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Abstract

For p>1 and�p(s):=|s|p−2s, we are concerned with the boundedness of solutions for the
equation

(�p(x
′))′ + ��p(x

+)− ��p(x
−)= f (t, x),

where x+ =max(x,0), x− =max(−x,0) and f (t, x) is 2�-periodic in t . When

�p
�1/p

+ �p

�1/p
= 2�
n

(the “resonant” situation) andf has limits f±(t) as x → ±∞, there is a functionZ(�) plays
a central role for the boundedness of solutions. More precisely, ifZ(�) is of constant sign,
then all solutions are bounded. Moreover, such condition also guarantees the boundedness when
(�,�) near a Fuˇcik curve.
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1. Introduction

In this paper, we are concerned with the boundedness of solutions (also called “La-
grangian stability”) and the existence of quasi-periodic solutions and subharmonics for
the following equation

(�p(x
′))′ + ��p(x

+)− ��p(x
−) = f (t, x), (1.1)

where x+ = max(x,0), x− = max(−x,0), �p(s) = |s|p−2s, p > 1 and �,� are
strictly positive constants. We also assume thatf is smoothness and 2�-periodic in t ,
and has limitsf±(t) as x → ±∞.
Whenp = 2, � = � = n2 and f (t, x) = p(t)− �(x), Eq. (1.1) reduces to

x′′ + n2x + �(x) = p(t). (1.2)

Lazer–Leach[10] proved that, if

2(�(+∞)− �(−∞)) >

∣∣∣∣
∫ 2�

0
p(t)eint dt

∣∣∣∣ , (1.3)

then Eq. (1.2) has 2�-periodic solutions. In addition, if it is assumed that�(−∞)�
�(x)��(+∞), (1.3) is also a necessary condition for the existence of 2�-periodic
solutions.
Motivated by the seminal works of Dancer[3], Fucik [9], Lazer–Mckenna[11], there

are several authors study the existence of 2�-periodic solutions for the equation

x′′ + �x+ − �x− + �(x) = p(t), (1.4)

that is,p = 2, f (t, x) = p(t)− �(x) for Eq. (1.1).
When 1/

√
� + 1/

√
� = 2

n
∈ Q, the function

�(�) = n

�

(
�(+∞)

�
− �(−∞)

�

)
− 1

2�

∫ 2�

0
p(f )S(t + �) dt (1.5)

plays a role for the existence of 2�-periodic solutions, whereS is the solution of
x′′ + �x+ − �x− = 0 satisfying the initial conditionx(0) = 0, x′(0) = 1. For example,
Fabry–Mawhin[8] proved that if� has 2s(s �= 1) zeros, all being simple, then there
is at least one 2�-periodic solution. Moreover, ifs�2, then all solutions of (1.4)
with large initial conditions are unbounded. For related results, we refer[6,5,2] and
references therein. More recently, Fabry–Manásevich[7] generalize the above results
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to (1.1). They prove that if the function

Z(�) =
∫

{t∈[0,2�/n]|v(t)>0}
f+(t + �)v(t) dt +

∫
{t∈[0,2�/n]|v(t)<0}

f−(t + �)v(t) dt (1.6)

has 2s(s �= 1) zeros, all being simple, then there is at least one 2�-periodic solution.
Here, the functionv is the solution of the equation

(�p(x
′))′ + ��p(x

+)− ��p(x
−) = 0

with the initial condition:(v(0), v′(0)) = (0,1).
Another interesting question on (1.1) is the one concerning the boundedness of all

the solutions, and if the above-mentioned functions�(�) in (1.5) and Z(�) in (1.6)
play a role for the boundedness problem. For Eq. (1.2), we proved in[13] that, if p
is smooth and� satisfies (1.3) and other reasonable conditions, then all the solutions
are bounded. Wang[19] generalizes this result to Eq. (1.4). More precisely, she proves
that if �(�) is of constant sign, then every solution is bounded.
It has to remark that the first result for the boundedness problem of semilinear

