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Abstract

A geometric setting for constrained exterior differential systems on fibered manifolds with
n-dimensional bases is proposed. Constraints given as submanifolds of jet bundles (locally
defined by systems of first-order partial differential equations) are shown to carry a natural
geometric structure, called the canonical distribution. Systems of second-order partial differential
equations subjected to differential constraints are modeled as exterior differential systems defined
on constraint submanifolds. As an important particular case, Lagrangian systems subjected to
first-order differential constraints are considered. Different kinds of constraints are introduced
and investigated (Lagrangian constraints, constraints adapted to the fibered structure, constraints
arising from a (co)distribution, semi-holonomic constraints, holonomic constraints).
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1. Introduction

Within the classical calculus of variations and optimal control theory, equations sub-
jected to different kinds of constraints are investigated, providing mathematical mod-
els for motion of various systems appearing in mechanics and engineering. Recently,
namely constraints given by systems of ordinary differential equations have been inten-
sively studied with the help of methods of differential geometry and global analysis,
and a general theory of “non-holonomic systems” in fibered manifolds was founded.
This concerns a geometric version of Chetaev equations [6] and its generalization
to constraints given by higher-order ODEs, a geometric model for constrained ODEs
as differential systems defined directly on constraint submanifolds, a theory covering
non-Lagrangian systems as well as higher-order ODEs with higher-order differential
constraints, study of symmetries of constrained Lagrangian systems, Hamiltonian con-
strained systems, and many other questions (see e.g. [5,8,13,22,23,25,29–34,36]). All
the above-mentioned results, however, have been achieved for systems of ordinary dif-
ferential equations; partial differential equations, except of a pioneer work [3], have
not yet been studied.

In this paper we propose a generalization of the theory of non-holonomic systems to
second-order partial differential equations subjected to constraints given by first-order
PDEs. Our task is to transfer to this case main ideas from [22,25]. The exposition
consists of the following four parts:

In Section 2 we present a geometric setting for systems of second-order partial
differential equations

E�

(
xi, ��,

���

�xp
,

�2��

�xp�xq

)
= 0, 1���m, (1.1)

for mappings (xi) → (��(xi)), 1� i�n, 1���m, between smooth manifolds. Eqs.
(1.1) are modeled by a dynamical form and its Lepage class on a jet prolongation of a
fibered manifold � : Y → X, where dim X = n and dim Y = n + m, and solutions are
interpreted as integral sections of a corresponding exterior differential system generated
by n-forms. This approach relates the global theory of differential equations to the
calculus of variations in fibered manifolds [21]: it enables, on one hand, easily to
consider variational equations as a special case, and on the other hand, to enlarge and
generalize to the “non-variational” case some methods which have been developed to
investigate exclusively variational equations.

In Section 3 we study systems of first-order PDEs which have the meaning of
differential constraints in fibered manifolds, i.e., which are fibered submanifolds of
J 1Y → Y . In this paper we focus on a significant class of constraints, which we call
regular constraints (characterized by rank condition (3.3)). As a key-result it is shown
that every regular constraint is endowed with a natural geometric structure, namely,
a subbundle of the tangent bundle, which we call the canonical distribution. This
subdistribution of the Cartan distribution has an analogy in non-holonomic mechanics,
where it plays a role of “generalized virtual displacements”. Thus, we can say that
regular constraints comply with a generalized D’Alembert principle.
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Section 4 deals with constrained PDEs. First of all, we associate with unconstrained
equations new equations, defined on the constraint submanifold. The geometric model
for (unconstrained) PDEs, together with the canonical distribution of the constraint gives
the constrained equations represented by an exterior differential system on the constraint
submanifold. In particular, we are interested in constrained variational equations, and
we find a constrained Euler–Lagrange operator. While in the (unconstrained) calculus
of variations on fibered manifolds a Lagrangian is a differential form which can be
locally represented by a function, L, it turns out that a “constrained Lagrangian” is
a differential form which cannot be represented by a single function. Next, we study
constrained PDEs as local deformations of unconstrained PDEs, and we obtain equations
which generalize to the case of PDEs Chetaev equations, known from non-holonomic
mechanics. We also show that generalized Chetaev equations and constrained equations
are equivalent.

Section 5 is devoted to a detail study of different kinds of constraints, which are
covered by our setting. It turns out that for partial differential equations one has more
interesting constraints than for ODEs. In particular, there appear constraints which we
call Lagrangian, and �-adapted. Besides, one has, similarly as in mechanics, constraints
defined by a distribution on Y, semi-holonomic, and holonomic constraints. We study
properties of these constraints and their relations.

2. Dynamical forms in jet bundles

2.1. Fibered manifolds and their prolongations

Throughout this paper, we assume all manifolds and maps be smooth, and use
standard notations: T and J r denotes the tangent and the r-jet prolongation functor,
respectively, d the exterior derivative, ∗ the pull-back, i� the contraction by a vector
field �, etc. The summation convention is used unless otherwise explicitly stated.

Let us briefly recall main concepts from the theory of fibered manifolds and the
corresponding calculus. For more details we refer to [19,21,35] (see also [4,14]).

We consider a fibered manifold � : Y → X with a base X of dimension n, and total
space Y, dim Y = m + n, and its jet prolongations �r : J rY → X; for simplicity of
notations, we also write J 0Y = Y and �0 = �. There are naturally induced fibered man-
ifolds �r,s : J rY → J sY , where r > s�0. In this paper we shall mainly work with the
first and second jet prolongation of �, i.e., with fibered manifolds �1, �2. Local fibered
coordinates on Y are denoted by (xi, y�), where 1� i�n, 1���m, and the associated
coordinates on J 1Y and J 2Y by (xi, y�, y�

j ) and (xi, y�, y�
j , y�

jk), where 1�j �k�n,
respectively. In formulas, we use summation over all values of indices (not only over
non-decreasing sequences). In calculations we use on J 1Y (resp. J 2Y ), either a canon-
ical basis of one forms, (dxi, dy�, dy�

j ) (resp. (dxi, dy�, dy�
j , dy�

jk)), or a basis

adapted to the contact structure, (dxi, ��, dy�
j ), (resp. (dxi, ��, ��

j , dy�
jk)), where

�� = dy� − y�
k dxk, ��

j = dy�
j − y�

jk dxk. (2.1)
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Next, we denote

�0 = dx1 ∧ · · · ∧ dxn, �j1 = i�/�xj1 �0,

�j1j2 = i�/�xj2 �j1 , . . . , �j1...jn = i�/�xjn �j1...jn−1 . (2.2)

By a section � of � we mean a mapping � : U → Y , defined on an open subset U of X,
such that � ◦ � = idU . In fibered coordinates, components of a section � of � take the
form (xi, ��), where the ��’s are functions of the xi’s. Components of the first jet pro-
longation J 1� (which is a section of �1) take the form (xi, ��, ���/�xj ). Similarly, com-
ponents of the second jet prolongation J 2� of � become (xi, ��, ���/�xj , �2��/�xj�xk).
A section of �r is called holonomic if it is the r-jet prolongation of a section of �.

A vector field � on J rY , r �0, is called �r -projectable if there exists a vector field
�0 on X such that T �r .� = �0 ◦�r , and �r -vertical if it projects onto a zero vector field
on X, i.e., T �r .� = 0. Quite similarly one can define a �r,s-projectable or a �r,s-vertical
vector field on J rY , where r > s. A differential k-form � on J rY is called �r -horizontal
(resp. �r,s-horizontal) if i�� = 0 for every �r -vertical (resp. �r,s-vertical) vector field �
on J rY . Note that �r -horizontal forms are those which in fibered coordinates contain
wedge products of the base differentials dxi only (with components dependent upon all
the fibered coordinates). Similarly, �r,0-horizontal forms contain wedge products of the
total space differentials dxi’s and dy�’s only, etc. To every k-form � on J rY one can
assign a unique horizontal k-form on J r+1Y , denoted by h� and called the horizontal
part of �. The mapping h is defined to be an R-linear wedge product preserving mapping
such that for every function f on J rY , hf = f ◦ �r+1,r , and

hdxi = dxi, hdy� = y�
k dxk, hdy�

j = y�
jk dxk, etc. (2.3)

In particular, hdf = dif dxi , where di is the ith total derivative operator which for a
first-order function f takes the form

di ≡ d

dxi
= �

�xi
+ y�

i

�
�y�

+ y�
ki

�
�y�

k

. (2.4)

By definition of h, for any form � of degree k > n, h� = 0. A k-form � on J rY (r �1)

is called contact if for every section � of �, J r�∗� = 0. A contact k-form is called
1-contact (resp. q-contact, q �2) if for every vertical vector field �, the (k − 1)-form
i�� is horizontal (resp. (q − 1)-contact).

Theorem 2.1 (Krupka [19]). Every k-form � on J rY has a canonical decomposition

�∗
r+1,r� = h� + p1� + p2� + · · · + pk�, (2.5)
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where h� is a unique horizontal form, and pq�, q = 1, 2, . . . , k, are unique q-contact
forms.

The forms h� and pq�, q = 1, 2, . . . , k, above are called the horizontal part of �,
and the q-contact part of �, respectively.

2.2. Differential equations modeled by dynamical forms

Definition 2.2. By a second-order dynamical form on a fibered manifold � : Y → X

we understand a differential (n + 1)-form on J 2Y which is 1-contact, and horizontal
with respect to the projection onto Y.

In fibered coordinates one gets

E = E��� ∧ �0, (2.6)

where E� are functions depending upon (xi, y�, y
�
p, y

�
pq). A section � of � defined on

an open set U ⊂ X is called a path of E if

E ◦ J 2� = 0. (2.7)

The above equation, called equation for paths of a dynamical form E, takes in fibered
coordinates the form of a system of m second-order partial differential equations,

E� ◦ J 2� = 0, 1���m, (2.8)

or, more explicitly,

E�

(
xi, ��,

���

�xp
,

�2��

�xp�xq

)
= 0, 1���m, (2.9)

where m = dim Y − dim X is the fiber dimension. Note that equations for paths of a
dynamical form on a fibered manifold (with the base dimension n and fiber dimension
m) can be regarded as a global characterization of (local) differential equations (2.9)
for graphs of mappings Rn → Rm. Dynamical forms represent quite a wide class of
systems of differential equations: in particular, they contain all second-order variational
PDEs.

Definition 2.3. Let E be a dynamical form on J 2Y . We say that a (n + 1)-form 	 on
J rY is related to E if p1	 = E. Taking into account Theorem 2.1, we can see that 	
is related to E if and only if

�∗
r+1,r	 = E + F, (2.10)
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where F is an at least 2-contact form. The family of all to E related (n + 1)-forms,
defined possibly on open subsets of J rY , will be called the Lepage class of E of order
r, and denoted by [	]r .

