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Abstract

We study the Cauchy problem for the integrable nonlocal nonlinear Schrödinger (NNLS) equation

iqt (x, t) + qxx(x, t) + 2q2(x, t)q̄(−x, t) = 0

with a step-like initial data: q(x, 0) = q0(x), where q0(x) = o(1) as x → −∞ and q0(x) = A + o(1) as 
x → ∞, with an arbitrary positive constant A > 0. The main aim is to study the long-time behavior of 
the solution of this problem. We show that the asymptotics has qualitatively different form in the quarter-
planes of the half-plane −∞ < x < ∞, t > 0: (i) for x < 0, the solution approaches a slowly decaying, 
modulated wave of the Zakharov-Manakov type; (ii) for x > 0, the solution approaches the “modulated 
constant”. The main tool is the representation of the solution of the Cauchy problem in terms of the solution 
of an associated matrix Riemann-Hilbert (RH) problem and the consequent asymptotic analysis of this RH 
problem.
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1. Introduction

We consider the following initial value problem for the focusing nonlocal nonlinear 
Schrödinger (NNLS) equation with a step-like initial data:

iqt (x, t) + qxx(x, t) + 2q2(x, t)q̄(−x, t) = 0, x ∈ R, t > 0, (1.1a)

q(x,0) = q0(x), x ∈ R, (1.1b)

where

q0(x) → 0 as x → −∞ and q0(x) → A as x → ∞ (1.1c)

sufficiently fast, with some A > 0. Throughout the paper, q̄ denotes the complex conjugate of q .
The nonlocal nonlinear Schrödinger equation in the form (1.1a) was introduced by M. 

Ablowitz and Z. Musslimani in [5]. Although this equation is just a reduction of a member 
of the AKNS hierarchy [3], namely, of the coupled Schrödinger equations

iqt + qxx + 2q2r = 0, (1.2a)

−irt + rxx + 2r2q = 0, (1.2b)

corresponding to r(x, t) = q̄(−x, t), the NNLS equation has recently attracted much attention 
because of its distinctive physical and mathematical properties. Indeed, this equation is invariant 
under the joint transformations x → −x, t → −t , and complex conjugation, i.e. it is parity-
time (PT) symmetric and, therefore, is related to a cutting edge research area of modern physics 
[8,28]. Particularly, due to the gauge-equivalence of the NNLS to the unconventional system of 
coupled Landau-Lifshitz (CLL) equations, this equation can find applications in the physics of 
nanomagnetic artificial materials [24].

Because of these features of the NNLS equation and the potential applications, other symme-
try reductions of the AKNS and other hierarchies, which lead to other types of nonlocality, began 
to attract considerable attention. Typical examples are the reverse space-time nonlocal NLS equa-
tion and the reverse time nonlocal NLS equation, the complex/real space-time Sine-Gordon 
equation, the complex/real reverse space-time mKdV equation [1,6,7], the nonlocal derivative 
NLS equation [38], and the multidimensional nonlocal Davey-Stewartson equation [7,22].

In [6] the authors presented the Inverse Scattering Transform (IST) method to the study of the 
Cauchy problem for equation (1.1a), based on a variant of the Riemann-Hilbert approach, in the 
case of decaying initial data and obtained the one- and two-soliton solutions. In [2] and [36], a 
general decaying N-soliton solution of (1.1a) were found using the Hirota’s direct method and the 
Riemann-Hilbert approach respectively (see also [37], where the N-soliton solution of the general 
coupled Schrödinger equations (1.2) is presented by the Riemann-Hilbert approach). The one-, 
two- and three-soliton solutions are obtained via the Hirota’s direct method in [25] whereas in 
[15], the decaying one-soliton solution is obtained in terms of a double Wronskian. The soliton 
solutions of the focusing NNLS equation (1.1a) have some specific features: particularly, they 
can blow up at a finite time [2,6], and (1.1a) can simultaneously support both bright and dark 
soliton solutions [34].
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The initial value problem for (1.1a) with the following nonzero boundary conditions:

q(x, t) → q±(t) = q0e
i(αt+θ±), x → ±∞, (1.3)

where q0 > 0, α ∈ R, 0 ≤ θ± < 2π , is considered in [4], where the IST method is developed and 
the soliton solutions are constructed for certain values of the parameters θ± (see also [2], where 
the general N -soliton solutions are presented).

In the present paper we assume that the solution q(x, t) of problem (1.1a)–(1.1b) satisfies the 
following boundary conditions for all t > 0:

q(x, t) = o(1), x → −∞, (1.4a)

q(x, t) = A + o(1), x → +∞ (1.4b)

(in what follows we will make the sense of o(1) more precise). This choice of initial data and 
boundary values is inspired by the shock problems for the classical (local) NLS equation

iqt (x, t) + qxx(x, t) + 2|q(x, t)|2q(x, t) = 0, (1.5)

which is another (local) reduction of system (1.2), with r(x, t) = q̄(x, t). Such problems have 
been considered since 1980s [9,10,13,27,30]. Particularly, in [13] the authors study the Cauchy 
problem for the NLS equation with the following initial condition:

q0(x) =
{

0, x ≤ 0,

Ae−2iBx, x > 0,
(1.6)

assuming that the solution satisfies the boundary conditions

q(x, t) = o(1), x → −∞, (1.7a)

q(x, t) = qp(x, t) + o(1), x → +∞, (1.7b)

where qp(x, t) = Ae−2iBx+2iωt with ω = A2 −2B2 is a plane wave solution of the NLS equation 
(1.5). Notice that for the classical NLS, the both limiting functions in (1.7), i.e., q−(x, t) ≡ 0 and 
q+(x, t) = qp(x, t) are solutions of (1.5) whereas in the case of the NNLS equation, q−(x, t) ≡ 0
is a solution, but q+(x, t) ≡ A is not. With this respect, the non-zero boundary conditions (1.4), 
being the simplest shock-type boundary conditions for the NNLS equation (1.1a), differ from 
those used for the local NLS equation.

The present paper aims at (i) the development of the Riemann-Hilbert approach to the initial 
value problem (1.1) with the boundary conditions (1.4) and (ii) the long-time asymptotic analy-
sis of solutions to this problem using the nonlinear steepest-decent method [19]. The nonlinear 
steepest-decent method was inspired by earlier works by Manakov [32] and Its [26] (see [16] for 
a comprehensive historical review) and has been put into a rigorous shape by Deift and Zhou 
in [19], with further extensions in [17,18]. The nonlinear steepest-decent method is known to 
be extremely efficient for the asymptotic analysis of a wide variety of initial and initial bound-
ary value problems for integrable systems, particularly, it has been successfully applied to many 
initial value problems with step-like initial data, see, e.g., [11–14,20,29,35].
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The paper is organized as follows. In Section 2 we present the formalism of the IST method 
in the form of a multiplicative RH problem suitable for the asymptotic (as t → ∞) analysis. 
Here we emphasize specific features of the implementation of the Riemann-Hilbert problem 
formalism in our case, one of them being a singularity, of particular (different for different cases 
of initial data) type, at the jump contour of the RH problem. The long-time asymptotic analysis of 
the main RH problem (and, consequently, of the solution of the Cauchy problem for the NNLS 
equation) is then presented in Section 3, where the main result of the paper (Theorem 1) is 
formulated. Two main peculiar aspects of our asymptotic results are (i) the dependence of the 
power-type decay parts of the asymptotics on the direction x/t = const (recall that in the case 
of the local NLS equation (as well as for other integrable equations like the (local) Korteweg-de 
Vries equation, the modified Korteweg-de Vries equation, etc.), the corresponding power decay 
is t−1/2 independently of the direction); (ii) the absence of a sector in the (x, t) plane, with 
straight boundaries x/t = c1 and x/t = c2, where the main term of the asymptotics is described 
in terms of modulated elliptic functions (which, again, is typical for local integrable nonlinear 
equations, with step-like initial data, including the local NLS equation [12,13]).

2. Inverse scattering transform and the Riemann-Hilbert problem

2.1. Eigenfunctions

Recall that the focusing NNLS equation (1.1a) is a compatibility condition of the following 
two linear equations (Lax pair) [3,4]

{
�x + ikσ3� = U(x, t)�

�t + 2ik2σ3� = V (x, t, k)�
(2.1)

where σ3 =
(

1 0
0 −1

)
, �(x, t, k) is a 2 × 2 matrix-valued function, k ∈C is an auxiliary (spectral) 

parameter, and the matrix coefficients U(x, t) and V (x, t, k) are given in terms of q(x, t):

U(x, t) =
(

0 q(x, t)

−q̄(−x, t) 0

)
, V =

(
V11 V12
V21 V22

)
, (2.2)

where V11 = −V22 = iq(x, t)q̄(−x, t), V12 = 2kq(x, t) + iqx(x, t), and V21 = −2kq̄(−x, t) +
i(q̄(−x, t))x .

