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Abstract

We study a class of mixed type difference equations that enjoy a special smoothening property, in the
sense that solutions automatically satisfy an associated functional differential equation of mixed type. Using
this connection, a finite dimensional center manifold is constructed that captures all solutions that remain
sufficiently close to an equilibrium. The results enable a rigorous analysis of a recently developed model in
economic theory, that exhibits periodic oscillations in the interest rates of a simple economy of overlapping
generations.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The purpose of this paper is to develop a center manifold framework that will enable us to
analyze the behaviour of near-equilibrium solutions to a class of nonlinear difference equations
of mixed type,

F(xξ ) = 0, (1.1)
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that enjoy a special smoothening property. In particular, we require that any solution to (1.1) au-
tomatically satisfies an associated functional differential equation of mixed type (MFDE), which
we will denote by

ẋ(ξ) = G(xξ ). (1.2)

In the above x is a continuous Cn-valued function and for any ξ ∈ R the state xξ ∈
C([rmin, rmax],Cn) is defined by xξ (θ) = x(ξ + θ). We allow rmin � 0 and rmax � 0, thus the
nonlinearities F and G may depend on advanced and retarded arguments simultaneously.

Our main equation (1.1) should be seen as an infinite dimensional version of a differential-
algebraic equation (DAE), i.e., an equation of the form f (y(ξ), ẏ(ξ), ξ) = 0 that yields an ODE
after a finite number of differentiations. Such equations have been studied extensively during
the last two decades [1,4,5], primarily because they have arisen in many scientific disciplines,
including chemical engineering [2,16], mechanics [12,22,23], fluid dynamics [30] and electrical
circuit theory [3,24,26,27]. We specially emphasize the applications in the latter area, since the
incorporation of time delays into the governing model equations turns out to be an important step
towards understanding the dynamical behaviour of many circuits [20]. Inclusion of such delayed
arguments in a DAE may lead to equations of the form (1.1).

However, at present our primary motivation for the study of (1.1) comes from the area of
economic research, where recent developments have led to models involving such equations. In
particular, we mention the work of d’Albis and Augeraud-Véron [6–8], who have developed sev-
eral models describing the dynamical features of an economy featuring only a single commodity,
that exhibit oscillations which earlier models could only produce by including multiple com-
modities. This is accomplished by modelling the population as a continuum of individuals that
each live for a finite time and act in such a way that their personal welfare is maximized. Such an
approach leads to equations of the form (1.1) and (1.2) in a natural fashion. In particular, in [7]
the long term behaviour of the capital market is described in terms of (1.1), for an economy in
which every participant works during their entire lifetime. The associated MFDE was discussed
further in [14] and analyzed numerically in [13].

In this paper we turn our attention to a similar model, which was developed recently and
incorporates the effects of retirement on the economy [6]. The chief goal is to study the dynamical
behaviour of the interest rate and to rigorously establish the existence of periodic cycles for this
rate. This will be accomplished by constructing a smooth local invariant manifold for (1.1) that
captures all solutions that remain sufficiently close to an equilibrium and subsequently invoking
the Hopf bifurcation theorem. We remark here that from an economic point of view, periodic
cycles are in general considered to be very interesting, since they can be readily observed in
actual markets. Traditionally, the Hopf theorem has been widely used to establish the existence
of such cycles for economic models involving ODEs. The results developed here allow for the
statement of such a theorem in the infinite dimensional setting of (1.1), merely in terms of an
explicit finite dimensional characteristic function associated to this equation.

We recall that recently a center manifold was constructed for the MFDE (1.2) [14], based upon
earlier work by Mallet-Paret [21], Diekmann et al. [9] and Vanderbauwhede and van Gils [28].
Writing x for any equilibrium G(x) = 0, this construction allows us to relate the dynamics of
any sufficiently small solution to the equation

u̇(ξ) = DG(x)uξ + (
G(x + uξ ) − DG(x)uξ

)
, (1.3)
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to orbits of a differential equation on a finite dimensional space NG . This space NG contains all
the solutions of the linearized equation u̇(ξ) = DG(x)uξ that can be bounded by a polynomial.
However, if one attempts to analyze the difference equation (1.1) by using the center manifold
construction on the associated MFDE, difficulties arise due to the fact that it is unclear how
to lift solutions of (1.2) back to solutions of (1.1). In addition, the structure of the space NG

will in general differ from NF , the space of polynomially bounded solutions to 0 = DF(x)uξ .
This implies that extra dynamical behaviour may be observed on the center manifold of (1.2)
that is not observed in (1.1). For example, in Section 3 the parameter dependent characteristic
equation associated to the MFDE (1.2) admits a double root at z = 0, which is absent when
studying (1.1) directly. The presence of this ubiquitous double root is troublesome as it adds
a resonance to eigenvalues that cross through the imaginary axis as the parameters are varied.
The analysis of (1.2) would hence involve studying complicated zero-Hopf bifurcations [10,11,
17–19], a situation one would prefer to avoid.