Duffing equations is due to Ortega[16]. In that paper, he proved the boundedness of
solutions for the equation

x′′ + �x+ − �x− = 1+ �p(t)

if |�| � 1. He also studies the same problem for Eq. (1.2). In [17], he proved that all
the solutions are bounded when� is a piecewise linear function. Moreover, he gives
a variant of Moser twist theorem, which becomes a basic tool for studying Lagrange
stability of semilinear equations at resonance. Indeed, the proofs in[13,19] are based
on Ortega’s result. In the present paper, we also use his result to prove the boundedness
of all solutions as well as the existence of quasi-periodic solutions for Eq. (1.1). This
question are suggested by Fabry–Manásevich[7].
In order to state our main result, we first give some notations. Denoted byF(t, x)

with F(t,0) = 0 the integral off (t, x), that is,

F(t, x) =
∫ x

0
f (t, s) ds.

Let

�p = 2(p − 1)
1
p

∫ 1

0
(1− sp)

− 1
p ds

(
= �/p

sin�/p

)
> 0.

It is not difficult to verify that every non-trivial solution of the following equation:

(�p(x
′))′ + ��p(x

+)− ��p(x
−) = 0
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is T0-periodic, where

T0 = �p
�1/p

+ �p
�1/p

.

We are interested in the situation of “resonance”, that is we assume that there is a
integern such thatT0 = 2�/n. This means(�,�) is at a Fuˇcik curve.
The main result is

Theorem 1.We suppose that the function f satisfies the following assumptions:

(1) f (t, x) ∈ C7,6(S1 × R) and has limits

lim
x→±∞ f (t. x) = f±(t), uniformly in t

(2) The following limits exist and uniformly in t:

lim
x→±∞ xm

�n+m

�tn�xm
f (t, x) = f±,m,n(t)

for (n,m) = (0,6), (7,0) and (7,6). Moreover, f±,m,n(t) ≡ 0 for m = 6, n = 0,7.

If the functionZ(�) defined by(1.6) is of constant sign, then all the solutions of
(1.1) are defined inR and for each solution x(t), we have

sup
t∈R
(|x(t)| + |x′(t)|) < +∞.

Moreover, in this case, there are infinitely many subharmonic solutions and quasi-
periodic solutions.

Remark. If the functionZ(�) has zeros, all being simple, then the solutions of (1.1)
with large initial data are unbounded either in the future or in the past. The proof of
this statement is similar to one in[1]. It is easy to construct functionsf satisfying
the assumptions (1) and (2) in Theorem 1. For examples,f (t, x) = (2+ sint) arctan
x and f (t, x) = arctanx − p(t).

We will also study the situation near resonance, that is equation type (1.1) with
(�,�) is of the form

� = �0 + ��1, � = �0 + ��1,

and

�p

�1/p0

+ �p

�1/p0

= 2�
n
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and � a small parameter. Denote byv0 is the solution of the equation

(�p(x
′))′ + �0�p(x

+)− �0�p(x
−) = 0,

satisfyingv0(0) = 0, v′
0(0) = 1. Let

Z0(�) =
∫

{t∈[0,2�/n]|v0(t)>0}
f+(t + �)v0(t) dt

+
∫

{t∈[0,2�/n]|v0(t)<0}
f−(t + �)v0(t) dt. (1.7)

In this case, the assumption on the constant sign ofZ0(�) is also a sufficiently condition
to guarantee the boundedness of solutions. However, if

∫ 2�

0
(�1|v+

0 |p + �1|v−
0 |p) dt �= 0, (1.8)

then for almost all� (in the sense of Lebesgue measure), the following assumption:

�−2/p
0

∫ 2�

0
f+(t) dt − �−2/p

0

∫ 2�

0
f−(t) dt �= 0 (1.9)

may guarantee the boundedness of solutions for Eq. (1.1). More precisely, we have

Theorem 2. Suppose that our assumptions onf (t, x) in Theorem1 hold. Then the
following conclusions are true:

(1) If Z0 in (1.6) is of constant sign, then there is�0 > 0 such that for all |�|��0,
every solution of Eq.(1.1) is bounded.

(2) If (1.8), (1.9) hold, then there is a�0 > 0 and a set� ⊂ (0, �0) with meas� = �0
such that for� ∈ �, all solutions of Eq.(1.1) are bounded.