Introduce the notations

U+ =
(

0 A

0 0

)
, U− =

(
0 0

−A 0

)
, V+ =

(
0 2kA

0 0

)
, V− =

(
0 0

−2kA 0

)
. (2.3)

Then, assuming that there exists q(x, t) satisfying (1.1) and (1.4), it follows that

U(x, t) → U± and V (x, t, k) → V±(k) as x → ±∞. (2.4)

It is easy to see that the systems

{
�x + ikσ3� = U+�

�t + 2ik2σ3� = V+(k)�



698 Ya. Rybalko, D. Shepelsky / J. Differential Equations 270 (2021) 694–724
and {
�x + ikσ3� = U−�

�t + 2ik2σ3� = V−(k)�

are compatible (cf. (2.1)). Particularly, they are satisfied by �±(x, t, k) defined as follows:

�±(x, t, k) = N±(k)e−(ikx+2ik2t)σ3, (2.5)

where N+(k) =
(

1 A
2ik

0 1

)
and N−(k) =

(
1 0
A

2ik
1

)
. Notice that �± are chosen in such a way 

that det�± ≡ 1, which is convenient for the analysis that follows, particularly, when consider-
ing the uniqueness issue in the Riemann-Hilbert problem. On the other hand, the singularities 
of N±(k) at k = 0 will significantly affect this analysis. Namely, the solution of the basic RH 
problem has a singularity as k → 0, i.e. at a point on the contour of the RH problem (see (2.48)
and (2.49) below).

Now define the 2 × 2-valued functions �j(x, t, k), j = 1, 2, −∞ < x < ∞, 0 ≤ t < ∞ as the 
solutions of the Volterra integral equations:

�1(x, t, k) = N−(k) +
x∫

−∞
G−(x, y, t, k) (U(y, t) − U−)�1(y, t, k)eik(x−y)σ3 dy, (2.6a)

�2(x, t, k) = N+(k) +
x∫

∞
G+(x, y, t, k) (U(y, t) − U+)�2(y, t, k)eik(x−y)σ3 dy, (2.6b)

where G±(x, y, t, k) = �±(x, t, k)[�±(y, t, k)]−1. The functions �j(x, t, k), j = 1, 2 are the 
main ingredients of the basic RH problem (see (2.29) below). The main properties of the matrices 
�j(x, t, k) (following from the integral equations (2.6)) are summarized in Proposition 1, where 
we denote by �(i)

j (x, t, k) the i-th column of �j(x, t, k), C± = {k ∈C | ± Im k > 0}, and C± =
{k ∈ C | ± Im k ≥ 0}.

Proposition 1. The matrices �1(x, t, k) and �2(x, t, k) have the following properties:

(i) The columns �(1)
1 (x, t, k) and �(2)

2 (x, t, k) are well-defined and analytic in k ∈ C+ and 
continuous in C+ \ {0}; moreover,

�
(1)
1 (x, t, k) =

(
1
0

)
+O(k−1) and �

(2)
2 (x, t, k) =

(
0
1

)
+O(k−1) as k → ∞, k ∈ C+.

(ii) The columns �(2)
1 (x, t, k) and �(1)

2 (x, t, k) are well-defined and analytic in k ∈ C− and 
continuous in C−; moreover,

�
(2)
1 (x, t, k) =

(
0
1

)
+O(k−1) and �

(1)
2 (x, t, k) =

(
1
0

)
+O(k−1) as k → ∞, k ∈ C−.
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(iii) The functions �j(x, t, k), j = 1, 2 defined by

�j(x, t, k) = �j(x, t, k)e−(ikx+2ik2t)σ3, k ∈R \ {0}, j = 1,2, (2.7)

are the (Jost) solutions of the Lax pair equations (2.1) satisfying the boundary conditions

�1(x, t, k) → �−(x, t, k), x → −∞, (2.8a)

�2(x, t, k) → �+(x, t, k), x → ∞. (2.8b)

(iv) det�j(x, t, k) ≡ 1, x ∈ R, t ≥ 0, k ∈R, j = 1, 2.
(v) The following symmetry relation holds:

	�1(−x, t,−k)	−1 = �2(x, t, k), k ∈R \ {0}, (2.9)

where 	 = ( 0 1
1 0

)
.

(vi) As k → 0,

�
(1)
1 (x, t, k) = 1

k

(
v1(x, t)

v2(x, t)

)
+ O(1), �

(2)
1 (x, t, k) = 2i

A

(
v1(x, t)

v2(x, t)

)
+ O(k),

(2.10a)

�
(1)
2 (x, t, k) = −2i

A

(
v2(−x, t)

v1(−x, t)

)
+ O(k), �

(2)
2 (x, t, k) = −1

k

(
v2(−x, t)

v1(−x, t)

)
+ O(1),

(2.10b)

where vj (x, t), j=1,2 solve the following system of Volterra integral equations:

{
v1(x, t) = ∫ x

−∞ q(y, t)v2(y, t) dy,

v2(x, t) = −i A
2 − ∫ x

−∞ q(−y, t)v1(y, t) dy.
(2.11)

Proof. Properties (i)-(iii) follow directly from the representation of �j in terms of the Neumann 
series associated with equations (2.6). The Neumann series converge provided 

∫ 0
−∞ |q(x, t)|dx <

∞ and 
∫ ∞

0 |q(x, t) −A|dx < ∞ for all t ≥ 0 (cf. (1.4)). Item (iv) follows from the fact that U and 
V in (2.1) are traceless. Item (v) follows from the corresponding symmetry 	U(−x, t)	−1 =
U(x, t).

Now let us discuss Item (vi). From (2.6) and the structure of singularity of N± at k = 0 it 
follows that, as k → 0,

�
(1)
1 (x, t, k) = 1

k

(
v1(x, t)

v2(x, t)

)
+ O(1), �

(2)
1 (x, t, k) =

(
ṽ1(x, t)

ṽ2(x, t)

)
+ O(k), (2.12a)

�
(1)
2 (x, t, k) =

(
w̃1(x, t)

w̃2(x, t)

)
+ O(k), �

(2)
2 (x, t, k) = 1

k

(
w1(x, t)

w2(x, t)

)
+ O(1)

(2.12b)
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with some vj , ṽj , wj and w̃j (j = 1, 2). Then, the symmetry relation (2.9) implies that

(
w1(x, t)

w2(x, t)

)
=

(−v2(−x, t)

−v1(−x, t)

)
and

(
w̃1(x, t)

w̃2(x, t)

)
=

(
ṽ2(−x, t)

ṽ1(−x, t)

)
. (2.13)

Further, substituting (2.12) into (2.6) we conclude that vj (x, t), j = 1, 2 satisfy (2.11) whereas 
ṽj (x, t), j = 1, 2 solve the following system of equations

{
ṽ1(x, t) = ∫ x

−∞ q(y, t)ṽ2(y, t) dy,

ṽ2(x, t) = 1 − ∫ x

−∞ q(−y, t)ṽ1(y, t) dy.
(2.14)

Comparing (2.14) with (2.11), it follows that

(
ṽ1(x, t)

ṽ2(x, t)

)
= 2i

A

(
v1(x, t)

v2(x, t)

)
(2.15)

and thus (2.10) can be characterized in terms of two functions only, v1(x, t) and v2(x, t). �
2.2. Scattering data

Since �1(x, t, k) and �2(x, t, k) are both well-defined for k ∈ R \ {0} and satisfy the both 
equations in the Lax pair (2.1), it follows that

�1(x, t, k) = �2(x, t, k)S(k), k ∈R \ {0}, (2.16)

or, in terms of �j ,

�1(x, t, k) = �2(x, t, k)e−(ikx+2ik2t)σ3S(k)e(ikx+2ik2t)σ3, k ∈R \ {0}, (2.17)

where S(k) is called the scattering matrix.
The symmetry relation (2.9) implies that the same relation holds for the Jost solutions 

�1(x, t, k) and �2(x, t, k):

	�1(−x, t,−k̄)	−1 = �2(x, t, k), k ∈R \ {0}. (2.18)

In turn, this implies that the scattering matrix S(k) can be written as follows (cf. [6,33])

S(k) =
(

a1(k) −b(−k)

b(k) a2(k)

)
, k ∈ R \ {0}, (2.19)

with some b(k), a1(k), and a2(k); moreover, a1(k) and a2(k) are well defined in C+ \ {0} and 
C− respectively, where they satisfy the symmetry relations

a1(−k̄) = a1(k), a2(−k̄) = a2(k). (2.20)

The scattering matrix S(k) is uniquely determined by the initial data q0(x). Indeed, in-
troducing the notations ψ1(x, k) = (�1)11(x, 0, k), ψ2(x, k) = (�1)12(x, 0, k), ψ3(x, k) =
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(�1)21(x, 0, k) and ψ4(x, k) = (�1)22(x, 0, k), equations (2.6a) reduce to the systems of Volterra 
integral equations for ψ1 and ψ3:

⎧⎪⎨
⎪⎩

ψ1(x, k) = 1 + ∫ x

−∞ q0(y)ψ3(y, k) dy,

ψ3(x, k) = A
2ik

+ ∫ x

−∞ e2ik(x−y)
(
A − q0(−y)

)
ψ1(y, k) dy

+ A
2ik

∫ x

−∞ q0(y)
(
1 − e2ik(x−y)

)
ψ3(y, k) dy

(2.21)

and for ψ2 and ψ4:

⎧⎪⎨
⎪⎩

ψ2(x, k) = ∫ x

−∞ e−2ik(x−y)q0(y)ψ4(y, k) dy,

ψ4(x, k) = 1 + ∫ x

−∞
(
A − q0(−y)

)
ψ2(y, k) dy

+ A
2ik

∫ x

−∞ q0(y)
(
e−2ik(x−y) − 1

)
ψ4(y, k) dy.

