] + laz@)| + In) | g1 < Koe, (6.17)

/n(t)3x®(5(t),6(t))dxdy= / n()O@(t), c(t))dxdy

RXTL RXTL

- / n(t)@(ﬁ(t),c(t))%cos%dxdy: / n(t)@(ﬁ(t),c(t))%sin%dxdy:O (6.18)

RXTL RXTL
and
ld(1)] < Kolln()|l .2, (6.19)
l¢@)] < eKolln@)|l 2, (6.20)
16(t) — é@) < Ko(ln®ll .2 + e — colldl), (6.21)

where &(t) = ¢y 'e(t)¢(@()).

Proof. From Lemma 5.4, there exist C! mappings p(t) = p(t)),c(t) = c(u(t)), a) =
a(u(t)), n(t) = n(u(t)) satisfying (6.16)—(6.18). By the calculation we have

N =0y (—An — 200 — 1% — A® — ®2) + pd(n + ©) — & - ;0 — ¢9,.0
=8y Lyt — 1%) + 855}, (©) = 28, (O — Qe)) + (p — c0)d (7 + ©) — @ - 8;0 — ¢80,
(6.22)

where Séo(®) =—AO+¢y® —O? and a- 0;0 =104, 0 4+ 20,4,0. From (6.18) and O (x, y) =
®(—x, y) we obtain that
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d

0=— Odxd
G | nedxas

RXTL

=— / Od - 3;0dxdy — ¢ / Qo9 Qcodxdy
RxTp RxTp

+ O(Inll 2l 2 + 1al + le — col +1d@l + D).

By the expansion

0@, c) = Q¢ + 0(al +|c — col),

. 3 .3 .
i 0@, )= 02 cos% + 02 sin% +0((@l + |c — col) ).
we have

/ Oi - 9;0dxdy = O((|a| + |c — col)|dl).
RXTL

Since fg 1, Ocode Ocydxdy #0,
¢l = O(lInll 2(llnll .2 + 1| + e — col + lal) + (] + | — col)lal). (6.23)
From (6.18), (6.23) and ©(x, y) = ©(—x, y), we obtain that

d

0=—
dt

3 Y
n®2 cos dedy
RXTL

3 - KN
= —a f (@7 cos%)i)m Odxdy + O (Il 2 + (@l + Ic — co)ldl).

RxTp
Since
/ (@g cos %)Bal Odxdy = / (Q(,%o cos %)dedy + O(lal + |c — col)s
RxT, RxTy
we obtain
lar] = O(llnll 2 + (lal + ¢ — col)lazl). (6.24)

By the same way, from (6.23) and (6.24) we get

a2l = O(IInllz2). (6.25)
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The estimates (6.19) and (6.20) follow (6.23)—(6.25). By the similar computation to (6.22),

Ny = 0:(Len — %) + 0, SH(0) = 20,((© — Q) + (6 — D3+ ©) — - ;0 — (3,0,

(6.26)
By the definition of ® and ¢ we have
, 2 . 5 c(c—cp) .,
S:(0) = 5 (=A@cy + @y — (9c))7) + ——F5—037¢¢,
0 0
- D2, (6.27)
co
Since
¢c—C0 >
SHO) = — =076 = O(lco — cllal). (6.28)
from (6.18), (6.23)—(6.25), we obtain that
0 d / (0 ®)dxd
=— x
di n(0x y
RxTy,
=(6-0 [ @0y drdy+0(Inle +leo —cld).
RxTy
Thus, the estimate (6.21) holds. O
Next we prove the following Liouville type theorem.
Theorem 6.9. Let co > 0 and L = ﬁ. There exists ey > 0 satisfies the following. For any

solution u € C(R, H'(R x T1)) to (1.1) satisfying (6.5) and (6.8), there exist c; > 0, a4 =
(ai1,+,a2,+) and po such that

u(t,x,y) =0y, cqy)(x — et + po, y),
ley — collas| =0,
where

. e, ar=0,0),
ca4), c+=cp.
Proof. Let u € C(R, H'(R x T.)) be solution to (1.1) satisfying (6.5) and (6.8). From
Lemma 6.3 and 6.8, p in Lemma 6.8 satisfies (6.5) and (6.8). Let n(¢), c(t), a(t), ¢(t) be in
Lemma 6.8. We define

v=Len—n’.
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Then, v has the following almost orthogonal condition.

