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Abstract

In the present paper, we consider the Cauchy problem of the 2D Zakharov-Kuznetsov-Burgers (ZKB)
equation, which has the dissipative term —8)%u. This is known that the 2D Zakharov-Kuznetsov equation
is well-posed in H® (Rz) for s > 1/2, and the 2D nonlinear parabolic equation with quadratic derivative
nonlinearity is well-posed in HY (R2) for s > 0. By using the Fourier restriction norm with dissipative
effect, we prove the well-posedness for ZKB equation in H* (R2) fors > —1/2.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the Cauchy problem of the 2D Zakharov-Kuznetsov-Burgers (ZKB) equation:

Qe+ 8, (37 + 0))u — Fu =0, w?), >0, (x,y) eR?, (0
u(0,x,y) =uo(x,y), (x,y)eR?, '
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where the unknown function u is R-valued. This equation is two dimensional model of the
Kowteweg-de Vries-Burgers (KdVB) equation

du+2u —%u=208,u?), t>0, xR, (1.2)

and appears in the dust-ion-acoustic-waves in dusty-plasmas (See, [22], [24]). We can see that
(1.1) has both dissipative term and dispersive term. The aim of this paper is to prove the well-
posedness of (1.1) in the Sobolev space H* (R?).

First, we introduce some known results for related problems for 1D case. In [12], Kenig,
Ponce, and Vega proved that the Kowteweg-de Vries (KdV) equation

du+0du=0,w?, t>0, xR,

is locally well-posed in H*(R) for s > —3/4. Colliander, Keel, Stafillani, Takaoka, and Tao
([6]) extended the local result to globally in time. For the critical case, Kishimoto ([14]) and
Guo ([11]) obtained the global well-posedness of KAV equation in H = (R). While, it is proved
that the flow map of KdV equation is not uniformly continuous for s < —3/4 by Kenig, Ponce,
and Vega in [13] (for C-valued KdV) and Christ, Colliander, and Tao in [5] (for R-valued KdV).
Therefore, s = —3/4 is optimal regularity to obtain the well-posedness of KdV equation by using
the iteration argument. For the Burgers equation

du—2u=20d,w?, t>0, xeR,

Dix ([8]) proved the local well-posedness in H*(R) for s > —1/2 and nonuniqueness of solu-
tion for s < —1/2. For the critical case, Bekiranov ([2]) obtained the local well-posedness of
the Burgers equation in H _%(R). These results say that —1/2 is optimal regularity to obtain
the well-posedness of the Burgers equation. In [20], Molinet and Ribaud considered the KdV-
Burgers equation

oru + 8;14 — 83u = 8x(u2), t>0, xeR

and obtained the global well-posedness in H*(R) for s > —1. For the critical case, Molinet and
Vento ([21]) proved the global well-posedness of the KdV-Burgers equation in H~!(R). They
also proved that the flow map is discontinuous for s < —1. We note that the regularity s = —1 is
lower than both —3/4 and —1/2. It means that both the dispersive term and the dissipative term
are essentially effective for well-posedness.

Next, we introduce some known results for related problems for 2D case. Griinrock and Herr
([10]), and Molinet and Pilod ([19]) proved that the 2D Zakharov-Kuznetsov equation

i+ 0, (97 + 0D u =3, (u?), 1>0, (x,y) eR? (1.3)

is locally well-posed in H*(R?) for s > 1/2. Especially, Griinrock and Herr used the linear
transform

v, x, =Uu , xX+y), X ,
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and rewrote (1.3) to the symmetric form

v+ (37 + 3w =473(0, +0,) (1), >0, (x.y) R (1.4)

Such transform is introduced by Artzi, Koch, and Saut in [1]. We note that the well-posedness
of (1.3) in H*(R?) is equivalent to the well-posedness of (1.4) in H*(R?). This transform is not
essentially needed to obtain the well-posedness (Actually, Molinet and Pilod did not used such
transform), but the symmetry helps us to find the structure of the equation and to write some parts
of proof simply. Well-posedness of (1.3) for s < 1/2 is still open. But, Kinoshita gave the author
the comment that there is a counter example for the C 2-Well—posedness of (1.4) in H*(R?) for
s < —1/4. His counter example is given as

@(E. 1) = N3 (a (€ n) + xa (=& —n) + xp(E.0) + x5(—E. —1)),

where
_1 ) vt
A:=1Na+ N 26v+ N em —1l<d,e<ly,
v
_1 ) vt
B:={Nb+N 28v+ N 6|—J_| —1<68,e<l1y,
v

3
vi= (339, V100), a:= (v2,v75), b:= <—3€/_,—?75).

Indeed, we can obtain |ugl|| gs ~ 1 and

t

(a3 3 1(931.53
sup / eI @, 49y (g ar' | 2N
O0<t<T

ISE

HS

While for the nonlinear parabolic equation

du—Au= P(D)Fu), t>0, (x,y) eR?,

Ribaud ([23]) obtained some well-posedness results. His results contain that the well-posedness
of the 2D nonlinear parabolic equation

du— 07 +9)u=20,(u?, >0, (x,y) eR? (1.5)

in H*(R?) for s > 0 and nonuniqueness of solution for s < 0. Therefore, our interest is the
well-posedness of (1.1) in H*(R?) for lower s than both —1/4 and 0.
Here, we introduce the results for 2D dispersive-dissipative models. The KP-Burgers equation

3y (atu+a§u—a§u—ax(uz))+ea§,u=0, 1>0, (x,y) eR?, ee{~1,1},
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is also two dimensional model of KdV-Burgers equation. We call KP-Burgers equation “KP-
[-Burgers equation” if € = —1, and “KP-II-Burgers equation” if € = 1. The well-posedness of
KP-Burgers equation is obtained in H*°(R?) for s > —1/2 by Kojok in [15] (for € = 1) and
Darwich in [7] (for € = —1). Where H* ’O(Rz) is anisotropic Sobolev space defined by the norm
| £l gs.0 = 1(€)° f(é , M| L2, - Carvajal, Esfahani, and Panthee ([4]) considered the two dimen-

sional dissipative KdV type equation
du+3u+ Ly yu+3,(u?) =0, t>0, (x,y) €eR?,

where the operator Ly y is defined by

FoylLey f16, ) = —®(E, ) F (&, 1)

and the leading term of ® (&, n) is —(|&|”! + [n|P?) with p1, p» > 0. They obtained the well-
posedness of this equation with p, > 1in H5°(R?) for s > —3/4. They also considered the high
dimensional cases and obtained more general results. There is no results for the well-posedness
of (1.1) as far as we know. But the initial-boundary problem of ZKB equation is studied by Larkin

([171, [16D.
Now, we give the main results in this paper. To begin with, we rewrite (1.1) to the symmetric
form based on [10]. We put

v(t,x,y) =4u(16t,2(x +y), 2x/§_l(x — ).