We can see that every second-order dynamical form has related Lepage classes
of order r for every r �2. Lepage classes are used for a geometrical description of
equations (2.7) (i.e., (2.9)) by means of exterior differential systems as follows:

Proposition 2.4. Let be a dynamical form on J 2Y , [	]r its Lepage class of order r.
For 	 ∈ [	]r consider the ideal H	 in the exterior algebra on J rY , generated by the
system of n-forms

i�	, where � runs over all �r -vertical vector fields on J rY. (2.11)

The following conditions are equivalent:

(1) A section � of � is a path of E, i.e., E ◦ J 2� = 0.
(2) For every 	 ∈ [	]r , J r� is an integral section of the ideal H	, i.e.,

J r�∗i�	 = 0, for every �r -vertical vector field � on J rY. (2.12)

(3) For every 	 ∈ [	]r ,

J r+1�∗i�	̂ = 0, for every �r+1-vertical vector field � on J r+1Y, (2.13)

where 	̂ is the at most 2-contact part of 	.

Proof. Suppose (1). Then E�◦J 2� = 0, 1���m. This means that for every �2-vertical
vector field 
 on J 2Y ,


 = 
� �
�y�

+ 
�
i

�
�y�

i

+ 
�
ij

�
�y�

ij

, (2.14)

we have

J 2�∗i
E = J 2�∗((E�
�)�0) =
(
(E�
�) ◦ J 2�

)
�0 = 0. (2.15)

If � is a vertical vector field on J rY , denote by �̂ a vector field on J r+1Y which
projects onto �. Since Eq. (2.15) depends only upon the total space components of
vector fields on J 2Y , we can see that also for every �r -vertical vector field � on J rY

where r > 2,

J r+1�∗i�̂�
∗
r+1,2E = 0. (2.16)
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Hence, for every 	 ∈ [	]r , and every vertical �,

J r�∗i�	 = J r+1�∗i�̂�
∗
r+1,r	 = J r+1�∗i�̂p1	 = J r+1�∗i�̂�

∗
r+1,2E = 0. (2.17)

Conversely, suppose that � satisfies Eqs. (2.12). Taking any 	 ∈ [	]r , and using that
(possibly up to a projection) E = p1	, we get from (2.17) by similar arguments as
above that E ◦ J 2� = 0.

Assertions (2) and (3) are equivalent, as seen immediately from (2.17). �

Definition 2.5. We shall call the ideals H	 and H	̂ introduced in Proposition 2.4
Hamiltonian ideal and principal Hamiltonian ideal of the (n + 1)-form 	, respectively,
and the form 	̂ the principal part of 	.

Proposition 2.4 says that all Hamiltonian ideals and principal Hamiltonian ideals
associated with E have the same holonomic integral sections, and these coincide with
prolonged paths of E (i.e., with solutions of Eqs. (2.7), respectively, (2.9)).

Remark 2.6. The terminology for H	 reflects that one used in the calculus of varia-
tions. If Eqs. (2.9) (i.e., (2.7)) are variational (i.e., are Euler–Lagrange equations), then
related Eqs. (2.12) are called Hamilton Eqs. (see [10,20,24], also [7,9], etc.).

2.3. Equations polynomial in the second derivatives

We shall study second-order PDEs which admit a first-order Lepage class. In view
of the above considerations this means that equations of this kind are described by
means of exterior differential systems on J 1Y .

Proposition 2.7. Let E = E��� ∧ �0 be a dynamical form on J 2Y . E has a Lepage
class of order 1 if and only if the functions E�, 1���m, are polynomials of degree
�n in the variables y�

ji , i.e.,

E�=A�+B
j1i1

��1 y
�1
j1i1

+B
j1i1j2i2

��1�2 y
�1
j1i1

y
�2
j2i2

+· · ·+B
j1i1...jnin

��1...�n
y

�1
j1i1

. . .y
�n

jnin
, (2.18)

and the coefficients B
j1i1...jkik

��1...�k
(where 2�k�n) are completely antisymmetric in the

indices i1, . . . , ik .

Proof. In a basis adapted to the contact structure, every (n + 1)-form 	 on J 1Y takes
the form “polynomial” in dy�

j , i.e.,

	 = �0+�j1
�1 ∧ dy

�1
j1

+�j1j2
�1�2 ∧ dy

�1
j1

∧ dy
�2
j2

+�j1j2j3
�1�2�3 ∧ dy

�1
j1

∧ dy
�2
j2

∧ dy
�3
j3

+ · · ·+�j1...jn
�1...�n

∧ dy
�1
j1

∧ . . . ∧ dy
�n

jn
+�j1...jn+1

�1...�n+1 dy
�1
j1

∧ · · · ∧ dy
�n+1
jn+1

, (2.19)
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where the �’s are p-forms (n + 1�p�0) expressed by means of wedge products
of the dxi’s and ��’s only. Substituting dy�

j = ��
j + y�

ji dxi , we obtain the lift
�∗

2,1	 of 	 expressed as a sum of contact parts, and we can see that all compo-
nents of �∗

2,1	 are polynomials in the variables y�
ji . In particular, this concerns the

first term, i.e., the 1-contact part E = p1	, which is by assumption a dynamical
form. Taking into account that the term ��1

j1
∧ · · · ∧ ��n+1

jn+1
gives no contribution to E(

indeed, y
�1
j1i1

dxi1 ∧ y
�2
j2i2

dxi2 ∧ · · · ∧ y
�n+1
jn+1in+1

dxin+1 = 0
)

, we conclude that the com-

ponents of E are polynomials of degree at most n. Finally, the antisymmetry condition

for the B’s appears, since B
j1i1...jpip

��1...�p
arise as components at ��∧y

�1
j1k1

dxk1∧y
�2
j2k2

dxk2∧
· · · ∧ y

�p

jpkp
dxkp ∧ �i1...ip , which are completely antisymmetric in the indices i1 . . . ip.

Conversely, assume that fiber chart components E�, 1���m, of E are polynomials
characterized by the proposition. Put

	0 = A���∧ �0+B
j1i1

��1 ��∧ dy
�1
j1

∧ �i1 + 1
2 B

j1i1j2i2
��1�2 ��∧ dy

�1
j1

∧ dy
�2
j2

∧ �i1i2

+ 1
3! B

j1i1j2i2j3i3
��1�2�3 �� ∧ dy

�1
j1

∧ dy
�2
j2

∧ dy
�3
j3

∧ �i1i2i3

+ · · · + 1
n! B

j1i1...jnin
��1...�n

�� ∧ dy
�1
j1

∧ · · · ∧ dy
�n

jn
∧ �i1...in . (2.20)

Then 	0 is a local form on J 1Y such that p1	0 = E, i.e., it generates a first-order
Lepage class of E. �

In accordance with [11], we say that a dynamical form E on J 2Y is J 1Y -pertinent if
it possesses a first-order Lepage class, i.e., its components E� take the form described
by Proposition 2.7. In what follows, we denote a first-order Lepage class [	]1 simply
by [	], and we write

	1 ∼ 	2 for 	1, 	2 ∈ [	]. (2.21)

The (n + 1)-form 	0 given by (2.20) is a local first-order form related with E, which
is “minimal” in the sense that it does not contain any free terms. All the first-order
related (n + 1)-forms are then characterized as follows:

Corollary 2.8. The first-order Lepage class [	] of a J 1Y -pertinent dynamical form E
consists of all (local) forms

	 = 	0 + F, (2.22)

where 	0 is given by (2.20), and F is an at least 2-contact form (defined on an open
subset of J 1Y ). The class [	] contains a subclass of forms belonging to the ideal
generated by the 1-contact forms ��, 1���m; in particular, one can even consider
invariant representatives such that F is �1,0-horizontal (contains no dy�

j ).
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For dynamical forms whose components are affine in the second derivatives (i.e., for
quasilinear second-order PDE) the situation further simplifies:

Corollary 2.9. Every dynamical form E on J 2Y with components affine in the second
derivatives, i.e., such that

E� = A� + B
ji

�� y�
ji , (2.23)

is J 1Y -pertinent, and its first-order Lepage class [	] consists of the following forms:

	 = A��� ∧ �0 + B
ji

�� �� ∧ dy�
(j ∧ �i) + F

=
(

E� − �E�

�y�
ij

y�
ij

)
�� ∧ �0 + �E�

�y�
ij

�� ∧ dy�
j ∧ �i + F, (2.24)

where F is at least 2-contact, and (j, i) denotes symmetrization in the indicated indices.

2.4. Variational equations

Among equations we have considered up to now, there is an important family of
variational equations, having many specific properties. We briefly recall without proofs
basic concepts from the calculus of variations on fibered manifolds in order to put vari-
ational equations into the above general scheme. The exposition follows [15,16,19,21],
where more results and proofs can be found.

A horizontal n-form � on J 1Y (where n = dim X) is called a first-order Lagrangian.
A form � such that h� = �, and p1d� is �1,0-horizontal is called Lepagean equivalent
of � [15]. Lepagean equivalents of a first-order Lagrangian � = L�0 take the form

� = �� + 
 = L�0 + �L

�y�
j

�� ∧ �j + 
, (2.25)

where �� is the Poincaré–Cartan form, and 
 is an arbitrary at least 2-contact form.
Family (2.25) of Lepagean equivalents of � contains the following n-form:

�� = L �0 +
n∑

k=1

1

(k!)2

�k
L

�y
�1
j1

· · · �y
�k

jk

��1 ∧ · · · ∧ ��k ∧ �j1···jk
, (2.26)

called Krupka form (see [17,2]). If � is a Lepagean equivalent of � then the action
functions of � and � are the same, and the paths of the dynamical form

E� = p1d� (2.27)
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are extremals of the Lagrangian �. E� is called the Euler–Lagrange form of �, its
components Euler–Lagrange expressions, and equations for paths of E are called Euler–
Lagrange equations. It holds E� = ��(L)�� ∧ �0, where

��(L) = �L

�y�
− d

dxj

�L

�y�
j

, 1���m. (2.28)

Since � is a first-order Lagrangian, the Euler–Lagrange expressions (2.28) are affine in
the second derivatives. Keeping notations of (2.18) we have

E� = A� + B
ij
��y

�
ij = A� + B

(ij)
�� y�

ij , (2.29)

where

E� = ��(L), A� = �′�(L) ≡ �L

�y�
− d ′

dxj

�L

�y�
j

,

B
ij
�� = B

ij
��(L) ≡ − �2

L

�y�
i �y�

j

, (2.30)

and B
(ij)
�� = 1

2

(
B

ij
�� + B

ji
��

)
. Above, d ′/dxj is the cut total derivative

d ′

dxj
= d

dxj
− y�

ji

�
�y�

i

= �
�xj

+ y�
j

�
�y�

. (2.31)

Euler–Lagrange equations take one of the following equivalent intrinsic forms:

J 1�∗i�d� = 0 for every vertical vector field � on J 1Y .