f v, Qedxdy = / (Len — n*)dy Qedxdy = O(Inll7,), (6.29)
RxTg, RxTy,
[ vocdedxay=— [ guaxay+oamiiy
RxTy RxTy,
= O(Inllz2(le = col + 1@l + Il 12)) (6.30)
.3 .3 y 2
/ vQé2 cos =dxdy = / nLg.(Qc? cosz>dxdy+0(||n||L2)
RxTp RxTy
= 0(lInll2(lc = col + 1a@l + Inll 2)). (6.31)
(6.32)

<3 -
/ vQ; Sin%dxdy = O(lInliz2(lc = col + lal + lInll2)).

RXTL

From the orthogonal conditions (6.18) and Lemma 5.6, we have

WM 2@y, = Qe M 2@xry) = 11135 @y, 2 k2l + OUnl,)

Therefore, if g > 0 is sufficiently small, then for r € R
il < Mol 2. (6.33)
By (6.26), we have
v =Lens + (0 Le)n — 2nmy = Ledxv + L0 SH(O) + R(n, 4, ©), (6.34)
where
R(n,d, ) = =203 (v + S3(©)) + (6 — OLgdx (n + ©) —2(6 — E)ndx (n + ©)
+ (L — 220, ((Qz — ©)) —a - 930 — ¢3.0) + (3, Le).
Therefore,
- | w+sierardy
RxTy,
— [ Cevngedrdy— [ LedSi@nusedndy— [ Ledv)si@pedndy
RxTy, RxTy, RxT,
- [ (Ledy S3(©))S7(O)ped xdy — [ R(n,d,c)(v + Sy(©))pedxdy
RxTy,

RxTy
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1 2
/ (3@ (v + S(©))pedxdy — / (v + SL(©))*¢d ppdxdy. (6.35)
RxTy RxTy

We estimate each term in (6.35) separately.
(I) The estimate of — foTL (Lsoyv)veppdxdy. From the Fourier expansion v(f,x,y) =
vo(t, x) + 02 (Un,1(, x) cos + + v, 2(¢, x) sin +) and Lemma 6.2 we have

- / (Ledyv)vdedxdy

RxTy
2
=27l / (L‘ 50y v())voqbc x —mL Z / E + L2)8 vn]>vn j$edx
RxT), nely,j=12p
SmLé 2 -3 2, \?
> 4 (/ |U0| Qédx - ”QE”LS(R) (/ vOQédx) )
R R

5¢
cnr((E4 L /<|v11| + 2 Qadx = 106l ([ w11 03x)

R
203 ( / 0.20%x))

R

)
n
ML,;@ /(|vn,1|2 T [un2?) Qedr. 6.36)
= R

From the almost orthogonal condition (6.30)

/Qcoa Qcodx'de Qco)dx‘

LZ(R)

2 2 2 _1
[uwetar| <|[w( - | 05000
R R

+ O0((al +lc —col + Inll )l 2 [Ivll .2)

2
12 3 _1
wod| el - H 0i9:0a| / 0y Qeyd ' e 3 Oco
L2(R) LZ(R)
L2(R)

+ O0((lal + ¢ — col + Il z2) Inll 2 vl 2). (6.37)

Since
2
3 _1 -2 , 3
Q620 - ” QC02 ac‘ QC() 5 / QC()BC QC()d-x QC()2 8CQC() < ” QC() ||L3(R)’
L2(R)
R

LX(R)



Y. Yamazaki / J. Differential Equations 262 (2017) 4336—4389

from (6.37) we obtain

B 2
/|U0|2Qcodx o [ ||L33(]R)(/ onfodx)
R

R

> /|vo|2Qcodx+0<<|a|+|c—co|+||n||Lz>||n||Lz||v||Lz).

On the other hand, from the almost orthogonal conditions (6.31) and (6.32)
2 2 3 -2 3o 3 2
o] =] [oi(0h - 10al i, [ 0haven)0hdx
R R R

+ 0((lal + e = col + Inll )l L2 vl £2)
2

/|v1,jI2Qcodx

L2R)R

3 _ 5
= ng - || QC() ”LZZ(R)f Qg()dx/QC()
R

+ 0((lal +lc —col + Inll 2) Il 2 vl ).

