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Abstract

In the present paper, we consider the Cauchy problem of the 2D Zakharov-Kuznetsov-Burgers (ZKB) 
equation, which has the dissipative term −∂2

xu. This is known that the 2D Zakharov-Kuznetsov equation 
is well-posed in Hs(R2) for s > 1/2, and the 2D nonlinear parabolic equation with quadratic derivative 
nonlinearity is well-posed in Hs(R2) for s ≥ 0. By using the Fourier restriction norm with dissipative 
effect, we prove the well-posedness for ZKB equation in Hs(R2) for s > −1/2.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

We consider the Cauchy problem of the 2D Zakharov-Kuznetsov-Burgers (ZKB) equation:

{
∂tu + ∂x(∂

2
x + ∂2

y )u − ∂2
xu = ∂x(u

2), t > 0, (x, y) ∈ R2,

u(0, x, y) = u0(x, y), (x, y) ∈ R2,
(1.1)
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where the unknown function u is R-valued. This equation is two dimensional model of the 
Kowteweg-de Vries-Burgers (KdVB) equation

∂tu + ∂3
xu − ∂2

xu = ∂x(u
2), t > 0, x ∈R, (1.2)

and appears in the dust-ion-acoustic-waves in dusty-plasmas (See, [22], [24]). We can see that 
(1.1) has both dissipative term and dispersive term. The aim of this paper is to prove the well-
posedness of (1.1) in the Sobolev space Hs(R2).

First, we introduce some known results for related problems for 1D case. In [12], Kenig, 
Ponce, and Vega proved that the Kowteweg-de Vries (KdV) equation

∂tu + ∂3
xu = ∂x(u

2), t > 0, x ∈ R,

is locally well-posed in Hs(R) for s > −3/4. Colliander, Keel, Stafillani, Takaoka, and Tao 
([6]) extended the local result to globally in time. For the critical case, Kishimoto ([14]) and 
Guo ([11]) obtained the global well-posedness of KdV equation in H− 3

4 (R). While, it is proved 
that the flow map of KdV equation is not uniformly continuous for s < −3/4 by Kenig, Ponce, 
and Vega in [13] (for C-valued KdV) and Christ, Colliander, and Tao in [5] (for R-valued KdV). 
Therefore, s = −3/4 is optimal regularity to obtain the well-posedness of KdV equation by using 
the iteration argument. For the Burgers equation

∂tu − ∂2
xu = ∂x(u

2), t > 0, x ∈ R,

Dix ([8]) proved the local well-posedness in Hs(R) for s > −1/2 and nonuniqueness of solu-
tion for s < −1/2. For the critical case, Bekiranov ([2]) obtained the local well-posedness of 
the Burgers equation in H− 1

2 (R). These results say that −1/2 is optimal regularity to obtain 
the well-posedness of the Burgers equation. In [20], Molinet and Ribaud considered the KdV-
Burgers equation

∂tu + ∂3
xu − ∂2

xu = ∂x(u
2), t > 0, x ∈ R

and obtained the global well-posedness in Hs(R) for s > −1. For the critical case, Molinet and 
Vento ([21]) proved the global well-posedness of the KdV-Burgers equation in H−1(R). They 
also proved that the flow map is discontinuous for s < −1. We note that the regularity s = −1 is 
lower than both −3/4 and −1/2. It means that both the dispersive term and the dissipative term 
are essentially effective for well-posedness.

Next, we introduce some known results for related problems for 2D case. Grünrock and Herr 
([10]), and Molinet and Pilod ([19]) proved that the 2D Zakharov-Kuznetsov equation

∂tu + ∂x(∂
2
x + ∂2

y )u = ∂x(u
2), t > 0, (x, y) ∈R2 (1.3)

is locally well-posed in Hs(R2) for s > 1/2. Especially, Grünrock and Herr used the linear 
transform

v(t, x, y) = u

(
t,

4
1
3

2
(x + y),

4
1
3

2
√

3
(x − y)

)
,
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and rewrote (1.3) to the symmetric form

∂tv + (∂3
x + ∂3

y )v = 4− 1
3 (∂x + ∂y)(v

2), t > 0, (x, y) ∈ R2. (1.4)

Such transform is introduced by Artzi, Koch, and Saut in [1]. We note that the well-posedness 
of (1.3) in Hs(R2) is equivalent to the well-posedness of (1.4) in Hs(R2). This transform is not 
essentially needed to obtain the well-posedness (Actually, Molinet and Pilod did not used such 
transform), but the symmetry helps us to find the structure of the equation and to write some parts 
of proof simply. Well-posedness of (1.3) for s ≤ 1/2 is still open. But, Kinoshita gave the author 
the comment that there is a counter example for the C2-well-posedness of (1.4) in Hs(R2) for 
s < −1/4. His counter example is given as

û0(ξ, η) := N−s+ 5
4 (χA(ξ, η) + χA(−ξ,−η) + χB(ξ, η) + χB(−ξ,−η)),

where

A :=
{

Na + N− 1
2 δv + N−2ε

v⊥

|v⊥|
∣∣∣∣ − 1 < δ, ε < 1

}
,

B :=
{

Nb + N− 1
2 δv + N−2ε

v⊥

|v⊥|
∣∣∣∣ − 1 < δ, ε < 1

}
,

v := (3 3
√

9,
3
√

100), a := (
3
√

2,
3
√

75), b :=
(

−3 3
√

2,−
3
√

75

5

)
.

Indeed, we can obtain ‖u0‖Hs ∼ 1 and

sup
0<t≤T

∥∥∥∥∥∥
t∫

0

e−(t−t ′)(∂3
x+∂3

y )(∂x + ∂y)
(
(e−t ′(∂3

x+∂3
y )u0)

2
)

dt ′
∥∥∥∥∥∥

Hs

� N−s− 1
4 .

While for the nonlinear parabolic equation

∂tu − �u = P(D)F(u), t > 0, (x, y) ∈Rd ,

Ribaud ([23]) obtained some well-posedness results. His results contain that the well-posedness 
of the 2D nonlinear parabolic equation

∂tu − (∂2
x + ∂2

y )u = ∂x(u
2), t > 0, (x, y) ∈ R2 (1.5)

in Hs(R2) for s ≥ 0 and nonuniqueness of solution for s < 0. Therefore, our interest is the 
well-posedness of (1.1) in Hs(R2) for lower s than both −1/4 and 0.

Here, we introduce the results for 2D dispersive-dissipative models. The KP-Burgers equation

∂x

(
∂tu + ∂3

xu − ∂2
xu − ∂x(u

2)
)

+ ε∂2
yu = 0, t > 0, (x, y) ∈R2, ε ∈ {−1,1},
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is also two dimensional model of KdV-Burgers equation. We call KP-Burgers equation “KP-
I-Burgers equation” if ε = −1, and “KP-II-Burgers equation” if ε = 1. The well-posedness of 
KP-Burgers equation is obtained in Hs,0(R2) for s > −1/2 by Kojok in [15] (for ε = 1) and 
Darwich in [7] (for ε = −1). Where Hs,0(R2) is anisotropic Sobolev space defined by the norm 
‖f ‖Hs,0 = ‖〈ξ 〉s f̂ (ξ, η)‖L2

ξη
. Carvajal, Esfahani, and Panthee ([4]) considered the two dimen-

sional dissipative KdV type equation

∂tu + ∂3
xu + Lx,yu + ∂x(u

2) = 0, t > 0, (x, y) ∈ R2,

where the operator Lx,y is defined by

Fxy[Lx,yf ](ξ, η) = −	(ξ,η)f̂ (ξ, η)

and the leading term of 	(ξ, η) is −(|ξ |p1 + |η|p2) with p1, p2 > 0. They obtained the well-
posedness of this equation with p2 > 1 in Hs,0(R2) for s > −3/4. They also considered the high 
dimensional cases and obtained more general results. There is no results for the well-posedness 
of (1.1) as far as we know. But the initial-boundary problem of ZKB equation is studied by Larkin 
([17], [16]).

Now, we give the main results in this paper. To begin with, we rewrite (1.1) to the symmetric 
form based on [10]. We put

v(t, x, y) = 4u(16t,2(x + y),2
√

3
−1

(x − y)).

Then, (1.1) can be rewritten{
∂tv + (∂3

x + ∂3
y )v − (∂x + ∂y)

2v = (∂x + ∂y)(v
2),

v(0, x, y) = v0(x, y) := 4u0(2(x + y),2
√

3
−1

(x − y)).
(1.6)

We note that the well-posedness of (1.1) in Hs(R2) is equivalent to the well-posedness of (1.6)
in Hs(R2). Therefore, we consider (1.6) instead of (1.1).

Theorem 1.1. Let s > − 1
2 . Then (1.6) is locally well-posed in Hs(R2). (Therefore (1.1) is also 

locally well-posed in Hs(R2).) More precisely, for any v0 ∈ Hs(R2), there exist T > 0, and an 

unique solution v ∈ X
s, 1

2 ,1
T (↪→ C([0, T ]; Hs(R2)) (See, Definition 2.1) to (1.6) in [0, T ]. Fur-

thermore, the data-to-solution map is Lipschitz continuous from Hs(R2) to C([0, T ]; Hs(R2)).