Remark. In the following, without loss of generality and for brevity, we assume that
n = 1, i.e.,

T0 = �p
�1/p

+ �p
�1/p

= 2�.

Throughout this paper, we denote byC > 1, a universal positive constant not concerning
its quantity.
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2. Action-angle variables and some lemmas

In this section, we first introduce the action and angle variables(r, �) by a symplectic
transformation, and then give some technical lemmas which will be used frequently in
the next sections.
Consider an auxiliary equation

(�p(x
′))′ + ��p(x

+)− ��p(x
−) = 0.

Let v(t) be the solution with initial condition:(v(0), v′(0)) = (0,1). Setting�p(v
′) = u,

then (v, u) is a solution of the following planar system:

x′ = �q(y), y′ = −��p(x
+)+ ��p(x

−),

whereq = p/(p − 1) > 1. It is not difficult to prove that

(i) q−1|u|q + p−1(�|v+|p + �|v−|p) ≡ q−1;
(ii) v(t) and u(t) are 2�-periodic functions.
(iii) v(t) > 0 for t ∈ (0,�p/�1/p); v(t) < 0 for t ∈ (�p/�1/p,2�).
Obviously, the Eq. (1.1) is equivalent to the system

x′ = �q(y), y′ = −��p(x
+)+ ��p(x

−)+ f (t, x), (2.1)

which is a Hamiltonian system with Hamiltonian function

H(x, y, t) = 1

q
|y|q + 1

p
(�|x+|p + �|x−|p)− F(t, x). (2.2)

We introduce the action and angle variables via the solution(v(t), u(t)) as follows.

x = r
1
p v(�), y = r

1
q u(�).

This transformation is called a generalized symplectic transformation as its Jacobian is
q−1 instead of 1. Under this transformation, the system (2.1) is changed to

�′ = �h
�r
(r, �, t), r ′ = �h

��
(r, �, t) (2.3)

with the Hamiltonian function

h(r, �, t) = r − qF(t, r
1
p v(�)). (2.4)
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Note that this function is smooth inr, t and continuous in�
In the following, we state several lemmas which will be used in the rest of this

paper.

Lemma 2.1. Under the assumptions of Theorem1, we have

lim
x→±∞ xm

�n+m

�tn�xm
f (t, x) = f±,m,n(t) unif ormly in t

for 0�m�6, 0�n�7. Moreover,

f±,m,n(t) = 0 f or 1�m�6;

f±,0,n(t) = f
(n)
± (t) f or 1�n�7.

Proof. We prove the statement forx → +∞ only, the case ofx → −∞ can be treated
similarly.
First, we prove that there are 2�-periodic functionsf+,0,n(·) (1�n�6) such that

lim
x→+∞

�n

�tn
f (t, x) = f+,0,n(t) uniformly in t. (2.5)

From the equality

�6

�t6
f (t, x)− �6

�t6
f (0, x) =

∫ t

0

�7

�t7
f (s, x) ds,

it follows that

lim
x→+∞

[
�6

�t6
f (t, x)− �6

�t6
f (0, x)

]
=
∫ t

0
f+,0,7(s) ds uniformly in t.

Therefore

lim
x→+∞

∫ 2�

0

[
�6

�t6
f (t, x)− �6

�t6
f (0, x)

]
dt =

∫ 2�

0

∫ t

0
f+,0,7(s) ds dt.

That is

lim
x→+∞

�6

�t6
f (0, x) = − 1

2�

∫ 2�

0

∫ t

0
f+,0,7(s) ds dt.
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Let

f+,0,6(t) =
∫ t

0
f+,0,7(s) ds − 1

2�

∫ 2�

0

∫ t

0
f+,0,7(s) ds dt.

Then

lim
x→+∞

�6

�t6
f (t, x) = f+,0,6(t) uniformly in t. (2.6)

Moreover,

d

dt
f+,0,6(t) = f+,0,7(t).