SC() co 3
/QCde——/QCde /QCde— g /Qﬁodx.
R R

From Holder’s inequality, (6.39) and (6.40), we obtain

_ 2
/ |U1,j|2QC()dx - || QC() ”LE(R) (/ U1,j Q%de>
R

R

By Lemma 6.1,

s -2 —1

Q¢

7

> 04

3|t 50\2 5
04 (/ chodx) /|v1,j| O dx
L2(R)
R R

+0((al + lc = col + Inll 2)lInl17)

L2(R) L2(R)

9 -
V1o f w1 *Qeydx + O((dl + |c — col + Inll ) lInll 2wl 12).
R

By (6.37), (6.38) and (6.41), we obtain that there exists k3 > 0 such that

- / (Ledyv)vdadxdy

RxTy,

5C0 9
A = R f(|011|2+|v12| ) 0oy
R

4373

(6.38)

(6.39)

(6.40)

(6.41)
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+nLZ6L2f(|vn1| T unal?) Qi

n=2

+ 0((lal +lc = col + Inll ) Il e llvll 12).-

(IT) The estimate of — foTL (L 0y Sé(@))Sé(@)c/)@dxdy. Since

c—c¢ ~3 =3 = ~
$(@) = —= (@1 04, cos = + 207, sin =) + O((Ie = col + [aDle — collaD.

we have

- [ Ceasionsi@udxdy

RXTL

wL(c —co)’laf®

= THESSOEL [ (2 + 130, 08) 0l g
o
R

+0((le = col + la e — col*lal®).

From (6.2) and (6.3)

303 1
8x ng = EQLZOBX QC()s

3 9¢ 3 5
a)%Qg() = _Q(?() - 2Q(?()7

27¢co 3
33Qc0 —Qcoacho 5029 Qs

23 3 8l 3 5 7
angO _8 (Qcoa Qco) 16 Qg()_ 17COQ30+10Q3()

From (6.45)—(6.48) we have

((ﬁco + )3 Qco) Qco¢co —2¢9 Q‘C‘0 + gng

Applying Lemma 6.1, we obtain

— / (L23x S(©)) S4(O©)¢edxdy
RXTL
_ 7L —cp)*lal’®

6c0

/Q dx + O((lc — col + @) lc — col*lal*).

(6.42)

(6.43)

(6.44)

(6.45)

(6.46)

(6.47)

(6.48)

(6.49)

(IIT) The estimate of — [ 7 (L:dxS4(©))vgpedxdy — [, 7 (Ledrv)SL(O)edxdy. By the

Fourier expansion and (6.43)
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/(]LaaxSé(@))v(ﬁadxdy— / (L5 v) S3 (@) pedxdy

RxTy, RxTy

L
= &/ (ACC() + Lz)ax QCO)(alvl 1 +(12v] 2)¢Cde

L
+M / 0 (Ley + )(Qcodno))(alm+“2”1’2>‘”

+ O0((lc = col + laDle = collalllvll .2). (6.50)
From (6.45)—(6.48) we have
54 1
((['Lo + )a QC())¢L0 2C0ch() + §Qg()
By the similar computation we have
1 3 lOco 8 1
8)6 (‘CC() + ﬁ)(ng(pC()) = QC() 3 cho
Therefore, applying Lemma 6.1, we obtain that
- f (L3 SO voedxdy — / (Led,v)SHO)peddxdy|
RxTp RxTy
wL(c—co) 4cq 4 7
= ‘7/ __ch 3 Qc20)<alvl,1 +azv1,2)dX‘
+ O((lc = col + laDle — collalllvli.2)
36071' 20|c — co|?|a|*w L 5
/(|U1 117 4 01213 Qepdx + 2072 / 0.,d
RXTL
(6.51)

+ O((lc — col + laDle — collalllvll 2).