Theorem 1.2. Let s > − 1
2 . For any v0 ∈ H̃ s(R2), the solution v obtained in Theorem 1.1 can be 

extended globally in time and v belongs to C((0, ∞); H̃∞(R2)), where H̃ s(R2) is the completion 
of the Schwartz class S(R2) with the norm ‖f ‖H̃ s = ‖〈ξ + η〉s f̂ (ξ, η)‖L2

ξη
, and H̃∞(R2) =⋂

s∈R H̃ s(R2).

Remark 1.3. (i) Although (1.1) does not have the dissipative term with respect to y, the well-
posedness of (1.1) is obtained in isotropic Sobolev space Hs(R2) for lower regularity than both 
(1.3) and (1.5).
(ii) Theorem 1.2 says that (1.1) is globally well-posed in Hs,0(R2) for s > − 1 .
2
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To obtain Theorem 1.1, we have to treat the dissipative term carefully, because the symbol 
(ξ + η)2 is vanished on the line {(ξ, −ξ)|ξ ∈ R}. But the nonlinear term is also vanished on 
the same line. It helps us to obtain the key bilinear estimate (Proposition 3.1). We will use the 
iteration argument with the Fourier restriction norm to obtain the local well-posedness. While, 
the global well-posedness will be proved by using the smoothing effect from the dissipative term 
and non-increasing of L2-norm of the solution.

Notation. We denote the spatial Fourier transform by ̂ · or Fxy , the Fourier transform in time 

by Ft , and the Fourier transform in all variables by ̃· or F . The operator U(t) = e−t (∂3
x+∂3

y ) and 
W(t) = e|t |(∂x+∂y)2

e−t (∂3
x+∂3

y ) on Hs(R2) is given as a Fourier multiplier

Fxy[U(t)f ](ξ, η) = eit (ξ3+η3)f̂ (ξ), Fxy[W(t)f ](ξ, η) = e−|t |(ξ+η)2
eit (ξ3+η3)f̂ (ξ).

U(t) and W(t) give a solution to

∂tu + (∂3
x + ∂3

y )u = 0

and

∂tu + (∂3
x + ∂3

y )u − sgn(t)(∂x + ∂y)
2u = 0

respectively. We note that F[U(−·)F (·)](τ, ξ, η) = F̃ (τ + ξ3 + η3, ξ, η).
We will use A � B to denote an estimate of the form A ≤ CB for some constant C

and write A ∼ B to mean A � B and B � A. We will use the convention that capital let-
ters denote dyadic numbers, e.g. N = 2n for n ∈ Z and for a dyadic summation we write ∑

N aN := ∑
n∈Z a2n , 

∑
N≥N ′ aN := ∑

n∈Z,2n≥N ′ a2n , and 
∑

N≤N ′ aN := ∑
n∈Z,2n≤N ′ a2n for 

brevity. Let χ ∈ C∞
0 ((−2, 2)) be an even, non-negative function such that χ(t) = 1 for |t | ≤ 1. 

We define ϕ(t) := χ(t) − χ(2t) and ϕN(t) := ϕ(N−1t). Then, 
∑

N ϕN(t) = 1 whenever t �= 0. 
We define the projections

P̂Nu(ξ, η) := ϕN(|(ξ, η)|)̂u(ξ, η), ̂PN,Mu(ξ, η) := ϕN,M(ξ, η)̂u(ξ, η),

Q̃Lu(τ, ξ, η) := ϕL(τ − ξ3 − η3)̃u(τ, ξ, η),

where ϕN,M(ξ, η) := ϕN(|(ξ, η)|)ϕM(ξ + η).
The rest of this paper is planned as follows. In Section 2, we will give the definition of the 

solution space, and prove the linear estimates. In Section 3, we will prove the bilinear estimate 
which is main part of this paper. In Section 4, we will give the proof of the well-posedness 
(Theorems 1.1 and 1.2).

2. Function space and linear estimate

In this section, we define the function space, and prove the estimate for linear solution and 
Duhamel term. First, we consider the standard Fourier restriction norm ‖ · ‖Xs,b for (1.6) defined 
by

‖u‖Xs,b = ‖〈|(ξ, η)|〉s〈(ξ + η)2 + i(τ − ξ3 − η3)〉bũ(τ, ξ, η)‖L2 .

τξη
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Such Fourier restriction norm was introduced by J. Bourgain ([3]) for the nonlinear Schrödinger 
equation and the KdV equation. Let ψ ∈ C∞(R) denotes a cut-off function such that suppψ ⊂
[−2, 2], ψ = 1 on [−1, 1]. We note that, the estimate

‖ψ(t)W(t)u0‖Xs,b � ‖〈|(ξ, η)|〉s〈ξ + η〉b− 1
2 û0(ξ, η)‖L2

ξη

holds. Therefore, if b ≤ 1/2, then ψW(·)u0 ∈ Xs,b for u0 ∈ Hs . But the embedding Xs,b ↪→
C(R; Hs(R2)) does not hold for b ≤ 1/2. Therefore, we use the Besov type Fourier restriction 
norm defined as follows.

Definition 2.1. Let s ∈ R, b ∈ R.
(i) We define the function space Xs,b,1 as the completion of the Schwartz class S(Rt × R2

x,y)

with the norm

‖u‖Xs,b,1 =

⎧⎪⎨⎪⎩
∑

N∈2Z

∑
M∈2Z

⎛⎝ ∑
L∈2Z

〈N〉s〈M2 + L〉b‖PN,MQLu‖L2
txy

⎞⎠2
⎫⎪⎬⎪⎭

1
2

.

(ii) For T > 0, we define the time localized space Xs,b,1
T as

X
s,b,1
T = {u|[0,T ]|u ∈ Xs,b,1}

with the norm

‖u‖
X

s,b,1
T

= inf{‖v‖Xs,b,1 |v ∈ Xs,b,1, v|[0,T ] = u|[0,T ]}.

Remark 2.2. (i) The embedding X
s, 1

2 ,1
T ↪→ C([0, T ]; Hs(R2)) holds.

(ii) The size of |ξ + η|, which comes from the symbol of the dissipative term of (1.6), is not 
decided by the size of |(ξ, η)|. Therefore, to use the dissipative effect strictly, we focus on not 
only |(ξ, η)| ∼ N , but also |ξ + η| ∼ M . This is a different point from 1D case.
(iii) We can assume 

∑
M∈2Z = ∑

M�N since |ξ + η| � |(ξ, η)| holds.

We choose X
s, 1

2 ,1
T as the solution space. Now, we define the operator K and L by

KF(t)(ξ, η) :=
∫
R

eitτ − e−|t |(ξ+η)2

(ξ + η)2 + iτ
F[U(−·)F (·)](τ, ξ, η)dτ

LF(t) := U(t)

∫
R2

eixξ eiyηKF(t)(ξ, η)dξdη = U(t)F−1
x,y[KF(t)].

Then, we note that
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LF(t) =
t∫

0

W(t − t ′)F (t ′)dt ′

holds for t ≥ 0 and the integral form of (1.6) on [0, ∞) is given by

v(t) = W(t)v0 +
t∫

0

W(t − t ′)(∂x + ∂y)(v(t ′)2)dt ′

= W(t)v0 +L((∂x + ∂y)v)(t).

(2.1)

Proposition 2.3. Let s ∈ R. There exists C1 > 0, such that for any u0 ∈ Hs(R2), we have

‖ψ(t)W(t)u0‖
X

s, 1
2 ,1 ≤ C1‖u0‖Hs .

Proof. Since (∑
N

∑
M

〈N〉2s‖PN,Mu0‖2
L2

xy

) 1
2

∼ ‖u0‖Hs

holds, it suffice to prove∑
L

〈M2 + L〉 1
2 ‖PN,MQL(ψ(t)W(t)u0)‖L2

txy
� ‖PN,Mu0‖L2

xy

for each N , M ∈ 2Z. By using Plancherel’s theorem, we have

‖PN,MQL(ψ(t)W(t)u0)‖L2
txy

∼ ‖ϕN,M(ξ, η)ϕL(τ)Ft [ψ(t)e−|t |(ξ+η)2 ]û0(ξ, η)‖L2
ξηt

� ‖PN,Mu0‖L2
xy

‖φM(ξ + η)ϕL(τ)Ft [ψ(t)e−|t |(ξ+η)2 ]‖L∞
ξηL2

t

= ‖PN,Mu0‖L2
xy

‖φM(ζ )ϕL(τ)Ft [ψ(t)e−|t |ζ 2 ]‖L∞
ζ L2

t
,

where φM = ϕ2M + ϕM + ϕM
2

and we used ϕM = ϕMφM . Therefore, it suffice to prove

∑
L

〈M2 + L〉 1
2 ‖φM(ζ )ϕL(τ)Ft [ψ(t)e−|t |ζ 2 ]‖L∞

ζ L2
τ
� 1. (2.2)

It is obtained in the proof of Proposition 4.1 in [21]. �
Proposition 2.4. Let s ∈ R. There exists C2 > 0, such that for any F ∈ Xs,− 1

2 ,1, we have

‖ψ(t)LF(t)‖
X

s, 1
2 ,1 ≤ C2‖F‖

X
s,− 1

2 ,1
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Proof. We use the argument in the proof of Lemma 4.1 in [21]. Since