These issues can be resolved by constructing a center manifold directly for (1.1). We will show
that the extra smoothness properties provided by (1.2) enable this reduction to be performed and
in addition allow us to describe the dynamics on this center manifold by a differential equation,
which of course will be related to the nonlinearity G in (1.2). This procedure is performed sys-
tematically in Section 5 and further, mainly in the spirit of [14]. Our main results are formulated
in Section 2 and in Section 3 we apply these results to the economic model discussed above.

2. Main results

Consider the following difference equation of mixed type,

0 = Lxξ + R(xξ ), ξ ∈ R, (2.1)

in which x is a continuous mapping from R into Cn for some integer n � 1, the operators L and R

are a linear respectively nonlinear map from the state space X = C([−1,1],Cn) into Cn and the
state xξ ∈ X is defined by xξ (θ) = x(ξ + θ) for any −1 � θ � 1. Notice that in terms of the
terminology of (1.1), this means that we have fixed rmin = −1 and rmax = 1. As a consequence
of the Riesz representation theorem, there exists a unique Cn×n-valued normalized function of
bounded variation μ ∈ NBV([−1,1],Cn×n), such that for all φ ∈ X we have the identity

Lφ =
1∫

−1

dμ(σ)φ(σ ). (2.2)

We recall here that the normalization of μ implies that μ is right-continuous on (−1,1) and
satisfies μ(−1) = 0. Throughout this section, the reader may wish to keep in mind the following
typical example equation,

x(ξ) =
1∫

−1

x(ξ + σ)dσ +
( 1∫

−1

x(ξ + σ)dσ

)2

. (2.3)

As in [14], we will be particularly interested in the following families of Banach spaces during
our analysis of (2.1),
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BCη

(
R,Cn

) =
{
x ∈ C

(
R,Cn

) ∣∣∣ ‖x‖η := sup
ξ∈R

e−η|ξ |∣∣x(ξ)
∣∣ < ∞

}
,

BC1
η

(
R,Cn

) = {
x ∈ BCη

(
R,Cn

) ∩ C1(R,Cn
) ∣∣ ẋ ∈ BCη

(
R,Cn

)}
, (2.4)

parametrized by η ∈ R, with the standard norm ‖x‖BC1
η

= ‖x‖η + ‖ẋ‖η. Notice that for any
pair η2 � η1, there exist continuous inclusions Jη2η1 : BCη1(R,Cn) ↪→ BCη2(R,Cn) and
J 1

η2η1
: BC1

η1
(R,Cn) ↪→ BC1

η2
(R,Cn).

In order to construct a center manifold for (2.1), it is essential to consider the homogeneous
linear equation

0 = Lxξ . (2.5)

Associated to this system (2.5) one has the characteristic matrix Δ : C → Cn×n, given by

Δ(z) = −
1∫

−1

dμ(σ) ezσ . (2.6)

The minus sign is included here to ensure notational consistency with the characteristic matrix
for MFDEs. A value of z such that detΔ(z) = 0 is called an eigenvalue for the system (2.5). In
order to state our main results, we need to impose the following condition on the operator L and
the corresponding characteristic matrix Δ.

(HL) There exist a linear operator M : X → Cn, an integer 	 > 0 and constants αM,βM ∈ C

with βM �= 0 such that

Δ(z) = β−1
M (z − αM)−	ΔM(z), (2.7)

where ΔM(z) is the characteristic matrix corresponding to the homogeneous linear func-
tional differential equation of mixed type ẋ(ξ) = Mxξ .