(IV) The estimate of — fRXTL R(n,d,c)(v + S.(©))psdxdy. Since

(0 Le)n = én —28(3:0cy)n

and
Leden = 2(x Q)1 + vx + i’
we have
R(.d,c)=—=2n3, (v + Si(©)) + (6 — &)(2(3x Q) + vy + 0x1°)

+ (P — OL0x© = 2(p — Oy (n + ©)
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—2(83(0s — @) — 6(32(Qz — ONnx +2(3:(Qp — ONv +2(3 (0 — O
—4(3: (0 — O))1xx +4(0s — ©)(3: Q) +2(0z — O)vy +2(0 — ©)dyn?
— 403, ((Qs — ©)) — (Lg — 2) (@030 + ¢0.0) + én — 26(0: 0. (6.52)

From Lemma 6.8, integration by parts, L;9;© = O(|c — co| + |a|) and Lz3;0 = O(|c — co| +
|a|), we obtain

- f R(n,d, ) (v + SA(®))¢edxdy = O((|c — col + |d| + Il y1) (e — col*|al* + [[v]I3,)-
RXTL

(6.53)

(V) The estimate of _fleTL (3 S5(®)) (v +54(®))psdxdy — %IRXTL (v+ Sé(@))2580¢5dxdy.
Since

C—C0s

G- ;000 4 —2

¢ . .
3 S4(©)) = 583@ + ¢8:920 = O((Ic — col + laD [1nll 2),

€0 €0

from Lemma 6.8 we have

- / (3 S5(®)) (v + S4(®))¢psdxdy — % / (v + SH(©))*é0cpedxdy
RxTp RxTy,

= 0((lc — col + @D (lc — col*|al* + [|v]I32)). (6.54)

Therefore, from (I)-(V) we deduce gathering (6.42)—(6.54) that there exists k4 > 0 such that

1d )
~3 / (v + SX(©)) ¢pdxdy
]RXTL
2t [ v 0udrdy+ fe - eolaF)
RXTL
+0((Ic = col + 1| + lInll 1) (e = col?[al* + [v13,1))- (6.55)

On the other hand, by (6.34), we have

1d
3 v2xdxdy

RXTL

1 . _
=5 / (318, v|* + 18, v|* + évH)dxdy — / V20, (x Qz)dxdy
RxTp RxTyp

- /(IL@BXSE,(@))vxdxdy— / R(n,d,c)vxdxdy. (6.56)
RXTL RXTL
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From Proposition 6.7,
2 |2 52 5 o2
| [ veerdxdy| < ¥ il 013, = O 0)- (6.57)
RXTL
By the similar calculation to (6.57), we have
1
| / RO, puxdxdy| = O((le ol + 1al + Inll ) I012,0). (6.58)
RXTL

By the Holder inequality and Proposition 6.7, we have

3 R s - é
[ vaadoas| = (1+e@0020:| ) [ 2 Gerdy+ GInlk
RxTyr RxTyp,
(6.59)
By the Holder inequality, we obtain there exists C > 0 such that
é R
| / (Led SpO)vrdxdy| = Llvl; + Cle = collal. (6.60)
RxTy
We deduce gathering (6.56)—(6.60) that
1d
3 / v2xdxdy
RXTL
1 R X e 3
> / (IVu]? + év})dxdy + (1 +é xz(ang)zQéIHLm) / v2Qadxdy
RxTgr RxTg
1
— Clc —collal + O((lc = col + la| + ||n||§,1)llv||i,1)- (6.61)
From (6.55) and (6.61), we obtain
1d
o f ((v + SL(0))%¢; + 8+xv2)dxdy
RXTL
&+ 2 2 ks 2212
z (IVul” + cov )dxdy+3lc—60| lal
RXTL
l -
+0(le —col + lal + Inll 2,0l + le = col*lal™), (6.62)

where

k4 2 A 2A3—1 -1
g+=3<1+c+c0Hx (300, Lm) - 0.
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Integrating (6.62) between #; and t,, we have for sufficiently small gy > 0

2 2
[ (v + 8t (@G0 c0) b0y = (w162 + S (OG0, c20)) D20

RXTL
+xu()? — xv(tz)z)dxdy

19}

3/(% / (|Vu(t)|2+cov(t)2)dxdy+k4|c(t)—co|2|a(t)|2)dt. (6.63)
n RxTy

From Proposition 6.7

o0

f (5 / (Vo) + cov(D)dxdy + kale(r) = col* [ )

—o0 RxTy

< sup
teR

f ((v + 54(0)) 20 + 8+xv2>dxdy‘ < o0.
RXTL

Therefore, there exist sequences {t ,}, and {f2 ,}, such that

lim I,n = —00Q, lim 1 n =00
n—00 n— 00

and
. 8 a
lim |~ / (|vvm,n>|2+cov<n,n)2)dxdy+k4lc<t1,n>—Co|2|“<’1s")'2‘
n—ool 4
RxTy
. 8 a
= lim. f / (|Vv(rz,n>|2+cov<t2,,,)2)dxdy+k4|c(z2,n>—co|2|a(rz,n)|2\=0-
RxTy,