Then, (1.1) can be rewritten

(1.6)

v + (9 + ))v — (3 + 3y) v = (3x + 9,) (V7).
v(0, %, ¥) = vo(x, ¥) 1= 4up(2(x + ), V3 (x — y)).

We note that the well-posedness of (1.1) in H?® (R?) is equivalent to the well-posedness of (1.6)
in H* (R?). Therefore, we consider (1.6) instead of (1.1).

Theorem 1.1. Let s > —%. Then (1.6) is locally well-posed in H*(R?). (Therefore (1.1) is also
locally well-posed in H* (R?).) More precisely, for any vy € H*(R?), there exist T > 0, and an

1
unique solution v € X?z’l (= C([0, T1; H*(R2)) (See, Definition 2.1) to (1.6) in [0, T]. Fur-
thermore, the data-to-solution map is Lipschitz continuous from H*(R?) to C ([0, T1; H* (R?)).

Theorem 1.2. Let s > —%. For any vy € H* (R?), the solution v obtained in Theorem 1.1 can be

extended globally in time and v belongs to C ((0, 00); ﬁoo(]RQ)), wh/e\re HS (R2) is the Eompletion
of the Schwartz class S(R?) with the norm N fllgs =& +n)PfE, '7)||L§ , and H®(R?) =
n

Neer H*®?).

Remark 1.3. (i) Although (1.1) does not have the dissipative term with respect to y, the well-
posedness of (1.1) is obtained in isotropic Sobolev space H*(R?) for lower regularity than both
(1.3) and (1.5).

1

(ii) Theorem 1.2 says that (1.1) is globally well-posed in H*°(R?) for s > —5.
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To obtain Theorem 1.1, we have to treat the dissipative term carefully, because the symbol
(€ 4+ n)? is vanished on the line {(£, —&)|& € R}. But the nonlinear term is also vanished on
the same line. It helps us to obtain the key bilinear estimate (Proposition 3.1). We will use the
iteration argument with the Fourier restriction norm to obtain the local well-posedness. While,
the global well-posedness will be proved by using the smoothing effect from the dissipative term
and non-increasing of L2-norm of the solution.

Notation. We denote the spatial Fourier transform by = or Fy,, the Fourier transform in time

by F;, and the Fourier transform in all variables by~ or F. The operator U (t) = e 71 @) ang

a3 3
W (1) = el!l@x+3)% =1 02490 on [ (R2) is given as a Fourier multiplier

FulU@) FIE.0) = "D TE), Foy W) F1(E, ) = e WETD it E 1) Ty

U (t) and W (¢) give a solution to
du+ (3] +097)u=0

and
A + (37 + 07)u — sgn(t)(dx + 9,)’u =0

respectively. We note that F[U (—)F(-)I(t,&,n) = F(t + 53 + n3, &, n).

We will use A < B to denote an estimate of the form A < CB for some constant C
and write A ~ B to mean A < B and B < A. We will use the convention that capital let-
ters denote dyadic numbers, e.g. N = 2" for n € Z and for a dyadic summation we write
YoNAN =D ,ez don, ZNzN’ ay = ZneZ,Z”ZN’ apn, and ZNSN, ay .= ZneZ’anN, apn for
brevity. Let x € C{°((—2,2)) be an even, non-negative function such that x (t) =1 for [¢| < 1.
We define ¢(¢) := x(t) — x(2t) and N (?) := gp(N_lt). Then, ), ¢n(t) =1 whenever r # 0.
We define the projections

Pyu(&, n) ==y (1€ DAE, n), Py uuE, n) =y uE D& n),
Oru(t, &, 1) :=gr(t —& —ii(r, £, 1),

where oy (., n) == on (1§, MWDo (E +n).
The rest of this paper is planned as follows. In Section 2, we will give the definition of the

solution space, and prove the linear estimates. In Section 3, we will prove the bilinear estimate
which is main part of this paper. In Section 4, we will give the proof of the well-posedness
(Theorems 1.1 and 1.2).

2. Function space and linear estimate
In this section, we define the function space, and prove the estimate for linear solution and
Duhamel term. First, we consider the standard Fourier restriction norm || - || xs.» for (1.6) defined

by

il o = IIE M (E +m)> +i(x =& = 0B &l 2, -
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Such Fourier restriction norm was introduced by J. Bourgain ([3]) for the nonlinear Schrédinger
equation and the KdV equation. Let ¢ € C*°(R) denotes a cut-off function such that supp ¥ C
[—2,2], ¥ =1 on [—1, 1]. We note that, the estimate

1 (OW (ol g S IMIE D & + )P~ 20, Mz,

holds. Therefore, if b < 1/2, then Yy W(-)ug € X5 for uo € H®. But the embedding ) GRS
C(R; H*(R?)) does not hold for b < 1/2. Therefore, we use the Besov type Fourier restriction
norm defined as follows.

Definition 2.1. Let s e R, b € R.
(i) We define the function space X 5:0.1 a5 the completion of the Schwartz class S(R; x RE, y)
with the norm

lullyssn =1 D2 D | Do (MM + L) Py Quull 2,

Ne2Z Me2Z \Le2Z
(ii) For T > 0, we define the time localized space X ST’b’l as

5,b,1
X530 = (uljo.rylu € X501

with the norm

; ,b,1 —
leell s 0 = inf{lvllxs.01 v e X%, v, = ulo.r1}-

1
Remark 2.2. (i) The embedding XST’E’1 < C([0, T]; H* (R?)) holds.
(ii) The size of |& + n|, which comes from the symbol of the dissipative term of (1.6), is not
decided by the size of |(£, n)|. Therefore, to use the dissipative effect strictly, we focus on not
only |(§,n)| ~ N, but also |§ + n| ~ M. This is a different point from 1D case.
(iii) We can assume ) _ ), .,z = ZMSN since |€ + 1| < |(&, )| holds.

