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Abstract

For p>1 and q’)l,(s):=|s|P*2s, we are concerned with the boundedness of solutions for the
equation

(¢, (") + 0, = B, (x7) = £, %),
where xt = max(x, 0), x~ = max(—x, 0) and f(z, x) is 2rn-periodic in¢. When

Tp N Tp _2771
al/p gl )

(the “resonant” situation) ang’ has limits f+(r) as x — +o0, there is a functionZ(6) plays

a central role for the boundedness of solutions. More precisely, (6 is of constant sign,

then all solutions are bounded. Moreover, such condition also guarantees the boundedness when
(o, f) near a Faik curve.
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1. Introduction
In this paper, we are concerned with the boundedness of solutions (also called “La-

grangian stability”) and the existence of quasi-periodic solutions and subharmonics for
the following equation

(6, () + 0, (xF) — B, (x7) = [t x). (1.1)

where xT = max(x,0), x~ = max(—x, 0), d)p(s) = |s|?%, p > 1 and o, § are
strictly positive constants. We also assume tials smoothness andrzperiodic in¢,
and has limitsfy (1) asx — +oo.

Whenp =2, o = f=n? and f(t,x) = p(t) — Y(x), Eq. (L.1) reduces to

X"+ nlx +Yx) = p@). 1.2)

Lazer—Leach10] proved that, if

20 (+00) — Yh(—00)) > ; 1.3)

2n .
/ p()e™ dt
0

then Eqg. 1.2) has Z-periodic solutions. In addition, if it is assumed that—oo) <
Y(x) <y (+00), (1.3 is also a necessary condition for the existence ofp2riodic
solutions.

Motivated by the seminal works of Dancg], Fucik [9], Lazer—Mckenndl1], there
are several authors study the existence ofp2riodic solutions for the equation

X +oxt — x4+ (x) = p), (1.4)

that is,p =2, f(t,x) = p(t) — Y(x) for Eq. (L.2).
When ¥z +1/,/p = 2 € Q, the function

2(0) = =
T

2n
y 7 E/o p(£)S(t + 0) dt (1.5)

(x/x(+oo) - w(—oo)> 1
plays a role for the existence ofrzeriodic solutions, where§ is the solution of
x" 4+ oxt — Bx~ = 0 satisfying the initial condition:(0) = 0, x'(0) = 1. For example,
Fabry—Mawhin[8] proved that if= has 2(s # 1) zeros, all being simple, then there
is at least one 2-periodic solution. Moreover, ifs>2, then all solutions of 1.4
with large initial conditions are unbounded. For related results, we féfé2] and
references therein. More recently, Fabry—Manaseyidhgeneralize the above results
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to (1.1). They prove that if the function
Z(0) = / S+ + Ov(r) dt +/ f—(t+ Ov(t)dt (1.6)
{tre[0,2n/n]|v(t)>0} {re[0,2n/n]|v(t) <0}

has 2(s # 1) zeros, all being simple, then there is at least onep@riodic solution.
Here, the functiorv is the solution of the equation

((:bp(x/))/ + a¢1)(x+) - ﬂ¢p(x7) =0

with the initial condition: (v(0), v’(0)) = (0, 1).

Another interesting question ori.Q) is the one concerning the boundedness of all
the solutions, and if the above-mentioned functi&@®) in (1.5 and Z(0) in (1.6
play a role for the boundedness problem. For Eqg2)( we proved in[13] that, if p
is smooth and) satisfies {.3) and other reasonable conditions, then all the solutions
are bounded. WanflL9] generalizes this result to EqL.4). More precisely, she proves
that if £(0) is of constant sign, then every solution is bounded.