(6.64)

Combining (6.63) and (6.64), we obtain that

f (% f (VOO + cou(t))dxdy + kale(r) = col2la(n)|?)dr =0

—00 RxTyp

which implies v = 0 and |c — cg||a| = 0. By (6.33) and v = 0, we have n = 0. Therefore, we
obtain the conclusion. 0O
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... 2
6.3. Non-critical case L < NeT
In this subsection, we show the Liouville property for L < ﬁ Since the proof of the Li-

ouville property for L < ﬁ is similar to the proof of the Liouville property for L = \/%To we
omit the detail of the proof.

Lemma 6.10. Let ¢ > 0. There exist g9, K > 0 such that for any 0 < ¢ < gq the following is
true. For any solution u € C(R, H'(R x Ty)) of (1.1) satisfying

nf utr, ) = Qe = b} <
there exist p1,c € C! (R, R) uniquely such that
n(t, x,y) =ut,x +p(),y) = Qcry(x)
satisfies for all t € R
le(®) = col+lIn®ll g1 < Koe,

/n(r)&ch(,)dxdyz / n(t)Qcrydxdy =0

RxTy RxTy

and
N .
€)1 +1p(1) — c(®)] < Kolln(®) |l 2.
The following is Liouville property in the non-critical case.

Theorem 6.11. Let co > 0 and L < ﬁ There exists gy > 0 satisfies the following. For any

solutionu € C(R, HY (R x T1)) to (1.1) satisfying (6.5) and (6.8), there exist cy > 0 and pg € R
such that

u(t,x,y) = Qc, (x —cqt+ po, ).

Remark 6.12. The proof of Theorem 6.11 is easier then the proof of Theorem 6.9. In the case
L < ﬁ, L., has the following coercive type estimate. There exists ks > O such that for n €

H'(R x Tp) with (7, 8x Ocy) 2 = (0, Q)2 =0,
(Leon, ) 1.1 = kslnll 3,
Therefore, from Lemma 6.2 we can show a coercive type estimate for the virial identity

1d &
3 / v2(¢c+8+x)dxdy > f / (|Vv|2+cov2)dxdy+o(||v||§]1) as gy — 0,
RxTp RxTy,

for sufficiently small ¢4 > 0.
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7. Asymptotic stability

In this section, we prove Theorem 1.5 by applying the monotonicity property and the Liouville
property in Section 6. We apply the argument by Martel and Merle [30-32] for the generalized
KdV equation and Cdte et al. [5] for the Zakharov—Kuznetsov equation on R

7.1. Critical case L = ﬁ

In this subsection, we consider the critical case L = —2—. The following proposition shows

NAE
the compactness of the orbit of solutions in H'(x > —A).

Proposition 7.1. Let ¢y > 0 and L = Z_ There exists 0 < &y < &0 such that if 0 < e < e, and

VAT
ueCMR, H' (R xTy)) is a solution to (1.1) satisfying sup; g diste, (1 (1)) < &, then the following
holds true. For any sequence {t,}, with lim,_, « t, = 00, there exists a subsequence {t,, }r and
g€ H'(R x T1) such that

|ty -+ p(ta), ) — l;()||H1(x>7A) — 0ask — oo

forany A > 0, where p is the function associated to u given by Lemma 6.8. Moreover, the solution
u of (1.1) with u(0) = ug satisfies

|t + 5. = Oc,

<e, 1€R (7.1)
Hl
and

f it x + 50, »)Pdy Se P, (1, x) € R? (72)
TL

for some 8| > 0, where p is the function associated to u given by Lemma 6.8 and p(0) = 0.

Since the proof of Proposition 7.1 is similar to the proof of Proposition 4.1 in [5], we omit the
proof.
Next, we show the asymptotic stability result (ii) of Theorem 1.5.