‖PN,MQL(ψ(t)LF(t))‖L2
txy

∼ ‖ϕN,M(ξ, η)ϕL(τ)Ft [ψKF ](τ, ξ, η)‖L2
ξητ

,

it suffice to show that

∑
L

〈M2 + L〉 1
2 ‖ϕN,M(ξ, η)ϕL(τ)Ft [ψKF ](τ, ξ, η)‖L2

ξητ

�
∑
L

〈M2 + L〉− 1
2 ‖ϕN,M(ξ, η)ϕL(τ)F[U(−·)F (·)](τ, ξ, η)‖L2

ξητ

(2.3)

We put w(t) = U(−t)F (t) and split ψKF into K1 + K2 + K3 − K4, where

K1(t, ξ, η) = ψ(t)

∫
|τ |≤1

eitτ − 1

(ξ + η)2 + iτ
w̃(τ, ξ, η)dτ,

K2(t, ξ, η) = ψ(t)

∫
|τ |≤1

1 − e−|t |(ξ+η)2

(ξ + η)2 + iτ
w̃(τ, ξ, η)dτ,

K3(t, ξ, η) = ψ(t)

∫
|τ |≥1

eitτ

(ξ + η)2 + iτ
w̃(τ, ξ, η)dτ,

K4(t, ξ, η) = ψ(t)

∫
|τ |≥1

e−|t |(ξ+η)2

(ξ + η)2 + iτ
w̃(τ, ξ, η)dτ.

Furthermore, we put wN,M = PN,Mw. We note that w̃N,M(τ, ξ, η) = φM(ξ + η)w̃N,M(τ, ξ, η)

since ϕM = ϕMφM .

Estimate for K1

By using the Taylor expansion, we have

‖ϕN,M(ξ, η)ϕL(τ)Ft [K1](τ, ξ, η)‖L2
ξητ

�
∞∑

n=1

1

n!

∥∥∥∥∥∥∥
⎛⎜⎝ ∫

|τ |≤1

|τ |n|w̃N,M(τ, ξ, η)|
(ξ + η)2 + |τ | dτ

⎞⎟⎠‖ϕL(τ)Ft [tnψ(t)](τ )‖L2
τ

∥∥∥∥∥∥∥
L2

ξη

.

By the Cauchy-Schwarz inequality, we obtain
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|τ |≤1

|τ |n|w̃N,M(τ, ξ, η)|
(ξ + η)2 + |τ | dτ

�

⎛⎜⎝ ∫
|τ |≤1

|τ |2〈(ξ + η)2 + |τ |〉
((ξ + η)2 + |τ |)2 |φM(ξ + η)|2dτ

⎞⎟⎠
1
2
⎛⎜⎝ ∫

|τ |≤1

|w̃N,M(τ, ξ, η)|2
〈(ξ + η)2 + |τ |〉 dτ

⎞⎟⎠
1
2

� 〈M〉−1
∑
L

〈M2 + L〉− 1
2 ‖ϕL(τ)w̃N,M(τ, ξ, η)‖L2

τ

for n ≥ 1. Therefore, we get

∑
L

〈M2 + L〉 1
2 ‖ϕN,M(ξ, η)ϕL(τ)Ft [K1](τ, ξ, η)‖L2

ξητ

�
∞∑

n=1

1

n! ‖|t |
nψ‖

B
1
2

2,1

∑
L

〈M2 + L〉− 1
2 ‖ϕL(τ)w̃N,M(τ, ξ, η)‖L2

ξητ

�
∑
L

〈M2 + L〉− 1
2 ‖ϕL(τ)w̃N,M(τ, ξ, η)‖L2

ξητ

since 〈M2 + L〉 1
2 〈M〉−1 � 〈L〉 1

2 .

Estimate for K2
By Plancherel’s theorem, we have

‖ϕN,M(ξ, η)ϕL(τ)Ft [K2](τ, ξ, η)‖L2
ξητ

�

∥∥∥∥∥∥∥
⎛⎜⎝ ∫

|τ |≤1

|w̃N,M(τ, ξ, η)|
(ξ + η)2 + |τ | dτ

⎞⎟⎠‖φM(ξ + η)ϕL(τ)Ft [ψ(t)(1 − e−|t |(ξ+η)2
)](τ )‖L2

τ

∥∥∥∥∥∥∥
L2

ξη

.

By the Cauchy-Schwarz inequality, we obtain

∫
|τ |≤1

|w̃N,M(τ, ξ, η)|
(ξ + η)2 + |τ | dτ

�

⎛⎜⎝ ∫
|τ |≤1

〈(ξ + η)2 + |τ |〉
((ξ + η)2 + |τ |)2 |φM(ξ + η)|2dτ

⎞⎟⎠
1
2
⎛⎜⎝ ∫

|τ |≤1

|w̃N,M(τ, ξ, η)|2
〈(ξ + η)2 + |τ |〉 dτ

⎞⎟⎠
1
2

� M−2〈M〉
∑
L

〈M2 + L〉− 1
2 ‖ϕL(τ)w̃N,M(τ, ξ, η)‖L2

τ

Therefore if M ≥ 1, then we get
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∑
L

〈M2 + L〉 1
2 ‖ϕN,M(ξ, η)ϕL(τ)Ft [K2](τ, ξ, η)‖L2

ξητ

�
∑
L

〈M2 + L〉− 1
2 ‖ϕL(τ)w̃N,M(τ, ξ, η)‖L2

ξητ

by (2.2) and ∑
L

〈M2 + L〉 1
2 ‖ϕL(τ)Ft [ψ](τ )‖L2

τ
� M‖ψ‖

B
1
2

2,1

� M.

While if M ≤ 1, then by using the Taylor expansion, we have

‖φM(ξ + η)ϕL(τ)Ft [ψ(t)(1 − e−|t |(ξ+η)2
)](τ )‖L2

τ

�
∞∑

n=1

(ξ + η)2n

n! φM(ξ + η)‖ϕL(τ)Ft [ψ(t)|t |n](τ )‖L2
τ

� M2
∞∑

n=1

1

n! ‖ϕL(τ)Ft [ψ(t)|t |n](τ )‖L2
τ

Therefore, we get∑
L

〈M2 + L〉 1
2 ‖ϕN,M(ξ, η)ϕL(τ)Ft [K2](τ, ξ, η)‖L2

ξητ

�
∞∑

n=1

1

n! ‖|t |
nψ‖

B
1
2

2,1

∑
L

〈M2 + L〉− 1
2 ‖ϕL(τ)w̃N,M(τ, ξ, η)‖L2

ξητ

�
∑
L

〈M2 + L〉− 1
2 ‖ϕL(τ)w̃N,M(τ, ξ, η)‖L2

ξητ
.

Estimate for K3

We put gN,M(t) = F−1
t [1|τ |≥1((ξ + η)2 + iτ )−1w̃N,M(τ, ξ, η)](t). Then, we have

|ϕN,M(ξ, η)ϕL(τ)Ft [K3](τ )| ∼ |ϕL(τ)
(
Ft [ψ] ∗τ Ft [gN,M ](τ )

) |
�

∑
L1

∑
L2

|ϕL(τ)(ϕL1Ft [ψ]) ∗τ (ϕL2Ft [gN,M)(τ )|

(i) Summation for L1 � L (then, L2 ∼ L.)
By the Young inequality, we have

‖ϕL(τ)(ϕL1Ft [ψ]) ∗τ (ϕL2Ft [gN,M)(τ )‖L2
τ

� ‖ϕL1(τ )Ft [ψ](τ )‖L1
τ
‖ϕL2(τ )Ft [gN,M ](τ )‖L2

τ

� ‖ϕL1(τ )Ft [ψ](τ )‖L1
τ
〈M2 + L2〉−1‖ϕL2(τ )w̃N,M(τ)‖L2

τ
.

Therefore, we obtain
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∑
L

〈M2 + L〉 1
2

∑
L1�L

∑
L2∼L

‖ϕL(τ)(ϕL1Ft [ψ]) ∗τ (ϕL2Ft [gN,M ])(τ )‖L2
ξητ

�

⎛⎝∑
L1

‖ϕL1(τ )Ft [ψ](τ )‖L1
τ

⎞⎠⎛⎝∑
L2

〈M2 + L2〉− 1
2 ‖ϕL2(τ )w̃N,M(τ, ξ, η)‖L2

ξητ

⎞⎠
�

∑
L2

〈M2 + L2〉− 1
2 ‖ϕL2(τ )w̃N,M(τ, ξ, η)‖L2

ξητ

since ∑
L1

‖ϕL1(τ )Ft [ψ](τ )‖L1
τ
�

∑
L1

L
1
2
1 ‖ϕL1(τ )Ft [ψ](τ )‖L2

τ
� ‖ψ‖

B
1
2

2,1

� 1.

(ii) Summation for L � M2, L1 � L.
By the Hölder inequality and the Young inequality, we have

‖ϕL(τ)(ϕL1Ft [ψ]) ∗τ (ϕL2Ft [gN,M ])(τ )‖L2
τ

� ‖ϕL‖L2
τ
‖ϕL1(τ )Ft [ψ](τ )‖L2

τ
‖ϕL2(τ )Ft [gN,M ](τ )‖L2

τ

� L
1
2 ‖ϕL1(τ )Ft [ψ](τ )‖L2

τ
〈M2 + L2〉−1‖ϕL2(τ )w̃N,M(τ)‖L2

τ
.