It has to remark that the first result for the boundedness problem of semilinear
Duffing equations is due to Ortedd6]. In that paper, he proved the boundedness of
solutions for the equation

X Foxt — BxT =1+ep(r)

if |¢] < 1. He also studies the same problem for Ef2) In [17], he proved that all
the solutions are bounded whenis a piecewise linear function. Moreover, he gives
a variant of Moser twist theorem, which becomes a basic tool for studying Lagrange
stability of semilinear equations at resonance. Indeed, the prodfk3id9] are based
on Ortega’s result. In the present paper, we also use his result to prove the boundedness
of all solutions as well as the existence of quasi-periodic solutions for Efj). (This
guestion are suggested by Fabry—Manasejith

In order to state our main result, we first give some notations. Denote# (hyx)
with F(z, 0) = 0 the integral off(z, x), that is,

F(t,x) = fx f(t,s)ds.
0

Let

2t -1 n/p
— _ _ P _
n,=2(p -7 /0 A—sP) pds <— Sinn/p) > 0.

It is not difficult to verify that every non-trivial solution of the following equation:

(@, () + o, x") = Bp,(x) =0
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is To-periodic, where

Tp Tp

To= oAl " glp

We are interested in the situation of “resonance”, that is we assume that there is a
integern such thatTp = 2n/n. This meansa, f) is at a Feik curve.
The main result is

Theorem 1. We suppose that the function f satisfies the following assumptions

(1) f(t,x) € C"5(S! x R) and has limits

lim f(t.x) = f+(t), uniformlyin ¢
x—Fo0

(2) The following limits exist and uniformly in t

n—+m

lim x™ ft,x) = fi,m,n(t)

x—=%o0 ot Ox™m

for (n,m) = (0, 6), (7,0) and (7, 6). Moreover fi ,,,(t)=0form =6, n=0,7.

If the function Z(0) defined by(1.6) is of constant signthen all the solutions of
(1.2) are defined inR and for each solution x(t)we have

sup|x ()| + |x'(1)]) < +oc.
teR

Moreover in this case there are infinitely many subharmonic solutions and quasi-
periodic solutions

Remark. If the function Z(0) has zeros, all being simple, then the solutions Tofl)(

with large initial data are unbounded either in the future or in the past. The proof of
this statement is similar to one ifi]. It is easy to construct functiong satisfying

the assumptions (1) and (2) in Theorem 1. For exampfés,x) = (2 + sinr) arctan

x and f(z, x) = arctamnx — p(z).

We will also study the situation near resonance, that is equation tydg With
(o, p) is of the form

o=o0g+ o0y, P=pPo+p,

and
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and o a small parameter. Denote hy is the solution of the equation
(¢,x") + ao¢p(x+) = Pod,(x7) =0,

satisfyinguo(0) = 0, vy(0) = 1. Let
Zo(0) = / fi( + Ovo(r) dt
{r€[0,21/n]|vo(t)>0}

+/ f-(t + O)vo(t) dt. .7)
{re[0,27/n]|vo(1) <0}

In this case, the assumption on the constant sighgdf) is also a sufficiently condition
to guarantee the boundedness of solutions. However, if

2n
(aa|vg |” + B1lvg |”) dt # 0, (1.8)

then for almost alld (in the sense of Lebesgue measure), the following assumption:
Y 2n Y 2n
o " | S0 di— [ g | [0di£0 (1.9)

may guarantee the boundedness of solutions for E4).(More precisely, we have

Theorem 2. Suppose that our assumptions giis, x) in Theoreml hold. Then the
following conclusions are true

(1) If Zo in (1.6) is of constant sign, then there & > 0 such that for all|d]| < do,
every solution of Eq(1.1) is bounded

(2) If (1.8), (1.9 hold, then there is & > 0 and a setA C (0, o) with measA = dg
such that foré € A, all solutions of Eq.(1.1) are bounded

Remark. In the following, without loss of generality and for brevity, we assume that
n=1, ie.,

L L S W

To= al/p ﬁl/p B

Throughout this paper, we denote 6y> 1, a universal positive constant not concerning
its quantity.
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2. Action-angle variables and some lemmas

In this section, we first introduce the action and angle variabieg® by a symplectic
transformation, and then give some technical lemmas which will be used frequently in

the next sections.
Consider an auxiliary equation

(6, +a¢,(xF) — B, x ) =0.