1
We choose X ; 2! 45 the solution space. Now, we define the operator K and L by

PHT _ o= ltlE+m)?

KF@)(E,n) = TErniiir
R

FIU(=)FOI(r, &, mdt

LE@1):=U() / e S eVICF (1) (5, n)dédn = U () F, \[KF(0)].
R2

Then, we note that
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t
LF(t)= / Wt —t)F@dt
0

holds for ¢ > 0 and the integral form of (1.6) on [0, c0) is given by

t
v(t) = W(t)vy + / W(t — 1) (3 + 3,) (v(z")P)dt’ o
J )

= W()vo + L((0x + 9y)v) ().
Proposition 2.3. Let s € R. There exists C1 > 0, such that for any uy € H*(R?), we have

||1lf(l)W(t)Mo||XS,1.l < Cilluoll gs-

Proof. Since

1
2
(ZZ(N)ZSHPN,MMOHQEV) ~ lluoll s

N M

holds, it suffice to prove

1
D (M4 1)2 | Py QL OWOuoll 2 S | Py.aruollz,
L

foreach N, M € 2L, By using Plancherel’s theorem, we have
1Py QL @OW Ouo)ll 2
~ lon. & oL @F Y e a0 E )l
S 1Pyawolz New & + oL OF W O 1))
= 1Py ol 3, 1w (©)or (O Felvr (el o 2.

where ¢y = oopm + oM + go% and we used ¢y = @y Py . Therefore, it suffice to prove
1 _ 2
DM+ L) 2 b ) pr O F 1 (0™ e 2 S 1. 22)
L

It is obtained in the proof of Proposition 4.1 in [21]. O
Proposition 2.4. Let s € R. There exists Co > 0, such that for any F € XS’*%’I, we have

[y OLFO

1 S CF]
X2 X

1
S, 2.1
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Proof. We use the argument in the proof of Lemma 4.1 in [21]. Since

1PN QLW OLEO) 2~ llon.ar E Mo (OFYEFIT & mllz

it suffice to show that

D (M2 + L2 lgw.m (. oL (OFWKFIE. £l 2,

L 2.3)

S DM+ L) 2 llow w6 e (OF WU (=) FOIE &l 2
L

We put w(t) = U(—t)F(¢) and split Y K F into K| + K» + K3 — K4, where

eitt 1 N
K = _c -
s =y [ e

[t]=<1
1 — e llE+m* 4
Kx(t,6,n) =) I-/l mw(f,gvﬂ) T,
- eitr ~
K3, &, m)=v() |/1 mw(fﬁf’ﬂ)dt
e lE?
Kq(t,&,m) =y @) / mw(f,g,ﬂ)dﬁ

IT|>1

Furthermore, we put wy y = Py yw. We note that Wy y(z, &, 1) = op (€ + )Wy m (T, €, 1)
since @y = Py oM.

Estimate for K
By using the Taylor expansion, we have

len.ar (& ML () FKI(. & 2

S 2" @ a1 (2, €, )
S o - n
N;n! |/1 E+1)2+ 7| dt | ller (OF "y (O1D)l 2
- Lg,

By the Cauchy-Schwarz inequality, we obtain
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/ |T|n|wN,M(T,§,n)|dT

s E+n?+
) 1 1
2417 2 [N, m (T, &0 2
1T2(E + )2+t 5 / N (T, €,
< d — 2 d
~ / (E+n2+]c)? (PuGE T mlde GErm2rlen’

<l r|<1

M) S (M2 L) 2 o (@B (.6 )l 2

for n > 1. Therefore, we get

DM+ L) lgwm . men O F LK &l 7

L
> 1 1
<Y ey LY (M? + L) oL (D) BN m (. €. 1)l 2
n! Ent
n=1 21 L
SO+ 1) oL @B (€l

L

8=

since (M2 + L)2 (M)~ <(L)2.

Estimate for K,
By Plancherel’s theorem, we have

low.m (& Mo (OF KN £l 2

Wy, m(T, & )l - ,
S — > _ It ,
~ / E+1)2+ 7| dt | lomE +ner () F @)1 —e D)2

1
By the Cauchy-Schwarz inequality, we obtain

/ |wN,M(T,§77))|d
——AaT
E+m?+t|

[z]=1
1 1
2+ 7)) 2 [N m (T, &, m)I? 2
(E+m -+t 2 / wy m(t, &1
d R b
AR (T n)? o2 Pu @ T mlde Rl
(M M2+L) 2||<pL(T)wN m(T. &, g2

L

Therefore if M > 1, then we get
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DM+ L) llpn (6 L D F LK 6l 2,
L

) 1 ~
sgw + L) "2 L@ BN m (T 60l

by (2.2) and

<M.

1

S M2+ L) oL OF W@ 2 S Myl

1
2
L 2,

While if M < 1, then by using the Taylor expansion, we have
_ 2
lgas (€ +mer (OF [y () (1 — e EFDTH] (@)1

00 2n
3 Zl XD b€ + oL @R O3

> 1
SMEY L @FL O

n=1"
Therefore, we get

> M2+ L) lgwm €. men (O F LK. &) 7
L

)

1 1

< _ n 2 -5 ~

N Elnlllltl WIBZ%1 EL (M~ +L) 2||</)L(f)wN,M(f,é,n)||L§m
n—= 3

2 _1 ~
5;<M + L) 2 oL (@B (602, -

Estimate for K3
We put gy (1) = f,_l[lmzl((é + )%+ it)_lff)N,M(t, &, m1(t). Then, we have
lon,m (& ML (O FK31(0)| ~ oL (1) (Fil¥] s Filgn.u1(0)) |
SN oL L, R D % (@, Filgn.m) (@)

Ly Ly

(i) Summation for L < L (then, Ly ~ L.)
By the Young inequality, we have

oz (D) (@, Fil¥]) o (pr, Filgn ) (@)l 12
S oz, OF W@ L e, (O F [gn,ml (@) 2
S oz, OF IO (M? + Lo) " Hlow, (@) By m (0l 2.