(2.22)

Then the entries a1, a2 and b of the scattering matrix can be determined as follows:

a1(k) = lim
x→∞

(
ψ1(x, k) − A

2ik
ψ3(x, k)

)
, b(k) = lim

x→∞ e−2ikxψ3(x, k), (2.23)

and

a2(k) = lim
x→∞ψ4(x, k). (2.24)

Alternatively, they can be written it terms of the determinant relations:

a1(k) = det
(
�

(1)
1 (0,0, k),�

(2)
2 (0,0, k)

)
, k ∈C+ \ {0}, (2.25a)

a2(k) = det
(
�

(1)
2 (0,0, k),�

(2)
1 (0,0, k)

)
, k ∈C−, (2.25b)

b(k) = det
(
�

(1)
2 (0,0, k),�

(1)
1 (0,0, k)

)
, k ∈R. (2.25c)

The properties of the spectral functions, which follow from Proposition 1, are summarized in

Proposition 2. The spectral functions aj (k), j=1,2, and b(k) have the following properties

1. a1(k) is analytic in k ∈ C+ and continuous in C+ \ {0}; a2(k) is analytic in k ∈ C− and 
continuous in C−.

2. aj (k) = 1 + O
( 1

k

)
, j = 1, 2 as k → ∞, k ∈ C(−1)j+1 and b(k) = O

( 1
k

)
as k → ∞, k ∈R.

3. a1(−k̄) = a1(k), k ∈C+ \ {0}; a2(−k̄) = a2(k), k ∈ C−.
4. a1(k)a2(k) + b(k)b(−k) = 1, k ∈R \ {0} (follows from detS(k) = 1).

5. a1(k) = A2a2(0)

4k2 + O( 1
k
) as k → 0, k ∈C+ and b(k) = Aa2(0)

2ik
+ O(1) as k → 0, k ∈ R.

Remark 1. Concerning Item 5 of Proposition 2, we notice that substituting (2.10) into (2.25)
yields, as k → 0,
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a1(k) = 1

k2 (|v2(0,0)|2 − |v1(0,0)|2) + O

(
1

k

)
, (2.26a)

a2(k) = 4

A2 (|v2(0,0)|2 − |v1(0,0)|2) + O(k), (2.26b)

b(k) = − 2i

kA
(|v2(0,0)|2 − |v1(0,0)|2) + O(1), (2.26c)

from which Item 5 follows. Notice that in (2.25) one can use any (x, t) instead of (0, 0) as 
arguments in the right-hand sides, which implies that |v2(0, 0)|2 − |v1(0, 0)|2 in the r.h.s. of 
(2.26) can be replaced by v2(x, t)v̄2(−x, t) − v1(x, t)v̄1(−x, t), the latter being a conserved 
quantity (independent of x and t).

Remark 2. In the case of the pure-step initial data, i.e., when

q0(x) = q0A(x) :=
{

0, x < 0,

A, x > 0,
(2.27)

the scattering matrix S(k) is as follows:

S(k) = [�2(0,0, k)]−1�1(0,0, k) = N−1+ (k)N−(k) =
(

1 + A2

4k2 − A
2ik

A
2ik

1

)
. (2.28)

Particularly, in this case a1(k) has a single, simple zero (at k = i A
2 ) in the upper half-plane 

whereas a2(k) has no zeros in the lower half-plane.

2.3. The basic Riemann-Hilbert problem

The Riemann–Hilbert formalism of the IST method is based on constructing (using the Jost 
solutions) a piece-wise meromorphic, 2 ×2-valued function in the k-complex plane, whose “lack 
of analyticity”, i.e., the jump across a contour and, if appropriate, some conditions at the singu-
larity points, can be fully characterized in terms of the spectral data (spectral functions and a 
discrete set of data related to the poles) uniquely determined by the initial data.

Define the 2 ×2-valued function M(x, t, k), piece-wise meromorphic relative to R, as follows:

M(x, t, k) =

⎧⎪⎪⎨
⎪⎪⎩

(
�

(1)
1 (x,t,k)

a1(k)
,�

(2)
2 (x, t, k)

)
, k ∈C+,(

�
(1)
2 (x, t, k),

�
(2)
1 (x,t,k)

a2(k)

)
, k ∈C−.

(2.29)

Then the scattering relation (2.17) implies that the boundary values M±(x, t, k) =
lim

k′→k,k′∈C±M(x, t, k′), k ∈R satisfy the multiplicative jump condition

M+(x, t, k) = M−(x, t, k)J (x, t, k), k ∈ R \ {0}, (2.30)

where
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J (x, t, k) =
(

1 + r1(k)r2(k) r2(k)e−2ikx−4ik2t

r1(k)e2ikx+4ik2t 1

)
(2.31)

with the reflection coefficients defined by

r1(k) := b(k)

a1(k)
, r2(k) := b(−k)

a2(k)
. (2.32)

Moreover, M satisfies the normalization condition

M(x, t, k) → I, k → ∞, (2.33)

where I is the 2 × 2 identity matrix.
Observe that the symmetry conditions 3 in Proposition 2 imply that

r1(−k)r2(−k) = r1(k) r2(k), k ∈ R \ {0}. (2.34)

By the determinant property 4, we also have

1 + r1(k)r2(k) = 1

a1(k)a2(k)
, k ∈ R \ {0}. (2.35)

Now notice that in view of (2.26), the behavior of M as k → 0 is qualitatively different in 
the cases a2(0) 
= 0 and a2(0) = 0. The former case contains the case of “pure-step initial data”, 
see Remark 2, where a1(k) has (in C+) a single, simple zero located on the imaginary axis, and 
a2(k) has no zeros in C−. Since small (in the L1 norm) perturbations of the pure-step initial data 
preserve these properties, we will concentrate, in the present paper, on the following two cases:

Case I: The spectral function a1(k) has one (pure imaginary) simple zero in C+, say k = ik1, 
k1 > 0, and a2(k) has no zeros in C−.

Case II: The spectral function a1(k) has one simple zero in C+, say k = ik1, k1 > 0, and a2(k)

has one simple zero in C− at k = 0. Thus we assume that ȧ2(0) 
= 0 and, additionally, we 
suppose that a11 := lim

k→0
ka1(k) 
= 0.

Remark 3. Case I corresponds to the inequality |v2(0, 0)|2 − |v1(0, 0)|2 
= 0 whereas in Case II 
the equality |v2(0, 0)|2 − |v1(0, 0)|2 = 0 holds, see (2.11) and (2.26). With this respect, Case I 
corresponds to “generic” initial conditions whereas Case II corresponds to “non-generic” ones.

Remark 4. From the symmetry relations (2.20) it follows that a11 is purely imaginary. Moreover, 
if a1(k) has one simple zero, then Ima11 < 0 in Case II.

It is interesting that in contrast with the case of the local NLS, the value of k1 can’t be pre-
scribed independently of b(k).

Proposition 3. Given b(k) for k ∈ R \ {0}, the zero k = ik1 of a1(k) is determined as follows:
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(i) In Case I,

k1 = A

2
exp

⎧⎨
⎩− 1

2πi
v.p.

∞∫
−∞

ln ζ 2

ζ 2+1
(1 − b(ζ )b̄(−ζ ))

ζ
dζ

⎫⎬
⎭ , (2.36)

(ii) In Case II,

k1 = A

√
(Reb(0))2 + E2

2 − Reb(0)

2E1E2
, (2.37)

where

E1 = exp

⎧⎨
⎩ 1

2πi
v.p.

∞∫
−∞

ln(1 − b(ζ )b̄(−ζ ))

ζ
dζ

⎫⎬
⎭ and E2 = exp

{
1

2
ln(1 − |b(0)|2)

}

(2.38)
(notice that 1 − |b(0)|2 = a11ȧ2(0) 
= 0 by assumption).

Proof. (i) Case I. Define functions ã1(k) and ã2(k) by

ã1(k) = a1(k)
k2

(k − ik1)(k + i)
, ã2(k) = a2(k)

k − ik1

k − i
.

Then the determinant relation (see Item 4 in Proposition 2) can be viewed as the following scalar 
RH problem w.r.t. ãj (k), j = 1, 2: given b(k), k ∈ R, find ã1(k) and ã2(k) analytic and having 
no zeros in C+ and C− respectively, satisfying the jump condition

ã1(k)ã2(k) = k2

k2 + 1
(1 − b(k)b̄(−k)), k ∈ R (2.39)

and the normalization conditions ãj (k) → 1 as k → ∞. The unique solution of this RH problem 
is given by

ã1(k) = eχ(k), ã2(k) = e−χ(k),

where

χ(k) = 1

2πi

∞∫
−∞

ln ζ 2

ζ 2+1
(1 − b(ζ )b̄(−ζ ))

ζ − k
dζ.