Let v(¢) be the solution with initial conditiontv(0), v'(0)) = (0, 1). Settingqbp(v/) =u,
then (v, u) is a solution of the following planar system:

¥ =00 ¥ = —ad, () + B, (),

whereqg = p/(p — 1) > 1. It is not difficult to prove that

() ¢ Hul? + p~ P+ o) =g
(i) v(r) andu(t) are Z-periodic functions.
(i) v(t) > 0 fort € (0, m,/oYP); v(t) <O for t € (m, /a7, 2m).

Obviously, the Eq. 1.1) is equivalent to the system
X =¢ ). ¥ =—-0d,&")+ B, x7)+ f(t,x), (2.2)

which is a Hamiltonian system with Hamiltonian function
1 1 T _
H(-xayat)=5|y|q+;(a|x |p+ﬁ|x |p)_F(t’-x)' (22)

We introduce the action and angle variables via the solutign), u(¢)) as follows.

1 1
x=rPv0), y=rau().

This transformation is called a generalized symplectic transformation as its Jacobian is
g~ 1 instead of 1. Under this transformation, the systéh)(is changed to

0 — Z_]:(r, 0,1), r = %(n 0.1) (2.3)

with the Hamiltonian function

1
h(r,0,1) =r —qF(t,rPv(0)). (2.4)
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Note that this function is smooth in r and continuous irf
In the following, we state several lemmas which will be used in the rest of this
paper.

Lemma 2.1. Under the assumptions of Theoreimwe have

n-—+m

. m _ . .
xﬂrlloo X EPT f@,x)= femn@) uniformly in t

for 0<m <6, 0<n<7. Moreover

Srmn@) =0 for 1<m<6;

fron® =@ for 1<n<T.

Proof. We prove the statement far— +oco only, the case ok — —oo can be treated
similarly.
First, we prove that there arerzperiodic functionsfy o,(-) (1<n<6) such that

n

lim a—f(t,x) = ft+.0.(t) uniformly in z. (2.5)

x—>-+o00 Ot

From the equality

e 2 I~
) = O =f0 s,

it follows that

X—>+00

e ° ‘ . .
lim [ﬁf(t’x) — ﬁf(o’x)] =/o Sf+.07(s)ds uniformly in ¢.

Therefore

6 6

) 2 0 0 2n ot
i /0 ) = e O | d = /0 /0 fr07(s)dsdr.

That is

86 1 2t pt
lim —f(O,x):——/ /fﬁoj(s)dsdz.
2n 0 0

x—+4o0 0tb
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Let

t 1 2n  pt

S+.06() =f fro7(s)ds — —/ / fro07(s)dsdt.

0 2rn Jo Jo

Then
8
lim — f(, x) = f+o06() uniformly in ¢. (2.6)
x—+4o00 0tb o

Moreover,

d
Eﬁr,o,e(l) = f+.0,7(0).

The periodicity of f} o6 follows from the periodicity off and @.6).
Using the same arguments, one can prove that

,,n

lim
x—+oo Oth

ft,x) = fron(t) uniformly in ¢
and

d fron(@) = f. (1)

dt +,0,n = J+,0,n+1

for 1<n<6. Moreover, it is easy to check thatt 0,1(1) = fL(1).

Applying this result to the functlonc6 6f(t x), we know that there are functions
fren(), (1<n<6) such that

'ﬁ’l+6

. g 0 _ . .
xll)ngoo X 8t”6x6f(t’ x) = fyn() uniformly in z.

Now we turn to prove that

m-+n
Xﬂngoo X mat"f(t ,x) =0 uniformly in ¢ (2.7)
provided that
m—+n+1
Xll)rﬂoo Ay ———=- /@, x) =0 uniformly in (2.8)

for m>1.
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From @2.8) we know that there isA > 0 such that forx > A,

am+n-}—l
Oxm+1pgm

1
f(t,x)‘ < P

which vyields that

——ft,x1) — ——— f(t,x2)| <

m-+n m-—+tn
a m ’\tn ma n

1(1 1
X oxg)

Hence, the limit of g f(t,x) asx — +oo exists and uniformly inz. Moreover,

Oy on

from the assumption (1) of Theorem 1, we know tifdt, x) is bounded, so

~m-+n
lim
x——+oo OxMoth

f(t,x) =0 uniformly in z.