Therefore, we obtain
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DMLY YT Y e @ en Flv D)+ (e Filen D@l

L L&KL Ly~L

< LZ oL, @ F 1@ L1 ;(Mz + Lo) "2 o1, (0) Ty (1. . Mz
1 2

_1 ~
S D _AM? + L) 2 lpw, ()N m (T, €0 12
Ly

since

1
Do len OFWIOIL S YL len OF IO SV 4 ST

1
2
L1 Ly 2,

1

(ii) Summation for L < M?, L1 > L.
By the Holder inequality and the Young inequality, we have

loL (@@L, Fl¥D) * @r,Filgn uD@l 2
< lolli2 lon, OF IO 2 lew, (O Filgnm (@ 2

< L2 lpr, O F IO 12 (M2 + L) lgr, (0N m () 2.

Therefore, we obtain

D+ 07 Y Y e n FlvD # @ Filena D@z

L<M? Li>L L»

S| 3 Lillen, O FWI@ e | | 2002 + La) Mlgr, (0w (r. 6. mll 3,
Ly Ly

_1 ~
<Y (M + L) 2 o, (DTN, m (T, E, )2
Ent
L,

since (M) < (M? + Lz)% and

<1

~

1
D LilleL, OF I 2 S i

L 21

(iii) Summation for L1 > L > M?. By the Young inequality and the Cauchy-Schwarz inequality,
we have

oL (T) (oL, Fi[¥ D) s (oL, Filgn mD (D)l 2
S e OF IOl 2 ller, (O Fi g mI ()l 11

< loL, OFWIO 2 (M + La) ™2 o1, (@) Bn,m (D)l 2.
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Therefore, we obtain

D ML) Y Y e L Fily D+ (e Filen DOl

LZM2 leL L
L 2 _1 ~
S 2Dl OF IO | | DM + L) 2w @iy m (T 60l 2
L Ly
2 _1 ~
S DM+ Lo) 2 llgr, @y (T 6.l 2
Ly
since

DL e OF W@ SV 1.
2,

Ly 1

Estimate for K4
By Plancherel’s theorem, we have

lon,m (&, MerL () F:[K4l(z, &, 1) IILgm

5 / |wN,M(Tvé’ 77)'

G lbar (& + oL@ Fly (e MED @) 2

T|>1

2
Lén

By the Cauchy-Schwarz inequality, we obtain

|Wn m (T, & 0l 2 ~1 ~
———————dt M L JE, 1
f G2 tle] rw;< + L) lr () B, m (. &, Iy

[t]|>1

S ML) oL By m (. E )l 2
L

Therefore, by (2.2), we get

D M2+ L) lgw,m (. meor (O F KT &l 7
L

_1 ~
S M+ L) 2 oL@y m(z & mllz - O
L

3. Bilinear estimate

In this section, we prove the estimate for nonlinear term as follows.
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Proposition 3.1. Let 5 > 59 > —%. There exist 0 < § < 1 and C3 > 0, such that for any u,

18

ve XS 7! we have
: < - 5.
1@ + ) @l s —10 = Callull gaz8 1101518,
To prove Proposition 3.1, we first give some Strichartz estimates.
Proposition 3.2. Let (p, q) € R? satisfy p > 3 and % + % = 1. For any ug € L*(R?), we have
g <
IU@uollprg, < lluollzz -

Proposition 3.2 is obtained by using the variable transform (x, y) — (4_% (x++/3y), 43 (x—
V3y)) in Proposition 2.4 in [18].

Proposition 3.3. For any ug € L>(R?), we have
L1
IDE DY U @uol s, S ol 2,
where Dy = F V&S Fry, D5 = F il Fuy for s € R.
Proposition 3.3 is obtained by applying Q(£, ) = &3 + > in Corollary 3.4 in [19].
By using the same argument as in Lemma 2.3 in [9], we obtain the following estimates from

Proposition 3.2 and Proposition 3.3.

Corollary 3.4. Let (p, q) € R? satisfy p > 3 and % + 3 = 1. For N, L € 2%, we have

1
IPNQruliprpg, ,SLZHPNQL””L?”- 3.D

Furthermore, if Fxy[Pyu) is supported in {(§, n)| |&] ~ [n|}, then we have

11
I Py Qrullys, SNTIL2|PyQrullp - (3.2)
To get a positive power of M, we give the following estimates.

Corollary 3.5. Let 0 <5 < 1,0<e <1 —6. For N, M, L € 2Z, we have

e 5= e
| Pv v Qrull I%S(NM)“L 2o Py Qrullpz - (3.3)

txy

Furthermore, if Fyy[Pyul is supported in {(§, n)| || ~ |nl}, then we have

€ o —La—s— 18 ¢
1Py Qrull o S (NM)INT3UT"OLT =5 Py Qurull 2 - (3.4)
i .

txy
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Proof. By (3.1) with p = ¢ =5, we have the L>-Strichartz estimate
1
1PNnmQrullys S L2NPNmQrully - (3.5

By the interpolation between (3.5) and a trivial equality || Py p QO ru ||L’2 =19 Py vQru ||Lt2 ,
Xy Xy
we have

5(1=5—¢)
1Py Qrull a—2e SL @9 ||PyQrul;2 . (3.6)
’ +s ™ Ixy
txy

While, by the Cauchy-Schwarz inequality, we obtain

1PxwQuiliz = [ VFo Prw Quul(e. ldsay
[(E.m|~N
|E+n|~M
1
S(NM)2||Py yQrullpz -

Therefore, by using (3.1) with (p, g) = (o0, 2), we have

fxy "~

1
| Pv.mQrullpe S (NML)2 || PymQrully2 - 3.7

By the interpolation between (3.6) and (3.7), we obtain (3.3).
By using (3.2) instead of (3.5) in the above argument, we also get (3.4). O

Next, we give the bilinear Strichartz estimates.