This condition is related to the fact that we need any solution of the difference equation (2.1)
to additionally satisfy a differential equation of mixed type. The operator M should be seen as
the linear part of this latter MFDE. For the example equation (2.3) one may conclude that (HL)
holds with αM = 0, βM = 1 and 	 = 1, by computing

Δ(z) = 1 − 1

z

(
ez − e−z

) = 1

z

(
z − ez + e−z

) = ΔM(z)/z, (2.8)

in which Mφ = φ(1)−φ(−1). It is easy to see that this choice for M indeed yields ẋ(ξ) = Mxξ

whenever Lxξ = 0.
Alternatively, the condition (HL) can be verified directly in terms of the measure dμ asso-

ciated to L via (2.2). In particular, we will show in Section 4 that (HL) is equivalent to the
following condition, which roughly states that the first non-smooth derivative of μ may only
have a jump at zero.
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(HL′) There exists an integer 	 > 0 such that μ ∈ W
	−1,1
loc ([−1,1],Cn×n). In addition,

there exist a constant κ �= 0 and a normalized function of bounded variation ζ ∈
NBV([−1,1],Cn×n), such that

D	−1μ(σ) = κIH(σ) +
σ∫

−1

ζ(τ ) dτ, −1 � σ � 1, (2.9)

in which H denotes the Heaviside function. Finally, for all 1 � s � 	 − 1, we have the
identity Dsμ(±1) = 0.

Note that when 	 � 2 in (HL′), it follows directly from (2.9) that μ ∈ C	−2([−1,1],Cn×n),
which ensures that the last condition involving Dsμ(±1) is well defined.

The following proposition, which will be proved in Section 5, exhibits the finite dimensional
space X0 on which the center manifold will be defined.

Proposition 2.1. For any homogeneous linear equation (2.5) that satisfies the condition (HL),
there exists a finite dimensional linear subspace X0 ⊂ X with the following properties.

(i) Suppose x ∈ ⋂
η>0 BCη(R,Cn) is a solution of (2.5). Then for any ξ ∈ R we have xξ ∈ X0.

(ii) For any φ ∈ X0, we have Dφ ∈ X0.
(iii) For any φ ∈ X0, there is a solution x ∈ ⋂

η>0 BC1
η(R,Cn) of (2.5) that has x0 = φ. This

solution is unique in the set
⋃

η>0 BCη(R,Cn) and will be denoted by Eφ.

We write Q0 for the projection operator from X onto X0, which will be defined precisely
in the sequel. Before stating our main result, we introduce two conditions on the nonlinearity
R : X → Cn, which again are related to the MFDE that any solution of (2.1) satisfies.

(HR1) For any x ∈ C(R,Cn), the function f : ξ �→ R(xξ ) satisfies f ∈ C	(R,Cn), where 	 is as
introduced in (HL). In addition, there exist operators R(s) : X → Cn for 0 � s � 	, with
R(0) = R, such that

Dsf (ξ) = R(s)(xξ ), for 0 � s � 	. (2.10)

(HR2) The functions R(s) are Ck-smooth for some integer k � 1 and all 0 � s � 	. In addition,
we have R(s)(0) = DR(s)(0) = 0 for all 0 � s � 	.

Theorem 2.2. Consider the nonlinear equation (2.1) and assume that (HL), (HR1) and (HR2)
are satisfied. Then there exists γ > 0 such that the characteristic equation detΔM(z) = 0 has no
roots with 0 < |Re z| < γ . Fix an interval I = [ηmin, ηmax] ⊂ (0, γ ) such that ηmax > kηmin, with
k as introduced in (HR2). Then there exists a mapping u∗ : X0 → ⋂

η>0 BC1
η(R,Cn), together

with constants ε > 0 and ε∗ > 0, such that the following statements hold.

(i) For any η ∈ (kηmin, ηmax], the function u∗ viewed as a map from X0 into BC1
η(R,Cn) is

Ck-smooth.
(ii) Suppose for some ζ > 0 that x ∈ BC1

ζ (R,Cn) is a solution of (2.1) with supξ∈R |x(ξ)| < ε∗.
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Then we have x = u∗(Q0x0). In addition, the function Φ : R → X0 defined by Φ(ξ) =
Q0xξ ∈ X0 is of class Ck+1 and satisfies the ordinary differential equation

Φ̇(ξ) = AΦ(ξ) + f
(
Φ(ξ)

)
, (2.11)

in which A : X0 → X0 is the linear operator φ �→ Dφ for φ ∈ X0. The function
f : X0 → X0 is Ck-smooth with f (0) = 0 and Df (0) = 0 and is explicitly given by

f (ψ) = Q0χψ, (2.12)

in which the state χψ ∈ X is given by

χψ(σ) = M
(
u∗(ψ)

)
σ

− M(Eψ)σ + βM(D − αM)	R
((

u∗(ψ)
)
σ

)
, (2.13)

for σ ∈ [−1,1]. Here the expression DsR(·) should be interpreted as R(s)(·) for 0 � s � 	;
see also the remark at the end of this section. Finally, we have xξ = (u∗(Φ(ξ)))0 for all
ξ ∈ R.