By the rule of de L'Hopital, we have

m-+n m+n+1

1
lim x™ t,x)=—— lim x"™'—— £ ,x)=0 uniformly in r.
x—>400  Ox™MOt" £ m x—-+oo Oxm+1om £ y

This completes the proof of this lemmalJ
From this lemma, it follows that

. ak+n
lim x*~1 A P60 = fek-1a(0) (2.9)

x—4oo ot

uniformly in ¢, for k<7, n<7. We denotefy _1,(t) := fr.0n().
From @.4), we know that

1 1
w :1—gf(t,rl’v(9))rl’ 11)(9)—) 1 asr— 4
r p

becausef is bounded anc¢g > 1. Hence, one can solve fron2.4) thatr = r(h,t, 0)
by Implicit Function Theorem fok > 1. Moreover, this function can be written in the
form

r(h,t,0) =h+ R(h,t,0), (2.10)
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where the functionR is defined implicitly by

1
R(h,t,0) = gF(t, (h + R) P v(0)).

Similar to the proof of Lemma 3.3 ifiL3], we know that there is a consta@t> 0
such that

1 Ak+l

k__
hop
Ohkor!

R(h,t,0)| <C (2.11)

for 0<k<7, 0<ILT.
The Hamiltonian system determined by the functiois

dh or dt or
5= _E(h’ 1,0), 5= %(h, 1,0). (2.12)

The relation between2(3) and @.12 is that if (r(z), 0(¢)) is a solution of 2.3) and

the inverse functiorr(0) of 0(¢) exists, then(h(r(z(0))), t(0)) is a solution of 2.12)

and vice versa. So in order to find quasi-periodic solutions 208)(and to obtain

the boundedness of solutions, it is sufficient to prove the existence of quasi-periodic
solutions and boundednesls of slolutions 2f1pP).

Let ¢y(h,t,0) = (h+ R)? —hP. Then

2 k+1

hk+l_5m¢l(h,t,6) <C uniformly in (¢, 0) € [0, 2n] x [0,27]  (2.13)
o

for 0<k<7, 0<I<7, whereC is a positive constant. The proof follows frord.{1)
and the following equality:

1 ! 1,
qbl(h,t,e):—/ (h+sR)? "Rds.
rJo

1 1
Let ¢o(h,t,0;5) =s(h+ R)P + (A —s)hp for 1<s<1. Then

¢o(h,t,0;5)] <C, (2.14)

1 k+1
-5 0
Ohkot!

for 0<k<7, 0<I<7, whereC is a positive constant. Moreover

1
p

11
Sh? <o(h,1,0;5)<2hP for h>> 1 (2.15)

uniformly in (s, 7, 0) € [0, 1] x [0, 2x] x [0, 2x].
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Let

1 1
O, t,0) =qF(t, (h+ R)Pv(0) — qF(t, hP v(0)).
Combining the above inequalities, we have

Lemma 2.2. Under the assumptions of Theoreimwe have for 0<k <7, 0<I<7,

il 2 5k+l
e

O, t, 0
Ohkor! ( )

<C uniformly in (t,0) € [0, 2n] x [0, 27] (2.16)

for some positive constant.C
Proof. From .14 and @.195), it follows that, forhz > 1,

k+1

2
" g P2l 0

<Cohylh, 1, 0) (2.17)

for 0<k <7, 0<I<7, whereC is a positive constant. From a direct computation, it
follows that

6k+l 6m+nf(l, ¢2U(0)) akl-i-ll akm-i-lm

— f(t, N=) — "¢ 2 e [
ankar ¢ 00 =) dxmon ahklazll¢2 Olkm Ot

hu™(0),

wherem <k, n<l, andk1+---+ky, =k, l1+---+1,, =1 —n. From this expression,
(2.17 and the assumptions ofi, we have

k+1

W.f(t, Bo(h, t, Ov(0)| <C.