Proposition 3.6. Let Rg) (j =1, 2) denote the bilinear operator defined by

Foy[RY (uy, u2)1(8, ) = /w(&% — (& — £ &L M) E — 1,1 —n)dEdn,

Foy R (w1, u2)1(, n) = /‘PK(W% — (=D Er, )i E — &1, 0 — n)dErdn).
For N1, N>, L1, Lo, K € 2Z \ith N1 > Ny, and j € {1,2}, we have

IRY (Py, Qryur, Pyy Qo) 2
i (3.8)

I Y S ¢
SKTIN;L{L; || Py Qryu ”LtZXyHPNz QLzuzllLthy-

Proof. We only prove for j = 1 because the case j = 2 can be proved by the same way. We put
fi=FI[Pn;Or,u;l, & = (&, ;) (i =1,2). By the duality argument, it suffice to show that
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/fl (t1, &) f2(72, ©2) f (11 + 12, §1 + 2)dTidT2d $1d G
Q (3.9)
D
< K-IN27272
SKTENFLILE Al 2, Iallz, 15N 2,
for any f € L2(R x R?), where
— . . . 3 3 o — 2 2
Q={(r1, 2, &1, DI NG| ~ Niy |ti =& —nj|~ Li (1 =1,2), [§ — &~ K}.
By the Cauchy-Schwarz inequality, we have
/fl(fl, ) f2(12, ) f(t1 + 12, &1 + Q)dridrd§1d s
Q
(3.10)

1

2

S ||f1||LgE” ||f2||L§£” / If (t1 + 2, &1 + &) P dridrad§1d
Q

By applying the variable transform (71, 72) — (61, 62) and ({1, &) — (1, w, Z, V) as

b=m—& —n (=12,
M=91+92+$13+€23+77%+77§, w=E&+&, z=n+n, v=n,
we have

/ |f (1 + 2, &1 + )P drnidrad1d
Q

~

S f / £ G w, Pz ok &1, )0 (1, 02) ' dpdwdzdv | d6yd6s,

[O11~L1 \WwI<N,
|62|~Lo

where

a(p, w,z,v)
det———"""_| =3|g2 — £3|.

J(1.0) =
(41 22) (&1, 11,82, m)

Therefore, we obtain

/ |f(t1 + 12, &1 + Q) Pduidnadide < K_1N2L1L2||f||L§$n- (3.11)
Q

As aresult, we get (3.9) from (3.10) and (3.11). O
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Remark 3.7. In particular, if N| >> N;, then we have
| Pn, Qr ut - Py, QLzuzllLtzn
IR S (3.12)
SNy Ny LIL; || Py, Qriui IILngIIPNz Or,uall2
since the equality
Py, Qrut - Py Qrya = RY (P, Qryut, Py, Qryu2)

with K ~ le holds for j =1 or 2.

Corollary 3.8. Let 0 < 8§ < 1,0 <€ < 1 — 8. For N1, No, My, Ma, L1, L» € 2% with N > N»,

we have
1PNy py Qryttr - Pryov, Qrotizll 2
sy (3.13)
S Js e (L1L) T 5 Py Oyl 2, 1 Pty Quatiall 2
where

Iy = Js (N1, My No, Ma) = (N, My NaM) S (N N3 )=,
Proof. By the Holder inequality and (3.7), we have
I Pny,aay OQryut - Py vy QLzldzllLtzx(V
S 1Pnymy QLlullléggy | PNy QL2M2||izxy||PN1,M1 Qryu ”L%,zx.v”PNz,Mz QLzuzllio;y
S (VUM Ly N2 ML) Py, @yt 2, 1P, s Qa2
By the interpolation between this estimate and (3.12), we obtain

”PN],M] QLlul : PNz,MQ QL2u2||Lt2xv

L L. (3.14)
S s (L1Lo)2 7309 || Py, ag, QL1 ”L?xy | Py, 1, QL2u2||L72xy-
While, by the Cauchy-Schwarz inequality, we have
1PNy vy Qryttr - Py, Qrotiallpy S PNy QLU IILngIIPNz,Mz Oryuzli2 - (3.15)

By the interpolation between (3.14) and (3.15), we obtain (3.13). O

Here, we prove Proposition 3.1.



H. Hirayama / J. Differential Equations 267 (2019) 40894116 4105

Proof of Proposition 3.1. By using the embedding /! < % for the summation ), 3", and
the duality argument, we have

[[(3x 4 3y) (o) ||

X5~ %l

> x| rE

2
Ny.My.Ly Ny My Ly \N.m.L (M~ + L)

X sup
lwll;2=1

/PNlaMl QL]M . PNz,MzQLZU . PN,MQLWdtdxdy’) .

We put
uny My, Ly = Py, QLlu UNQ My,Ly = Prnyst, Q1,0 Wy M, = Py Qrw,
1-5
fN],Ml,Ll = (N1> <M] +Ll) 2 UNy,M{,Li> N>, M>,Ly = (NZ) <M2 +L2> 2 UNy,M>,Lo>»

for0 <§ « 1 and
I = ‘/uNl,M|,L1 “UNy My, L, " WN,M,Ldtdxdy]|.

We note that L|un, um, 1, ”Ltzxy S OND T vy My Ly ”L%Xy and  L3|lvw,,my, L 2 <
. 1—8 - .
(N2) ™ || gNy. Mo Ly ||erxy hold for b < 152 since L; < (M7 + L;) (i =1,2).

By the symmetry, we can assume N = N;. We first consider the case 1 > N| 2 N,. We note
that

5
1PN Qrull 2 S L&°| Py, mQrullp2 (3.16)

thy'
holds by the interpolation between (3.5) and a trivial equality || Py apQrul| 2, = L0||PN, M
xy
QOru ||Lt2 . By the Holder inequality, (3.3), and (3.16), we have
Xy

FS Nuny ol s ovo s, Loll s oy el 2
lxy ley Ll\'}

€3
< NiMiN2 M) 2L fivy vy W2, gwaamn. il g2, lwnone. g2

since (N;)* ~ 1 (i =1, 2) for any s € R. Therefore, we obtain

YD DP DELLLELEN

N<IM<N L M2+L ? ful2=1 (3.17)
S (NiMiN2M2)2 Ly oy Ly 2 18N M. 22,

since
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5 S
L58 L#&° 1_5 5
E - < 2 -4 E L=G78) < (my~1-39 <1
~Y M ~J ~Y
(M) L5y