(iii) For any φ ∈ X0 such that supξ∈R |u∗(φ)(ξ)| < ε∗, the function u∗(φ) satisfies (2.1).
(iv) For any continuous function Φ : R → X0 that satisfies (2.11) with ‖Φ(ξ)‖ < ε for all ξ ∈ R,

we have that x = u∗(Φ(0)) is a solution of (2.1). In addition, we have xξ = (u∗(Φ(ξ)))0
for any ξ ∈ R.

We conclude this section by noting that (2.13) indeed makes sense, since both u∗(ψ) and
Eψ are continuous functions on the line, which ensures that the states (u∗(ψ))σ and (Eψ)σ
belong to X and depend continuously on σ ∈ [−1,1]. This allows the operators M and R(s) to
be applied, yielding a continuous Cn-valued function χψ on [−1,1], as required.

3. Monetary cycles with endogenous retirement

In this section we illustrate the application range of our results by discussing the overlapping
generations economic model developed in [6]. The authors consider a fixed size population of
individuals that live for a time ω > 1. The amount of assets that an individual born at time s

owns at time t is given by a(s, t), while his income at this time is given by the quantity e(s, t).
This quantity satisfies e(s, t) = 1 for t ∈ [s, s + 1] and e(s, t) = 0 otherwise, i.e., every labourer
retires at unit age. Everybody receives interest at the rate r(t) on their assets while consuming
c(s, t), which yields the budget constraint

∂a(s, t)

∂t
= r(t)a(s, t) + e(s, t) − c(s, t). (3.1)

The utility u(s) as perceived by the generation born at time s is given by

u(s) =
s+ω∫
s

c(s, t)1−σ−1

1 − σ−1
dt (3.2)

and everybody acts in such a way that this utility is maximized, subject to both (3.1) and the
natural budget constraints a(s, s) = 0 and a(s, s +ω) � 0. In (3.2) the parameter σ stands for the
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elasticity of intertemporal substitution and is required to satisfy σ > 0. The economy features a
single, nonstorable consumption good, which we will assume to be produced at exactly the rate
required by the consumer market. In terms of our model variables, this means that for all time t

the following identity must hold,

t∫
t−ω

e(σ, t) dσ =
t∫

t−ω

c(σ, t) dσ. (3.3)

The rules above are sufficient to fix the dynamical behaviour of the economy and following [6],
one easily derives the difference equation F(rt ) = 0 for the interest rate r(t) with F given by

F(rt ) = 1 −
t∫

t−ω

∫ s+1
s

exp[− ∫ v

t
r(u) du]dv∫ s+ω

s
exp[−(1 − σ)

∫ v

t
r(u) du]dv

ds. (3.4)

Notice that r = 0 is an equilibrium solution of (3.4). The linearization around this equilibrium
is given by

0 = − 1

ω

t∫
t−ω

s+1∫
s

v∫
t

x(u) dudv ds + 1 − σ

ω2

t∫
t−ω

s+ω∫
s

v∫
t

x(u) dudv ds. (3.5)

Inserting x(u) = exp(zu) yields the characteristic function

Δ(z,σ,ω) = − 1

ω2z3

[−ωez + (1 − σ)ezω + (
ωez − ω + 1 − σ

)
e−zω

+ (ω − 2 + 2σ) + σω2z2]. (3.6)

The following result, which was partially proven in [6], shows that the characteristic equation
Δ(z) = 0 admits simple roots on the imaginary axis that satisfy the conditions associated with
the Hopf bifurcation theorem. The proof is deferred to the end of this section.

Proposition 3.1. Consider any ω > 1 such that (ω − 1)−1 /∈ N. There exists an infinite sequence
of pairs (σk, qk) parametrized by k ∈ N, with σk > 0 and qk > 0, such that the following proper-
ties are satisfied.

(i) One has the limits σk → 0 and qk → ∞ as k → ∞.
(ii) The characteristic equation Δ(z,σk,ω) = 0 has two simple roots at z = ±iqk .