E� ◦ J 2� = 0. (2.32)

The first equation comes from the first variation formula for the Lagrangian �, the
second one reflects the fact that the Euler–Lagrange form E� is a dynamical form.

By definition of E�, formula (2.29), and Corollary 2.9 we immediately get:

Proposition 2.10. Let � be a first-order Lagrangian. Then its Euler–Lagrange form E�
has a Lepage class defined on J 1Y . Moreover, in the first-order Lepage class of E�
there are the following distinguished representatives:

d�� ∼ d�� ∼ 	0� ∼ 	�, (2.33)
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where

	0� = �′�(L) �� ∧ �0 + B
(ji)

�� (L) �� ∧ dy�
j ∧ �i ,

	� = �′�(L) �� ∧ �0 + B
ji

�� (L) �� ∧ dy�
j ∧ �i . (2.34)

Euler–Lagrange equations (2.32) then read

J 1�∗i�	 = 0 for every vertical vector field � on J 1Y, (2.35)

where 	 is any element belonging to the first-order Lepage class of E�, and they are
equations for holonomic integral sections of the ideal H	 (2.11).

Remark 2.11. It is known how to recognize whether a dynamical form E coincides
(at least locally) with the Euler–Lagrange form of a Lagrangian (see [12] for second-
order ODEs, [1,18] for PDEs of any order). Necessary and sufficient conditions for
variationality of second-order dynamical forms take the following form of conditions
on the “left-hand sides” of the corresponding equations:

�E�

�y�
ij

− �E�

�y�
ij

= 0,
�E�

�y�
j

+ �E�

�y�
j

− 2di

�E�

�y�
ij

= 0,

�E�

�y�
− �E�

�y�
+ di

�E�

�y�
i

− didj

�E�

�y�
ij

= 0. (2.36)

A (local) Lagrangian then can be computed using the Tonti–Vainberg formula

L = y�
∫ 1

0
E�

(
xi, uy�, uy�

j , uy�
jk

)
du. (2.37)

Next, it is known that a dynamical form E is (locally) variational if and only if the
Lepage class [	]2 of E contains a closed representative (i.e., there exists 	 ∈ [	]2 such
that d	 = 0 [18,22,11].

3. Constraint structure in J 1Y

Definition 3.1. By a non-holonomic constraint in J 1Y we shall mean a fibered sub-
manifold Q of �1,0 : J 1Y → Y , codim Q = �, where 1���mn − 1. This means that
in any fibered chart a constraint Q can be expressed by equations

f 	
(
xi, y�, y�

j

)
= 0, 1�	��, (3.1)
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such that

rank

(
�f 	

�y�
j

)
= �, where 	 labels rows and �, j label columns. (3.2)

If moreover

rank

(
�f 	

�y�
j

)
= k, where 	, j label rows and � labels columns, (3.3)

for some k, 1�k�m − 1, we say that Q is a regular (non-holonomic) constraint of
corank (�, k).

Remark 3.2. Notice that condition (3.3) is invariant. Indeed, with obvious notations
we have

F̄
	j
� = �f 	

�ȳ�
j

= �f 	

�y�
l

�y�
l

�ȳ�
j

= �f 	

�y�
l

�y�

�ȳ�

�x̄j

�xl
= F 	l

� B�
�A

j
l ,

i.e., in matrix notation,

⎛
⎜⎜⎜⎝

F̄ 1

F̄ 2

...

F̄ �

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

AF 1

AF 2

...

AF �

⎞
⎟⎟⎟⎠ · B =

⎛
⎜⎜⎝

A 0 · · · 0
0 A · · · 0

· · ·
0 · · · A

⎞
⎟⎟⎠ ·

⎛
⎜⎜⎜⎝

F 1

F 2

...

F �

⎞
⎟⎟⎟⎠ · B.

Since the matrices A, B are regular, we get

rank

(
�f 	

�ȳ�
j

)
= rank

⎛
⎜⎜⎜⎝

F̄ 1

F̄ 2

...

F̄ �

⎞
⎟⎟⎟⎠ = rank

⎛
⎜⎜⎜⎝

F 1

F 2

...

F �

⎞
⎟⎟⎟⎠ = rank

(
�f 	

�y�
j

)
,

as desired.

Let (V , �) be a fibered chart on Y, (V1, �1) the associated chart on J 1Y , U ⊂ V1
an open set. A regular constraint Q in J 1Y of corank (�, k) naturally gives rise to the
following distributions, defined on U:

(1) DU , annihilated by the 1-forms df 	, 1�	��. The rank condition (3.2) guarantees
that DU has a constant corank equal to � on U, i.e., its rank is n + m + nm − �.
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(2) C̃′
U , annihilated by the following 1-forms,

�	j = f 	 dxj + 1

n

�f 	

�y�
j

��, 1�	��, 1�j �n. (3.4)

These 1-forms are not independent, however, due to the rank condition (3.3), there
exist functions ca

	j , 1�a�k, 1�	��, 1�j �n, on U, such that the (k×m)-matrix

M = (Ma
�), where Ma

� = 1

n
ca
	j

�f 	

�y�
j

, (3.5)

has maximal rank (equal to k). This means that

�a =ca
	j�

	j =ca
	j f

	 dxj + 1

n
ca
	j

�f 	

�y�
j

�� =ca
	j f

	 dxj +Ma
���, 1�a�k, (3.6)

are independent at each point of U. Hence, the distribution

C̃U = annih{�a, 1�a�k}, (3.7)

has a constant corank k, i.e., rank C̃U = n + m + nm − k. 1-forms annihilating the
distribution C̃U will be called canonical constraint 1-forms of the constraint Q.

(3) CU , annihilated by k + � independent 1-forms �a, df 	, 1�a�k, 1�	��.

Immediately from the above constructions we can see that the following assertions
hold:

Proposition 3.3. Q ∩ U is an integral submanifold of DU . Hence, for every x ∈ Q,
the forms df 	(x), 1�	��, annihilate the tangent space TxQ to the manifold Q at x,
i.e., along Q, D = annih{df 	, 1�	��} = T Q.

Corollary 3.4. Let Q be a constraint of codimension � in J 1Y , and let f 	 = 0 and
f ′	 = 0, where 1�	��, be two sets of equations of Q on an open set U ⊂ V1 ⊂ J 1Y .

Then there are functions �	
� on U such that at each point of U,

(
�	
�

)
is a regular matrix,

and df ′	 = �	
�df �. In particular, at each point x ∈ Q ∩ U ,

�f ′	

�y�
j

= �	
�
�f �

�y�
j

. (3.8)
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Proposition 3.5. CU is a subdistribution of both C̃U and DU . At the points of Q∩U , the
distributions CU and C̃U ∩D coincide, and define a distribution of corank k on Q∩U .

Now, we shall show that the above local distributions on the constraint Q unite into
a global distribution on Q.

Theorem 3.6. Let Q be a regular constraint in J 1Y of corank (�, k), let � : Q → J 1Y

be the canonical embedding of the submanifold Q into J 1Y . If �a , 1�a�k, are
independent local canonical constraint 1-forms, put

�a = �∗�a = (Ma
� ◦ �) �∗��, 1�a�k. (3.9)

Then

C = annih{�a, 1�a�k} (3.10)

is a distribution of corank k on Q.

Proof. Taking into account Propositions 3.3 and 3.5, it is sufficient to show that if �	j

defined on U1 and �̄
	j

defined on U2 such that U1 ∩U2 ∩Q �= ∅ are constraint 1-forms
of Q annihilating the distribution C̃′

U1
and C̃′

U2
, respectively, then on U1 ∩ U2 ∩ Q,

�̄	j = c
	j

�l
��l (3.11)

for some functions c
	j

�l
, meaning that C̃U1 = C̃U2 at the points of U1 ∩ U2 ∩ Q.

Denote
(
xi, y�, y�

j

)
and

(
x̄i , ȳ�, ȳ�

j

)
associated fibered coordinates on U1 and U2,

respectively, and assume that the constraint Q is given by the equations f 	
(
xi, y�, y�

j

)
=

0 on U1, and f ′	
(
x̄i , ȳ�, ȳ�

j

)
= 0 on U2, where 1�	��. We have

�	j = f 	 dxj + 1

n

�f 	

�y�
j

��, �̄
	j = f ′	dx̄j + 1

n

�f ′	

�ȳ�
j

�̄�. (3.12)

Now, by transformation rules and by (3.8), we get

n�̄	j = �∗
(

�f ′	

�ȳ�
j

�̄�

)
= �∗

(
�f ′	

�y�
l

�y�
l

�ȳ�
j

�ȳ�

�y�
��

)
= �∗

(
�	
�
�f �

�y�
l

�x̄j

�xl

�y�

�ȳ�

�ȳ�

�y�
��

)

= �∗
(

�	
�
�x̄j

�xl

�f �

�y�
l

��

)
= c

	j

�l
�∗��l = c

	j

�l
n��l , (3.13)

proving our assertion. �
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Definition 3.7. The distribution C on Q defined in Theorem 3.6 will be called canonical
distribution. 1-forms belonging to the annihilator, C0, of C, will be called canonical
constraint 1-forms. The ideal in the exterior algebra of differential forms on Q generated
by C0 will be called canonical constraint ideal, and denoted by I(C0). Elements of
I(C0) will then be called canonical constraint forms.

Note that, by definition, C is the characteristic distribution of the ideal I(C0).
Let us find vector fields belonging to the canonical distribution.

Theorem 3.8. The canonical distribution C on Q is locally spanned by the following
vector fields:

�c

�xi
≡ �

�xi
+

k∑
a=1

(F a
i ◦ �)

�
�ym−k+a

, 1� i�n,

�c

�ys
≡ �

�ys
+

k∑
a=1

(Ga
s ◦ �)

�
�ym−k+a

, 1�s�m − k,

�
�zJ

, 1�J �nm − �, (3.14)

where
(
xi, y�, zJ , f 	), 1� i�n, 1���m, 1�J �nm − �, 1�	��, denote fibered

coordinates adapted to the submanifold � : Q → J 1Y , the functions Ga
s represent (at

each point) a fundamental system of solutions of the system of independent homogeneous
algebraic equations for m unknowns ��, 1���m,

Ma
� �� = 0, 1�a�k, (3.15)

and, for every i = 1, 2, . . . , n, the Fa
i are solutions of the equations

Ma
� F �

i = Ma
�y�

i − f 	ca
	i , 1�a�k, (3.16)

(
where y�

j are considered as functions of zJ , f �
)

corresponding to the choice of all

the parameters equal to zero.