Proof of (ii) of Theorem 1.5. Let 8 > 0 and u be a solution to (1.1) with dist., (#(0)) < e. By
Theorem 1.2 if ¢ is sufficiently small, then dist.,(u(¢)) < &, which is defined in Proposition 7.1.
Let p, ¢ and a be functions associated to u given by Lemma 6.8. From Proposition 7.1, for
any sequence {t,}, with lim,_, #, = 0o, there exist a subsequence {t,, }x, o > 0, 30 e R? and
g€ HY(R x Ty) such that for A > 0

Uty -+ pn), ) — lloinHl(x>—A), c(tn,) — ¢oanda(ty,) — 30.
k— 00 k—o00 k—00

Moreover, the solution # of (1.1) with #(0) = g satisfies (7.1) and (7.2). Let p, ¢ and a be
functions associated to # and given by Lemma 6.8. By the uniqueness of the decomposition in
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Lemma 6.8, we have p(0) =0, ¢(0) = ¢o and a ) = Zo. Applying Theorem 6.9, we obtain that
there exist pp € R, ¢; > 0 and a; € R? such that |¢; — ¢o||@;| =0 and

L’Z(t, X, )’) = @(51,61)()6 - 6ll‘ — 00, )’),

where

R c1, a; = (0,0),
Cl=17..
¢(ar), c1=cop.

By the uniqueness of the decomposition in Lemma 6.8, pg =0, ¢} = ¢y, d; = 30 and |¢cp —
collag| = 0. Since for any sequence {,,}, with lim,,_, oo #, = 00 there exists a subsequence {t,, }
such that

ultn, -+ pltng), ) — Oaltn), ctny)) oo, 0in H'(x > —A) and |c(ty,) — colld ()] 0
we obtain
u(t, +p(1),) = ©@M), c(t) — 0in H'(x>—A) (1.3)
and
le() = colla®)l > 0. (7.4)

Moreover, (7.3) implies that for R > 0 and xg € R

Jim / (Va2 + 1) x = p(0). )Yr(x = p(t) + x0)dxdy =0, (7.5)
RxTy

where n(t, x, y) = u(t,x +p(t), y) —O(@(t), c(t)). By (7.3), forany & > 0 and R > 2/./P there
exist x; € R and 71 > 0O such that for xg > x; and t > T}

| f utt, % YPYRG = p(1) + x0)dxdy - f ©@(0). c()Pdxdy| <. (16)
RXTL ]RXTL

where g is defined by (6.4). From Lemma 6.5 there exists x» € R such that for xg > x; and
t>1t

/ lu(t, x, VI*Yr(x — p(t) + x0)dxdy
RXTL

- / lu(t’, x, ) PYr(x — p(t') + xo)dxdy < . (1.7)
RXTL
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By (7.6) and (7.7) we have that for r > ¢ > Tj
f 1©@@ (1), c()Pdxdy < / 1©@(t"), c(t)) Pdxdy + 3a.
RxTy, RxTp

Since for any o > 0

lim sup / |©(@(r), c(t))|>dxdy < liminf / 1©@("), c(t")*dxdy + 3a,
t'—o00

t—00
RxTy RxTy

foTL |©(a(1), c(r))|>dxdy has the limit as r — oo. By the definition of ©, we have

. _ L ONTI
tim [ 190G, cPdrdy = lim (S2) oo, GO} (78)

RXTL
Since ||90L.0 @) Hiz is strictly increasing with respect to |a|, from (7.4) and (7.8) the w-limit set
of (|a(t)|, c(t)) consists of at most two points. By the continuity of a(¢) and c(t), the w-limit set
of (|a(?)|, c(t)) is the one point set which implies there exist ay > 0 and c; > 0 such that

lim |a(t)| =ay, lim c(t) =cy. (7.9)
I—o0 I—o0

Therefore, by Corollary 5.7 we have

e = col + a2 5 |u©) = Oy | -

Next, we improve the convergence of (7.17). By Lemma 6.4, for all #; <f;, xo > 0 and R >

2/VB

f lu(t2, x, ) YR (G (11, 0)dxdy — f lu(tr, x, WI*WrE (11, 11))dxdy < Ce /K,
RXTL RXTL
(7.10)

where Xx(t,7) =x — p(t) — g(l' —1t)+x0.By (6.18)if R > ﬁ and g is sufficiently small, then
we have

| / 1, %, VOGO, )R (x + x0)dxdy]
RXTL

=| [ 950G, o)~ vt -+ xndxdy|

RXTL

= Il 210@(@), ) (1 = Yr(x +x0) 2 S e/, (7.11)
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Since
(n(t,x = p(t), 1))’ = (ut, x, ) = 2n(t, x — p(1), Y)O@(®), c(1))(x — p(1), y)
— (@), c)(x — p(1), ),
from (7.10) and (7.11) we have that there exists Co > 0 such that
/ (n(t2, x — p(12), y))ZI/fR(i(tl,tz))dxdy
RxTyp

- / (ﬂ(tl,x—P(ll),y))ZI/fR(i(ll,tl))dxdy

RXTL

< Cole ™R 4 |e(ry) — c(r)| + lla(n)|* — |a()]?)).