The periodicity off+,0,6 follows from the periodicity off and (2.6).
Using the same arguments, one can prove that

lim
x→+∞

�n

�tn
f (t, x) = f+,0,n(t) uniformly in t

and

d

dt
f+,0,n(t) = f+,0,n+1(t)

for 1�n�6. Moreover, it is easy to check thatf+,0,1(t) = f ′+(t).
Applying this result to the functionx6 �6

�x6f (t, x), we know that there are functions
f+,6,n(·), (1�n�6) such that

lim
x→+∞ x6

�n+6

�tn�x6
f (t, x) = f+,6,n(t) uniformly in t.

Now we turn to prove that

lim
x→+∞ xm

�m+n

�xm�tn
f (t, x) = 0 uniformly in t (2.7)

provided that

lim
x→+∞ xm+1 �m+n+1

�xm+1�tn
f (t, x) = 0 uniformly in t (2.8)

for m�1.
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From (2.8) we know that there isA > 0 such that forx�A,

∣∣∣∣∣ �m+n+1

�xm+1�tn
f (t, x)

∣∣∣∣∣ < 1

xm+1 ,

which yields that

∣∣∣∣∣ �m+n

�xm�tn
f (t, x1)− �m+n

�xm�tn
f (t, x2)

∣∣∣∣∣ � 1

m

(
1

xm1
+ 1

xm2

)
.

Hence, the limit of �m+n
�xm�tn f (t, x) as x → +∞ exists and uniformly int . Moreover,

from the assumption (1) of Theorem 1, we know thatf (t, x) is bounded, so

lim
x→+∞

�m+n

�xm�tn
f (t, x) = 0 uniformly in t.

By the rule of de L’Hopital, we have

lim
x→+∞ xm

�m+n

�xm�tn
f (t, x) = − 1

m
lim

x→+∞ xm+1 �m+n+1

�xm+1�tn
f (t, x) = 0 uniformly in t.

This completes the proof of this lemma.�
From this lemma, it follows that

lim
x→±∞ xk−1 �k+n

�tn�xk
F (t, x) = f±,k−1,n(t) (2.9)

uniformly in t , for k�7, n�7. We denotef±,−1,n(t) := f±,0,n(t).
From (2.4), we know that

�h(r, �, t)
�r

= 1− q

p
f (t, r

1
p v(�))r

1
p

−1
v(�) → 1 as r → +∞

becausef is bounded andp > 1. Hence, one can solve from (2.4) that r = r(h, t, �)
by Implicit Function Theorem forh � 1. Moreover, this function can be written in the
form

r(h, t, �) = h+ R(h, t, �), (2.10)
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where the functionR is defined implicitly by

R(h, t, �) = qF(t, (h+ R)
1
p v(�)).

Similar to the proof of Lemma 3.3 in[13], we know that there is a constantC > 0
such that ∣∣∣∣∣hk−

1
p

�k+l

�hk�t l
R(h, t, �)

∣∣∣∣∣ �C (2.11)

for 0�k�7, 0� l�7.
The Hamiltonian system determined by the functionr is

dh

d�
= −�r

�t
(h, t, �),

dt

d�
= �r

�h
(h, t, �). (2.12)

The relation between (2.3) and (2.12) is that if (r(t), �(t)) is a solution of (2.3) and
the inverse functiont (�) of �(t) exists, then(h(r(t (�))), t (�)) is a solution of (2.12)
and vice versa. So in order to find quasi-periodic solutions of (2.3) and to obtain
the boundedness of solutions, it is sufficient to prove the existence of quasi-periodic
solutions and boundedness of solutions of (2.12).

Let �1(h, t, �) = (h+ R)
1
p − h

1
p . Then∣∣∣∣∣hk+1− 2

p
�k+l

�hk�t l
�1(h, t, �)

∣∣∣∣∣ �C uniformly in (t, �) ∈ [0,2�] × [0,2�] (2.13)

for 0�k�7, 0� l�7, whereC is a positive constant. The proof follows from (2.11)
and the following equality:

�1(h, t, �) = 1

p

∫ 1

0
(h+ sR)

1
p

−1
R ds.