Then a1(k) and a2(k) can be written as

a1(k) = (k − ik1)(k + i)
eχ(k) (2.40a)
k2
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and

a2(k) = k − i

k − ik1
e−χ(k), (2.40b)

which, being evaluated at k = 0, gives

a1(k) = k1e
χ(+i0)

k2 (1 + o(k)) and a2(0) = e−χ(−i0)

k1
. (2.41)

On the other hand (see (2.26)),

a1(k) = A2a2(0)

4k2 (1 + o(k)), k → 0. (2.42)

Comparing (2.41) and (2.42) and taking into account that (by the Sokhotski-Plemelj formulas)

χ(+i0) + χ(−i0) = 1

πi
v.p.

∞∫
−∞

ln ζ 2

ζ 2+1
(1 − b(ζ )b̄(−ζ ))

ζ
dζ,

we arrive at (2.36).
(ii) Case II. Observe that due to the symmetry relation (2.9) and Item (vi) in Proposition 1, 

the behavior of �j(x, t, k), j = 1, 2 as k → 0 can be characterized as follows:

�
(1)
1 (x, t, k) = 1

k

(
v1(x, t)

v2(x, t)

)
+

(
s1(x, t)

s2(x, t)

)
+ O(k), (2.43a)

�
(2)
1 (x, t, k) = 2i

A

(
v1(x, t)

v2(x, t)

)
+ k

(
h1(x, t)

h2(x, t)

)
+ O(k2), (2.43b)

�
(1)
2 (x, t, k) = −2i

A

(
v2(−x, t)

v1(−x, t)

)
− k

(
h2(−x, t)

h1(−x, t)

)
+ O(k2), (2.43c)

�
(2)
2 (x, t, k) = −1

k

(
v2(−x, t)

v1(−x, t)

)
+

(
s2(−x, t)

s1(−x, t)

)
+ O(k), (2.43d)

with some vj , sj , and hj (j = 1, 2). Then, using the definitions (2.25) of the spectral functions 
and taking into account that |v2(0, 0)|2 − |v1(0, 0)|2 = 0 in Case II, we have as k → 0:

a1(k) = 1

k
(v1s̄1 − v̄1s1 − v2s̄2 + v̄2s2)

∣∣∣∣
x,t=0

+ O(1), (2.44a)

a2(k) = k
2i

A
(v1h̄1 + v̄1h1 − v2h̄2 − v̄2h2)

∣∣∣∣
x,t=0

+ O(k2), (2.44b)

b(k) = v1h̄1 − v2h̄2 + 2i

A
(v̄1s1 − v̄2s2)

∣∣∣∣
x,t=0

+ O(k). (2.44c)

Equations (2.44) imply that
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a11 = iAReb(0) − A2

4
ȧ2(0), (2.45)

where a11 = lim
k→0

(ka1(k)).

On the other hand, introducing

â1(k) = a1(k)
k

k − ik1
and â2(k) = a2(k)

k − ik1

k
,

the determinant relation can be viewed as the scalar RH problem with the jump condition

â1(k)â2(k) = 1 − b(k)b̄(−k),

whose solution gives

a1(k) = k − ik1

k
exp

⎧⎨
⎩ 1

2πi

∞∫
−∞

ln(1 − b(ζ )b̄(−ζ ))

ζ − k
dζ

⎫⎬
⎭ , (2.46a)

and

a2(k) = k

k − ik1
exp

⎧⎨
⎩− 1

2πi

∞∫
−∞

ln(1 − b(ζ )b̄(−ζ ))

ζ − k
dζ

⎫⎬
⎭ . (2.46b)

From (2.46), using the Sokhotski-Plemelj formulas, we obtain

a11 = −ik1E1E2 and ȧ2(0) = i

k1
E−1

1 E2, (2.47)

where E1 and E2 are given by (2.38), which, being compared with (2.45), uniquely determines 
k1 > 0 as the solution of a quadratic equation. �

Taking into account the singularities of �j(x, t, k), j = 1, 2 and a1(k) at k = 0 (see Proposi-
tion 1), the behavior of M(x, t, k) at k = 0 can be described as follows: in Case I,

M+(x, t, k) =
(

4
A2a2(0)

v1(x, t) −v2(−x, t)
4

A2a2(0)
v2(x, t) −v1(−x, t)

)
(I + O(k))

(
k 0
0 1

k

)
, k → +i0,

(2.48a)

M−(x, t, k) = 2i

A

(
−v2(−x, t)

v1(x,t)
a2(0)

−v1(−x, t)
v2(x,t)
a2(0)

)
+ O(k), k → −i0,

(2.48b)

and Case II,
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M+(x, t, k) =
(

v1(x,t)
a11

−v2(−x, t)
v2(x,t)

a11
−v1(−x, t)

)
(I + O(k))

(
1 0
0 1

k

)
, k → +i0, (2.49a)

M−(x, t, k) = 2i

A

(
−v2(−x, t)

v1(x,t)
ȧ2(0)

−v1(−x, t)
v2(x,t)
ȧ2(0)

)
(I + O(k))

(
1 0
0 1

k

)
, k → −i0

(2.49b)

(recall that a11 is determined by a1(k) = a11
k

+ O(1) as k → 0).
Additionally, if a1(ik1) = 0 with k1 > 0 (recall that in this case we assume that this zero is 

simple), then M(x, t, k) satisfies the residue condition

Res
k=ik1

M(1)(x, t, k) = γ1

ȧ1(ik1)
e−2k1x−4ik2

1 tM(2)(x, t, ik1), |γ1| = 1, (2.50)

where �(1)
1 (0, 0, ik1) = γ1�

(2)
2 (0, 0, ik1). Notice that the symmetry relation (2.9) implies that 

�
(1)

1 (0, 0, ik1) = γ −1
1 �

(2)

2 (0, 0, ik1) and thus |γ1| = 1 (cf. [6]).
Notice that if a1(k) has a zero k = ζ1 that is not pure imaginary, then, due to the symmetry 

conditions, it also has a zero at k = ζ2 = −ζ̄1, and the associated residue conditions have the 
form:

Res
k=ζ1

M(1)(x, t, k) = η1

ȧ1(ζ1)
e2iζ1x+4iζ 2

1 tM(2)(x, t, ζ1) (2.51a)

and

Res
k=ζ2

M(1)(x, t, k) = 1

η̄1ȧ1(ζ2)
e2iζ2x+4iζ 2

2 tM(2)(x, t, ζ2), (2.51b)

where η1 is determined by �(1)
1 (0, 0, ζ1) = η1�

(2)
2 (0, 0, ζ1).

Now we are at a position to formulate the Riemann-Hilbert problem, whose solution gives 
the solution of the initial value problem (1.1), (1.4). Let b(k), k ∈ R and γ1 with |γ1| = 1 be the 
spectral data associated with the initial data q0(x) in (1.1). Then the Riemann-Hilbert problem is 
as follows:

Basic Riemann–Hilbert Problem: Given b(k) and γ1, find the 2 ×2-valued function M(x, t, k), 
piece-wise meromorphic in k relative to R and satisfying the following conditions:

(i) Jump conditions. The non-tangential limits M±(x, t, k) = M(x, t, k ± i0) exist a.e. for 
k ∈ R such that M(x, t, ·) − I ∈ L2(R \ [−ε, ε]) for any ε > 0 and M±(x, t, k) satisfy 
the condition

M+(x, t, k) = M−(x, t, k)J (x, t, k) for a.e. k ∈R \ {0}, (2.52)

where the jump matrix J (x, t, k) is given by (2.31), with r1 and r2 given in terms of b
by (2.32) with (2.40) (Case I) or (2.46) (Case II).

(ii) Normalization at k = ∞:

M(x, t, k) = I + O(k−1) uniformly as k → ∞.



708 Ya. Rybalko, D. Shepelsky / J. Differential Equations 270 (2021) 694–724
(iii) Residue condition (2.50) with k1 given in terms of b using (2.36) (Case I) or (2.37)
(Case II).

(iv) Singularity conditions at k = 0: M(x, t, k) satisfies (2.48) (Case I) or (2.49) (Case II), 
where vj (x, t), j = 1, 2 are some (not prescribed) functions.

Assume that the RH problem (i)–(iv) has a solution M(x, t, k). Then the solution of the 
initial value problem (1.1), (1.4) is given in terms of the (12) and (21) entries of M(x, t, k)

as follows:

q(x, t) = 2i lim
k→∞ kM12(x, t, k), (2.53)

and

q(−x, t) = −2i lim
k→∞kM21(x, t, k). (2.54)

The solution of the RH problem is unique, if exists. Indeed, if M and M̃ are two solutions, 
then conditions (2.48) or (2.49) provide the boundedness of MM̃−1 at k = 0. Then the standard 
arguments based of the Liouville theorem lead to MM̃−1 ≡ I .

Remark 5. From (2.53) and (2.54) it follows that in order to present the solution of (1.1), (1.4)
for all x ∈R, it is sufficient to have the solution of the RH problem for, say, x ≥ 0 only.

Remark 6. In the general case with more zeros of a1(k) in C+ and/or zeros of a2(k) in C−, rele-
vant residue conditions, of type (2.50) and/or (2.51), have to be specified, in terms of a prescribed 
set of zeros and corresponding norming constants.