Since

1
O, 1.0) = [ 71t ot 1.00(O) 10,1, 0000) s,
0
the proof of this lemma is completed by a direct computation combined with

(213. O

Now the Hamiltonian function- defined in .10 can be written in the form

1
r(h,t,0) =h+qF(t, h?v(0)) + D(h,t, 0). (2.18)
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In the next section, we will give an expression of the Poincaré maR.4f( and
then prove Theorem 1 via the variant of small twist theof@m.

3. The Proof of Theorem 1
3.1. An expression of the Poincaré map of (2.12)
Introduce a new action variable and a small positive parameteras follows
h = s_lp, p €[l 2]

Obviously, 7 > 1 & 0 < ¢ <« 1. The Hamiltonian system2(12 is changed to the
form

dt OH dp 0H
d@ ap (,thv ’8)’ dg al (pﬂtv ’8)7 ( )
where
211
H(p,t,0;¢) =p+qeF(t,e PpPv(d))+ s(D(s_lp, t,0). 3.2)

Definition 3.1. We say a functiorg(p, ¢, 0; &) € Ox(1) if g is smooth in(p, ¢t) and

k1+k
al 2

_— <
dtk19pke sC

g(p,t,0;¢)

for some constanC > 0 which is independent of the argumentss, 0, ¢, where
k1 + ko <k. Similarly, we say a functiorg(p, t, 0; ¢) € or(1) if g is smooth in(p, t)
and

k1+k2

PR =0 uniformly in (p, t, 0),
14

g(p,t,0;¢)

e—0

wherekq + ko <k.
From Lemma 2.2 and2(18), we know that the systen(12) is of the form

1 2
v(0)p Tv(0) + &4 06(1),

1 11
ﬂ=1+%8£If(t,g PpPp
1
P

(3.3)

1 2
B = —qeFi(t,e PpPu()+ed 0g(L).
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By our assumptions orf, it follows that

1

1
» v(0)) € &7 0p(1),

1 1 11
P PppP

1 _ _1 _
Leq ft,6 P pro@)p 4v(0), qeFilt,e Pp
p
which yield that, for everyro, pg) € [0, 2r]x[1, 2], the solution(z (0, 10, pg), p(0, to, pg))
of (3.3) has the form

1 1
t=to+0+¢906(1), p=pg+ed06(1).

From this formula, we make the ansatz that the soluiicid, 7o, pg). p(0, to, pg))
has the following expression:

1 1
t =10+ 0+e9T1(0,10, pg; &), p = pg+e?T2(0, 1o, pg; ). (3.4)

Denote byP the Poincaré map of3(2). Then

1 1
P(to, pg) = (to + 2n + 9 T1(2m, to, pg; €),  po + €9 122w, to, pg; €)).

From the above discussions, we know that i 1, this map is well defined in the
region 3, 2] x [0, 2n].

If one can prove that for every « 1 the mapP has an invariant curve which is
diffeomorphic topy = const, then boundedness of solutions df1) follows from the
standard arguments. (one may find such a discussidd,i8,17]) In order to prove
the existence of such invariant curves for everyk 1, it suffices to verify that for
every ¢ < 1, the Poincaré map satisfies all the assumptions of a variant of Moser’s
small twist theorem which is due to OrtefE7]. In the rest of this part, we will give
an expression fo(T1(2r, to, pg), T2(2m, to, pg))-

From 3.2 and @3.4), the functionsTy; and T» satisfy

12 11 11 1

=9 f(10+0+e9T, & P (pot &9 TP v(0))(po+87T2) 1v(0) + 7 Os(D),
1 12 11 1

2 = —qeP Fi(to+ 0+ &9 T1, & P(pg+24T2) Pv(0)) + ¢4 Op(1).

(3.5)

It is easy to verify that there is a constafit> 0 which is independent ab, pg, 0 and
¢ such that

6k+l T ak-i—l

kAol
Oty 0py

1>

<C for k+1<6.
d150p%

9
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From these estimates, it follows that

11 1 1
(po+ &1 T2) P v(0) — pf v(0) € £7 O6(D).