Proof. The rank condition (3.2) guarantees that in a neighborhood of every point in Q
one can find coordinates (xi, y�, zJ , f 	), where 1� i�n, 1���m, and 1�J �nm−�,
1�	��. Consider the distribution C̃U on U ⊂ J 1Y such that U ∩Q �= ∅. For a vector
field � on U denote

� = �i �
�xi

+ �� �
�y�

+ �̄
J �

�zJ
+ �̃

	 �
�f 	

. (3.17)



O. Krupková / J. Differential Equations 220 (2006) 354–395 369

The condition i��
a = 0 for all a, gives us the following system of equations for the

components of �:

ca
	j f

	�j + Ma
�

(
�� − y�

l �l
)

= 0, 1�a�k, (3.18)

i.e.,

Ma
� �� = (

Ma
�y�

l − ca
	lf

	) �l , 1�a�k, (3.19)

where y�
j are functions of the adapted coordinates

(
xi, y�, zJ , f �

)
. By assumption,

rank M = k. This means that one can express k of the functions ��, e.g. (without
loss of generality) �m−k+a , where 1�a�k, by means of ‘parameters’ �i , �s , 1� i�n,
1�s�m − k. Hence, the general solution of i��

a = 0, 1�a�k, is

� = �i �
�xi

+
m−k∑
s=1

�s �
�ys

+
k∑

a=1

�m−k+a
(
�1, . . . , �n, �1, . . . ,�m−k

) �
�ym−k+a

+ �̄
J �

�zJ
+ �̃

	 �
�f 	

, (3.20)

where �i , �s , �̄
J

and �̃
	

are arbitrary functions and �m−k+a are solutions of Eqs.
(3.19). Hence, one can take independent vector fields on U spanning the distribution
C̃U as follows:

�
�xi

+
k∑

a=1

Fa
i

�
�ym−k+a

, 1� i�n,

�
�ys

+
k∑

a=1

Ga
s

�
�ym−k+a

, 1�s�m − k,

�
�zJ

,
�

�f 	
, 1�J �nm − �, 1�	��, (3.21)

where Ga
s , 1�s�m − k, is a fundamental system of solutions of (3.15) (i.e., (3.19)

with �1 = · · · = �n = 0), and Fa
i , 1� i�n, are solutions of (3.19) for �1 = · · · =

�m−k = 0 (here the subscript i corresponds to the choice �i = 1, �j = 0 for j �= i).
Since C = C̃U ∩ T Q, we finally get

C = span

{
�

�xi
+

k∑
a=1

F̄ a
i

�
�ym−k+a

,
�

�ys
+

k∑
a=1

Ḡa
s

�
�ym−k+a

,
�

�zJ

}
, (3.22)
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where, as above, 1� i�n, 1�s�m − k, 1�J �nm − �, and F̄ a
i = Fa

i ◦ �, Ḡa
s =

Ga
s ◦ �. �

The canonical distribution C on Q is a subbundle of the tangent bundle T Q → Q.
In general, however, it need not be completely integrable. We shall study conditions
for the complete integrability of C in Section 5.

Remark 3.9 (Notations adapted to the constraint structure). (i) The following conven-
tions concerning notation of indices will be used, and summation over repeated indices
will be understood (if not otherwise explicitly stated):

1� i, j, l�n, 1�	, �, ���, 1�J �nm − �,

1��, �, ��m, 1�a, b, c�k, 1�p, r, s�m − k. (3.23)

(ii) Taking into account that the matrix (3.5) in (3.6) has maximal rank, k, one can
express k of the contact 1-forms �� by means of the constraint forms �a , 1�a�m,
and the remaining ��’s. Without loss of generality we may suppose that this concerns
the forms �m−k+a , where 1�a�k. In an adapted basis (xi, y�, zJ , f 	) and in the
notations of the above theorem it holds

�m−k+a = 
a
b

(
�b − Mb

s �s − cb
	j f

	 dxj
)

= 
a
b�

b + Ga
s �s +

(
Fa

j + Ga
s y

s
j − ym−k+a

j

)
dxj , (3.24)

where (
a
b) is an appropriate regular matrix. Here and in what follows, y�

j are considered

as functions of the adapted coordinates (xi, y�, zJ , f 	). Similarly, the rank condition
(3.2) guarantees that one can express the forms dz	 by means of (df �, dxi, dy�, dzJ ).
Thus, we have on J 1Y the following bases of 1-forms, adapted to the constraint
structure:

(
dxi, dys, �a, dzJ , df A

)
, or

(
dxi, �s , �a, dzJ , df A

)
; (3.25)

Consequently, with obvious notations we may write

�̄m−k+a ≡ �∗�m−k+a = �̄a + Ḡa
s �̄s , (3.26)

where �̄s = �∗�s , and �̄a = �∗(
a
b�

b) = (
a
b ◦ �)�b. We can see that, on Q, instead

of a canonical basis (dxi, dy�, dzJ ), or a basis (dxi, �̄�, dzJ ) adapted to the induced
contact structure, it is worth to work with bases adapted to the constraint structure,
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where the canonical constraint 1-forms appear:

(
dxi, dys, �̄a, dzJ

)
,

(
dxi, �̄s , �̄a, dzJ

)
. (3.27)

(iii) Keeping the above notations we can express the functions Ga
s and Fa

j appearing
in (3.21) and (3.14) as follows:

Ga
s = 
a

bM
b
s , F a

j = ym−k+a
j − Ga

s y
s
j − 
a

bc
b
	j f

	. (3.28)

We also put

y�
j ◦ � = g�

j . (3.29)

With this notation,

Ḡa
s = (
a

bM
b
s ) ◦ �, F̄ a

j = gm−k+a
j − Ḡa

s g
s
j . (3.30)

(iv) The vector fields �c/�xi and �c/�ys on Q defined by (3.14) will be called
constraint partial derivative operators. We put

d ′
c

dxi
= �c

�xi
+ gs

i

�c

�ys
,

dc

dxi
= �c

�xi
+ gs

i

�c

�ys
+ zJ

i

�
�zJ

= d ′
c

dxi
+ zJ

i

�
�zJ

, (3.31)

and call the above operators the ith cut constraint and constraint total derivative op-
erator, respectively. We note that the operators dc/dxi act on functions on Q, giving
rise to functions on Q̃, the lift of Q in J 2Y (defined as the manifold of all points
J 2

x � ∈ J 2Y such that J 1
x � ∈ Q).

(v) The exterior derivative of a function f on Q can be expressed as follows:

df =
(

�f

�xj
+ �f

�y�
g�

j

)
dxj + �f

�ys
�̄s + �f

�ym−k+a
�̄m−k+a + �f

�zJ
dzJ

=
(

�f

�xj
+ �f

�ys
gs

j + �f

�ym−k+a
(F̄ a

j + Ḡa
s g

s
j )

)
dxj

+
(

�f

�ys
+ Ḡa

s

�f

�ym−k+a

)
�̄s + �f

�ym−k+a
�̄a + �f

�zJ
dzJ

= d ′
cf

dxj
dxj + �cf

�ys
�̄s + �f

�ym−k+a
�̄a + �f

�zJ
dzJ , (3.32)
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since by (3.30)

gm−k+a
j = F̄ a

j + Ḡa
s g

s
j . (3.33)

(vi) Let us compute the explicit expression for d�̄a which will often be used later

d�̄a = d�̄m−k+a − dḠa
s ∧ �̄s − Ḡa

s d�̄s

= −dgm−k+a
j ∧ dxj − dḠa

s ∧ �̄s + Ḡa
s dgs

j ∧ dxj

=
(

Ḡa
s

d ′
cg

s
j

dxi
− d ′

cg
m−k+a
j

dxi

)
dxi ∧ dxj

+
(

Ḡa
s

�cg
s
j

�yr
+ d ′

cḠ
a
r

dxj
− �cg

m−k+a
j

�yr

)
�̄r ∧ dxj

+
(

Ḡa
s

�gs
j

�zJ
− �gm−k+a

j

�zJ

)
dzJ ∧ dxj − �cḠ

a
s

�yr
�̄r ∧ �̄s − �Ḡa

s

�zJ
dzJ ∧ �̄s

+
(

Ḡa
s

�gs
j

�ym−k+b
− �gm−k+a

j

�ym−k+b

)
�̄b ∧ dxj − �Ḡa

s

�ym−k+b
�̄b ∧ �̄s , (3.34)

and denote

Ca
Jj = Ḡa

s

�gs
j

�zJ
− �gm−k+a

j

�zJ
= −�F̄ a

j

�zJ
− �Ḡa

s

�zJ
gs

j , Cai
js = Ca

Jj

�zJ

�ys
i

. (3.35)

4. Constrained systems

4.1. Constrained PDEs

Let Q be a regular constraint in J 1Y , I(C0) the associated canonical constraint ideal.
Since for every q-contact form � on J 1Y �∗� is a q-contact form on Q, we have the
following equivalence relation on (n + 1)-forms on Q:

	1 ≈ 	2 if 	1 − 	2 = F̄ + �, (4.1)

where F̄ is an at least 2-contact (n+1)-form on Q, and � is a constraint (n+1)-form.
We denote by [[	]] the class of 	.

If [	] is a Lepage class on J 1Y then obviously for any of its two elements,

	1 ∼ 	2 ⇒ �∗	1 ≈ �∗	2. (4.2)
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This enables us to associate with a given system of second-order PDEs, polynomial
in the second derivatives, a system of equations defined on the constraint Q. Recall
that the equations we consider are characterized by a dynamical form with components
(“left-hand sides” of the equations) given by Proposition 2.7 (formula (2.18)).

Definition 4.1. Let E be a J 1Y -pertinent dynamical form on Y, [	] its Lepage class
on J 1Y . By the constrained system associated with E and the constraint Q we shall
mean the equivalence class [[�∗	]].

A general element of the class [[�∗	]] is of the form

	̄ = �∗	 + F̄ + �, (4.3)

where 	 ∈ [	] is any (n+1)-form related with E, F̄ is at least 2-contact, and � ∈ I(C0).
In particular, we have a distinguished representative 	̄0 = �∗	0 ∈ [[�∗	]] (cf. (2.20)), as
well as those 	̄ ≈ 	̄0 which belong to the ideal generated by the forms �̄� = �∗��.