1
L AMPH+ L) S

and

DD NMAY T MY NS

NSIMSN NSIMSN N<1

for any s € R. By using (3.17)and the Cauchy-Schwarz inequality for the summations | Ny M <1
and ZNz,M2<1’ we have

DBED DD DI B D DI Y P

2
NLM ST L NauMa<1 Lo \N, ML (M +L)2 lhwll2=1

for any s € R.
Next, we consider the case Ny = Ny, N1 > 1. It suffice to show that

(N)'M
sup [

o
NarL (M2 +L)2 vl =1 (3.18)

— €
SNI G(M1M2)4 ”fN],M],L] ||L2 ,”gNz,Mz,Lz”LZ '
1xy Ixy

for small € > 0. Indeed, (3.18) and the Cauchy-Schwarz inequality for the summations Y NiM,
and )y, y, imply

D ZMSUPI

2
N1 My N2 Mz Lo Nm.L M=+ L)2 Jwl2=1
Ni>1 Nz Np

Y3 3 3T NTEMIMy)?

Ni>1 M|§N1 stNl MZSNZ

S v, 3 legNsz"L,ay

N1 M, Ly Ny M;

Sl size 0l 150

Now, we prove (3.18).

Case 1: Ny ~ N> > N, Ny > 1.
We note that M < max{M, M;} since & +n = (§; +n1) + (€ — & +n—n1). By the symmetry,
we can assume M < M;. By the Holder inequality, we have
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I < ”“N] My, Ly “ = ”sz,Mz L, WN M, L” %
txy L txy
Furthermore, we have
N*
leeny ool 20 S Ly ||14N1 mrile S 5 55, I vemn
thy (M] +L1) 2 o '}

by (3.16), and we have

v w
Ny, Mo, Ly - NMLIIL1+5
txy

1-6 _ e
S Js.e (N2, Mo, Ny MY(LaL) 2 = llow w1012, Nww vz llp2

—s5— 1+5+ €

1-6_e 1=3_¢
< (MiMy)PN, N2 7302 "4 gn, mo. Lo 2 lwnom, iz

by (3.13) and M < M. Therefore, if we choose € > 0 as € = ?8, we obtain

>y R

N Mo, M2+L : lwl2=1
s— 1+6+ €
S (MiM2)ENT*N, Wi Lillzz, 1882 M2 L2l g2,
1-8 _ ¢
N M L2 s
| o WNTTE Y e
N My M7+ L) 7 o0 T (M2 4 L)
_ e —s—14840¢
“(MiMy)iN, " 272 ||fN1,M1,L1||Lt2x)_||gN2,M2,L2”L,2xv

for s > —% + § since

2

75,§
M,SMI (M +L1 2 6

T

As a result, we get (3.18) for s > —% if we choose § > 0as 0 <6 < % (s + %)

Case2: N~ N1 > Ny, Ny > 1.
By the Holder inequality, we have

I Sluny vy Ly VN My, Ll 2w mLll
L1+5

txy Ll,\’y

Furthermore, we have

§
lwymLll 2 SLS ||wNML||L2
Ll

Xy
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by (3.16), and we have

”uN],M],L] : UNz,MQ,Lz” 2
L.’

18 _ €
S Js.e (N1, My, Na, Ma)(L1Ly) 2 4||”N1,M1,L1||Lt2xy||UN2,M2,L2||Lt2Xy

1-5

e —s—14+8+3¢ P S
S (MiM2)4N, AN TN, I Ny my L ||Lr2”||gN2,M2,L2||L[2Xy

by (3.13). Therefore, if s < T‘S — %, we obtain

> XY ap

N~Ni M<N L M2+L 2 lwl2=1

13 4e

€ —5—
< (MiMp)3N, v il gz Mgt tallz | D MZ

M<N, M2+L

s—1+13542e

— € -
S N] 6(M1M2)4 N] ”fN],M],L[ ||Lt2xv ”gNz,Mz,Lz ”Ltz”_’

since
L
= < M—(1-39)
(M2 +L)>

As a result, we get (3.18) for % > 5> —% if we choose § >0 and e >0as0<e < %(s+%),
0<8<min[%(s+%—26),2(%_s_%)}.

While if s > 3, then we have

e —s—104e ss
IS MiM)AN, = L%l vy el lgna w2, lwnaellpz

by the same argument with using (N2)~* < 1. Therefore, we obtain
> Yy
N~Ni M<N L <M2+L 2 Jwll,2=1

—148542¢

T (M M) N, | fvy, ML ”L?xy llgns. Mo L1l 2 5

which implies (3.18) since —§ + 1§ +2¢ < 0.

Case3: N~Ni~Ny>1
We can assume M < M such as Case 1. We split vy, am,,1, and wy .z into

3 3

VN> Mo Ly = D RiVNy My Lys WNML= Y RjWN. M. L-
i=1 j=1
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We put

lij= ‘/UNI,MI,Ll “RivN, My L, - Rjwn mrdtdxdy|,
where R; (i =1,2,3) are projections given by

FoslRUF1= Vg1 Fr FaylRaf1=1gpmpy Fr Fuy[R3 1= 11ty £-

We note that Fyy[wy, p, 1] is supported in at least one of {(§, n)| |§] ~ N} or {(§,n)| [n] ~ N}.
By the symmetry, we can assume supp Fyy[wn, ar,2] C {(§, )| €] ~ N}. Then, it suffice to show
the estimate for /; ; withi =1,2,3, j =1,2.

Estimate for /1 1
In this case, we note that N ~ Ny ~ Ny ~ M ~ M| ~ M, and

E&182 + nima| ~ [EE1&2| ~ N}

for (&1, 1) € supp Fayluny,my.0,1s (62, m2) € supp Fuylvn, mp, L] With &1 +& =&, ni+m =1.
It implies

max{Li, Ly, L} > N}
since
I(t1 — & — ) + (0 — & —n3) — (r — &3 — P = 3|66 + nmimal,

holds for (z;, &, m;) (i = 1,2) with (z,§,n) = (11 + 72, &1 + &2, 11 +12).