Similar to the proof of Lemma 2.2, we have

11 101 1t 1
fllo+0+eiT1, e P(pg+eiT2)Pv(0) — f(lo+ 0,6 ?pfv0) €ed0s5(1), (3.6)

1 1 101 11 1
Fito+0+eiTi, e P(pg+eiTo)Pv(0) — F(to+ 0,6 ?plv(0) €e?0s5(1). (3.7)

By this discussion, 3.5 can be written in the form

11 1 1
dT1 — qf(to—}- 0, ¢ Ppo U(Q))po v(0) +8‘1 Os(1),

1 11 1
a2 — —qe? F(to+ 0,6 7 p v(0)) + o 0s(1).

(3.8)

Therefore,

2n 11 1

TL(2m, 10, po) = % i Flto+0,e 7 pl v(0))py v(0)dO + os(1),

2n 1 1 1
To@n.to.po) = =g [ 67 Filto + 0,577 pf v(0)) d0 + os(D.
0

By Lemma 2.2, 2.9) and the dominated convergence theorem, we know that

1
Ti(2m 10, po) = & ( / Fito + 0)py T v(0) dO
14 {0€[0,2r]v(6)>0}
1

+ / f-(to+ 0)pg * v(0) dO) + 05(1)
{0€[0,27]v(0) <0}

_1
= %Z(lo),ogq + 05(1),
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1
T2(2m, 1o, po) = —q (/ filto+ 0)p v(0)do
{0€[0,27]v(0)>0}

1
+/ o+ 0pf v(9)d9) + 05(1)
{0€[0,2710(0) <0}

1
= —qZ'(to)p§ + o5(1),

where the functionZ is defined in 1.6). So the Poincaré map 08.Q) is of the form

1 -1
t(2n) = 1o+ 2n + 94 Z(to)py ! +e905(1),
14

1 E |
p2n) = pg—qe? Z'(t0)pd + &9 05(1). (3.9)

Since the system3(3) is a Hamiltonian system, the Poincaré mAphas the inter-
section property, the proof can be found[h17].

3.2. Proof of Theorem 1

In this part, we will prove that the Poinca given by @3.9) has an invariant closed
curve on the cylinde[%, 2] x St for everye « 1. Usually, the existence of such curves
is guaranteed by Moser's small twist theor¢h®]. However, in the standard version,
this important result is concerned with a map of the form

71 =1t0+w+dvg+---,

v1=v0+:---,

where o is a fixed numberd > 0 is a small parameter and the remaining terms
(indicated by dots) are of orden(d) asé — 0. For this reason, our map does not
meet all the conditions of Moser’s theorem, it seems that one cannot apply this result
to P directly. Fortunately, there is a variant of Moser’s theorf|ii] which allows us
to prove the existence of invariant curves fBr

Under the diffeomorphism
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the symplectic mapP given by @.9) is transformed into the form

1 1
t(2n) = tg + 21 + €9 11(tg, A0) + €9 05(1),
0: (Jo,10) € [1/2,2] x St,  (3.10)
1 1
A2n) = Jg + €9 1x(tg, o) + €9 05(1),

where
1 , 1
(10, 70) = %Z(tow, (0. 70) = 42/ (10) g " (3.11)
Let
1
(10, J0) = 2700 J.

Then it is easy to verify that the map satisfies all conditions ofL7, Theorem 3.1]
Hence for everye « 1, the map), so the mag, has an invariant closed curve
diffeomorphic toip = constant. This completes the proof

4. Proof of Theorem 2

Now we turn to prove Theorem 2. We assume that
w=o00+0dm, f=Po+h

and the constantso, iy satisfy

L L B
“l/p 1/p )
%o 0

Similar to the proof of Theorem 1, we introduce the action and angle variables via
the solution(vg(?), ug(t)) as follows.

1 1
x=rPv(0), y=rdug0).