Proposition 4.2. In adapted fibered coordinates (xi, y�, zJ ) on Q,

	̄0 ≈ As �̄s ∧ �0+B i1
sJ1

�̄s ∧ dzJ1 ∧ �i1 + 1
2 B i1i2

sJ1J2
�̄s ∧ dzJ1 ∧ dzJ2 ∧ �i1i2

+ · · · + 1
n! B i1...in

sJ1...Jn
�̄s ∧ dzJ1 ∧ · · · ∧ dzJn ∧ �i1...in , (4.4)

where

As = Ās + Ām−k+aḠ
a
s +

(
B̄

j1i1
s�1 + B̄

j1i1
m−k+a �1

Ḡa
s

) d ′
cg

�1
j1

dxi1

+
(
B̄

j1i1j2i2
s�1�2 + B̄

j1i1j2i2
m−k+a�1�2

Ḡa
s

) d ′
cg

�1
j1

dxi1

d ′
cg

�2
j2

dxi2

+ · · · +
(
B̄

j1i1...jnin
s�1...�n

+ B̄
j1i1...jnin

m−k+a�1...�n
Ḡa

s

) d ′
cg

�1
j1

dxi1
· · · d ′

cg
�n

jn

dxin
,

B i1
sJ1

=
(
B̄

j1i1
s�1 + B̄

j1i1
m−k+a �1

Ḡa
s

) �g
�1
j1

�zJ1

+ 2
(
B̄

j1i1j2i2
s�1�2 + B̄

j1i1j2i2
m−k+a�1�2

Ḡa
s

) �g
�1
j1

�zJ1

d ′
cg

�2
j2

dxi2

+ · · · + n
(
B̄

j1i1...jnin
s�1...�n

+ B̄
j1i1...jnin

m−k+a�1...�n
Ḡa

s

) �g
�1
j1

�zJ1

d ′
cg

�2
j2

dxi2
· · · d ′

cg
�n

jn

dxin
,
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B i1i2
sJ1J2

=
(
B̄

j1i1j2i2
s�1�2 + B̄

j1i1j2i2
m−k+a�1�2

Ḡa
s

) �g
�1
j1

�zJ1

�g
�2
j2

�zJ2

+ · · · + n(n − 1)

2

(
B̄

j1i1...jnin
s�1...�n

+B̄
j1i1...jnin

m−k+a�1...�n
Ḡa

s

)

× �g
�1
j1

�zJ1

�g
�2
j2

�zJ2

d ′
cg

�3
j3

dxi3
· · ·d

′
cg

�n

jn

dxin
,

...

B i1...in
sJ1...Jn

=
(
B̄

j1i1...jnin
s�1...�n

+ B̄
j1i1...jnin

m−k+a�1...�n
Ḡa

s

) �g
�1
j1

�zJ1
· · · �g

�n

jn

�zJn
, (4.5)

and Ā� = A� ◦ �, B̄
j1i1

��1 = B
j1i1

��1 ◦ �, etc.

Proof. By (2.20) and in the notations of Remark 3.9 we have

	̄0 = �∗	0 = Ā� �̄� ∧ �0 + B̄
j1i1

��1 �̄� ∧ dg
�1
j1

∧ �i1

+ 1
2 B̄

j1i1j2i2
��1�2 �̄� ∧ dg

�1
j1

∧ dg
�2
j2

∧ �i1i2

+ · · · + 1
n! B̄

j1i1...jnin
��1...�n

�̄� ∧ dg
�1
j1

∧ · · · ∧ dg
�n

jn
∧ �i1...in

≈ (
Ās + Ām−k+aḠ

a
s

)
�̄s ∧ �0

+
(
B̄

j1i1
s�1 + B̄

j1i1
m−k+a �1

Ḡa
s

)
�̄s ∧

(
d ′
cg

�1
j1

dxl1
dxl1 + �g

�1
j1

�zJ1
dzJ1

)
∧ �i1

+ 1
2

(
B̄

j1i1j2i2
s�1�2 + B̄

j1i1j2i2
m−k+a�1�2

Ḡa
s

)
�̄s

∧
(

d ′
cg

�1
j1

dxl1
dxl1 + �g

�1
j1

�zJ1
dzJ1

)
∧
(

d ′
cg

�2
j2

dxl2
dxl2 + �g

�2
j2

�zJ2
dzJ2

)
∧ �i1i2

+ · · · + 1
n!
(
B̄

j1i1...jnin
s�1...�n

+ B̄
j1i1...jnin

m−k+a�1...�n
Ḡa

s

)
�̄s

∧
(

d ′
cg

�1
j1

dxl1
dxl1 + �g

�1
j1

�zJ1
dzJ1

)
∧· · ·∧

(
d ′
cg

�n

jn

dxln
dxln + �g

�n

jn

�zJn
dzJn

)
∧ �i1...in , (4.6)

from which formulas (4.4), (4.5) easily follow. �

Corollary 4.3. If E� are affine in the second derivatives (i.e., represent quasilinear
second-order PDEs) then

	̄0 ≈ As �̄s ∧ �0 + B i1
sJ1

�̄s ∧ dzJ1 ∧ �i1 , (4.7)
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where

As = Ās + Ām−k+aḠ
a
s +

(
B̄

j1i1
s�1 + B̄

j1i1
m−k+a �1

Ḡa
s

) d ′
cg

�1
j1

dxi1
,

B i1
sJ1

=
(
B̄

j1i1
s�1 + B̄

j1i1
m−k+a �1

Ḡa
s

) �g
�1
j1

�zJ1
. (4.8)

Recall that unconstrained equations were PDEs for sections � : W → Y , W ⊂ X, of
the fibered manifold � : Y → X. Solutions of constrained equations have to obey the
constraint condition

J 1�(W) ⊂ Q, (4.9)

i.e., have to satisfy the system of � first-order PDE defining the constraint Q,

f �(xi, y�, y�
j ) ◦ J 1� = 0. (4.10)

Now, in accordance with the understanding of unconstrained equations as equations for
holonomic integral sections of (any) Hamiltonian ideal H	 related with a Lepage class
[	], we can consider constrained equations as equations for holonomic integral sections
of an appropriate ideal in the exterior algebra on Q:

Definition 4.4. Let Q be a constraint in J 1Y with the canonical distribution C, E a
dynamical form on J 2Y , and [[�∗	]] its corresponding constrained system. For every
	̄ ∈ [[�∗	]] consider the ideal H̄	̄ on Q, generated by the system of n-forms

i�	̄, where � runs over all vertical vector fields on Q belonging to C. (4.11)

We shall call H̄	̄ constraint Hamiltonian ideal. Sections � : W → Y of � such that
J 1�(W) ⊂ Q, which are integral sections of H̄	̄, i.e., satisfy

J 1�∗i�	̄ = 0, for every vertical vector field � ∈ C, (4.12)

will be called constrained paths of E. Eqs. (4.12) will be called constrained equations
associated with E and the constraint Q.

In adapted fibered coordinates, Eqs. (4.12) represent a system of m− k second-order
PDE for the components of �, polynomial in the second derivatives:

(
As + B i1

sJ1
z
J1
i1

+ B i1i2
sJ1J2

z
J1
i1

z
J2
i2

+ · · · + B i1...in
sJ1...Jn

z
J1
i1

· · · zJn

in

)
◦ J 2� = 0. (4.13)
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In fact, due to the following proposition, in equations (4.13) only m−k unknown func-
tions �1(xi), . . . �m−k(xi) appear. Therefore we shall also refer to them as to reduced
equations for the constrained system [[�∗	]].

Proposition 4.5. A section � of � satisfies the constraint condition (4.9) (i.e., (4.10))
if and only if J 1� is an integral section of the canonical distribution C. This means
that for every a,

J 1�∗�̄a = 0. (4.14)

In coordinates,

��m−k+a

�xj
= gm−k+a

j ◦ J 1�. (4.15)

Proof. Let � be a section of � satisfying (4.9). This means that � = J 1� is a holonomic
section of the fibered manifold Q → X, meaning that � is an integral section of the
induced contact distribution on Q. However, this distribution is annihilated by the 1-
forms �∗�� = �̄�. Now, from (3.26) we can see that � is an integral section of C. The
converse is trivial. �

We can conclude that constrained paths can be locally obtained by solving the
system of simultaneous kn first-order PDE (4.15) and m − k second-order PDE (4.13).
Notice that complete integrability of the distribution C is not so essential, since we
are looking for integral sections (which are locally n-dimensional submanifolds of Q),
not for integral manifolds of C. In fact, in analogy with non-holonomic mechanics
(ordinary differential equations) one can expect that namely the situations where C is
not completely integrable will be of interest in the theory and applications of PDEs
with differential constraints.

4.2. Constrained Lagrangian systems

If the unconstrained equations are equations for extremals of a first-order Lagrangian
�, i.e., if E = E�, we have in the Lepage class [	] of E� distinguished representatives,
which we can use for construction of the corresponding constrained system (see Propo-
sition 2.10). In the (unconstrained) calculus of variations one usually takes the form
d�� (see e.g. [10,9]), however, in many situations the form d�� may be more useful
[17,2,11], or one can even utilize a general Lepagean (n+1)-form d� [7,20,24,26]. As
we have seen above, in the constrained situation, the constrained Lagrangian system
is the equivalence class [[�∗d��]], and for study of constrained equations any of its
representatives is appropriate. Of course, the work with the most simple ones, 	̄0 or
	̄0�, or with the most simple closed one, d��, can be most convenient.
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Definition 4.6. Let [[�∗d��]] be a constrained Lagrangian system. Each of the forms
�∗d�� + �, where � ∈ I(C0), will be called a constrained Poincaré–Cartan (n + 1)-
form of �. Similarly, each of the forms �∗d�� + �, where � ∈ I(C0), will be called
a constrained Krupka (n + 1)-form of �. Paths of a constrained system will be called
constrained extremals, and Eqs. (4.12) where 	̄ is any element of the class [[�∗d��]]
will be called constrained Euler–Lagrange equations of �.

For � = L�0 denote

L̄ = L ◦ �, L̄
j
a = �L

�ym−k+a
j

◦ �, (4.16)

where the above are functions of adapted fibered coordinates, (xi, y�, zJ ), on Q, and

��∗� = L̄ �0 + �L̄

�ys
j

�̄s ∧ �j = L̄ �0 + �L̄

�zJ

�zJ

�ys
j

�̄s ∧ �j . (4.17)

In keeping with notations introduced in Remark 3.9 we can easily find the following
relation:

Proposition 4.7.