(iii) For all k ∈ N and m ∈ Z \ {±1}, the inequality Δ(imqk,σk,ω) �= 0 holds.
(iv) For every k ∈ N, the branch of roots z(σ ) of the characteristic equation Δ(z,σ,ω) = 0

through z = iqk at σ = σk crosses the imaginary axis with positive speed, i.e.,

Re
D2Δ(iqk, σk,ω)

D1Δ(iqk, σk,ω)
�= 0. (3.7)
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Conversely, if ω = 1 + n−1 for some n ∈ N, then for all σ > 0 the characteristic equation
Δ(z,σ,ω) = 0 admits no roots with Re z = 0.

Fixing any suitable ω > 1 and treating σ as a bifurcation parameter, the result above will allow
us to conclude that the algebraic equation (3.4) admits a branch of periodic solutions bifurcating
from the equilibrium r = 0 at σ = σk , for all k ∈ N. Similarly, any sufficiently small solution of
(3.4) with σ near σk can be captured on such a branch. To validate this claim using our main
theorem in Section 2, we note that twofold differentiation of (3.4) and simplification using the
identity (3.4), yields the following mixed type functional differential equation,

ṙ(t) = G(rt ),

with

−σG(rt ) = −σ 2r(t)2 +
[ t+ω∫

t

eσ (v) dv

]−1[
e(t + 1) − 1

]

−
[ t+ω∫

t

eσ (v) dv

]−2[
eσ (t + ω) − 1

] t+1∫
t

e(v) dv

+
[ t∫

t−ω

eσ (v) dv

]−2[
1 − eσ (t − ω)

] t−ω+1∫
t−ω

e(v) dv

−
[ t∫

t−ω

eσ (v) dv

]−1[
e(t − ω + 1) − e(t − ω)

]
, (3.8)

in which we have made the abbreviations

e(w) = exp

(
−

w∫
t

r(u) du

)
,

eσ (w) = exp

(
−(1 − σ)

w∫
t

r(u) du

)
. (3.9)

Linearizing (3.8) around r = 0 yields

−σ ẋ(t) = − 1

ω

t+1∫
t

x(u) du + 1

ω

t−ω+1∫
t−ω

x(u)du + 1 − σ

ω2

t+ω∫
t

x(u) du + 1 − σ

ω2

t−ω∫
t

x(u) du.

(3.10)

Inserting x(u) = exp(zu) and normalizing, we find the characteristic function
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ΔM(z,σ,ω) = 1

σω2z

[
σω2z2 − ω

(
ez − 1

) + ω
(
ez − 1

)
e−ωz + (1 − σ)

(
eωz + e−ωz − 2

)]
= −z2

σ
Δ(z,σ,ω), (3.11)

which immediately implies that (HL) is satisfied. Using the expressions above, all the other con-
ditions of Theorem 2.2 can easily be verified as well. Hence upon fixing an appropriate ω > 1
and considering any pair (σ0, q0) generated by Proposition 3.1, we can establish the existence of
a (2 + 1)-dimensional center manifold u∗ : X0 × R → ⋂

η>0 BC1
η(R,Cn) directly for the differ-

ence equation (3.4). Here X0 = span(eiq0·, e−iq0·) and the extra dimension arises by including
the bifurcation parameter σ̃ = σ − σ0 in the center space. The dynamical behaviour of σ̃ on the
center manifold is trivial, while the evolution of ψ(ξ) = x(ξ)eiq0· +y(ξ)e−iq0· ⊂ X0 is governed
by the ODE

ẋ = iq0x + f1(x, y, σ̃ ) + O
((|x| + |y|)3 + |σ̃ |(|x| + |y|)(|σ̃ | + |x| + |y|)),

ẏ = −iq0y + f2(x, y, σ̃ ) + O
((|x| + |y|)3 + |σ̃ |(|x| + |y|)(|σ̃ | + |x| + |y|)), (3.12)

in which the second order terms are given by

f1(x, y, σ̃ ) = −D2Δ(iq0, σ0)D1Δ(iq0, σ0)
−1σ̃ x

+ 1

2
D1Δ(iq0, σ0)

−1(αxxx
2 + 2αxyxy + αyyy

2)
+ 1

2iq0
D1Δ(iq0, σ0)

−1
(

Δ(2iq0, σ0)

(
βxx − 4

q2
0

σ0
αxx

)
x2

− 2Δ(0, σ0)βxyxy − 1

3
Δ(−2iq0, σ0)