Let �2(h, t, �; s) = s(h+ R)
1
p + (1− s)h

1
p for 1�s�1. Then∣∣∣∣∣hk−

1
p

�k+l

�hk�t l
�2(h, t, �; s)

∣∣∣∣∣ �C, (2.14)

for 0�k�7, 0� l�7, whereC is a positive constant. Moreover

1

2
h
1
p ��2(h, t, �; s)�2h

1
p for h � 1 (2.15)

uniformly in (s, t, �) ∈ [0,1] × [0,2�] × [0,2�].
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Let

�(h, t, �) = qF(t, (h+ R)
1
p v(�))− qF(t, h

1
p v(�)).

Combining the above inequalities, we have

Lemma 2.2. Under the assumptions of Theorem1, we have, for 0�k�7, 0� l�7,

∣∣∣∣∣hk+1− 2
p

�k+l

�hk�t l
�(h, t, �)

∣∣∣∣∣ �C unif ormly in (t, �) ∈ [0,2�] × [0,2�] (2.16)

for some positive constant C.

Proof. From (2.14) and (2.15), it follows that, for h � 1,

∣∣∣∣∣hk �k+l

�hk�t l
�2(h, t, �)

∣∣∣∣∣ �C�2(h, t, �) (2.17)

for 0�k�7, 0� l�7, whereC is a positive constant. From a direct computation, it
follows that

�k+l

�hk�t l
f (t,�2v(�)) =

∑ �m+n
f (t,�2v(�))

�xm�tn
�k1+l1

�hk1�t l1
�2 · · · · · �km+lm

�hkm�t lm
�2v

m(�),

wherem�k, n� l, andk1 + · · · + km = k, l1 + · · · + lm = l− n. From this expression,
(2.17) and the assumptions onf , we have

∣∣∣∣∣ �k+l

�hk�t l
f (t,�2(h, t, �)v(�))

∣∣∣∣∣ �C.
Since

�(h, t, �) =
∫ 1

0
f (t,�2(h, t, �)v(�))�1(h, t, �)v(�) ds,

the proof of this lemma is completed by a direct computation combined with
(2.13). �
Now the Hamiltonian functionr defined in (2.10) can be written in the form

r(h, t, �) = h+ qF(t, h
1
p v(�))+ �(h, t, �). (2.18)
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In the next section, we will give an expression of the Poincaré map of (2.12), and
then prove Theorem 1 via the variant of small twist theorem[17].

3. The Proof of Theorem 1

3.1. An expression of the Poincaré map of (2.12)

Introduce a new action variable	 and a small positive parameter� as follows

h = �−1	, 	 ∈ [1,2].

Obviously, h � 1 ⇔ 0 < � � 1. The Hamiltonian system (2.12) is changed to the
form

dt

d�
= �H

�	
(	, t, �; �),

d	
d�

= −�H
�t
(	, t, �; �), (3.1)

where

H(	, t, �; �) = 	 + q�F(t, �
− 1
p 	

1
p v(�))+ ��(�−1	, t, �). (3.2)

Definition 3.1. We say a functiong(	, t, �; �) ∈ Ok(1) if g is smooth in(	, t) and

∣∣∣∣∣ �k1+k2

�tk1�	k2
g(	, t, �; �)

∣∣∣∣∣ �C,
for some constantC > 0 which is independent of the arguments	, t, �, �, where
k1 + k2�k. Similarly, we say a functiong(	, t, �; �) ∈ ok(1) if g is smooth in(	, t)
and

lim
�→0

∣∣∣∣∣ �k1+k2

�tk1�	k2
g(	, t, �; �)

∣∣∣∣∣ = 0 uniformly in (	, t, �),

wherek1 + k2�k.

From Lemma 2.2 and (2.18), we know that the system (2.12) is of the form




dt
d� = 1+ q

p
�
1
q f (t, �

− 1
p 	

1
p v(�))	

− 1
q v(�)+ �

2
q O6(1),

d	
d� = −q�Ft(t, �−

1
p 	

1
p v(�))+ �

2
q O6(1).