�∗�� = ��∗� + L̄i
aCaj

is �̄s ∧ �j + L̄
j
a �̄a ∧ �j . (4.18)

Proof. We have

�∗�� = L̄�0 +
(

�L

�ys
j

◦ �

)
�̄s ∧ �j +

(
�L

�ym−k+a
j

◦ �

)
�̄m−k+a ∧ �j

= L̄�0 +
((

�L

�ys
j

◦ �

)
+ L̄

j
aḠ

a
s

)
�̄s ∧ �j + L̄

j
a�̄

a ∧ �j . (4.19)

On the other hand,

��∗� = L̄ �0 + �L̄

�zJ

�zJ

�ys
j

�̄s ∧ �j

= L̄ �0 +
((

�L

�ys
j

◦ �

)
+ L̄

j
aḠ

a
s

)
�̄s ∧ �j − L̄i

aCaj
is �̄s ∧ �j , (4.20)
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since from �∗dL = dL̄ one gets

�L̄

�zJ
=
(

�L

�y�
i

◦ �

)
�g�

i

�zJ
=
(

�L

�yr
i

◦ �

)
�gr

i

�zJ
+
(

�L

�ym−k+a
i

◦ �

)
�gm−k+a

i

�zJ

=
((

�L

�yr
i

◦ �

)
+ L̄i

aḠ
a
r

)
�gr

i

�zJ
− L̄i

aCa
J i . (4.21)

Comparing (4.19) and (4.20) we obtain the desired formula. �

For convenience of notations let us introduce the C-modified Euler–Lagrange operator
and cut C-modified Euler–Lagrange operator, respectively:


s = �c

�ys
− dc

dxi

(
�

�ys
i

)
−�cg

r
j

�ys

�
�yr

j

= �c

�ys
− dc

dxi

(
�zJ

�ys
i

�
�zJ

)
−�cg

r
j

�ys

�zJ

�yr
j

�
�zJ

,


′
s = �c

�ys
− d ′

c

dxi

(
�

�ys
i

)
−�cg

r
j

�ys

�
�yr

j

= �c

�ys
− d ′

c

dxi

(
�zJ

�ys
i

�
�zJ

)
− �cg

r
j

�ys

�zJ

�yr
j

�
�zJ

. (4.22)

Theorem 4.8. Let � be a Lagrangian in J 1Y , Q ⊂ J 1Y a regular constraint. Let
� : W → Y be a section of the fibered manifold � : Y → X such that J 1�(W) ⊂ Q.
In adapted fibered coordinates, the constrained Euler–Lagrange equations take one of
the following equivalent forms:

(1) By means of L,

(
As + B i

sJ zJ
i

)
◦ J 2� = 0, (4.23)

where As , B i
sJ are given by (4.8), where (cf. (2.30))

Ā� = �′�(L) ◦ �, B̄
ij
�� = −

(
�2

L

�y�
i �y�

j

)
◦ �. (4.24)

(2) By means of L̄ and L̄
j
a ,

(

s(L̄) − L̄

j
a 
s(g

m−k+a
j ) − Cai

js

dcL̄
j
a

dxi

)
◦ J 2� = 0, (4.25)
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meaning that the functions As , B i
sJ are equivalently expressed as follows:

As = 
′
s(L̄) − L̄

j
a 
′

s

(
gm−k+a

j

)
− Cai

js

d ′
cL̄

j
a

dxi
,

B i
sJ = − �

�zJ

(
�L̄

�zK

�zK

�ys
i

)
+ L̄i

a

�
�zJ

(
Ḡa

s �
j
i − Caj

is

)
− Cai

js

�L̄
j
a

�zJ

= − �
�zJ

(
�L̄

�zK

�zK

�ys
i

)
+ L̄

j
a

�
�zJ

(
�gm−k+a

j

�zK

�zK

�ys
i

)
− Cai

js

�L̄
j
a

�zJ
. (4.26)

Proof. The first part of the theorem is clear. Let us prove the second one. By Propo-
sition 4.7 and with notations of Remark 3.9 we obtain:

�∗d�� ≈ d��∗� + d
(
L̄i

aCaj
is

)
∧ �̄s ∧ �j − L̄i

aCaj
is dgs

j ∧ �0 + L̄
j
a d�̄a ∧ �j

≈ d��∗� − Cai
js

d ′
cL̄

j
a

dxi
�̄s ∧ �0

− L̄
j
a

(
d ′Cai

js

dxi
+ Cai

jr

�cg
r
i

�ys
+ �cg

m−k+a
j

�ys
− d ′Ḡa

s

dxj
− Ḡa

r

�cg
r
j

�ys

)
�̄s ∧ �0

−
⎛
⎝�(L̄

j
aCai

js)

�zJ
− L̄a

i

�Ḡa
s

�zJ

⎞
⎠ �̄s ∧ dzJ ∧ �i . (4.27)

However,


′
s

(
gm−k+a

j

)
= �cg

m−k+a
j

�ys
− d ′

c

dxi

(
�zJ

�ys
i

�gm−k+a
j

�zJ

)
− �cg

r
i

�ys

�zJ

�yr
i

�gm−k+a
j

�zJ

= �cg
m−k+a
j

�ys
− d ′

c

dxi

(
Ḡa

s �
i
j − Cai

js

)
− �cg

r
i

�ys

(
Ḡa

r �
i
j − Cai

jr

)

= �cg
m−k+a
j

�ys
− d ′

cḠ
a
s

dxj
+ d ′

cCai
js

dxi
− �cg

r
j

�ys
Ḡa

r + �cg
r
i

�ys
Cai

jr , (4.28)

and


s

(
gm−k+a

j

)
− 
′

s(g
m−k+a
j ) = − �

�zJ

(
�gm−k+a

j

�zK

�zK

�ys
i

)
zJ
i

= − �
�zJ

(
Ḡa

s �
i
j − Cai

js

)
zJ
i . (4.29)
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Substituting into (4.27) we get

�∗d�� ≈ d��∗� −
(

L̄
j
a 
′

s(g
m−k+a
j ) + Cai

js

d ′
cL̄

j
a

dxi

)
�̄s ∧ �0

+
(

L̄
j
a

�
�zJ

(
�gm−k+a

j

�zK

�zK

�ys
i

)
− Cai

js

�L̄
j
a

�zJ

)
�̄s ∧ dzJ ∧ �i . (4.30)

Finally, expressing d��∗� we obtain

d��∗� ≈
(

�cL̄

�ys
− d ′

c

dxi

(
�L̄

�zJ

�zJ

�ys
i

)
− �L̄

�zJ

�zJ

�yr
j

�cg
r
j

�ys

)
�̄s ∧ �0

− �
�zJ

(
�L̄

�zK

�zK

�ys
i

)
�̄s ∧ dzJ ∧ �i

= 
′
s(L̄) �̄s ∧ �0 − �

�zJ

(
�L̄

�zK

�zK

�ys
i

)
�̄s ∧ dzJ ∧ �i . (4.31)

Formulas (4.30) and (4.31) give us the representative 	̄0 ≈ d��∗� (the components of
which determine the corresponding constrained equations),

	̄0 = As�̄
s ∧ �0 + B i

sJ �̄s ∧ dzJ ∧ �i

=
(


′
s(L̄) − L̄

j
a 
′

s(g
m−k+a
j ) + Cai

js

d ′
cL̄

j
a

dxi

)
�̄s ∧ �0

−
(

�
�zJ

(
�L̄

�zK

�zK

�ys
i

)
−L̄

j
a

�
�zJ

(
�gm−k+a

j

�zK

�zK

�ys
i

)
+Cai

js

�L̄
j
a

�zJ

)
�̄s∧ dzJ∧ �i ,

(4.32)

as desired. �

Remark 4.9. Proposition 4.7 and Theorem 4.8 show that for general constraints the n-
form ��∗� is not a Lepagean form for the constrained equations. This means that �∗� has
not the meaning of a “constrained Lagrangian”. A proper Lepagean form is, however,
�∗�� (or �∗�, where � is any Lepagean equivalent of �), since d�∗�� = �∗d�� gives
rise to the constrained Euler–Lagrange equations. In this way, the role of a constrained
Lagrangian is played by the (local) n-form

�C = L̄�0 + L̄
j
a�̄

a ∧ �j . (4.33)
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Consequently, a constrained Lagrangian system typically cannot be locally determined
by a single function defined on the constraint, but is determined rather by 1 + nk

“constraint Lagrange functions”, L̄, L̄
j
a on Q.

Definition 4.10. The operator defined by (4.25), i.e.,

EC
s (L̄, L̄

j
a) = 
s(L̄) − L̄

j
a 
s

(
gm−k+a

j

)
− Cai

js

dcL̄
j
a

dxi
(4.34)

will be called the constraint Euler–Lagrange operator.

We can define the concept of a constraint-horizontal form on Q as a form annihilated
by vertical vector fields belonging to the canonical distribution C (cf. [27]). Then �C
is constraint-horizontal, and EC is a map acting on constraint-horizontal n-forms on Q,
assigning them classes of dynamical forms on Q̃ ⊂ J 2Y (Q̃ is a natural prolongation
of Q). Indeed, EC(�C) is determined up to a dynamical form � ∈ I(C0); in coordinates,

EC(�C) = EC
s (L̄, L̄

j
a) �̄s ∧ �0 + �a�̄

a ∧ �0. (4.35)

4.3. Chetaev equations

We have introduced differential equations with constraints as geometric objects de-
fined directly on constraint manifolds. Another (but equivalent) model for constrained
equations arises from their understanding as deformations of the original (unconstrained)
equations, defined on J 1Y , in a neighborhood of the constraint. We adopt this idea from
[22,23] where it has been proposed for the case of second and higher-order ODEs.

Let Q ⊂ J 1Y be a regular constraint. To a point x ∈ Q consider an appropriate
open set U ⊂ J 1Y (open in J 1Y ) where Q is given by equations f 	 = 0, and the
corresponding distribution C̃U defined on U. Recall that by (3.7) C̃U is annihilated by
k linearly independent 1-forms defined on U,

�a = ca
	j f

	 dxj + Ma
���, where Ma

� = 1

n
ca
	j

�f 	

�y�
j

. (4.36)

Denote by IU the ideal on U generated by (4.36).
Let E be a J 1Y -pertinent dynamical form on J 2Y , [	] its Lepage class. (Recall that

E is characterized by Proposition 2.7). If � ∈ IU is a dynamical form, put

E� = E − �∗
2,1�. (4.37)

E� is a J 1Y -pertinent dynamical form on �−1
2,1(U), hence has a Lepage class [	�]

defined on U. Moreover, we can easily see that 	1 ∼ 	2 ⇒ 	1� ∼ 	2�.



382 O. Krupková / J. Differential Equations 220 (2006) 354–395

Definition 4.11. We shall call E� a deformation of E induced by the constraint Q.
Similarly, the Lepage class [	�] will be called a deformation of [	] induced by Q. Equa-
tions for paths of E� will be called deformed equations. A corresponding dynamical
form � will be called energy-momentum form of the constraint Q.

Note that by definition, � = �a ∧ �a , where �a are horizontal n-forms defined on
U; in fibered coordinates, �a = ha�0. With help of (4.36) we write

�=�a∧ �a =haM
a
���∧ �0 = 1

n
hac

a
	j

�f 	

�y�
j

��∧ �0 =�	j

�f 	

�y�
j

��∧ �0, (4.38)

and call the functions

�	j = 1

n
hac

a
	j (4.39)

Lagrange multipliers. Hence, energy-momentum forms of the constraint Q read

� = �� �� ∧ �0, where �� = �	j

�f 	

�y�
j

, (4.40)

and we can see that they are determined by the constraint up to Lagrange multipliers.
Obviously, the concept of energy-momentum form of the constraint does not depend

upon a choice of local generators of the distribution C̃U . Indeed, if �a are other
independent 1-forms annihilating C̃U , it holds �a = Aa

b�
b for a regular matrix (Aa

b)

on U, and we get � = �a ∧ �a = Ab
a�a ∧ �b = �a ∧ �a .