Proposition 4. The solution M of the Riemann–Hilbert problem (i)-(iv) satisfies the following 
symmetry condition (cf. (2.18)):

M(x, t, k) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

	M(−x, t,−k̄)	−1

(
1

a1(k)
0

0 a1(k)

)
, k ∈C+ \ {0},

	M(−x, t,−k̄)	−1

(
a2(k) 0

0 1
a2(k)

)
, k ∈C− \ {0}.

(2.55)

Proof. Follows from the symmetry of the jump matrix (2.31) in (2.52)

	J(−x, t,−k)	−1 =
(

a2(k) 0
0 1

a2(k)

)
J (x, t, k)

(
a1(k) 0

0 1
a1(k)

)
, k ∈ R \ {0}

(which, in turns, follows from (2.34) and (2.35)), and the fact that the structural conditions (2.48)
and (2.49) and the residue condition (2.50) are consistent with (2.55). �
2.4. One-soliton solution

Proposition 5. Let a1(k), a2(k), and b(k) be the spectral functions (i) associated with some q0(x)

and (ii) satisfying the following conditions:
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• b(k) = 0 for all k ∈ R;
• a1(k) has a single, simple zero k = ik1 with some k1 > 0 in C+;
• a2(k) has a single, simple zero k = 0 in C−.

Also, let γ1 be given such that γ1 = eiφ1 with φ1 ∈R. Then:

1. k1 is uniquely determined as k1 = A
2 ;

2. The Riemann–Hilbert problem (i)–(iv) has a unique solution for all (x, t) with x ∈ R and 
t ≥ 0 except the set ∪n∈Z{(0, tn)} with tn = φ1

A2 + 2π
A2 n;

3. The associated exact solution q(x, t) of problem (1.1), (1.4) is given by

q(x, t) = A

1 − e−Ax−iA2t+iφ1
. (2.56)

Proof. Since b(0) = 0, we are in Case II, and thus Item 1 follows from Proposition 3, (ii). 
Moreover, (2.46) gives

a1(k) = k − i A
2

k
, a2(k) = k

k − i A
2

(2.57)

and thus the constants involved in (2.49) are as follows:

a11 = A

2i
, ȧ2(0) = 2i

A
.

Now notice that since b(k) ≡ 0, it follows that M(·, ·, k) is a meromorphic (in C) function 
with the only pole at k = ik1. Then, comparing (2.49a) and (2.49b), it follows that v1(x, t) =
−v̄2(−x, t) and thus the singularity conditions (2.49) reduce to a conventional residue condition:

Res
k=0

M(2)(x, t, k) = A

2i
M(1)(x, t,0). (2.58)

Further, taking into account the original residue condition (2.50) and the normalization condition 
(ii), we arrive at the following representation for M :

M(x, t, k) =
⎛
⎝ k+v1(x,t)

k− iA
2

v1(x,t)
k

−v̄1(−x,t)

k− iA
2

k−v̄1(−x,t)
k

⎞
⎠ , (2.59)

where v1(x, t) is determined using (2.50):

v1(x, t) = A

2i

1

1 − e−Ax−iA2t+iφ1
. (2.60)

Particularly, this determines the singularity set as the set of zeros of the denominator in (2.60). 
Finally, using (2.53) or (2.54), the soliton formula (2.56) follows. �
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3. The long-time asymptotics

The shock-type long-time asymptotics for the local NLS equation with the step-like boundary 
conditions (1.6), (1.7) was presented in [13], where it was shown that there were always three 
sectors in the (x, t) half-plane (t > 0) characterized by qualitatively different asymptotic behav-
ior: the decaying sector (where the order of decay of q is O(t−1/2)), the sector of modulated 
elliptic wave, and the sector of modulated plane wave. Particularly, if B = 0, then the modulated 
elliptic wave occupies the sector 0 < x

t
< 8

√
2A.

It is natural to compare this behavior with the asymptotics for the nonlocal NLS equation with 
the same type of the initial data (1.1b), (1.1c). This motivates us to study, in this Section, the long-
time asymptotics of the solution of the initial value problem (1.1), (1.4). Our analysis is based 
on the adaptation of the nonlinear steepest-decent method [19] to the (oscillatory) RH problem 
(i)–(iv). The implementation of the method in our case has some specific features: particularly, 
we have to deal with a singularity on the contour, and the jump 1 + r1(k)r2(k) in the scalar RH 
problem for δ(ξ, k) (see (3.3) below) is not, in general, real-valued.

We will show that a basic difference of the asymptotics for the nonlocal NLS equation being 
compared with that for the local NLS is that, while there are still the sector of decay and the 
sector of “modulated constant”, there is no an intermediate sector between these two (although 
a transition zone between these sectors may exist, being characterized by a specific asymptotics 
along curves converging to the ray x = 0, t > 0).

3.1. Jump factorizations

First, notice that in view of (2.53) and (2.54), studying the RH problem for x > 0 is sufficient 
for studying q(x, t) for all (x, t) outside the sector |x/t | < ε for any ε > 0.

Introduce the variable ξ := x
4t

and the phase function

θ(k, ξ) = 4kξ + 2k2. (3.1)

The jump matrix (2.31) allows, similarly to [33], two triangular factorizations:

J (x, t, k) =
(

1 0
r1(k)

1+r1(k)r2(k)
e2itθ 1

)(
1 + r1(k)r2(k) 0

0 1
1+r1(k)r2(k)

)(
1 r2(k)

1+r1(k)r2(k)
e−2itθ

0 1

)
(3.2a)

and

J (x, t, k) =
(

1 r2(k)e−2itθ

0 1

)(
1 0

r1(k)e2itθ 1

)
. (3.2b)

Since the phase function θ(k, ξ) is the same as in the case of the local NLS, its signature table 
(see Fig. 1) suggests us to follow the conventional steps [19,16] involving (i) getting rid of the 
diagonal factor in (3.2a) and (ii) the deformation of the original RH problem (relative to the 
real axis) to a new one, relative to a cross, where the jump matrix converges, as t → ∞, to the 
identity matrix uniformly away from any vicinity of the stationary phase point k = −ξ . But when 
following this scheme, we have to pay a special attention to the singularity point k = 0.

First, introduce δ(ξ, k) as the solution of the scalar RH problem: find δ(ξ, k) analytic in C \
(−∞, −ξ ] and satisfying the conditions
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Fig. 1. Signature table.{
δ+(ξ, k) = δ−(ξ, k)(1 + r1(k)r2(k)), k ∈ (−∞,−ξ),

δ(ξ, k) → 1, k → ∞.
(3.3)

Its solution is given by the Cauchy-type integral:

δ(ξ, k) = exp

⎧⎨
⎩ 1

2πi

−ξ∫
−∞

ln(1 + r1(ζ )r2(ζ ))

ζ − k
dζ

⎫⎬
⎭ (3.4)

(notice that since we deal with ξ > 0, the behavior of rj (k) at k = 0 does not affect δ(ξ, k)). Then 
define M̃ with the help of δ:

M̃(x, t, k) = M(x, t, k)δ−σ3(ξ, k). (3.5)

Notice that in the case of the pure-step initial data (2.27), 1 + r1(k)r2(k) = 4k2

4k2+A2 (see Re-
mark 2), and thus 1 + r1(k)r2(k) is real-valued. However, in the general case, 1 + r1(k)r2(k) can 
take complex values, which may cause δ(ξ, k) to be singular at k = −ξ (cf. [33]).

Indeed, δ(ξ, k) can be written as

δ(ξ, k) = (ξ + k)iν(−ξ)eχ(ξ,k), (3.6)

where

χ(ξ, k) := − 1

2πi

−ξ∫
−∞

ln(k − ζ )dζ ln(1 + r1(ζ )r2(ζ )) (3.7)

and

ν(−ξ) := − 1

2π
ln(1 + r1(−ξ)r2(−ξ)) = − 1

2π
ln |1 + r1(−ξ)r2(−ξ)| − i

2π
�(−ξ), (3.8)

with

�(−ξ) :=
−ξ∫

d arg(1 + r1(ζ )r2(ζ )).
−∞
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In what follows we will assume that

�(k) ∈ (−π,π) for all k ∈ (−∞,0) (3.9)

and thus | Imν(k)| < 1
2 . In this case, ln(1 + r1(k)r2(k)) is single-valued, and the singularity of 

δ(ξ, k) (as well as of M̃(x, t, k)) at k = −ξ is square integrable. More importantly, assumption 
(3.9) will allow us to establish correct estimates, see (3.22) in Theorem 1, i.e. the estimates with 
main terms dominating the error ones.

Assumption (3.9) obviously holds in the case of the pure-step initial data (2.27): in this case, 
�(k) ≡ 0 for k ∈ (−∞, 0). With this respect, this assumption holds, particularly, if the initial data 
are small L1-perturbations of q0A(x); we have already remarked on this aspect when formulating 
the conditions for Case I and Case II above.