Therefore, we obtain∑
L�M2

〈M2 + L〉 1
2

∑
L1�L

∑
L2

‖ϕL(τ)(ϕL1Ft [ψ]) ∗τ (ϕL2Ft [gN,M ])(τ )‖L2
ξητ

� 〈M〉
⎛⎝∑

L1

L
1
2
1 ‖ϕL1(τ )Ft [ψ](τ )‖L2

τ

⎞⎠⎛⎝∑
L2

〈M2 + L2〉−1‖ϕL2(τ )w̃N,M(τ, ξ, η)‖L2
ξητ

⎞⎠
�

∑
L2

〈M2 + L2〉− 1
2 ‖ϕL2(τ )w̃N,M(τ, ξ, η)‖L2

ξητ

since 〈M〉 � 〈M2 + L2〉 1
2 and

∑
L1

L
1
2
1 ‖ϕL1(τ )Ft [ψ](τ )‖L2

τ
� ‖ψ‖

B
1
2

2,1

� 1.

(iii) Summation for L1 � L � M2. By the Young inequality and the Cauchy-Schwarz inequality, 
we have

‖ϕL(τ)(ϕL1Ft [ψ]) ∗τ (ϕL2Ft [gN,M ])(τ )‖L2
τ

� ‖ϕL1(τ )Ft [ψ](τ )‖L2
τ
‖ϕL2(τ )Ft [gN,M ](τ )‖L1

τ

� ‖ϕ (τ)F [ψ](τ )‖ 2 〈M2 + L 〉− 1
2 ‖ϕ (τ)w̃ (τ )‖ 2 .
L1 t Lτ

2 L2 N,M Lτ
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Therefore, we obtain

∑
L�M2

〈M2 + L〉 1
2

∑
L1�L

∑
L2

‖ϕL(τ)(ϕL1Ft [ψ]) ∗τ (ϕL2Ft [gN,M ])(τ )‖L2
ξητ

�

⎛⎝∑
L1

〈L1〉 1
2 ‖ϕL1(τ )Ft [ψ](τ )‖L2

τ

⎞⎠⎛⎝∑
L2

〈M2 + L2〉− 1
2 ‖ϕL2(τ )w̃N,M(τ, ξ, η)‖L2

ξητ

⎞⎠
�

∑
L2

〈M2 + L2〉− 1
2 ‖ϕL2(τ )w̃N,M(τ, ξ, η)‖L2

ξητ

since

∑
L1

〈L1〉 1
2 ‖ϕL1(τ )Ft [ψ](τ )‖L2

τ
� ‖ψ‖

B
1
2

2,1

� 1.

Estimate for K4
By Plancherel’s theorem, we have

‖ϕN,M(ξ, η)ϕL(τ)Ft [K4](τ, ξ, η)‖L2
ξητ

�

∥∥∥∥∥∥∥
⎛⎜⎝ ∫

|τ |≥1

|w̃N,M(τ, ξ, η)|
(ξ + η)2 + |τ | dτ

⎞⎟⎠‖φM(ξ + η)ϕL(τ)Ft [ψ(t)e−|t |(ξ+η)2 ](τ )‖L2
τ

∥∥∥∥∥∥∥
L2

ξη

.

By the Cauchy-Schwarz inequality, we obtain

∫
|τ |≥1

|w̃N,M(τ, ξ, η)|
(ξ + η)2 + |τ | dτ �

∑
L

〈M2 + L〉−1‖ϕL(τ)w̃N,M(τ, ξ, η)‖L1
τ

�
∑
L

〈M2 + L〉− 1
2 ‖ϕL(τ)w̃N,M(τ, ξ, η)‖L2

τ
.

Therefore, by (2.2), we get

∑
L

〈M2 + L〉 1
2 ‖ϕN,M(ξ, η)ϕL(τ)Ft [K4](τ, ξ, η)‖L2

ξητ

�
∑
L

〈M2 + L〉− 1
2 ‖ϕL(τ)w̃N,M(τ, ξ, η)‖L2

ξητ
. �

3. Bilinear estimate

In this section, we prove the estimate for nonlinear term as follows.



H. Hirayama / J. Differential Equations 267 (2019) 4089–4116 4101
Proposition 3.1. Let s ≥ s0 > − 1
2 . There exist 0 < δ � 1 and C3 > 0, such that for any u, 

v ∈ Xs, 1−δ
2 ,1, we have

‖(∂x + ∂y)(uv)‖
X

s,− 1
2 ,1 ≤ C3‖u‖

X
s, 1−δ

2 ,1‖v‖
X

s, 1−δ
2 ,1 .

To prove Proposition 3.1, we first give some Strichartz estimates.

Proposition 3.2. Let (p, q) ∈R2 satisfy p ≥ 3 and 3
p

+ 2
q

= 1. For any u0 ∈ L2(R2), we have

‖U(t)u0‖L
p
t L

q
xy

� ‖u0‖L2
xy

.

Proposition 3.2 is obtained by using the variable transform (x, y) �→ (4− 1
3 (x+√

3y), 4− 1
3 (x−√

3y)) in Proposition 2.4 in [18].

Proposition 3.3. For any u0 ∈ L2(R2), we have

‖D
1
8
x D

1
8
y U(t)u0‖L4

txy
� ‖u0‖L2

xy
,

where Ds
x =F−1

xy |ξ |sFxy , Ds
y =F−1

xy |η|sFxy for s ∈ R.

Proposition 3.3 is obtained by applying �(ξ, η) = ξ3 + η3 in Corollary 3.4 in [19].
By using the same argument as in Lemma 2.3 in [9], we obtain the following estimates from 

Proposition 3.2 and Proposition 3.3.

Corollary 3.4. Let (p, q) ∈R2 satisfy p ≥ 3 and 3
p

+ 2
q

= 1. For N , L ∈ 2Z, we have

‖PNQLu‖L
p
t L

q
xy

� L
1
2 ‖PNQLu‖L2

txy
. (3.1)

Furthermore, if Fxy[PNu] is supported in {(ξ, η)| |ξ | ∼ |η|}, then we have

‖PNQLu‖L4
txy

� N− 1
4 L

1
2 ‖PNQLu‖L2

txy
. (3.2)

To get a positive power of M , we give the following estimates.

Corollary 3.5. Let 0 < δ � 1, 0 < ε < 1 − δ. For N , M , L ∈ 2Z, we have

‖PN,MQLu‖
L

4
1+δ
txy

� (NM)
ε
4 L

5(1−δ)
12 − ε

6 ‖PN,MQLu‖L2
txy

. (3.3)

Furthermore, if Fxy[PNu] is supported in {(ξ, η)| |ξ | ∼ |η|}, then we have

‖PN,MQLu‖
L

4
1+δ
txy

� (NM)
ε
4 N− 1

4 (1−δ−ε)L
1−δ

2 − ε
4 ‖PNQLu‖L2

txy
. (3.4)
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Proof. By (3.1) with p = q = 5, we have the L5-Strichartz estimate

‖PN,MQLu‖L5
txy

� L
1
2 ‖PN,MQLu‖L2

txy
. (3.5)

By the interpolation between (3.5) and a trivial equality ‖PN,MQLu‖L2
txy

= L0‖PN,MQLu‖L2
txy

, 
we have

‖PN,MQLu‖
L

4−2ε
1+δ

txy

� L
5(1−δ−ε)

6(2−ε) ‖PNQLu‖L2
txy

. (3.6)

While, by the Cauchy-Schwarz inequality, we obtain

‖PN,MQLu‖L∞
xy

≤
∫

|(ξ,η)|∼N
|ξ+η|∼M

|Fxy[PN,MQLu](ξ, η)|dξdη

� (NM)
1
2 ‖PN,MQLu‖L2

xy
.

Therefore, by using (3.1) with (p, q) = (∞, 2), we have

‖PN,MQLu‖L∞
txy

� (NML)
1
2 ‖PN,MQLu‖L2

txy
. (3.7)

By the interpolation between (3.6) and (3.7), we obtain (3.3).
By using (3.2) instead of (3.5) in the above argument, we also get (3.4). �
Next, we give the bilinear Strichartz estimates.

Proposition 3.6. Let R(j)
K (j = 1, 2) denote the bilinear operator defined by

Fxy[R(1)
K (u1, u2)](ξ, η) =

∫
ϕK(ξ2

1 − (ξ − ξ1)
2)û1(ξ1, η1)û2(ξ − ξ1, η − η1)dξ1dη1,

Fxy[R(2)
K (u1, u2)](ξ, η) =

∫
ϕK(η2

1 − (η − η1)
2)û1(ξ1, η1)û2(ξ − ξ1, η − η1)dξ1dη1.

For N1, N2, L1, L2, K ∈ 2Z with N1 ≥ N2, and j ∈ {1, 2}, we have

‖R(j)
K (PN1QL1u1,PN2QL2u2)‖L2

txy

� K− 1
2 N

1
2

2 L
1
2
1 L

1
2
2 ‖PN1QL1u1‖L2

txy
‖PN2QL2u2‖L2

txy
.