(3.3)
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By our assumptions onf , it follows that

q

p
�
1
q f (t, �

− 1
p 	

1
p v(�))	

− 1
q v(�), q�Ft(t, �

− 1
p 	

1
p v(�)) ∈ �

1
q O6(1),

which yield that, for every(t0,	0) ∈ [0,2�]×[1,2], the solution(t (�, t0,	0),	(�, t0,	0))
of (3.3) has the form

t = t0 + � + �
1
q O6(1), 	 = 	0 + �

1
q O6(1).

From this formula, we make the ansatz that the solution(t (�, t0,	0),	(�, t0,	0))
has the following expression:

t = t0 + � + �
1
q T1(�, t0,	0; �), 	 = 	0 + �

1
q T2(�, t0,	0; �). (3.4)

Denote byP the Poincaré map of (3.2). Then

P(t0,	0) = (t0 + 2� + �
1
q T1(2�, t0,	0; �), 	0 + �

1
q T2(2�, t0,	0; �)).

From the above discussions, we know that if� � 1, this map is well defined in the
region [12,2] × [0,2�].
If one can prove that for every� � 1 the mapP has an invariant curve which is

diffeomorphic to	0 = const., then boundedness of solutions of (1.1) follows from the
standard arguments. (one may find such a discussion in[4,13,17].) In order to prove
the existence of such invariant curves for every� � 1, it suffices to verify that for
every � � 1, the Poincaré mapP satisfies all the assumptions of a variant of Moser’s
small twist theorem which is due to Ortega[17]. In the rest of this part, we will give
an expression for(T1(2�, t0,	0), T2(2�, t0,	0)).
From (3.2) and (3.4), the functionsT1 and T2 satisfy



dT1
d� = q

p
f (t0+�+ �

1
q T1, �

− 1
p (	0+ �

1
q T2)

1
p v(�))(	0+ �

1
q T2)

− 1
q v(�)+ �

1
q O6(1),

dT2
d� = −q�

1
p Ft (t0 + � + �

1
q T1, �

− 1
p (	0 + �

1
q T2)

1
p v(�))+ �

1
q O6(1).

(3.5)

It is easy to verify that there is a constantC > 0 which is independent oft0,	0, � and
� such that

∣∣∣∣∣ �
k+l
T1

�tk0�	l0

∣∣∣∣∣ ,
∣∣∣∣∣ �
k+l
T2

�tk0�	l0

∣∣∣∣∣ �C for k + l�6.
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From these estimates, it follows that

(	0 + �
1
q T2)

1
p v(�)− 	

1
p
0 v(�) ∈ �

1
q O6(1).

Similar to the proof of Lemma 2.2, we have

f (t0 + � + �
1
q T1, �

− 1
p (	0 + �

1
q T2)

1
p v(�))− f (t0 + �, �

− 1
p 	

1
p
0 v(�)) ∈ �

1
q O5(1), (3.6)

Ft(t0 + � + �
1
q T1, �

− 1
p (	0 + �

1
q T2)

1
p v(�))− Ft(t0 + �, �

− 1
p 	

1
p
0 v(�)) ∈ �

1
q O5(1). (3.7)

By this discussion, (3.5) can be written in the form




dT1
d� = q

p
f (t0 + �, �

− 1
p 	

1
p
0 v(�))	

− 1
q

0 v(�)+ �
1
q O5(1),

dT2
d� = −q�

1
p Ft (t0 + �, �

− 1
p 	

1
p
0 v(�))+ �

1
q O5(1).

(3.8)

Therefore,

T1(2�, t0,	0) = q

p

∫ 2�

0
f (t0 + �, �

− 1
p 	

1
p
0 v(�))	

− 1
q

0 v(�) d� + o5(1),

T2(2�, t0,	0) = −q
∫ 2�

0
�
1
p Ft (t0 + �, �

− 1
p 	

1
p
0 v(�)) d� + o5(1).