(
βyy − 4

q2
0

σ0
αyy

)
y2

)
,

f2(x, y, σ̃ ) = −D2Δ(−iq0, σ0)D1Δ(−iq0, σ0)
−1σ̃ y

+ 1

2
D1Δ(−iq0, σ0)

−1(αxxx
2 + 2αxyxy + αyyy

2)
+ 1

2iq0
D1Δ(−iq0, σ0)

−1
(

1

3
Δ(2iq0, σ0)

(
βxx − 4

q2
0

σ0
αxx

)
x2

+ 2Δ(0, σ0)βxyxy − Δ(−2iq0, σ0)

(
βyy − 4

q2
0

σ0
αyy

)
y2

)
(3.13)

and the quantities αxx through βyy can be calculated by using

αxx = D2
1F(0, σ0)

(
eiq0·, eiq0·), βxx = D2

1G(0, σ0)
(
eiq0·, eiq0·),

αxy = D2
1F(0, σ0)

(
eiq0·, e−iq0·), βxy = D2

1G(0, σ0)
(
eiq0·, e−iq0·),

αyy = D2
1F(0, σ0)

(
e−iq0·, e−iq0·), βyy = D2

1G(0, σ0)
(
e−iq0·, e−iq0·). (3.14)
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Using the transversality condition (iv) from Proposition 3.1, it is easily seen that the ODE
(3.12) undergoes a Hopf bifurcation at σ = σ0. This yields a branch of periodic orbits that can be
lifted back to periodic solutions of our initial problem (3.4), which establishes our claim above.

Notice that ΔM(z) = 0 has a double root at z = 0 for all valid parameters ω and σ , which
arises as an artifact of the differentiation operations needed to derive (3.8). This double root
prevents the application of the Hopf bifurcation result developed in [14] to the MFDE (3.8). To
give a detailed analysis of the local behaviour of this equation, one would hence have to revert to
a complicated normal form reduction. Theorem 2.2 has allowed us to circumvent this difficulty
by analyzing (3.4) directly.

We conclude this section by referring the reader to [13], where the branches of periodic solu-
tions to (3.4) constructed above are actually uncovered numerically.

Proof of Proposition 3.1. For convenience, we write Δ̃(z, σ,ω) = −ω2z3Δ(z,σ,ω). First note
that Δ̃(z, σ,ω) = 1

2ω2(ω − 1)z3 + O(z4) around z = 0, which implies that z = 0 is not a root of
Δ(z,σ0,ω) for ω > 1. For any q ∈ R, we write I (q) = Im Δ̃(iq, σ,ω) and compute

I (q) = ω
(
sinωq + sin(1 − ω)q − sinq

) = 4ω sin
ωq

2
sin

(1 − ω)q

2
sin

q

2
. (3.15)

Similarly, writing R(q) = Re Δ̃(iq, σ,ω), we compute

R(q) = −ω cosq + 2(1 − σ)(cosωq − 1) + ω(1 − cosωq) + ω cos(1 − ω)q − σω2q2

= 2ω

(
sin2 q

2
+ sin2 ωq

2
− sin2 (1 − ω)q

2

)
− 4 sin2 ωq

2
+ σ

(
4 sin2 ωq

2
− ω2q2

)
.

(3.16)

Notice that for any l ∈ N and q(l) = 2lπ
ω−1 , we have sin (1−ω)q(l)

2 = 0, while sin2 q(l)

2 = sin2 ωq(l)

2 .
This implies that

R
(
q(l)

) = 4(ω − 1) sin2 q(l)

2
+ σ

(
4 sin2 q(l)

2
− (

ωq(l)
)2

)
. (3.17)

Now assume that (ω−1)−1 /∈ N, which implies that π
1−ω

�≡ 0 mod π . There hence exists a strictly

increasing sequence of integers lk > 0, parametrized by k ∈ N, such that sk = sin2 q(lk )

2 > 1
4 .