For ¢ > 0 large enough, we define 0 < ¢ < ¢ such that p(t') + g(t —t') — xo = Bt. Then, we
have ¢’ — o0 as t — co. Combining

/ (n(t,x = p(@), )) ¥r(x — r)dxdy
RxTy

< / (n(t'.x = p(). ) Yr(x — pt") + xo)dxdy
RXTL

+ Cole ™R 4 |e(t)) — c(o)| + lla)> — 1am)1*)),

(7.5) and (7.9), we obtain for any xg > 0

lim sup / (n(t, x — p(1), y))ztﬁR(x — Bt)dxdy < Coe /R,

t—00
RxTy

Therefore,

lim / (r}(t, x — p(t), y))sz(x — Bt)dxdy =0. (7.12)

t—00
RXTL

From Lemma 6.6 we have for all #; <1, xo > 0and R > 2//B
Jxo,fl (u(IZ)) - Jxo,ll (u(tl)) < Ce_XO/R- (713)

Moreover, we have

| / (u(t2. %)) VR (E (01, 2))dxdy - / (u(tr.x.»)) YRG0 )dxdy

RxTy RxTy
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1
<( / (n(t1.x = p(01), ) YR(F(11, m)dxdy)
RXTL
1

([ Geax = 13 v, mdrdy)’

RxTyp

+ (e o) — e + lla] = la@)l)). (7.14)

By (7.13) and (7.14), we get

f IVi(t2, x — p(12), W[ YR G (01, 22))dxdy
RXTL

- f IVa(t1, x — p(t1), W[ YRG0, 1))dxdy
RxTy
1

<( f (@1, x = p(01), ) Vr(E(11, 2)dxdy )

RXTL

(S

([ 2x = o) 0V UG )dxdy)

RxTy

+ (e R 4 Je(tr) — )| + lla(e)| — law)])). (7.15)
From (7.15) with #; = ¢’ and t, = ¢ we obtain that there exists C > 0 such that
2
/ [V (2, x = p(0), V)| Yr(x — Br)dxdy
RxTy

< f V(' x — p(t'), )Y (x — p(t') + x0)dxdy
RXTL

09—

([ (0= p@).3)) wtx = prrdndy)

RXTL

+ C( / (1t x = p(&"), ) Yr(x — p(t') + xo)a’xdy)7

RXTL

+Ce™ R ety — )+ |la)] — la)l)).

Therefore, it follows form (7.5), (7.9) and (7.12) that for xg > 0

lim sup / Wn(t,x —p(1), y)|2wR(x — Bt)dxdy < Ce™0/R

11— 00
RxTy
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which implies

lim / |Vn(t,x — p(t), y)|21,0R(x — Bt)dxdy =0. (7.16)

—00
RxTy

Then, we define p»(¢) by

o (I_g%l) if |a(r)| # 0 and ay #0,
J if otherwise,

where ®(6) = (cosf, —sinf) for 6 € R/2x7Z. Using

(), c()(x,y) =0((a(®)l,0), c)(x,y = p2(1)),

from (7.12) and (7.16) we obtain
u(t, -+ p(@).y + p2(0) = O(as.0),c4) — OinH'(x > pr). (7.17)
From (6.19)-(6.21), (7.3) and (7.9), we have
Jlim é(n) = lim [a(0)] = lim |5(1) =& =0,

where ¢4 is defined by (1.7). If a =0, then p2(¢) =0 for ¢ > 0. On the other hand, if a4 # 0,
then |02(0)| Sla(f)| — O0ast—oco. O

.. 2
7.2. Non-critical case L < NeT

In this subsection, we consider (i) of Theorem 1.5. The proof of (i) of Theorem 1.5 is similar
to the proof of (ii) of Theorem 1.5.

Moreover the proof of the following proposition is same as the proof of Proposition 7.1, so
we omit the detail of the proof of the following proposition.