(3.8)

Proof. We only prove for j = 1 because the case j = 2 can be proved by the same way. We put 
fi =F[PN QL ui], ζi = (ξi, ηi) (i = 1, 2). By the duality argument, it suffice to show that
i i
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∣∣∣∣∣
∫
�

f1(τ1, ζ1)f2(τ2, ζ2)f (τ1 + τ2, ζ1 + ζ2)dτ1dτ2dζ1dζ2

∣∣∣∣∣
� K− 1

2 N
1
2

2 L
1
2
1 L

1
2
2 ‖f1‖L2

τξη
‖f2‖L2

τξη
‖f ‖L2

τξη

(3.9)

for any f ∈ L2(R ×R2), where

� = {(τ1, τ2, ζ1, ζ2)| |ζi | ∼ Ni, |τi − ξ3
i − η3

i | ∼ Li (i = 1,2), |ξ2
1 − ξ2

2 | ∼ K}.

By the Cauchy-Schwarz inequality, we have∣∣∣∣∣∣
∫
�

f1(τ1, ζ1)f2(τ2, ζ2)f (τ1 + τ2, ζ1 + ζ2)dτ1dτ2dζ1dζ2

∣∣∣∣∣∣
� ‖f1‖L2

τξη
‖f2‖L2

τξη

⎛⎝∫
�

|f (τ1 + τ2, ζ1 + ζ2)|2dτ1dτ2dζ1dζ2

⎞⎠
1
2

.

(3.10)

By applying the variable transform (τ1, τ2) �→ (θ1, θ2) and (ζ1, ζ2) �→ (μ, w, z, ν) as

θi = τi − ξ3
i − η3

i (i = 1,2),

μ = θ1 + θ2 + ξ3
1 + ξ3

2 + η3
1 + η3

2, w = ξ1 + ξ2, z = η1 + η2, ν = η2,

we have∫
�

|f (τ1 + τ2, ζ1 + ζ2)|2dτ1dτ2dζ1dζ2

�
∫

|θ1|∼L1|θ2|∼L2

⎛⎜⎝ ∫
|ν|�N2

|f (μ,w, z)|21{|ξ2
1 −ξ2

2 |∼K}(ξ1, ξ2)J (ζ1, ζ2)
−1dμdwdzdν

⎞⎟⎠dθ1dθ2,

where

J (ζ1, ζ2) =
∣∣∣∣det

∂(μ,w, z, ν)

∂(ξ1, η1, ξ2, η2)

∣∣∣∣ = 3|ξ2
1 − ξ2

2 |.

Therefore, we obtain∫
�

|f (τ1 + τ2, ζ1 + ζ2)|2dτ1dτ2dζ1dζ2 � K−1N2L1L2‖f ‖L2
τξη

. (3.11)

As a result, we get (3.9) from (3.10) and (3.11). �



4104 H. Hirayama / J. Differential Equations 267 (2019) 4089–4116
Remark 3.7. In particular, if N1 � N2, then we have

‖PN1QL1u1 · PN2QL2u2‖L2
txy

� N−1
1 N

1
2

2 L
1
2
1 L

1
2
2 ‖PN1QL1u1‖L2

txy
‖PN2QL2u2‖L2

txy

(3.12)

since the equality

PN1QL1u1 · PN2QL2u2 = R
(j)
K (PN1QL1u1,PN2QL2u2)

with K ∼ N2
1 holds for j = 1 or 2.

Corollary 3.8. Let 0 < δ � 1, 0 < ε < 1 − δ. For N1, N2, M1, M2, L1, L2 ∈ 2Z with N1 � N2, 
we have

‖PN1,M1QL1u1 · PN2,M2QL2u2‖
L

2
1+δ
txy

� Jδ,ε(L1L2)
1−δ

2 − ε
4 ‖PN1,M1QL1u1‖L2

txy
‖PN2,M2QL2u2‖L2

txy
,

(3.13)

where

Jδ,ε = Jδ,ε(N1,M1,N2,M2) = (N1M1N2M2)
ε
4 (N−1

1 N
1
2

2 )1−δ−ε .

Proof. By the Hölder inequality and (3.7), we have

‖PN1,M1QL1u1 · PN2,M2QL2u2‖L2
txy

� ‖PN1,M1QL1u1‖
1
2
L∞

txy
‖PN2,M2QL2u2‖

1
2

L2
txy

‖PN1,M1QL1u1‖
1
2

L2
txy

‖PN2,M2QL2u2‖
1
2
L∞

txy

� (N1M1L1N2M2L2)
1
4 ‖PN1,M1QL1u1‖L2

txy
‖PN2,M2QL2u2‖L2

txy
.

By the interpolation between this estimate and (3.12), we obtain

‖PN1,M1QL1u1 · PN2,M2QL2u2‖L2
txy

� J
1

1−δ

δ,ε (L1L2)
1
2 − ε

4(1−δ) ‖PN1,M1QL1u1‖L2
txy

‖PN2,M2QL2u2‖L2
txy

.

(3.14)

While, by the Cauchy-Schwarz inequality, we have

‖PN1,M1QL1u1 · PN2,M2QL2u2‖L1
txy

� ‖PN1,M1QL1u1‖L2
txy

‖PN2,M2QL2u2‖L2
txy

. (3.15)

By the interpolation between (3.14) and (3.15), we obtain (3.13). �
Here, we prove Proposition 3.1.
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Proof of Proposition 3.1. By using the embedding l1 ↪→ l2 for the summation 
∑

N

∑
M , and 

the duality argument, we have

‖(∂x + ∂y)(uv)‖
X

s,− 1
2 ,1

�
∑

N1,M1,L1

∑
N2,M2,L2

⎛⎝ ∑
N,M,L

〈N〉sM
〈M2 + L〉 1

2

× sup
‖w‖

L2 =1

∣∣∣∣∫ PN1,M1QL1u · PN2,M2QL2v · PN,MQLwdtdxdy

∣∣∣∣
)

.

We put

uN1,M1,L1 = PN1,M1QL1u, vN2,M2,L2 = PN2,M2QL2v, wN,M,L = PN,MQLw,

fN1,M1,L1 = 〈N1〉s〈M2
1 + L1〉 1−δ

2 uN1,M1,L1 , gN2,M2,L2 = 〈N2〉s〈M2
2 + L2〉 1−δ

2 vN2,M2,L2 ,

for 0 < δ � 1 and

I =
∣∣∣∣∫ uN1,M1,L1 · vN2,M2,L2 · wN,M,Ldtdxdy

∣∣∣∣ .
We note that Lb

1‖uN1,M1,L1‖L2
txy

� 〈N1〉−s‖fN1,M1,L1‖L2
txy

and Lb
2‖vN2,M2,L2‖L2

txy
�

〈N2〉−s‖gN2,M2,L2‖L2
txy

hold for b ≤ 1−δ
2 since Li � 〈M2

i + Li〉 (i = 1, 2).

By the symmetry, we can assume N1 � N2. We first consider the case 1 ≥ N1 � N2. We note 
that

‖PN,MQLu‖
L

2
1−δ
txy

� L
5
6 δ‖PN,MQLu‖L2

txy
(3.16)

holds by the interpolation between (3.5) and a trivial equality ‖PN,MQLu‖L2
txy

= L0‖PN,M

QLu‖L2
txy

. By the Hölder inequality, (3.3), and (3.16), we have

I � ‖uN1,M1,L1‖
L

4
1+δ
txy

‖vN2,M2,L2‖
L

4
1+δ
txy

‖wN,M,L‖
L

2
1−δ
txy

� (N1M1N2M2)
ε
2 L

5
6 δ‖fN1,M1,L1‖L2

txy
‖gN2,M2,L2‖L2

txy
‖wN,M,L‖L2

txy

since 〈Ni〉s ∼ 1 (i = 1, 2) for any s ∈R. Therefore, we obtain

∑
N�1

∑
M�N

∑
L

〈N〉sM
〈M2 + L〉 1

2

sup
‖w‖

L2 =1
I

� (N1M1N2M2)
ε
2 ‖fN1,M1,L1‖L2

txy
‖gN2,M2,L2‖L2

txy

(3.17)

since
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∑
L

L
5
6 δ

〈M2 + L〉 1
2

�
∑

L�〈M〉2

L
5
6 δ

〈M〉 +
∑

L�〈M〉2

L−( 1
2 − 5

6 δ) � 〈M〉−(1− 5
3 δ) � 1

and ∑
N�1

∑
M�N

〈N〉sM ∼
∑
N�1

∑
M�N

M �
∑
N�1

N � 1

for any s ∈R. By using (3.17)and the Cauchy-Schwarz inequality for the summations 
∑

N1,M1�1

and 
∑

N2,M2�1, we have

∑
N1,M1�1

∑
L1

∑
N2,M2�1

∑
L2

⎛⎝ ∑
N,M,L

〈N〉sM
〈M2 + L〉 1

2

sup
‖w‖

L2 =1
I

⎞⎠ � ‖u‖
X

s, 1−δ
2 ,1‖v‖

X
s, 1−δ

2 ,1

for any s ∈R.
Next, we consider the case N1 � N2, N1 ≥ 1. It suffice to show that