Function M̃(x, t, k) defined by (3.5) satisfies the RH problem specified by the jump, normal-
ization, and residue conditions:

M̃+(x, t, k) = M̃−(x, t, k)J̃ (x, t, k), k ∈ R \ {0}, (3.10a)

M̃(x, t, k) → I, k → ∞, (3.10b)

Res
k=ik1

M̃(1)(x, t, k) = γ1

ȧ1(ik1)δ2(ξ, ik1)
e−2k1x−4ik2

1 t M̃(2)(x, t, ik1), |γ1| = 1, (3.10c)

where

J̃ (x, t, k) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(
1 0

r1(k)δ−2− (ξ,k)

1+r1(k)r2(k)
e2itθ 1

)(
1

r2(k)δ2+(ξ,k)

1+r1(k)r2(k)
e−2itθ

0 1

)
, k ∈ (−∞,−ξ),

(
1 r2(k)δ2(ξ, k)e−2itθ

0 1

)(
1 0

r1(k)δ−2(ξ, k)e2itθ 1

)
, k ∈ (−ξ,∞) \ {0},

(3.10d)
supplemented by the singularity conditions at k = 0:

M̃+(x, t, k) =
⎛
⎝ 4v1(x,t)

A2a2(0)δ(ξ,0)
−δ(ξ,0)v2(−x, t)

4v2(x,t)

A2a2(0)δ(ξ,0)
−δ(ξ,0)v1(−x, t)

⎞
⎠ (I + O(k))

(
k 0
0 1

k

)
, k → +i0,

(3.10e)

M̃−(x, t, k) = 2i

A

( −v2(−x,t)
δ(ξ,0)

δ(ξ,0)
v1(x,t)
a2(0)

−v1(−x,t)
δ(ξ,0)

δ(ξ,0)
v2(x,t)
a2(0)

)
+ O(k), k → −i0,

(3.10f)

in Case I, and

M̃+(x, t, k) =
(

v1(x,t)
a11δ(ξ,0)

−δ(ξ,0)v2(−x, t)
v2(x,t)

a11δ(ξ,0)
−δ(ξ,0)v1(−x, t)

)
(I + O(k))

(
1 0
0 1

k

)
, k → +i0,

(3.10g)
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Fig. 2. Contour �̂ = γ̂1 ∪ ... ∪ γ̂4.

M̃−(x, t, k) = 2i

A

(− v2(−x,t)
δ(ξ,0)

δ(ξ,0)
v1(x,t)
ȧ2(0)

− v1(−x,t)
δ(ξ,0)

δ(ξ,0)
v2(x,t)
ȧ2(0)

)
(I + O(k))

(
1 0
0 1

k

)
, k → −i0,

(3.10h)

in Case II.

3.2. RH problem deformations

Notice that similarly to the case of the NLS equation, assuming that 
∫ 0
−∞ |q0(x)|dx < ∞ and ∫ ∞

0 |q0(x) − A|dx < ∞, the reflection coefficients rj (k), j = 1, 2, are defined, in general, for 
k ∈ R only (see Propositions 1 and 2). On the other hand, in the large-t analysis of M̃(x, t, k), it 
is advantageous to have rj (k) continued, as meromorphic functions, into C; then this will allow 

us to proceed with appropriate RH problem deformations. Otherwise rj (k) and rj (k)

1+r1(k)r2(k)
have 

to be approximated by some rational functions with well-controlled errors (see, e.g., [16,31]).
For clarity’s sake, in what follows we will assume that the initial data q0(x) are a compact 

perturbation of the pure step initial data q0A(x) (2.27), which guarantees that all �m
l (x, 0, k), 

l, m = 1, 2 (see Proposition 1) and thus rj (k) are meromorphic in C. Then we define M̂(x, t, k)

as follows (see Fig. 2):

M̂(x, t, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M̃(x, t, k), k ∈ �̂0,

M̃(x, t, k)

(
1 −r2(k)δ2(ξ,k)

1+r1(k)r2(k)
e−2itθ

0 1

)
, k ∈ �̂1,

M̃(x, t, k)

(
1 0

−r1(k)δ−2(ξ, k)e2itθ 1

)
, k ∈ �̂2,

M̃(x, t, k)

(
1 r2(k)δ2(ξ, k)e−2itθ

0 1

)
, k ∈ �̂3,

M̃(x, t, k)

(
1 0

r1(k)δ−2(ξ,k)
1+r1(k)r2(k)

e2itθ 1

)
, k ∈ �̂4.

(3.11)

Here the angles between the rays γ̂j = γ̂j (ξ) and the real axis are such that the point ik1 is located 
in the sector �̂0. Then M̂(x, t, k) satisfies the RH problem with the jump across �̂ = γ̂1 ∪ ... ∪ γ̂4:

M̂+(x, t, k) = M̂−(x, t, k)Ĵ (x, t, k), k ∈ �̂ (3.12a)
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with

Ĵ (x, t, k) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 r2(k)δ2(ξ,k)

1+r1(k)r2(k)
e−2itθ

0 1

)
, k ∈ γ̂1,(

1 0

r1(k)δ−2(ξ, k)e2itθ 1

)
, k ∈ γ̂2,(

1 −r2(k)δ2(ξ, k)e−2itθ

0 1

)
, k ∈ γ̂3,(

1 0
−r1(k)δ−2(ξ,k)

1+r1(k)r2(k)
e2itθ 1

)
, k ∈ γ̂4,

(3.12b)

the normalization

M̂(x, t, k) → I, k → ∞, (3.12c)

and the residue condition

Res
k=ik1

M̂(1)(x, t, k) = c1(x, t)M̂(2)(x, t, ik1), (3.12d)

where c1(x, t) = γ1
ȧ1(ik1)δ

2(ξ,ik1)
e−2k1x−4ik2

1 t with |γ1| = 1.
As for the singularity conditions at k = 0, it is remarkable that they reduce, in the both cases, 

to the same residue condition having a conventional form

Res
k=0

M̂(2)(x, t, k) = c0(ξ)M̂(1)(x, t,0) (3.12e)

with c0(ξ) = Aδ2(ξ,0)
2i

(cf. (2.58)).
The RH problem (3.12) involving two residue conditions (3.12d) and (3.12e) can be reduced 

to a regular RH problem (without residue conditions) by using the Blaschke-Potapov factors (see, 
e.g., [21]):

Proposition 6. The solution q(x, t) of the IV problem (1.1), (1.4) can be represented as follows:

q(x, t) = −2k1P12(x, t) + 2i lim
k→∞kM̂R

12(x, t, k), x > 0, (3.13a)

q(x, t) = −2k1P21(−x, t) − 2i lim
k→∞ kM̂R

21(−x, t, k), x < 0. (3.13b)

Here (i) M̂R(x, t, k) solves the regular Riemann-Hilbert problem:

{
M̂R+(x, t, k) = M̂R−(x, t, k)Ĵ R(x, t, k), k ∈ �̂,

M̂R(x, t, k) → I, k → ∞,
(3.14a)

with
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Ĵ R(x, t, k) =
(

1 0
0 k−ik1

k

)
Ĵ (x, t, k)

(
1 0
0 k

k−ik1

)
, k ∈ �̂ (3.14b)

and (ii) P12 and P21 are determined in terms of M̂R:

P12(x, t) = g1(x, t)h1(x, t)

g1(x, t)h2(x, t) − g2(x, t)h1(x, t)
,

P21(x, t) = − g2(x, t)h2(x, t)

g1(x, t)h2(x, t) − g2(x, t)h1(x, t)
, (3.15)

where g(x, t) =
(

g1(x,t)

g2(x,t)

)
and h(x, t) =

(
h1(x,t)

h2(x,t)

)
are given by

g(x, t) = ik1M̂
R(1)(x, t, ik1) − c1(x, t)M̂R(2)(x, t, ik1), (3.16a)

h(x, t) = ik1M̂
R(2)(x, t,0) + c0(ξ)M̂R(1)(x, t,0). (3.16b)

Proof. The solution M̂(x, t, k) of the Riemann-Hilbert problem (3.12) can be represented in 
terms of the solution M̂R(x, t, k) of the regular RH problem (3.14) as follows [21]:

M̂(x, t, k) = B(x, t, k)M̂R(x, t, k)

(
1 0
0 k−ik1

k

)
, k ∈C, (3.17)

where the Blaschke-Potapov factor B has the form B(x, t, k) = I + ik1
k−ik1

P(x, t). Here P(x, t)
is a projection uniquely determined by the conditions

kerP(x, t) = linC {g(x, t)} and ImP(x, t) = linC {h(x, t)} , (3.18)

where g(x, t) and h(x, t) are given by (3.16): this implies that the (12) and (21) elements of P
are given by (3.15) whereas

P11(x, t) = −P12(x, t)g2(x, t)

g1(x, t)
and P22(x, t) = −P21(x, t)g1(x, t)

g2(x, t)
. (3.19)

Finally, taking into account that

M̂(x, t, k) =
(

1 0
0 1 − ik1

k

)
+ ik1

k − ik1
P(x, t) + M̂R

1 (x, t)

k
+ O

(
1

k2

)
, k → ∞ (3.20)

where M̂R(x, t, k) = I + M̂R
1 (x,t)

k
+ O

(
1
k2

)
, k → ∞, and using (2.53) and (2.54), the represen-

tations (3.13) follow. �
Therefore, using Proposition 6, the large-t asymptotic analysis of q(x, t) reduces to that for 

a regular RH problem (3.14). On the other hand, the latter problem has the same form as in the 
case of the NNLS equation on the zero background, see [33]. Consequently, one can follows the 
asymptotic approach, presented in [33], for obtaining the long-time asymptotics for M̂R(x, t, k)
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at k = ik1, k = 0 (needed in (3.16)), and for large k (needed in (3.13)), which will finally lead to 
the long-time asymptotics of q(x, t).