Remark 4.12. The definition of energy-momentum form of the constraint Q gives a
local (n + 1)-form on every appropriate open set U. However, one can obtain a global
form � with help of a partition of unity subordinate to a cover {U�} of Q. Moreover, as
an immediate consequence of Corollary 3.4 and Proposition 3.5 it turns our that any two
energy-momentum forms along the constraint Q coincide up to Lagrange multipliers.

We shall be interested in constrained paths of the deformed equations, i.e., those
paths that pass in the constraint manifold (J 1�(W) ⊂ Q ∩ U ). Immediately from the
definitions we get:

Proposition 4.13. The following conditions are equivalent:

(1) A section � : W → Y of � is a constrained path of E�.
(2) For any 	� ∈ [	�], J 1� is an integral section of the Hamiltonian ideal H	� , and

J 1�(W) ⊂ Q ∩ U .
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(3) � satisfies the following system of second-order PDE:

A� + B
j1i1

��1 y
�1
j1i1

+ B
j1i1j2i2

��1�2 y
�1
j1i1

y
�2
j2i2

+ · · · + B
j1i1...jnin

��1...�n
y

�1
j1i1

. . . y
�n

jnin
= �	j

�f 	

�y�
j

, (4.41)

together with the equations of the constraint, f 	 = 0.

If, in particular E = E� (i.e., the unconstrained equations are Euler–Lagrange equa-
tions of a Lagrangian � = L�0), then the corresponding deformed equations (4.41)
take the form

�L

�y�
− d

dxj

�L

�y�
j

= �	j

�f 	

�y�
j

. (4.42)

Remark 4.14. Eqs. (4.42) were obtained also in [3]. These equations generalize to
(variational) partial differential equations the Chetaev equations, proposed by Chetaev
in 1930 to describe motion of mechanical Lagrangian systems subjected to constraints
involving time, positions and velocities of particles [6] (so-called non-holonomic me-
chanics). The right-hand sides of Chetaev’s equations in mechanics are interpreted as
components of a force, called constraint (or Chetaev) force; it is determined up to
Lagrange multipliers, which have to be evaluated with help of deformed equations.
As we can see from (4.41), for partial differential equations the meaning of Lagrange
multipliers and deformed equations is analogous.

Let us clarify the relation between the deformed and reduced equations.

Theorem 4.15.

(1) For every U and every dynamical form � ∈ I(U), the constrained system associated
with E� coincides with the constrained system associated with E, i.e.,

[[�∗	�]] = [[�∗	]]. (4.43)

(2) For sections � : W → Y of � such that J 1�(W) ⊂ Q, deformed equations and
reduced equations are equivalent.

Proof. By definition of [	�], every element of the class is of the form

	� = 	 − � + F, (4.44)

where F is an at least 2-contact form on U. Hence

�∗	� = �∗	 + �∗� + �∗F ≈ �∗	, (4.45)
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since �∗� is a constraint form on Q, and �∗F is an at least 2-contact form on Q. This
means that �∗	� ∈ [[�∗	]]. Conversely, for every fixed �,

�∗	 ≈ �∗	 − �∗� = �∗	�, (4.46)

i.e., �∗	 ∈ [[�∗	�]].
The second part of Theorem 4.15 is a direct consequence of the first part. �

5. Particular cases of regular constraints in J 1Y

In this section we introduce some particular cases of constraints, such as Lagrangian
constraints, �-adapted constraints, constraints defined by a distribution on Y, semi-
holonomic constraints, and holonomic constraints.

5.1. Lagrangian constraints

Let Q be a regular constraint in J 1Y , C = annih{�̄a} its canonical distribution, I the
constraint ideal. For an open subset U ⊂ J 1Y where Q is given by equations f 	 = 0
consider the related constraint distribution C̃U = annih{�a} and the constraint ideal IU

on U.

Definition 5.1. A constraint Q is called Lagrangian in U if for all a, the forms p1d�a

are horizontal with respect to the projection onto Y. Q is called a Lagrangian constraint
if it is Lagrangian in an open neighborhood of the submanifold Q.

We note that the definition of a Lagrangian constraint does not depend upon a choice
of forms annihilating the distribution C̃U . Indeed, if �a is another system of independent
1-forms annihilating C̃U , one has �a = Aa

b�
b, where (Aa

b) is a regular matrix on U.
Hence

p1d�a = p1(A
a
bd�b) + p1(dAa

b ∧ �b) = Aa
bp1d�b + (hdAa

b) ∧ �b (5.1)

which is �1,0-horizontal, since all �a are �1,0-horizontal, as can be seen from their
definition.

Next, note that the definition of a Lagrangian constraint means that for all a and i,
the 1-contact part of d(�a ∧ �i ) = d(ca

	if
	�0 + Ma

��� ∧ �i ) is an Euler–Lagrange
form. This means, however, that the n-forms

�a
i = ca

	if
	�0 + Ma

��� ∧ �i = ca
	if

	�0 + Ma
��j

i �
� ∧ �j (5.2)

are Lepagean, and

�a
i = ca

	if
	�0 (5.3)

are local Lagrangians for the constraint Q.
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Theorem 5.2. (1) A constraint Q is Lagrangian on U if and only if

�
(
ca
	j f

	
)

�y�
l

= 0, j �= l,

�
(
ca
	1f

	)
�y�

1

= �
(
ca
	2f

	)
�y�

2

= · · · = �
(
ca
	nf

	)
�y�

n

= 1

n
ca
	i

�f 	

�y�
i

. (5.4)

(2) Consider a covering of Q by adapted fibered charts (xi, y�, zJ ). If the constraint
Q is Lagrangian then

Ca
Jj = 0, (5.5)

where the functions Ca
Jj are given by (3.35).

Proof. (1) Computing d�a where �a are given by (4.36) and taking the 1-contact part
we get

p1d�a = p1

(
d(ca

	j f
	) ∧ dxj + 1

n
d

(
ca
	j

�f 	

�y�
j

)
∧ �� − 1

n
ca
	j

�f 	

�y�
j

dy�
l ∧ dxl

)

=
(

�(ca
	j f

	)

�y�
− 1

n

d

dxj

(
ca
	i

�f 	

�y�
i

))
�� ∧ dxj

+
(

�(ca
	j f

	)

�y�
l

− 1

n
ca
	i

�f 	

�y�
i

�l
j

)
��

l ∧ dxj . (5.6)

This means that Q is Lagrangian on U iff

�
(
ca
	j f

	
)

�y�
l

− 1

n
ca
	i

�f 	

�y�
i

�l
j = 0. (5.7)

Formula (5.7) gives for j �= l the first of (5.4), and for j = l

�
(
ca
	j f

	
)

�y�
j

= 1

n

n∑
i=1

ca
	i

�f 	

�y�
i

, for every fixed j (no summation over j), (5.8)

which is the second relation of (5.4).
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(2) Expressing �a in fibered coordinates (xi, y�, zJ , f 	) adapted to the constraint,
we can see that if Q is Lagrangian then for all 1-forms �̄a annihilating the canonical
distribution C, p1d�̄a = 0. By (3.34) we obtain (5.4) as desired. �

Notice that indeed, (5.7) is the condition for �a
i (5.2) be a Lepagean n-form.

Remark 5.3. For dim X = 1 (ordinary differential equations/non-holonomic mechanics)
every non-holonomic constraint Q in J 1Y is Lagrangian. Indeed, in this case (in the
notation (t, q�, q̇�) for fibered coordinates on U ⊂ J 1Y )

�	 = f 	dt + �f 	

�q̇�
��, 1�	�k = codim Q, (5.9)

meaning that all �a are Lepagean 1-forms, i.e., �	 = f 	dt are local Lagrangians for
the constraint, and E�	 = p1d�	 are the corresponding Euler–Lagrange forms.

5.2. �-adapted constraints

Definition 5.4. A regular constraint Q ∈ J 1Y of corank (�, k) is called �-adapted if
� = kn, and Q can be locally defined by a system of kn first-order partial differential
equations in normal form,

f a
j ≡ ym−k+a

j − ga
j (xi, y�, ys

l ) = 0, 1�a�k < m, 1�j �n, (5.10)

where the functions ga
j above depend upon xi , 1� i�n, y�, 1���m, and ys

l , 1�s

�m − k, 1� l�n.

Note that:

• The submanifold Q ⊂ J 1Y has corank kn.
• The rank condition (3.2) is a consequence of (3.3). Indeed, (3.3) becomes

rank

(
�f a

j

�y�
i

)
= k, where (a, j, i) label rows and � label columns. (5.11)

However, by (5.10),

�f a
j

�ym−k+b
i

= �a
b�

i
j ,

�f a
j

�ys
i

= −�ga
j

�ys
i

, (5.12)
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hence the matrix in (3.2) takes the form

(
�f a

j

�y�
i

)
=
(

−�ga
j

�ys
i

�a
b�

i
j

)
, where (a, j) label rows

and (�, i) = (s, b, i) label columns, (5.13)

i.e., it is a (kn × mn)-matrix with the (kn × kn) unit submatrix. Consequently, its rank
is maximal and equal to kn = �, meaning that the rank condition (3.2) holds.

Summarizing, we have an equivalent definition of a �-adapted constraint as a sub-
manifold Q ⊂ J 1Y of corank kn, which can be locally expressed by Eqs. (5.10), and
satisfies the rank condition (5.11).

For a �-adapted constraint we have the extended local constraint distribution C̃U

annihilated by kn2 (non-independent) 1-forms

�ai
j =f a

j dxi + 1

n

�f a
j

�y�
i

�� =
(
ym−k+a
j − ga

j

)
dxi − 1

n

(
�ga

j

�ys
i

�s +�i
j�

m−k+a

)
, (5.14)

or, equivalently, by k independent 1-forms

�a = �ai
j �j

i = f a
i dxi + 1

n

�f a
i

�y�
i

��

=
(
ym−k+a
i − ga

i

)
dxi − 1

n

�ga
i

�ys
i

�s + �m−k+a. (5.15)

Rewriting the formulas for the canonical distribution, we obtain:

Proposition 5.5. The canonical distribution C of a �-adapted constraint Q is locally
annihilated by (k linearly independent) 1-forms

�a = −1

n

�ga
i

�ys
i

�s + �̄m−k+a. (5.16)

Equivalently, C is locally spanned by the following n + m − k + n(m − k) independent
vector fields:

�c

�xj
= �

�xj
+
(

ga
j − 1

n

�ga
i

�ys
i

ys
j

)
�

�ym−k+a
,

�c

�ys
= �

�ys
+ 1

n

�ga
i

�ys
i

�
�ym−k+a

,
�

�ys
j

. (5.17)
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Next, in keeping with notations introduced in Section 3 we obtain:

gs
j ≡ ys

j ◦ � = ys
j , gm−k+a

j ≡ ym−k+a
j ◦ � = ga

j = Fa
j + Ga

s y
s
j ,

�̄m−k+a = dym−k+a − ga
j dxj , Ga

s = 1

n

�ga
i

�ys
i

, F a
j = ga

j − 1

n

�ga
i

�ys
i

ys
j , (5.18)

and since the functions Fa
j and Ga

s do not depend upon the ym−k+b, we can use the

same notation for F̄ and F, resp. for Ḡ and G. Adapted coordinates on Q simply be-
come (xi, y�, ys

j ), and a corresponding adapted basis of 1-forms is (dxi, dys, �a, dys
j ).