∑
N,M,L

〈N〉sM
〈M2 + L〉 1

2

sup
‖w‖

L2 =1
I

� N−ε
1 (M1M2)

ε
4 ‖fN1,M1,L1‖L2

txy
‖gN2,M2,L2‖L2

txy

(3.18)

for small ε > 0. Indeed, (3.18) and the Cauchy-Schwarz inequality for the summations 
∑

N1,M1
and 

∑
N2,M2

imply

∑
N1,M1,L1

N1≥1

∑
N2,M2,L2
N2�N1

⎛⎝ ∑
N,M,L

〈N〉sM
〈M2 + L〉 1

2

sup
‖w‖

L2 =1
I

⎞⎠

�

⎛⎝ ∑
N1≥1

∑
M1�N1

∑
N2�N1

∑
M2�N2

N−2ε
1 (M1M2)

ε
2

⎞⎠ 1
2

×

⎧⎪⎨⎪⎩
∑
N1

∑
M1

⎛⎝∑
L1

‖fN1,M1,L1‖L2
txy

⎞⎠2
⎫⎪⎬⎪⎭

1
2
⎧⎪⎨⎪⎩
∑
N2

∑
M2

⎛⎝∑
L2

‖gN2,M2,L2‖L2
txy

⎞⎠2
⎫⎪⎬⎪⎭

1
2

� ‖u‖
X

s, 1−δ
2 ,1‖v‖

X
s, 1−δ

2 ,1 .

Now, we prove (3.18).

Case 1: N1 ∼ N2 � N, N1 ≥ 1.

We note that M � max{M1, M2} since ξ +η = (ξ1 +η1) +(ξ −ξ1 +η−η1). By the symmetry, 
we can assume M � M1. By the Hölder inequality, we have
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I � ‖uN1,M1,L1‖
L

2
1−δ
txy

‖vN2,M2,L2 · wN,M,L‖
L

2
1+δ
txy

.

Furthermore, we have

‖uN1,M1,L1‖
L

2
1−δ
txy

� L
5
6
1 ‖uN1,M1,L1‖L2

txy
�

N−s
1

〈M2
1 + L1〉 1−δ

2 − 5
6 δ

‖fN1,M1,L1‖L2
txy

by (3.16), and we have

‖vN2,M2,L2 · wN,M,L‖
L

2
1+δ
txy

� Jδ,ε(N2,M2,N,M)(L2L)
1−δ

2 − ε
4 ‖vN2,M2,L2‖L2

txy
‖wN,M,L‖L2

txy

� (M1M2)
ε
4 N

−s−1+δ+ 5
4 ε

2 N
1−δ

2 − ε
4 L

1−δ
2 − ε

4 ‖gN2,M2,L2‖L2
txy

‖wN,M,L‖L2
txy

by (3.13) and M � M1. Therefore, if we choose ε > 0 as ε = 10
3 δ, we obtain

∑
N�N1

∑
M�M1

∑
L

〈N〉sM
〈M2 + L〉 1

2

sup
‖w‖

L2 =1
I

� (M1M2)
ε
4 N−s

1 N
−s−1+δ+ 5

4 ε

2 ‖fN1,M1,L1‖L2
txy

‖gN2,M2,L2‖L2
txy

×
⎛⎝ ∑

N�N1

〈N〉sN 1−δ
2 − ε

4
∑

M�M1

M

〈M2
1 + L1〉 1−δ

2 − 5
6 δ

∑
L

L
1−δ

2 − ε
4

〈M2 + L〉 1
2

⎞⎠
� N−ε

1 (M1M2)
ε
4 N

−s− 1
2 + δ

2 +2ε

1 ‖fN1,M1,L1‖L2
txy

‖gN2,M2,L2‖L2
txy

for s ≥ − 1−δ
2 + ε

4 since

∑
M�M1

M

〈M2
1 + L1〉 1−δ

2 − 5
6 δ

∑
L

L
1−δ

2 − ε
4

〈M2 + L〉 1
2

�
∑

M�M1

M1−δ− ε
2

〈M1〉1− 8
3 δ

� 1.

As a result, we get (3.18) for s > − 1
2 if we choose δ > 0 as 0 < δ < 6

43

(
s + 1

2

)
.

Case 2: N ∼ N1 � N2, N1 ≥ 1.

By the Hölder inequality, we have

I � ‖uN1,M1,L1 · vN2,M2,L2‖
L

2
1+δ
txy

‖wN,M,L‖
L

2
1−δ
txy

.

Furthermore, we have

‖wN,M,L‖ 2
1−δ

� L
5
6 δ‖wN,M,L‖L2

txy

Ltxy
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by (3.16), and we have

‖uN1,M1,L1 · vN2,M2,L2‖
L

2
1+δ
txy

� Jδ,ε(N1,M1,N2,M2)(L1L2)
1−δ

2 − ε
4 ‖uN1,M1,L1‖L2

txy
‖vN2,M2,L2‖L2

txy

� (M1M2)
ε
4 N

−s−1+δ+ 5
4 ε

1 〈N2〉−sN
1−δ

2 − ε
4

2 ‖fN1,M1,L1‖L2
txy

‖gN2,M2,L2‖L2
txy

by (3.13). Therefore, if s ≤ 1−δ
2 − ε

4 , we obtain

∑
N∼N1

∑
M�N

∑
L

〈N〉sM
〈M2 + L〉 1

2

sup
‖w‖

L2 =1
I

� (M1M2)
ε
4 N

−s− 1−δ
2 +ε

1 ‖fN1,M1,L1‖L2
txy

‖gN2,M2,L2‖L2
txy

⎛⎝ ∑
M�N1

M
∑
L

L
5
6 δ

〈M2 + L〉 1
2

⎞⎠
� N−ε

1 (M1M2)
ε
4 N

−s− 1
2 + 13

6 δ+2ε

1 ‖fN1,M1,L1‖L2
txy

‖gN2,M2,L2‖L2
txy

,

since ∑
L

L
5
6 δ

〈M2 + L〉 1
2

� M−(1− 5
3 δ).

As a result, we get (3.18) for 1
2 > s > − 1

2 if we choose δ > 0 and ε > 0 as 0 < ε < 1
2 (s + 1

2 ), 

0 < δ < min
{

6
13

(
s + 1

2 − 2ε
)
,2

( 1
2 − s − ε

2

)}
.

While if s ≥ 1
2 , then we have

I � (M1M2)
ε
4 N

−s− 1−δ
2 +ε

1 L
5
6 δ‖fN1,M1,L1‖L2

txy
‖gN2,M2,L2‖L2

txy
‖wN,M,L‖L2

txy

by the same argument with using 〈N2〉−s � 1. Therefore, we obtain

∑
N∼N1

∑
M�N

∑
L

〈N〉sM
〈M2 + L〉 1

2

sup
‖w‖

L2 =1
I

� N−ε
1 (M1M2)

ε
4 N

− 1
2 + 13

6 δ+2ε

1 ‖fN1,M1,L1‖L2
txy

‖gN2,M2,L2‖L2
txy

,

which implies (3.18) since − 1
2 + 13

6 δ + 2ε < 0.

Case 3: N ∼ N1 ∼ N2 ≥ 1
We can assume M � M1 such as Case 1. We split vN2,M2,L2 and wN,M,L into

vN2,M2,L2 =
3∑

RivN2,M2,L2 , wN,M,L =
3∑

RjwN,M,L.
i=1 j=1
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We put

Ii,j =
∣∣∣∣∫ uN1,M1,L1 · RivN2,M2,L2 · RjwN,M,Ldtdxdy

∣∣∣∣ ,
where Ri (i = 1, 2, 3) are projections given by

Fxy[R1f ] = 1{|ξ |�|η|}f̂ , Fxy[R2f ] = 1{|ξ |∼|η|}f̂ , Fxy[R3f ] = 1{|ξ |�|η|}f̂ .

We note that Fxy[wN,M,L] is supported in at least one of {(ξ, η)| |ξ | ∼ N} or {(ξ, η)| |η| ∼ N}. 
By the symmetry, we can assume suppFxy[wN,M,L] ⊂ {(ξ, η)| |ξ | ∼ N}. Then, it suffice to show 
the estimate for Ii,j with i = 1, 2, 3, j = 1, 2.

Estimate for I1,1
In this case, we note that N ∼ N1 ∼ N2 ∼ M ∼ M1 ∼ M2 and

|ξξ1ξ2 + ηη1η2| ∼ |ξξ1ξ2| ∼ N3
1

for (ξ1, η1) ∈ suppFxy[uN1,M1,L1 ], (ξ2, η2) ∈ suppFxy[vN2,M2,L2 ] with ξ1 +ξ2 = ξ , η1 +η2 = η. 
It implies

max{L1,L2,L} � N3
1

since

|(τ1 − ξ3
1 − η3

1) + (τ2 − ξ3
2 − η3

2) − (τ − ξ3 − η3)| = 3|ξξ1ξ2 + ηη1η2|,
holds for (τi, ξi, ηi) (i = 1, 2) with (τ, ξ, η) = (τ1 + τ2, ξ1 + ξ2, η1 + η2).