By Lemma 2.2, (2.9) and the dominated convergence theorem, we know that

T1(2�, t0,	0) = q

p

(∫
{�∈[0,2�]v(�)>0}

f+(t0 + �)	
− 1
q

0 v(�) d�

+
∫

{�∈[0,2�]v(�)<0}
f−(t0 + �)	

− 1
q

0 v(�) d�

)
+ o5(1)

= q

p
Z(t0)	

− 1
q

0 + o5(1),
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T2(2�, t0,	0) = −q
(∫

{�∈[0,2�]v(�)>0}
f ′+(t0 + �)	

1
p
0 v(�) d�

+
∫

{�∈[0,2�]v(�)<0}
f ′−(t0 + �)	

1
p
0 v(�) d�

)
+ o5(1)

= −qZ′(t0)	
1
p
0 + o5(1),

where the functionZ is defined in (1.6). So the Poincaré map of (3.3) is of the form

t (2�) = t0 + 2� + q

p
�
1
q Z(t0)	

− 1
q

0 + �
1
q o5(1),

	(2�) = 	0 − q�
1
q Z′(t0)	

1
p
0 + �

1
q o5(1). (3.9)

Since the system (3.3) is a Hamiltonian system, the Poincaré mapP has the inter-
section property, the proof can be found in[4,17].

3.2. Proof of Theorem 1

In this part, we will prove that the PoincaréP given by (3.9) has an invariant closed
curve on the cylinder[12,2]×S1 for every � � 1. Usually, the existence of such curves
is guaranteed by Moser’s small twist theorem[15]. However, in the standard version,
this important result is concerned with a map of the form


1 = 
0 + � + �v0 + · · · ,

v1 = v0 + · · · ,

where � is a fixed number,� > 0 is a small parameter and the remaining terms
(indicated by dots) are of ordero(�) as � → 0. For this reason, our mapP does not
meet all the conditions of Moser’s theorem, it seems that one cannot apply this result
to P directly. Fortunately, there is a variant of Moser’s theorem[17] which allows us
to prove the existence of invariant curves forP .
Under the diffeomorphism

� = 	−1, t = t,
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the symplectic mapP given by (3.9) is transformed into the form

Q :



t (2�) = t0 + 2� + �

1
q l1(t0, �0)+ �

1
q o5(1),

(�0, t0) ∈ [1/2,2] × S1,

�(2�) = �0 + �
1
q l2(t0, �0)+ �

1
q o5(1),

(3.10)

where

l1(t0, �0) = q

p
Z(t0)�

1
q
0 , l2(t0, �0) = qZ′(t0)�

2− 1
p

0 . (3.11)

Let

I (t0, �0) = 1

pZ(t0)
�
1
p
0 .

Then it is easy to verify that the mapQ satisfies all conditions of[17, Theorem 3.1].
Hence for every� � 1, the mapQ, so the mapP , has an invariant closed curve
diffeomorphic to�0 = constant. This completes the proof.�

4. Proof of Theorem 2

Now we turn to prove Theorem 2. We assume that

� = �0 + ��1, � = �0 + ��1

and the constants�0,�0 satisfy

�p

�1/p0

+ �p

�1/p0

= 2�.

Similar to the proof of Theorem 1, we introduce the action and angle variables via
the solution(v0(t), u0(t)) as follows.

x = r
1
p v0(�), y = r

1
q u0(�).

Under this transformation, the system (2.1) is changed to

�′ = �h
�r
(r, �, t), r ′ = −�h

��
(r, �, t) (4.1)
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with the Hamiltonian function

h(r, �, t) = (1+ �g(�))r − qF(t, r
1
p v0(�)), (4.2)

where

g(�) = 1

p
(�1|v+

0 (�)|p + �1|v−
0 (�)|p). (4.3)

Choose� sufficiently small such that 1+ �g(�) > 1
2.