Finally, the cut C-modified Euler–Lagrange operator simplifies to:


′
s = �c

�ys
− d ′

c

dxi

(
�

�ys
i

)
. (5.19)

Theorem 5.6. Every �-adapted constraint is Lagrangian. Equivalently, it can be de-
fined by a system of kn separable equations, i.e., (5.10) where

�ga
j

�ys
i

= 0, i �= j, (5.20)

and such that

�ga
1

�ys
1

= �ga
2

�ys
2

= · · · = �ga
n

�ys
n

= ha
s (x

i, y�). (5.21)

Proof. With help of (5.12), the rank condition (5.11) implies (5.20) and (5.21). How-
ever, these conditions are equivalent with

Cap
sj ≡ 1

n

�ga
i

�ys
i

�p
j − �ga

j

�ys
p

= 0, (5.22)

meaning that the constraint is Lagrangian. For detail arguments and computations we
refer to [28]. �

�-adapted constraints and corresponding Lagrangian and Hamiltonian constrained
systems are studied in [28].
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5.3. Constraints defined by a (co)distribution on Y

We shall show that every weakly horizontal distribution (or, equivalently, a codistri-
bution) of a constant rank on Y gives rise to a non-holonomic constraint structure in
J 1Y .

Let 1�k < m. Consider a weakly horizontal distribution D on Y of corank k (hence
of rank m + n − k). Recall [21] that this means that D has a vertical subdistribution of
rank m − k (sections of � are among admissible integral mappings). Equivalently, if D
is locally annihilated by a system of k linearly independent 1-forms �a , 1�a�k, the
weak-horizontality condition means that the related distribution on J 1Y , annihilated by
the contact forms p�a , 1�a�k, has the same corank k. In fibered coordinates, where

�a = Aa
i dxi + Ba

�dy�, (5.23)

we have

p�a = Ba
���, (5.24)

and the weak-horizontality condition reads

rank(Ba
�) = max = k. (5.25)

The distribution D gives rise to distribution on J 1Y , annihilated by the pull-backs of
(5.23), i.e., by the 1-forms

�∗
1,0�

a = h�a + p�a = (Aa
i − Ba

�y�
i ) dxi + Ba

���. (5.26)

Putting

f a
i = Aa

i − Ba
�y�

i , (5.27)

and realizing that

�f a
j

�y�
i

= Ba
��i

j ,
�f a

i

�y�
i

= nBa
�, (5.28)

we can see that Q ⊂ J 1Y defined by the equations

f a
i ≡ Aa

i + Ba
�y�

i = 0, 1�a�k, 1�j �n, (5.29)
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(which are affine in the first derivatives) or, equivalently,

h�a = 0, 1�a�k, (5.30)

is a �-adapted constraint of codimension kn in J 1Y . The extended constraint distribution
of Q is defined on J 1Y , and is annihilated by the 1-forms

�a = f a
i dxi + 1

n

�f a
i

�y�
i

�� = (Aa
i − Ba

�y�
i ) dxi + Ba

��� = �∗
1,0�

a. (5.31)

Hence the canonical distribution of Q becomes

C = annih
{
�a = �∗�a = �∗�∗

1,0�
a = �∗p�a, 1�a�k

}
. (5.32)

Summarizing, we have obtained:

Proposition 5.7. A weakly horizontal distribution D = annih{�a, 1�a�k} on Y defines
a constraint structure (Q, C) in J 1Y by � : Q → J 1Y : h�a = 0, 1�a�k, and
C = annih{�∗p�a, 1�a�k}. This constraint is �-adapted (hence Lagrangian), and
projectable.

From (5.32) we immediately get

Proposition 5.8. Let (Q, C) be a constraint structure in J 1Y defined by a weakly
horizontal distribution D on Y (alternatively, a codistribution D0) of a constant rank.
If D is completely integrable then the canonical distribution C is completely integrable.

Proof. One only has to take into account that a completely integrable distribution is
locally annihilated by exact forms, and that the exterior derivative and the pull-back
commute. �

Note that if D is completely integrable then D = annih{dua, 1�a�k}. This means
that Q is given by equations

f a
j ≡ dua

dxj
= 0, (5.33)

it holds

Ba
� = �ua

�y�
, i.e., rank

(
�ua

�y�

)
= k, (5.34)

and the canonical distribution C is annihilated by 1-forms �a = �∗dũa = d�∗ũa , where
ũa denotes the lift of ua to J 1Y , ũa = ua ◦ �1,0.
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5.4. Semi-holonomic constraints

Definition 5.9. Let Q be a regular constraint in J 1Y . We shall call Q semi-holonomic
if the canonical distribution C of Q is completely integrable.

Proposition 5.10. A constraint in J 1Y defined by a completely integrable distribution
D on Y is semi-holonomic.

Proposition 5.11. Any semi-holonomic constraint Q comes from a distribution D on Y.
Consequently, every semi-holonomic constraint is �-adapted, and can be locally given
by separable equations, affine in the first derivatives.

Proof. By assumption, the canonical distribution C is completely integrable. Hence,
locally there exist k linearly independent exact 1-forms dua on Q, 1�a�k, annihilating
C, i.e., such that dua = ca

b�b for some functions ca
b , 1�a, b�k. Since by (3.33)

�a = −Fa
j dxj − Ga

s dys + dym−k+a (5.35)

and

dua = ca
b�b = −ca

bF b
j dxj − Gb

s dys + ca
bdym−k+b

= �ua

�xi
dxi + �ua

�ys
dys + �ua

�ym−k+b
dym−k+b + �ua

�zJ
dzJ , (5.36)

we get �ua/�zJ = 0. Since ua are functions on Q, i.e., in adapted coordinates
�ua/�f 	 = 0, we conclude that

�ua

�y�
j

= 0, (5.37)

meaning that the ua are functions on an open subset of Y. Consequently, Q comes from
the distribution D = annih{dua} which is defined on Y, and f a

j ≡ dua/dxj = 0 are
equations of Q which are affine in the y�

i ’s and separable. �

More precisely, we have the following equivalent characterizations of semi-holonomic
constraints:

Theorem 5.12. Let Q be a �-adapted constraint in J 1Y . The following conditions are
equivalent:

(1) Q is semi-holonomic.
(2) The constraint ideal I is closed.
(3) For every a, d�a ≈ 0.
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(4) Q can be locally given by separable equations in normal form

f a
j ≡ ym−k+a

j −ga
j (xi, y�, ys

j )=0, 1�a�k<m, 1�j�n, (5.38)

such that the functions ga
j satisfy the relations

�2
ga

i

�ys
p�yr

l

= 0, 
s(g
a
j ) = �cg

a
j

�ys
− dc

dxi

�ga
j

�ys
i

= 0,

�ga
1

�ys
1

= �ga
2

�ys
2

= · · · = �ga
n

�ys
n

,
dcg

a
i

dxj
= dcg

a
j

dxi
. (5.39)

Proof. Equivalence of (1) and (2) is obvious, since C is a generating distribution for
the ideal I. Equivalence of (2) and (3) comes from the definition of the relation ≈.
It remains to show equivalence of (3) and (4). From (3.34)) we can see that the
condition d�a ≈ 0 means that the second and the last condition of (5.39) hold with
the corresponding cut operators 
′

s and d ′
c/dxl , and the functions ga

i satisfy

�2
ga

i

�ys
p�yr

i

= 0. (5.40)

Since Q is a Lagrangian constraint by Theorem 5.6, the third of the relations in (5.39)
holds, and we conclude that the ga

i are affine in the first derivatives. Consequently, we
can write 
s and dc/dxj instead of the cut operators, and we obtain (5.39) as desired.
Conversely, computing d�a we can see that (5.38) and (5.39) guarantee that d�a ≈ 0.

�

5.5. Holonomic constraints

By a holonomic constraint in Y one means a fibered submanifold Q0 → X of the
fibered manifold � : Y → X. Hence, a holonomic constraint Q0 of codimension k,
where 1�k < m, can be locally given by a system of algebraic equations

ua(xi, y�) = 0, 1�a�k, (5.41)

where

rank

(
�ua

�y�

)
= k. (5.42)
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The first jet prolongation J 1Q0 of a holonomic constraint is a submanifold of J 1Y

locally given by equations

ua = 0,
dua

dxj
= 0, (5.43)

and it is fibered both over X and Y. Now, Q ⊂ J 1Y with equations

f a
j ≡ dua

dxj
= 0 (5.44)

is a �-adapted constraint such that J 1Q0 ⊂ Q. This means that holonomic constraints
can be considered as a special case of non-holonomic constraints not only formally but
also from the geometrical point of view. It is important to notice the following key
property of holonomic constraints, which explains the essence of differences between
holonomic and (nontrivially) non-holonomic constraint structures:

Theorem 5.13. Let Q0 be a holonomic constraint in Y, Q ⊂ J 1Y the related �-
adapted constraint. Then the canonical distribution C of Q is at each point x ∈ J 1Q0
equal to TxJ

1Q0. Consequently, C(J 1Q0) is projectable, and projects onto the tangent
distribution T Q0 of Q0.

Proof. By definition, C = annih{�∗dua} = annih{d�∗ua}. Hence, along J 1Q0, where
moreover ua = 0, we get C = annih{0} = T J 1Q0. �

We can see that in the holonomic case the (restricted) canonical distribution is
simply the tangent distribution, i.e., it means no restrictions on the tangent space of
the constraint manifold (this is nothing but a geometric understanding of the classical
D’Alembert’s principle known from classical mechanics).

Now, it is easy to realize that holonomic constrained equations are simply restrictions
to the constraint manifold (arise by pull-back from the unconstrained ones). Precisely,
we have the following:

Corollary 5.14. Let �0 : Q0 → Y be a holonomic constraint, E a J 1Y -pertinent
dynamical form on J 2Y , [	] its first-order Lepage class. Then the constrained system
on J 1Q0 takes the form

[[J 1�∗0 	]] = [J 1�∗0 	] = J 1�∗0 	 mod {at least 2-contact forms on J 1Q0}. (5.45)

This means that the constrained equations are equations for paths of the J 1Q0-pertinent
dynamical form

EC = J 2�∗0 E, (5.46)

defined on J 2Q0.
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If, in particular, E is variational, and � is a local Lagrangian for E defined on J 1Y ,
then

J 1�∗0 �� = �J 1�∗0�, (5.47)

and EC is the Euler–Lagrange form of the Lagrangian

�C = J 1�∗0 �, (5.48)

defined on an open subset of J 1Q0.
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