Before formulating detailed asymptotics, let us notice that the rough approximation
M̂R(x, t, k) ≈ I as t → ∞ with x/t ≥ ε for any ε > 0 (to avoid the possible singularity of 
δ(ξ, k) as ξ → 0), being substituted into (3.16), gives the main term of the asymptotics of q(x, t)
with a rough error estimate:

Proposition 7. As t → ∞,

q(x, t) = Aδ2(ξ,0) + o(1) for x > 0 and q(x, t) = o(1) for x < 0 (3.21)

along any ray ξ = x
4t

= const > 0 or ξ = const < 0.

Indeed, M̂R(x, t, k) ≈ I implies that 
(

g1(x,t)

g2(x,t)

)
≈

(
ik1

−c1(x,t)

)
≈

(
ik1
0

)
and 

(
h1(x,t)

h2(x,t)

)
≈

(
c0(ξ)

ik1

)
. 

Accordingly, for x > 0 we have

q(x, t) ≈ −2k1P12(x, t) ≈ −2k1
ik1c0(ξ)

−k2
1 + c0(ξ)c1(x, t)

≈ 2ic0(ξ) = Aδ2(ξ,0)

whereas for x < 0 we have

q(x, t) ≈ −2k1P21(−x, t) ≈ 2k1
−c̄1(−x, t)(−ik1)

−k2
1 + c̄0(−ξ)c̄1(−x, t)

≈ 0.

Our main results make (3.21) more precise.

Theorem 1. Consider the Cauchy problem (1.1), (1.4), where the initial data q0(x) is a compact 
perturbation of the pure step initial data (2.27): q0(x) − q0A(x) = 0 for |x| > N with some 
N > 0. Assume that the spectral functions associated with q0(x) via (2.21)–(2.24) are such that:

(a) a1(k) has a single, simple zero in C+ at k = ik1, and a2(k) either has no zeros in C− or has 
a single, simple zero at k = 0.

(b) Imν(−ξ) ∈ (− 1
2 , 1

2

)
for all ξ > 0, where Imν(−ξ) = − 1

2π

∫ −ξ

−∞ d arg(1 + r1(ζ )r2(ζ )), 

r1(k) = b(k)
a1(k)

, r2(k) = b(−k)
a2(k)

.

Assuming that the solution q(x, t) of (1.1), (1.4) exists, its long-time asymptotics along any line 
ξ = x

4t
= const 
= 0 is as follows:

(i) for x < 0:

q(x, t) = t−
1
2 −Imν(ξ)α1(ξ) exp

{
4itξ2 − i Reν(ξ) ln t

}
+ R1(−ξ, t), (3.22a)

(ii) for x > 0, three types of asymptotics are possible, depending on the value of Imν(−ξ):
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(a) if Imν(−ξ) ∈ (− 1
2 ,− 1

6

]
, then

q(x, t) = Aδ2(ξ,0) + t−
1
2 −Imν(−ξ)α2(ξ) exp

{
−4itξ2 + i Reν(−ξ) ln t

}
+ R1(ξ, t).

(3.22b)
(b) if Imν(−ξ) ∈ (− 1

6 , 1
6

)
, then

q(x, t) = Aδ2(ξ,0) + t−
1
2 +Imν(−ξ)α3(ξ) exp

{
4itξ2 − i Reν(−ξ) ln t

}
+ t−

1
2 −Imν(−ξ)α2(ξ) exp

{
−4itξ2 + i Reν(−ξ) ln t

}
+ R3(ξ, t). (3.22c)

(c) if Imν(−ξ) ∈ [ 1
6 , 1

2

)
, then

q(x, t) = Aδ2(ξ,0) + t−
1
2 +Imν(−ξ)α3(ξ) exp

{
4itξ2 − i Reν(−ξ) ln t

}
+ R2(ξ, t).

(3.22d)

Here

δ(ξ,0) = exp

⎧⎨
⎩ 1

2πi

−ξ∫
−∞

ln(1 + r1(ζ )r2(ζ ))

ζ
dζ

⎫⎬
⎭ ,

ν(−ξ) = − 1

2π
ln |1 + r1(−ξ)r2(−ξ)| − i

2π
�(−ξ),

�(−ξ) =
−ξ∫

−∞
d arg(1 + r1(ζ )r2(ζ )),

α1(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
π exp

{−π
2 ν(ξ) + πi

4 − 2χ(−ξ, ξ) − 3iν(ξ) ln 2
}

r2(ξ)�(−iν(ξ))
, r1(−ξ)r2(−ξ) 
= 0,

r1(ξ)e
3πi

4

2
√

π
, r1(−ξ) = 0, r2(−ξ) 
= 0,

0, r1(−ξ) 
= 0, r2(−ξ) = 0,

0, r1(−ξ) = r2(−ξ) = 0,

α2(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c2
0(ξ)

√
π exp

{−π
2 ν(−ξ) + 3πi

4 − 2χ(ξ,−ξ) + 3iν(−ξ) ln 2
}

ξ2r2(−ξ)�(iν(−ξ))
, r1(−ξ)r2(−ξ) 
= 0,

0, r1(−ξ) = 0, r2(−ξ) 
= 0,

c2
0(ξ)r1(−ξ)e

πi
4

2
√

πξ2 , r1(−ξ) 
= 0, r2(−ξ) = 0,

0, r (−ξ) = r (−ξ) = 0,
1 2
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α3(ξ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

√
π exp

{−π
2 ν(−ξ) + πi

4 + 2χ(ξ,−ξ) − 3iν(−ξ) ln 2
}

r1(−ξ)�(−iν(−ξ))
, r1(−ξ)r2(−ξ) 
= 0,

r2(−ξ)e
3πi

4

2
√

π
, r1(−ξ) = 0, r2(−ξ) 
= 0,

0, r1(−ξ) 
= 0, r2(−ξ) = 0,

0, r1(−ξ) = r2(−ξ) = 0,

with

χ(ξ, k) = − 1

2πi

−ξ∫
−∞

ln(k − ζ )dζ ln(1 + r1(ζ )r2(ζ )),

where �(·) is the Euler Gamma-function.
The error estimates R1(ξ, t) and R2(ξ, t) are uniform in any compact subset of ξ ∈ (0, ∞)

and are as follows:

R1(ξ, t) =

⎧⎪⎨
⎪⎩

O
(
t−1

)
, Imν(−ξ) > 0,

O
(
t−1 ln t

)
, Imν(−ξ) = 0,

O
(
t−1+2| Im ν(−ξ)|) , Imν(−ξ) < 0,

(3.23)

R2(ξ, t) =

⎧⎪⎨
⎪⎩

O
(
t−1+2| Im ν(−ξ)|) , Imν(−ξ) > 0,

O
(
t−1 ln t

)
, Imν(−ξ) = 0,

O
(
t−1

)
, Imν(−ξ) < 0,

(3.24)

and

R3(ξ, t) = R1(ξ, t) + R2(ξ, t) =
{

O
(
t−1+2| Im ν(−ξ)|) , Imν(−ξ) 
= 0,

O
(
t−1 ln t

)
, Imν(−ξ) = 0.

Remark 7. Notice that δ(ξ, 0) → 1 as ξ → ∞ and thus the asymptotics (3.22b)-(3.22d) is con-
sistent with the boundary conditions (1.4b).

Remark 8. In the case of the pure-step initial data, i.e. q(x, 0) = 0 for x < 0 and q(x, 0) = A for 
x ≥ 0, both assumptions of the theorem hold true. Moreover, in this case 1 + r1(k)r2(k) = 4k2

4k2+A2

and thus Imν = 0 in (3.22).

Remark 9. The problem of describing asymptotic transition between the regions x < 0 and x > 0
remains open. Some observations showing that this problem is far nontrivial are as follows:

1. From the point of view of the Riemann-Hilbert problem formalism, the transition region 
corresponds to merging the stationary phase point k = −ξ and the singularity point k = 0; to 
the best of our knowledge, such transition picture has not been considered in the literature.

2. The main asymptotic term for x > 0, Aδ2(ξ, 0), develops, in general, increasing oscillations 
as ξ → +0; only in very particular cases (belonging to Case II only), where b(0) = 0, there 
exists a finite limit of δ(ξ, 0) ξ → +0, which can be zero as well as non-zero.
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3. Even in the simplest case of a soliton solution, where the asymptotics holds as |x| increases, 
together with t , along any path in the half-planes x > 0 and x < 0, (in this case we have 
ν ≡ 0 and thus δ(ξ, k) ≡ 1), at the boundary line x = 0 the solution develops discrete (in t) 
singularities.

Sketch of proof of Theorem 1.
Here we consider the case rj (−ξ) 
= 0, j = 1, 2 (for the cases when one of the rj (−ξ) (or the 

both) equals zero and thus ν(−ξ) = 0, we refer to Section 1.5 of Chapter 2 in [23]). In view of 
(3.13), for obtaining the asymptotics (3.22) it is sufficient to estimate the solution M̂R(x, t, k) of 
the regular RH problem (3.14) at k = 0, k = ik1 and k = ∞. Noticing that this RH problem is 
similar to that in the case of decaying initial data [33], in what follows we will refer to [33] for 
the details of the relative steps in the asymptotic analysis.