Similar to the discussions in Sections 2 and 3, we may arrive at the following system

dt

d�
= �H

�	
(	, t, �; �, �),

d	
d�

= −�H
�t
(	, t, �; �, �), (4.4)

where

H(	, t, �; �, �) = 	
1+ �g(�)

+ q�
(1+ �g(�))

F


t, �− 1

p 	
1
p

v0(�)

(1+ �g(�))
1
p




+��(�−1	, t, �; �), (4.5)

where� satisfies (2.16).
Let

�(�) =
∫ 2�

0

1

1+ �g(�)
d�,

T̃1(t0,	0; �) = q

p
Z1(t0; �)	

− 1
q

0 , T̃2(t0,	0; �) = −qZ′
1(t0; �)	

1
p
0 ,

where

Z1(t0; �) =
∫

{�∈[0,2�]|v0(�)>0}
f+(t0 + �)v0(�)

(1+ �g(�))
1+ 1
p

d�

+
∫

{�∈[0,2�]|v0(�)<0}
f−(t0 + �)v0(�)

(1+ �g(�))
1+ 1
p

d�. (4.6)
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Then the Poincaré map of (4.4) is of the form


 t (2�) = t0 + 2��(�)+ �

1
q T̃1(t0,	0; �)+ �

1
q o5(1),

	(2�) = 	0 + �
1
q T̃2(t0,	0; �)+ �

1
q o5(1).

(4.7)

From the definition ofZ1(t0; �) and (1.6), we know that

lim
�→0

Z1(t0; �) = Z0(t0),

so if Z0 > 0 then there is a�0 > 0 such thatZ1(t0; �) > 0 for |�|��0. In this case,
one can prove the boundedness of solutions of (1.1) by the results of Ortega[17,18].
Indeed, if�(�) ∈ Q, under the transformation(t,	) �→ (t, � = 1

	 ), the map defined in
(4.7) is changed in the form



t (2�) = t0 + 2��(�)+ q

p
�
1
q Z1(t0; �)�

1
q
0 + �

1
q o5(1),

�(2�) = �0 + q�
1
q Z′

1(t0; �)�
1+ 1
q

0 + �
1
q o5(1).

(4.8)

Let

I1(t0, �0; �) = 1

Z1(t0; �)
�
1
p
0 .

Then the existence of invariant closed curves of (4.8) can be implied by[17, Theorem
3.1], so all the solutions of (1.1) are bounded. If�(�) is irrational, note that for�
sufficiently small, the average ofZ1 with respect to�0 is positive becauseZ1 is positive,
the existence of invariant curves as well as the boundedness of solutions follows from
[18, Theorem 1]. This completes the proof of Statement (1) of Theorem 2.
Now we turn to prove the statement (2) of Theorem 2. From the definition of�(�),

we know that

d

d�
�(�)|�=0 = −

∫ 2�

0
g(�) d� �= 0,

by the condition (1.8). So there is a�1 > 0 such that there is a subset�1 ⊂ (0, �1)
with meas�1 = �1 and for each� ∈ �1,�(�) is irrational number. From Theorem 1 in
[18], we know that the inequality (4.9) below will guarantee the existence of invariant
curves for� � 1:

∫ 2�

0
Z1(t; �) dt0 �= 0. (4.9)
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From the definition ofv0, it is not difficult to see that

∫
{t0∈[0,2�]|v0(t0)>0}

v0(t0) dt0 = c0�
− 2
p ,

∫
{t0∈[0,2�]|v0(t0)<0}

v0(t0) dt0 = −c0�− 2
p ,

where

c0 = 2(p − 1)
1
p

− 1
q

∫ 1

0
(1− sq)

1
p

− 1
q ds > 0.

Since

∫ 2�

0

∫
{�∈[0,2�]|v0(�)>0}

f+(t0 + �)v0(�) d� dt0 = c0�
− 2
p

∫ 2�

0
f+(s) ds

and

∫ 2�

0

∫
{�∈[0,2�]|v0(�)<0}

f−(t0 + �)v0(�) d� dt0 = −c0�− 2
p

∫ 2�

0
f−(s) ds,

it follows from the condition (1.9) that

∫ 2�

0
Z1(t0;0) dt0 �= 0.

Hence, there is a�2 > 0 such that for|�|��2, the average value ofZ1(t0; �) is
not zero. Let�0 = min{�1, �2} and � = � ∩ (0, �0). Using the result of Ortega
[18, Theorem 1]again, we know that for each� ∈ �, there are invariant closed curves
of the map (4.7) for � � 1. The boundedness of solutions follows from the standard
arguments (see, for example,[4,13,17]). The proof of Theorem 2 is completed.�
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