Proposition 7.2. Let ¢g > 0 and L < —2—. There exists 0 < &, < &g such that if 0 < & < &, and

VAT
ueCR, H' (R xTy)) is a solution to (1.1) satisfying sup; g diste, (u(1)) < & then the following
holds true. For any sequence {t,}, with lim,_, « t, = 00, there exists a subsequence {t,, }x and
o€ HY(R x Ty) such that

U(tng, -+ p(tny), ) = dig in H' (x > —A) as k — oo

for any A > 0, where p is the function associated to u given by Lemma 6.10. Moreover; the
solution u of (1.1) with u(0) = ug satisfies

<gp, teR (7.18)

(e, + 51, ) = Qoo S
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and

f|ﬁ<r,x+5<r>,y)|2dy5e‘5l'“, (t,x) e R? (7.19)
T,

for some 81 > 0, where p is the function associated to u given by Lemma 6.10 and p(0) =

By applying Theorem 6.11 and Proposition 7.2, we obtain (i) of Theorem 1.5 from the same
proof as the proof of (ii) of Theorem 1.5.
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Appendix A. Proof of Proposition 1.3

In this appendix, we show the outline of the proof of Proposition 1.3. For the completeness,
see [21,52].
Let cg = 4/5L2 and F be the function from HZ,_ (R x T;) — L2

sym

(R x Tp) satisfying

sym

F(p,0) = —Ap+cp — g7,

where L%ym(R x Tr) = {u € L3R x Tp)lu(x,y) = u(—x,y) = u(x,—y), (x,y) € R x
[—7L,7L]}, H3, (R x T;) = H*(R x Tz) N me(R x Tr) and LE(R x T}) is the set of

real valued L2-function on R x Ty. Then, Ker(B(pF(QCO, co)) is spanned by QZ’ cos ", Ap-
plying the Lyapunov—Schmidt decomposition, we obtain that there exists a function h(c a) €
R x Tp) such that

vym

H2,,(

532 o

Py F(Qey+a0l %+h(c,a>,c>=o,

where P, is the orthogonal prO]eCthH onto {u € L2(R x T)|(u, QLO CoS + )Lz = 0}. Then, the
problem F (QCO +a QC cos Y+ h(c,a), c) =0 is equivalent to the problem

=3/2 =3/2 Y

Fy(c,a)= (F(QC0 +aQq cosz +h(c,a),c), Qg cos Z)L > =0.
We apply the Crandall-Rabinowitz Transversality and we consider the problem g(c,a) =0,
where

Fi(c, a) Fji(c, 0)

a#0,

g(c,a): BF”( O) a:O
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Then, g is C? function. Here for a # 0, Fj|(c,a) =0if and only if g(c,a) =0. Since

a0 | 432
ol [2

ag Y2 g
—(co, 0) = —” nd —(cg, 0) =0,
ac (c0, 0) L2 a da (c0,0)

by the implicit function theorem there exists ¢(a) such that g(E(a) a) = 0. Hence, ¢, (a) :=
QCO + aQ?’/2 cos Y 4+ h(é(a), a) is a solution of F(pc,(a), c(a)) =

g
&(0) = =35 (c0.0) =0
dc
and
, 53
> &) . 40_g(5(a) a) 16(QC cos? (LCO) lQ cos? )L2
¢"(0) = lim = lim == 3 .
a—>0 a a—0 y y
aSC()HQ cos ‘ SCOHQ cos ‘
L? L?

Using Lemma 6.1, we obtain ¢’ (0) > 0 (see [52] for the detail of the calculation). Calculating

;_:2 H‘/)co (a) Hiz la=0, we have

2 -
[0 @[22 ey, = | G| pory T lal’ Follal®) asldl 0,
where
_ 20532, U

The positivity of the constant C» ., have been proved from the inequality (2.25)

4(p+ D(p® +18p> — 11p* —130p> + 13p% + 16p — 3)
G=p(p+3)*Sp-DGBp+D(p—1
32p°(p+1)*Gp—1)
3(7p 3HGp-DBp+D(p+3)3(p-1)

R(p) =

n [52] and the relation

5¢2L3C
_sz'co =R(2) <0,

6| Qcy

L2(RxTy)

where R(p) is defined in the proof of Theorem 1.3 in [52].
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