First, introduce the rescaled variable z by

k = z√
8t

− ξ, (3.25)

so that

e2itθ = e
iz2
2 −4itξ2

.

Introduce the “local parametrix” m̂R
0 (x, t, k) as the solution of a RH problem with the jump 

matrix that is a “simplified Ĵ R(x, t, k)” in the sense that in its construction, rj (k), j = 1, 2 are 

replaced by the constants rj (−ξ) and δ(ξ, k) is replaced by (cf. (3.6)) δ �
(

z√
8t

)iν(−ξ)

eχ(ξ,−ξ). 
Such RH problem can be solved explicitly, in terms of the parabolic cylinder functions [26,33].

Indeed, m̂R
0 (x, t, k) can be determined by

m̂R
0 (x, t, k) = �(ξ, t)m�(ξ, z(k))�−1(ξ, t), (3.26)

where

�(ξ, t) = e(2itξ2+χ(ξ,−ξ))σ3(8t)−
iν(−ξ)

2 σ3, (3.27)

m�(ξ, z) is determined by

m�(ξ, z) = m0(ξ, z)D−1
j (ξ, z), z ∈ �j , j = 0, . . . ,4, (3.28)

see Fig. 3, where γj corresponds to γ̂j in accordance with (3.25). Here D0(ξ, z) =
e−i z2

4 σ3ziν(−ξ)σ3 ,

D1(ξ, z) = D0(ξ, z)

(
1

rR
2 (−ξ)

1+rR
1 (−ξ)rR

2 (−ξ)

0 1

)
, D2(ξ, z) = D0(ξ, z)

(
1 0

rR
1 (−ξ) 1

)
,

D3(ξ, z) = D0(ξ, z)

(
1 −rR

2 (−ξ)

0 1

)
, D4(ξ, z) = D0(ξ, z)

(
1 0

−rR
1 (−ξ)

R R 1

)

1+r1 (−ξ)r2 (−ξ)
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Fig. 3. Contour and domains for m�(ξ, z) in the z-plane.

with

rR
1 (k) = k − ik1

k
r1(k), rR

2 (k) = k

k − ik1
r2(k),

and m0(ξ, z) is the solution of the following RH problem in z-plane (relative to R, with a constant 
jump matrix):

{
m0+(ξ, z) = m0−(ξ, z)j0(ξ), z ∈R,

m0(ξ, z) = (I + O(1/z)) e−i z2
4 σ3ziν(−ξ)σ3 , z → ∞,

(3.29)

where

j0(ξ) =
(

1 + rR
1 (−ξ)rR

2 (−ξ) rR
2 (−ξ)

rR
1 (−ξ) 1

)
. (3.30)

It is the RH problem for m0(ξ, z) that can be solved explicitly, in terms of the parabolic 
cylinder functions, see, e.g., Appendix A in [33]. Since we are interested in what happens for 
large t and, in view of (3.25), even finite values of k correspond to large values of z if t is large, 
it follows that all we actually need from m0(ξ, z) (and, correspondingly, m�(ξ, z)) is its large-z
asymptotics only. The latter has the form

m�(ξ, z) = I + i

z

(
0 βR(ξ)

−γ R(ξ) 0

)
+ O(z−2), z → ∞,

where (cf. β(ξ) and γ (ξ) in [33])

βR(ξ) =
√

2πe− π
2 ν(−ξ)e− 3πi

4

R
, (3.31a)
r1 (−ξ)�(−iν(−ξ))
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γ R(ξ) =
√

2πe− π
2 ν(−ξ)e− πi

4

rR
2 (−ξ)�(iν(−ξ))

. (3.31b)

Now, having defined the parametrix m̂R
0 (x, t, k), we define M̌R(x, t, k) (cf. m̂(x, t, k) in [33]) 

as follows:

M̌R(x, t, k) =
{

M̂R(x, t, k)(m̂R
0 )−1(x, t, k), |k + ξ | < ε,

M̂R(x, t, k), otherwise,

where ε is small enough so that |ξ | > ε and |ik1 + ξ | > ε. Then the sectionally analytic matrix 
M̌R has the following jumps across �̂1 = �̂ ∪ {|k + ξ | = ε} (the circle |k + ξ | = ε is oriented 
counterclockwise)

J̌ R(x, t, k) =

⎧⎪⎨
⎪⎩

m̂R
0−(x, t, k)Ĵ R(x, t, k)(m̂R

0+)−1(x, t, k), k ∈ �̂, |k + ξ | < ε,(
m̂R

0

)−1
(x, t, k), |k + ξ | = ε,

Ĵ R(x, t, k), otherwise.

(3.32)

The next step is the large-t evaluation of M̌R(x, t, k) using its representation in terms of the 
solution of the singular integral equation corresponding to the RH problem determined by the 
jump conditions (3.32) and the standard normalization condition M̌R → I as k → ∞. We have

M̌R(x, t, k) = I + 1

2πi

∫
�̂1

μ(x, t, s)(J̌ R(x, t, s) − I )
ds

s − k
, (3.33)

where μ solves the integral equation μ − Cwμ = I , with w = J̌ R − I . Here the Cauchy-type 
operator Cw is defined by Cwf = C−(f w), where (C−h)(k), k ∈ �̂1 are the right (according to 
the orientation of �̂1) non-tangential boundary values of

(Ch)(k′) = 1

2πi

∫
�̂1

h(s)

s − k′ ds, k′ ∈C \ �̂1.

Reasoning as in [33] one can show that the main term in the large-t development of M̌R in 
(3.33) is given by the integral along the circle |s + ξ | = ε, which in turn gives

M̌R(x, t, k) = I − 1

2πi

∫
|s+ξ |=ε

B̃R(ξ, t)

(s + ξ)(s − k)
ds + R(ξ, t), |k + ξ | > ε, (3.34)

where

B̃R(ξ, t) =
(

0 iβR(ξ)e4itξ2+2χ(ξ,−ξ)(8t)− 1
2 −iν(−ξ)

−iγ R(ξ)e−4itξ2−2χ(ξ,−ξ)(8t)− 1
2 +iν(−ξ) 0

)

(3.35)
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and the (matrix) error estimate R has the structure R(ξ, t) =
(

R1(ξ,t) R2(ξ,t)

R1(ξ,t) R2(ξ,t)

)
, with R1 and R2

having, in general, different orders of decay, see (3.23) and (3.24). Particularly, since M̌R = M̂R

for all k with |k + ξ | > ε, we have

lim
k→∞ k

(
M̂R(x, t, k) − I

)
= B̃R(ξ, t) + R(ξ, t) (3.36)

as well as

M̂R(x, t,0) = I + B̃R(ξ, t)

ξ
+ R(ξ, t), (3.37a)

M̂R(x, t, ik1) = I + B̃R(ξ, t)

ξ + ik1
+ R(ξ, t). (3.37b)

Now we are at a position to evaluate P12(x, t) and P21(x, t) in (3.13). First, we evaluate 
gj (x, t) and hj (x, t), j = 1, 2, defined in (3.16), using (3.37) and replacing M̂R by M̌R :

g1(x, t) = ik1 + R1(ξ, t), g2(x, t) = ik1

ξ + ik1
B̃R

21(ξ, t) + R1(ξ, t),

h1(x, t) = c0(ξ) + ik1

ξ
B̃R

12(ξ, t) + R3(ξ, t), h2(x, t) = ik1 + c0(ξ)

ξ
B̃R

21(ξ, t) + R3(ξ, t),

where R3(ξ, t) = R1(ξ, t) +R2(ξ, t) (we have used the standard notation for the entries of matrix 
B̃R(ξ, t)). It follows that (we drop the arguments of the functions)

g1h1 = ik1c0(ξ) − k2
1

ξ
B̃R

12 + R3, g1h2 = −k2
1 + ik1c0(ξ)

ξ
B̃R

21 + R3, (3.38a)

g2h1 = ik1c0(ξ)

ξ + ik1
B̃R

21 + R1, g2h2 = − k2
1

ξ + ik1
B̃R

21 + R1. (3.38b)

Substituting (3.38) into (3.15), straightforward calculations give

P12(x, t) = − ic0(ξ)

k1
+ B̃R

12(ξ, t)

ξ
+ ic0(ξ)2

ξk1(ξ + ik1)
B̃R

21(ξ, t) + R3(ξ, t), (3.39a)

P21(x, t) = − B̃R
21(ξ, t)

ξ + ik1
+ R1(ξ, t). (3.39b)

Notice that formulas (3.39) involve k1 explicitly. But using

B̃R
12 = B̃12

ξ

ξ + ik1
, B̃R

21 = B̃21
ξ + ik1

ξ
,

where B̃ is defined similarly to B̃R , see (3.31) and (3.35), with rR
j (−ξ) replaced by rj (−ξ), 

and substituting (3.36) and (3.39) into (3.13), it follows that the (explicit) dependence on k1 in 
the resulting formulas for the main asymptotic terms vanishes, and we arrive at the asymptotic 
formulas (3.22).
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