(i) For the case L � N3
1

By the Hölder inequality, (3.3), and (3.16), we have

I � ‖uN1,M1,L1‖
L

4
1+δ
txy

‖vN2,M2,L2‖
L

4
1+δ
txy

‖wN,M,L‖
L

2
1−δ
txy

� (N1M1N2M2)
ε
4 (L1L2)

5(1−δ)
12 − ε

6 L
5
6 δ‖uN1,M1,L1‖L2

txy
‖vN2,M2,L2‖L2

txy
‖wN,M,L‖L2

txy

∼ N−ε
1 (M1M2)

ε
4 N

−2s+ 3
2 ε

1 L
5
6 δ‖fN1,M1,L1‖L2

txy
‖gN2,M2,L2‖L2

txy
‖wN,M,L‖L2

txy
.

Therefore, we obtain∑
N∼N1

∑
M�N

∑
L�N3

1

〈N〉sM
〈M2 + L〉 1

2

sup
‖w‖

L2 =1
I

� N−ε
1 (M1M2)

ε
4 N

−s+ 3
2 ε

1 ‖fN1,M1,L1‖L2
txy

‖gN2,M2,L2‖L2
txy

⎛⎜⎝ ∑
M�N1

M
∑

L�N3
1

L
5
6 δ

〈M2 + L〉 1
2

⎞⎟⎠
� N−ε(M1M2)

ε
4 N

−s− 1
2 + 5

2 δ+ 3
2 ε‖fN1,M1,L1‖ 2 ‖gN2,M2,L2‖ 2 ,
1 1 Ltxy Ltxy
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since

∑
L�N3

1

L
5
6 δ

〈M2 + L〉 1
2

�
∑

L�N3
1

L−( 1
2 − 5

6 δ) � N
− 3

2 + 5
2 δ

1 .

As a result, we get (3.18) for s > − 1
2 if we choose δ > 0 and ε > 0 as 0 < ε < 2

3 (s + 1
2 ), 

0 < δ < 2
5

(
s + 1

2 − 3
2ε

)
.

(ii) For the case L1 � N3
1

By the Hölder inequality, (3.16), and (3.3), we have

I � ‖uN1,M1,L1‖
L

2
1−δ
txy

‖vN2,M2,L2‖
L

4
1+δ
txy

‖wN,M,L‖
L

4
1+δ
txy

� L
5
6 δ

1 (N2M2NM)
ε
4 (L2L)

5(1−δ)
12 − ε

6 ‖uN1,M1,L1‖L2
txy

‖vN2,M2,L2‖L2
txy

‖wN,M,L‖L2
txy

� N−ε
1 (M1M2)

ε
4 N

−2s− 3
2 +4δ+ 3

2 ε

1 L
5(1−δ)

12 − ε
6 ‖fN1,M1,L1‖L2

txy
‖gN2,M2,L2‖L2

txy
‖wN,M,L‖L2

txy

since L
5
6 δ

1 〈M2
1 + L1〉− 1−δ

2 � L
−( 1

2 − 4
3 δ)

1 � N
− 3

2 +4δ

1 . Therefore, we obtain

∑
N∼N1

∑
M�N

∑
L

〈N〉sM
〈M2 + L〉 1

2

sup
‖w‖

L2 =1
I

� N−ε
1 (M1M2)

ε
4 N

−s− 3
2 +4δ+ 3

2 ε

1 ‖fN1,M1,L1‖L2
txy

‖gN2,M2,L2‖L2
txy

⎛⎝ ∑
M�N1

M
∑
L

L
5(1−δ)−2ε

12

〈M2 + L〉 1
2

⎞⎠
� N−ε

1 (M1M2)
ε
4 N

−s− 2
3 + 19

6 δ+ 7
6 ε

1 ‖fN1,M1,L1‖L2
txy

‖gN2,M2,L2‖L2
txy

,

since

∑
L

L
5(1−δ)−2ε

12

〈M2 + L〉 1
2

� M− 1+5δ+2ε
6 .

As a result, we get (3.18) for s > − 2
3 if we choose δ > 0 and ε > 0 as 0 < ε < 6

7 (s + 1
2 ), 

0 < δ < 6
19

(
s + 2

3 − 7
6ε

)
. The case L2 � N3 is same.

Estimate for I2,2
In this case, we have

|ξ2| ∼ |η2| ∼ N2, |ξ | ∼ |η| ∼ N.

By the Hölder inequality, (3.16), (3.4), and M � M1, we have



H. Hirayama / J. Differential Equations 267 (2019) 4089–4116 4111
I � ‖uN1,M1,L1‖
L

2
1−δ
txy

‖vN2,M2,L2‖
L

4
1+δ
txy

‖wN,M,L‖
L

4
1+δ
txy

� L
5
6 δ

1 (N2M2NM)
ε
4 (N2N)−

1−δ−ε
4 (L2L)

1−δ
2 − ε

4 ‖uN1,M1,L1‖L2
txy

‖vN2,M2,L2‖L2
txy

‖wN,M,L‖L2
txy

� (M1M2)
ε
4 N

−2s− 1−δ
2 +ε

1
L

1−δ
2 − ε

4

〈M2
1 + L1〉 1−δ

2 − 5
6 δ

‖fN1,M1,L1‖L2
txy

‖gN2,M2,L2‖L2
txy

‖wN,M,L‖L2
txy

.

Therefore, we get (3.18) for s > − 1
2 by the same argument as in Case 1.

Estimate for I1,2
In this case, we have

|η2
2 − η2| ∼ |η|2 ∼ N2

Therefore, we obtain

‖R1vN2,M2,L2 · R2wN,M,L‖L2
txy

� N− 1
2 L

1
2
2 L

1
2 ‖R1vN2,M2,L2‖L2

txy
‖R2wN,M,L‖L2

txy

by (3.8) since

R1vN2,M2,L2 · R2wN,M,L = R
(2)
K (R1vN2,M2,L2 · R2wN,M,L)

with K ∼ N holds. While, by the Cauchy-Schwarz inequality, we have

‖R1uN1,M1,L1 · RjvN2,M2,L2‖L1
txy

� ‖R1vN2,M2,L2‖L2
txy

‖R2wN,M,L‖L2
txy

.

Therefore, we obtain the bilinear Stirchartz estimate such as (3.13) for the product R1vN2,M2,L2 ·
R2wN,M,L, and we get (3.18) for s > − 1

2 by the same argument as in Case 1 since M � M1. The 
estimates for I2,1, I3,1, and I3,2 are obtained by the same way. �
Remark 3.9. We can also obtain the bilinear estimate

‖(∂x + ∂y)(uv)‖
X

s,− 1
2 ,1 ≤ C3

2

(
‖u‖

X
s, 1−δ

2 ,1‖v‖
X

s0, 1−δ
2 ,1 + ‖u‖

X
s0, 1−δ

2 ,1‖v‖
X

s, 1−δ
2 ,1

)
for s ≥ s0 > − 1

2 by using

〈ξ〉s � 〈ξ〉s0
(〈ξ1〉s−s0 + 〈ξ − ξ1〉s−s0

)
.

4. Proof of the well-posedness

In this section, we prove Theorem 1.1 and 1.2. For T > 0 and v0 ∈ Hs(R2), we define the 
map 	T,v0 as

	T,v0(v)(t) := ψ(t)

⎛⎝W(t)u0 +
t∫
W(t − t ′)(∂x + ∂y)(ψT (t ′)2v(t ′)2)dt ′

⎞⎠ ,
0
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where ψ is cut-off function defined in Section 2, and ψT (t) = ψ
(

t
T

)
. For R > 0 and Banach 

space X, we define BR(X) := {u ∈ X| ‖u‖X ≤ R}. To obtain the well-posedness of (1.6) in 
Hs(R2), we prove that 	T,v0 is a contraction map on closed subset of Xs, 1

2 ,1.

Lemma 4.1. Let 0 < T ≤ 1, 0 < δ ≤ 1. There exist C4 > 0 and μ = μ(δ) > 0, such that for any 
u ∈ Xs, 1

2 ,1, we have

‖ψT u‖
X

s, 1−δ
2 ,1 ≤ C4T

μ‖u‖
X

s, 1
2 ,1 .

The proof of Lemma 4.1 is almost same as the proof of Lemma 2.5 and 3.1 in [9].