(i) For the case L 2 N ]3
By the Holder inequality, (3.3), and (3.16), we have

ISl my |l I;LSHUNZ,MZ,LZII 1%HWN,M,LH 2

xy txy thy

<(N1M1N2M2) (L1L2) 6L e vy, pay, L1||L2 lvn,, My, L2||L2 ||wNML||L2

_ e 2543 35
N{“(MiMy)*N, ~ * Ls v Lill2, I8wss.rollp2 lwnm iy, -

Therefore, we obtain

I DI DAL

NNN1M<NL>N3 M +L 2 ”w”LZ 1

— € —s+3e
N] E(M1M2)4N1 : ”le,Ml,Ll”L2 ”gNz,Mz,Lz”Lz,
txy txy 2 3
sy, pznd (ME+L) :

- € —s—t+386+3e
S,Nl E(1‘41M2)4]Vl 22 : ”‘le’Ml’Ll”L/zxv||gN2’M2’L2||L12xy’
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since

As a result, we get (3.18) fors>—% if we choose § >0 and €e >0 as 0 <€ < %(s—l—%),
0<5<2 (s+——— )

(ii) For the case L1 2 N]3
By the Holder inequality, (3.16), and (3.3), we have

I Sl my,q |l 25 2 [Ny, My, L, |l A s llwn,a, Ll
L

+6
tx y tx y L txy

§
f (NaMaN M) (LoL) ™12 6||MN1,M1,L1||L2 lona,pa, 12l 22 w2

_3 3 5(1=8)
2s 2+45+25 - €

_ € - £
SNy (MM)* N, L °||fN1,M1,L1||Lt2xy||gN2,M2,L2||Lt2”||wN,M,L||L’2Xy

_ —3448 .
since L6 (M2+L1) < SLy TSN, >** Therefore, we obtain

ZZZ sup [

NN\ M<N L M2+L)z lwll, 2=1

5(1 5) 2¢
— e —s—3445+3c
SNCEMM)IN. T ez I8N Loz | D ME

MM, M2+L

_s— +]93+
3 6 Il fvy, My, L1||L2 lgns, Mo, L2||L

S NTE(MI M) N,
since

5(1—8)—2¢
1

14+5542¢
S SM
L

(M?+L)2

As aresult we get (3.18) for s > —% if we choose § >0 and ¢ >0as 0 <€ < g(s—}— %),
O<8< (s—i———— ). The case Ly 2 N is same.

Estimate for 15 »
In this case, we have

&2 ~ [n2| ~ Na, 1§] ~Inl~N

By the Holder inequality, (3.16), (3.4), and M < M|, we have
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IS uny vyl 2 ony v, 00l o llwn mnll s
=3 +5 LT
txy txy txy

%5 1—8—¢ _e€

SLy (NaMaN M) (NyN) ™4 (LzL) 7 Hluny,my,oo g2 Nony, s, 002 lwn m g2

txy txy txy

€
25— 138 ye 23
T | fnvy, ML ”lexy ||gN2,M2,L2||L12Xy||wN,M,L||L12Xy

(M} +Ly)z "%

S (MiM2)SN,

Therefore, we get (3.18) for s > —% by the same argument as in Case 1.

Estimate for /1 »
In this case, we have

2 2 2 2
[n; —n”l~Inl"~N
Therefore, we obtain
_1 b
|Rivn,. My Ly - R2wN,M,L||L12Xy SN 2L L2||Ryvny My Ly Iz, ||R2wN,M,L||L12xy
by (3.8) since
R ‘R =RP (R ‘R
1UNy, Mo, Ly - Rown mL = Rg” (R1VNy My, L, - Rown . L)
with K ~ N holds. While, by the Cauchy-Schwarz inequality, we have
|Riun, M. L, 'RjUNz,Mz,LZHL[le S IR1vN,. My, LMl 2 ”RZWN,M,L”L[ZW
Therefore, we obtain the bilinear Stirchartz estimate such as (3.13) for the product Rivn, m,,1, -
Rown pm.1,and we get (3.18) for s > —% by the same argument as in Case 1 since M < M. The

estimates for /5 1, I3,1, and I3 7 are obtained by the same way. O

Remark 3.9. We can also obtain the bilinear estimate
C3
s+ @ g =5 (el g 0 g a5+ Tl g 150 015, )
fors > 59> —5 by using

ESEO(EN T+ E—&)TY).
4. Proof of the well-posedness
In this section, we prove Theorem 1.1 and 1.2. For T > 0 and vy € H® (R?), we define the

map &7y, as

D70 W)(0) ==Y () | W(E)uo + / W(t — 1) (3 + 3,) (Wr () v()?)adr' |,
0
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where v is cut-off function defined in Section 2, and {7 (t) = ¢ (%) For R > 0 and Banach
space X, we define Br(X) := {u € X| |lullx < R}. To obtain the well-posedness of (1.6) in

. . 1
H* (R?), we prove that d7 4, is a contraction map on closed subset of X* 21

Lemma4.1. Let 0 < T <1, 0 < § < 1. There exist C4 > 0 and p = p(8) > 0, such that for any
1
ueX>2 we have

"
lrull yazsy < CaT ul -

The proof of Lemma 4.1 is almost same as the proof of Lemma 2.5 and 3.1 in [9].

Proof of Theorem 1.1. Lets > 5o > —% and vg € H* (R?) are given, and T € (0, 1], R > 0 will
be chosen later. We define the function space Z° as

1
S . 5,5,1 e
Z0={veX 2| vlzs = IIUIIXSO,%_I +Ot|Iv||Xx,%,1 <00},

where o = ||vgll gso /||vollas. For v, vy, v € BR(Z*), we have
D74, ()l ze < C1(1+ ) lvoll gso + C2C3CTT[[v]%s
< Ci(1+a)|vollgo + C2C3CIT*R?
and

270
DT, (V1) — P10y (V2125 < C2C3CL T |lv1 + v2ll 25 |1 — V2l 25

< CLC3CIT*R|jvy — val 20

by Proposition 2.3, 2.4, 3.1, Remark 3.9, and Lemma 4.1. Therefore, if we choose T', R as
R=2C(1+)lvollgso. 0< T < (4C,C2C3C;(1+ ) [[voll o) ",

then &7 ,, is contraction map on Br(Z*). We note that T = T (]lvo|| zs0). By Banach’s fixed

1
point theorem, there exists a solution v € x5! to v(t) = @74, (v)(#) and v|[o,7] € XST’Z’ sat-
isfies (2.1) on [0, T']. The Lipschitz continuous dependence on initial data is obtained by the
similar argument as above. The uniqueness is obtained by the same argument as in Section 4.2
of [20]. O

_ Next, to prove the global well-posedness of (1.6) in H*(R?), we define the function space
X501 as the completion of the Schwartz class S(R; x R%v y) with the norm

lullgsns =0 > D | D MM+ L) Py Quull 2,

Ne2Z Me2Z \Le2Z

We also define )N(ST’b’l as the time localized space of Xs:b.1,
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~s. L ~
Remark 4.2. We can see that XST’Z’I < L2((0, T); H*+(R?)) since (M)**! < (M)* (M2 +L)?
and [} < 2 hold.