Under this transformation, the syste.1) is changed to

h Oh
o = Z—r(r, 0,1, r = —ﬁ(r, 0,1) (4.2)



B. Liu / J. Differential Equations 207 (2004) 73-92 89
with the Hamiltonian function

1
h(r,0,1) = 1+ 6g(0)r — qF(t,r? vo(0)), (4.2)

where
1
g(0) = ;(auvg(@np + Balvg (D)]). (4.3)

Choosed sufficiently small such that + og(0) > %
Similar to the discussions in Sections 2 and 3, we may arrive at the following system

dt O0H dp 0H
a0~ op (p,t,0; ¢, 0), 10 Py (p,t,0;¢ 0), (4.4)
where
11
p qe -= = p(0)
H(p,t,0;¢0) = + F (t,s P,oP—)
1+0g(0 1+6g(0 1
gl  ( g(0) (1+ 6g(0)) 7
+e®(e 1p, 1, 0 0), (4.5)

where @ satisfies 2.16).

Let
©) / R
Y=L 140 ®
q -1 1
T1(t0, po: 0) = ;Zl(f0§ Npo . Talto, po; 0) = —q Z}(t0; 0)p§ .
where
Z1(10;0) = / Ja (o + 9)”_0(91) do
{0€[0,27]|vo(0) >0} (1+5g(0))1+;
_ 0 0
n f J-lot Owol® (4.6)
0

€[0,27]|vo(0) <0} (1+5g(9))1+;
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Then the Poincaré map o# @) is of the form

1

1. 1
1(2m) = 10 + 2nw(d) + ¢4 T1(to, pg; 0) + &9 05(1),
1 1 (4.7)

p(2m) = pg + &4 Ta(to, po; 6) + &9 05(1).
From the definition ofZ1(7; 6) and (.6), we know that

lim Z1(to; 0) = Zo(t0),
0—0

so if Zg > 0 then there is ag > 0 such thatZ,(7; é) > 0 for |6] <do. In this case,
one can prove the boundedness of solutionslof) (by the results of Orteg§l7,18]
Indeed, ifw(d) € Q, under the transformatiotr, p) — (¢, A = %), the map defined in
(4.7) is changed in the form

1 I
1(21) = 1o + 21w () + %8‘7 Z1(to; )28 + ¢4 05(1),
1 i1
A2m) = Jo+ qed Zy(to; )y ¢ + &9 05(D).

(4.8)

Let

1 1
I1(to, A0; 0) = ——— AL .
Z1(t0; 0) °
Then the existence of invariant closed curves4B) can be implied by17, Theorem
3.1}, so all the solutions of1(1) are bounded. lfw(d) is irrational, note that ford
sufficiently small, the average @1 with respect tdd is positive becaus&; is positive,
the existence of invariant curves as well as the boundedness of solutions follows from
[18, Theorem 1] This completes the proof of Statement (1) of Theorem 2.
Now we turn to prove the statement (2) of Theorem 2. From the definition(6j,

we know that
d 2n
oo = - /O $(0)d0 £0,

by the condition 1.8). So there is a; > 0 such that there is a subsat c (0, d1)
with measA; = §1 and for eachd € A1, w(9) is irrational number. From Theorem 1 in
[18], we know that the inequality4(9) below will guarantee the existence of invariant
curves fore « 1:

2n
/ Z1(t; 0)dtg # 0. (4.9)
0
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From the definition ofvg, it is not difficult to see that

2

2
vo(to) dtg = coot P, vo(to) dtg = —coff 7,

-/{~10€[072n]|vo(t0)>0} -/{~10€[072n]|vo(t0)<0}

where
1.1 1 1.1
co=2(p—1°P ‘1/ (1—-s%p ads>0.
0
Since
2n 2 pr2n

[~/ Felto + Oo(0) d0dro =cox 7 [ fis)ds

0 {0€[0,2x]|vo(0)>0} 0
and

2 2n

2m
f / i+ O)vo(0) d0dio = —cof 7 | f_(s)ds,
0 {0€[0,27]|vo(0) <0} 0

it follows from the condition 1.9) that

2n
/ Za(10: 0) dig # 0.
0

Hence, there is &, > 0 such that for|d|<J2, the average value of1(ro; d) is

not zero. Letdp = min{d1, d2} and A = A N (0, dp). Using the result of Ortega
[18, Theorem 1llagain, we know that for each € A, there are invariant closed curves
of the map 4.7) for ¢ <« 1. The boundedness of solutions follows from the standard
arguments (see, for examplg,13,17). The proof of Theorem 2 is completed]
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