Proof of Theorem 1.1. Let s ≥ s0 > − 1
2 and v0 ∈ Hs(R2) are given, and T ∈ (0, 1], R > 0 will 

be chosen later. We define the function space Zs as

Zs := {v ∈ Xs, 1
2 ,1| ‖v‖Zs := ‖v‖

X
s0, 1

2 ,1 + α‖v‖
X

s, 1
2 ,1 < ∞},

where α = ‖v0‖Hs0 /‖v0‖Hs . For v, v1, v2 ∈ BR(Zs), we have

‖	T,v0(v)‖Zs ≤ C1(1 + α)‖v0‖Hs0 + C2C3C
2
4T 2μ‖v‖2

Zs

≤ C1(1 + α)‖v0‖Hs0 + C2C3C
2
4T 2μR2

and

‖	T,v0(v1) − 	T,v0(v2)‖Zs ≤ C2C3C
2
4T 2μ‖v1 + v2‖Zs ‖v1 − v2‖Zs

≤ C2C3C
2
4T 2μR‖v1 − v2‖Zs

by Proposition 2.3, 2.4, 3.1, Remark 3.9, and Lemma 4.1. Therefore, if we choose T , R as

R = 2C1(1 + α)‖v0‖Hs0 , 0 < T 2μ < (4C1C2C3C
2
4(1 + α)‖v0‖Hs0 )

−1,

then 	T,v0 is contraction map on BR(Zs). We note that T = T (‖v0‖Hs0 ). By Banach’s fixed 

point theorem, there exists a solution v ∈ Xs, 1
2 ,1 to v(t) = 	T,v0(v)(t) and v|[0,T ] ∈ X

s, 1
2 ,1

T sat-
isfies (2.1) on [0, T ]. The Lipschitz continuous dependence on initial data is obtained by the 
similar argument as above. The uniqueness is obtained by the same argument as in Section 4.2 
of [20]. �

Next, to prove the global well-posedness of (1.6) in H̃ s(R2), we define the function space 
X̃s,b,1 as the completion of the Schwartz class S(Rt ×R2

x,y) with the norm

‖u‖X̃s,b,1 =

⎧⎪⎨⎪⎩
∑

N∈2Z

∑
M∈2Z

⎛⎝ ∑
L∈2Z

〈M〉s〈M2 + L〉b‖PN,MQLu‖L2
txy

⎞⎠2
⎫⎪⎬⎪⎭

1
2

.

We also define X̃s,b,1 as the time localized space of X̃s,b,1.
T
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Remark 4.2. We can see that X̃
s, 1

2 ,1
T ↪→ L2((0, T ); H̃ s+1(R2)) since 〈M〉s+1 � 〈M〉s〈M2 +L〉 1

2

and l1
L ↪→ l2

L hold.

Proposition 4.3. Let s ∈ R. There exists C1 > 0, such that for any u0 ∈ H̃ s(R2), we have

‖ψ(t)W(t)u0‖
X̃

s, 1
2 ,1 ≤ C1‖u0‖H̃ s .

Proposition 4.4. Let s ∈ R. There exists C2 > 0, such that for any F ∈ X̃s,− 1
2 ,1, we have

‖ψ(t)LF(t)‖
X̃

s, 1
2 ,1 ≤ C2‖F‖

X̃
s,− 1

2 ,1

The proof of Proposition 4.3 and 4.4 are same as the proof of Proposition 2.3 and 2.4.

Proposition 4.5. Let s > − 1
2 . There exist 0 < δ � 1 and C3 > 0, such that for any u, v ∈

X̃s, 1−δ
2 ,1, we have

‖(∂x + ∂y)(uv)‖
X̃

s,− 1
2 ,1 ≤ C3‖u‖

X̃
s, 1−δ

2 ,1‖v‖
X̃

s, 1−δ
2 ,1 .

The proof of Proposition 4.5 is similar to the proof of Proposition 3.1. We will give the proof 
at the last part of this section.

Proof of Theorem 1.2. Let s ≥ s0 > − 1
2 are given. By Proposition 4.3, 4.4, 4.5, and using the 

same argument as in the proof of Theorem 1.1, we obtain the solution v ∈ X̃
s, 1

2 ,1
T to (1.6) on 

[0, T ] with T = T (‖v0‖H̃ s0 ). Let T ′ ∈ (0, T ) be fixed. Since X̃
s, 1

2 ,1
T ↪→ L2([0, T ]; H̃ s+1(R2))

holds, there exists t0 ∈ (0, T ′) such that v(t0) ∈ H̃ s+1(R2). Therefore, by choosing v(t0) as the 

initial data and using the uniqueness of the solution, we obtain v(t0 +·) ∈ X̃
s+1, 1

2 ,1
T −t0

. In particular, 
we have v(T ′) ∈ H̃ s+1(R2). By repeating this argument, we get v(T ′) ∈ H̃∞(R2). Since we can 
choose T ′ > 0 arbitrary small, v belongs to C((0, T ]; H̃∞(R2)). This arrows us to take the 
L2-scalar product of (1.6) with v, and we have

d

dt
‖v(t)‖2

L2
x
= (∂tv(t), v(t))L2

x

=
(
−(∂3

x + ∂3
y )v(t) + (∂x + ∂y)

2v(t) + (∂x + ∂y)(v(t)2), v(t)
)

L2
x

= −‖(∂x + ∂y)v(t)‖2
L2

x
≤ 0

for any t ∈ (0, T ). Therefore, ‖v(t)‖L2
x

is non-increasing, and we can extend the solution v glob-
ally in time. �
Remark 4.6. We note that the embedding X

s, 1
2 ,1

T ↪→ L2([0, T ]; Hs+1(R2)) does not hold. There-
fore, we cannot use the above argument for initial data v0 ∈ Hs(R2).

Finally, we give the proof of Proposition 4.5
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Proof of Proposition 4.5. We put

uN1,M1,L1 = PN1,M1QL1u, vN2,M2,L2 = PN2,M2QL2v, wN,M,L = PN,MQLw,

fN1,M1,L1 = 〈M1〉s〈M2
1 + L1〉 1−δ

2 uN1,M1,L1 , gN2,M2,L2 = 〈M2〉s〈M2
2 + L2〉 1−δ

2 vN2,M2,L2

for 0 < δ � 1 and

I =
∣∣∣∣∫ uN1,M1,L1 · vN2,M2,L2 · wN,M,Ldtdxdy

∣∣∣∣ .
We use Lb

1‖uN1,M1,L1‖L2
txy

� 〈M1〉−s‖fN1,M1,L1‖L2
txy

and Lb
2‖vN2,M2,L2‖L2

txy
� 〈M2〉−s‖

gN2,M2,L2‖L2
txy

instead of Lb
1‖uN1,M1,L1‖L2

txy
� 〈N1〉−s‖fN1,M1,L1‖L2

txy
and Lb

2‖vN2,M2,L2‖L2
txy

�
〈N2〉−s‖gN2,M2,L2‖L2

txy
in the proof of Proposition 3.1. By the same argument as in the proof of 

Proposition 3.1, we have

∑
N1,M1�1

∑
L1

∑
N2,M2�1

∑
L2

⎛⎝ ∑
N,M,L

〈M〉sM
〈M2 + L〉 1

2

sup
‖w‖

L2 =1
I

⎞⎠ � ‖u‖
X̃

s, 1−δ
2 ,1‖v‖

X̃
s, 1−δ

2 ,1

for any s ∈R and it suffice to show that

∑
N,M,L

〈M〉sM
〈M2 + L〉 1

2

sup
‖w‖

L2 =1
I

� N−ε
1 (M1M2)

ε
4 ‖fN1,M1,L1‖L2

txy
‖gN2,M2,L2‖L2

txy

(4.1)

for N1 ≥ N2, N1 ≥ 1, and small ε > 0.

Case 1’: N1 ∼ N2 � N

We only have to modify little in the proof of Proposition 3.1, Case 1. Since it hold that

〈M1〉−s
∑

M�M1

〈M〉sM
〈M2

1 + L1〉 1−δ
2 − 5

6 δ

∑
L

L
1−δ

2 − ε
4

〈M2 + L〉 1
2

�
∑

M�M1

Ms+1−δ− ε
2

〈M1〉s+1− 8
3 δ

� 1

for ε = 10
3 δ, s > −1 + 8

3δ, and

〈M2〉−s � N−s
1

for s < 0, we get (3.18) for − 1
2 < s < 0 by the same way as in the proof of Proposition 3.1, 

Case 1.

Case 2’: N ∼ N1 � N2
If M ≥ M1, then we have

〈M〉s〈M1〉−s〈M2〉−s � 〈M2〉−s � N−s

1
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for s < 0. Therefore, we get (3.18) for − 1
2 < s < 0 by the same way as in the proof of Proposi-

tion 3.1, Case 2.
While, if M ≤ M1, then we have

Jδ,ε(N,M,N2,M2) � Jδ,ε(N1,M1,N2,M2).

Therefore, by estimating

I � ‖uN1,M1,L1‖
L

2
1−δ
txy

‖vN2,M2,L2 · wN,M,L‖
L

2
1+δ
txy

instead of

I � ‖uN1,M1,L1 · vN2,M2,L2‖
L

2
1+δ
txy

‖wN,M,L‖
L

2
1−δ
txy

in the proof of Proposition 3.1, Case 2, we get (3.18) for − 1
2 < s < 0 by the same modification 

such as Case 1’

Case 3’: N ∼ N1 ∼ N2 ≥ 1
If suppFx,y[wN,M,L] ⊂ {(ξ, η)| |ξ | � |η| or |ξ | � |η|}, then M ∼ N holds. Therefore, we 

have

〈M〉s〈M1〉−s〈M2〉−s � 〈N〉s〈N1〉−s〈N2〉−s � N−s
1

for s < 0 and get (3.18) for − 1
2 < s < 0 by the same way as in the proof of Proposition 3.1, 

Case 3.
We assume suppFx,y[wN,M,L] ⊂ {(ξ, η)| |ξ | ∼ |η|}. It suffice to show the estimate for I1,2 and 

I2,2, which are defined in Proposition 3.1, Case 3. By the same modification such as in Case 1’, 
we can obtain (3.18) for − 1

2 < s < 0. �
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