Proposition 4.3. Let s € R. There exists C1 > 0, such that for any ug € H (R2), we have

W OW@uoll 1.1 = Crlluoll -

1

Proposition 4.4. Let s € R. There exists Co > 0, such that for any F € X521 we have

WOLFDOl g, 1. =C2AF 5

3,77

The proof of Proposition 4.3 and 4.4 are same as the proof of Proposition 2.3 and 2.4.

Proposition 4.5. Let s > —%. There exist 0 < § < 1 and C3 > 0, such that for any u, v €

S 128
X571 we have

[[(x 4 9y) o)l = Callull o azs 1 1Vl 15 -

A,—j

The proof of Proposition 4.5 is similar to the proof of Proposition 3.1. We will give the proof
at the last part of this section.

Proof of Theorem 1.2. Let s > so > —5 are given. By Proposition 4.3, 4.4, 4.5, and using the

same argument as in the proof of Theorem 1.1, we obtain the solutlon ve X T2 to (1.6) on

[0, T] with T = T (Jlvoll jjxo)- Let T’ € (0, T) be fixed. Since X LI L2([0, T]; HST(R2))

holds, there exists 7y € (0, T’) such that v(tg) € H A“(]R2) Therefore by choosmg v(tp) as the
l

1
initial data and using the uniqueness of the solution, we obtain v(fp+-) € X" T—to . In particular,

we have v(T’) € Hs+! (R2). By repeating this argument, we get (T’ e ﬁoo(]Rz). Since we can
choose T’ > 0 arbitrary small, v belongs to C((0,T]; H oO(JRZ)). This arrows us to take the
L2-scalar product of (1.6) with v, and we have

d 2

EIIU(I)IILE = (0rv(1),v(1)) 2
_ <_(a§’ +02)0() + (0 + 3)70(0) + (B + 3,) (D)), v(t))L2
=~ 3 +3,)v()]7, <0

for any ¢ € (0, T'). Therefore, ||v(¢)]|| 12 is non-increasing, and we can extend the solution v glob-
ally in time. O

1
Remark 4.6. We note that the embedding x“‘T’ 2l L2([0, T]; H*1(R?)) does not hold. There-
fore, we cannot use the above argument for initial data vo € H® (R?).

Finally, we give the proof of Proposition 4.5
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Proof of Proposition 4.5. We put
uUn, My, Ly = Pny M, QLlu sz Mo, Ly = PNy v, Q1,V, Wy, M, L = P, MQLw
InimL, = (M) (M + Ly) 7 UNy My Lys 8NayMo, Ly = (M) (M3 +L2) 52 UN,, Mo, Lo

for 0 <§ « 1 and
1= 'fuNl,Ml,Ll “UNy My, L, " WN,M,Ldtdxdy]|.

We use Ll|lun, m 1, ez, S (MO fnm L Iz and L5 vn,, Mo, 1, 2, S (M2)7°
8N2. M, L |l 2 instead of LY llun, w1y Iz S NO7 w2, and Lo, iy, (PR
(N2) Nl g Ny, b, L, | 12, in the proof of Proposition 3.1. By the same argument as in the proof of
Proposition 3.1, we have

(M)*M
2002 2 2| Xy s T Sl vl g,
NI SE L Nybp <t Ly \N.m.L (M= + L)2 vl 2=l
for any s € R and it suffice to show that

(M)'M
——— sup [
NarL (M? 1Ly lwll, 2=1 @.1)

< N1*€(M1M2)Z | fny, My, L ”Ltzxy lgns.m. 1ol 12
for N > Np, N; > 1, and small € > 0.

Case I’: Ny~ Ny >N
We only have to modify little in the proof of Proposition 3.1, Case 1. Since it hold that

€

) MSH1—6-5

- (MM L7 4 3
(M)~ Z 2 15 _34 Z ) TS Z st1_383 Sl
MM, <M1 +L1) 2 600 (M +L)2 MM, (Ml) 3

for e = ?8,s > —1+§8,and

(M2)™ SN

for s < 0, we get (3.18) for —% < s < 0 by the same way as in the proof of Proposition 3.1,

Case 1.

Case2: N~N1 >N,
If M > M, then we have

(M) (M1)"(M2)™* S (M2) " SN{°
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for s < 0. Therefore, we get (3.18) for —% < s < 0 by the same way as in the proof of Proposi-

tion 3.1, Case 2.
While, if M < M1, then we have

Js,e(N, M, Na, M>) S Js,e (N1, M1, N, M>).

Therefore, by estimating

IS luny vyl 2 Ny MLy - wN MLl 2
1-§ L 145
txy txy

instead of

I S Nuny, My Ly - ONy Mo, L 25 lwn, a, Ll 25
txy txy

8

in the proof of Proposition 3.1, Case 2, we get (3.18) for —% < s < 0 by the same modification
such as Case 1’

Case3’: N~N;~Ny>1
If suppFy ylwn,m,L] C{(, m] 1] > In| or |§] < |nl}, then M ~ N holds. Therefore, we
have

(M)* (M) (M2) ™" SUNY(N1) T (N2) T SN
for s < 0 and get (3.18) for —% < s < 0 by the same way as in the proof of Proposition 3.1,
Case 3.
We assume supp.Fy y[wn, m,.] C {(&, n)| I&] ~ In|}. It suffice to show the estimate for 1 5 and
I> 2, which are defined in Proposition 3.1, Case 3. By the same modification such as in Case 1°,
we can obtain (3.18) for —% <s<0. O
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