Choose qk = q(lk) and write

σk = ω − 1

ω2 q2
k

4sk
− 1

> 0, (3.18)

where the last inequality follows from ω > 1 and the fact that | sin θ | < |θ | for θ �= 0. By
construction, we have Δ(iqk, σk,ω) = 0. Suppose that for any m ∈ Z \ {0,±1} we have
Δ(imqk,σk,ω) = 0, then using mqk = q(mlk) and setting R(q(mlk)) = 0, we find that
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sin2 q(mlk )

2 = skm
2 > 1

4m2 > 1, which is impossible. To prove the claim (iv) involving the deriva-
tives of Δ, note that

DsΔ(iqk, σk,ω) = i

ω2q3
k

DsΔ̃(iqk, σk,ω) (3.19)

for s = 1,2. In addition,

D2Δ̃(iqk, σk,ω) = 2(1 − cosωqk) − ω2q2
k = 4sk − ω2q2

k < 0. (3.20)

It hence suffices to compute

ReD1Δ̃(iqk, σk,ω) = −ω cosqk + ω(1 − ω) cos(1 − ω)qk + ω2 cosωqk

= 2ω(1 − ω)sk �= 0. (3.21)

We conclude the proof by assuming that ω = 1 + n−1 for some n ∈ N. Substituting q = 2lπ into
R(q) = 0 forces σ < 0, while the choice q = 2lπ

ω
implies σ = 0. �

4. Preliminaries

We recall here the definitions of the Fourier transform F+(f )(k) = f̂ (k) of a function
f ∈ L2(R,Cn) and the inverse Fourier transform F−(g)(ξ) = ǧ(ξ) for any g ∈ L2(R,Cn),
given by

f̂ (k) =
∞∫

−∞
e−ikξ f (ξ) dξ, ǧ(ξ) = 1

2π

∞∫
−∞

eikξ g(k) dk. (4.1)

We remark here that the integrals above are well defined only if f,g ∈ L1(R,Cn). If this is not
the case, the integrals have to be understood as integrals in the Fourier sense, i.e., the functions

hn(k) =
n∫

−n

e−ikξ f (ξ) dξ (4.2)

satisfy hn → f̂ in L2(R,Cn) and in addition there is a subsequence {n′} such that hn′(k) → f̂ (k)

almost everywhere. We recall that the Fourier transform takes convolutions into products, i.e.,
(f̂ ∗ g)(k) = f̂ (k)ĝ(k) for almost every k.

Now suppose f : R → Cn satisfies f (ξ) = O(e−aξ ) as ξ → ∞. Then for any z with
Re z > −a, define the Laplace transform

f̃+(z) =
∞∫

e−zξ f (ξ) dξ . (4.3)
0
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Similarly, if f (ξ) = O(ebξ ) as ξ → −∞, then for any z with Re z < b, define

f̃−(z) =
∞∫

0

ezξf (−ξ) dξ . (4.4)

The inverse transformation is described in the next result, which can be found in the standard
literature on Laplace transforms [29, 7.3-5].

Lemma 4.1. Let f : R → Cn satisfy a growth condition f (ξ) = O(e−aξ ) as ξ → ∞ and suppose
that f is of bounded variation on bounded intervals. Then for any γ > −a and ξ > 0 we have
the inversion formula

f (ξ+) + f (ξ−)

2
= lim

ω→∞
1

2πi

γ+iω∫
γ−iω

ezξ f̃+(z) dz, (4.5)

whereas for ξ = 0 we have

f (0+)

2
= lim

ω→∞
1

2πi

γ+iω∫
γ−iω

ezξ f̃+(z) dz. (4.6)

In the remainder of this section we provide some preliminary results regarding the linear
operators L and M that appeared in Section 2. We start by showing that (HL) and (HL′) are
equivalent conditions that automatically provide smoothness properties for functions of the form
ξ �→ −Lxξ , which will be encountered frequently in the sequel.

Proposition 4.2. Recall the linear operator L : X → Cn defined by (2.2). The conditions (HL)
and (HL′) on L with equal values of the integer 	 > 0 are equivalent. In addition, when these
conditions are satisfied the following properties hold.

(i) For any x ∈ C(R,Cn), the function f defined by f (ξ) = −Lxξ satisfies f ∈ C	−1(R,Cn).
(ii) There exists a constant C > 0 such that for any x ∈ C(R,Cn), we have |Dsf (ξ)| � C‖xξ‖

for all 0 � s � 	 − 1, where f is again given by f (ξ) = −Lxξ .
(iii) If the function f : ξ �→ −Lxξ associated to any x ∈ C(R,Cn) satisfies f ∈ C	(R,Cn), then

we must have x ∈ C1(R,Cn).

Proof. We first show that (HL′) implies (HL) and the properties (i) through (iii) listed in the
statement of this result. We proceed by induction on the integer 	. Consider therefore an operator
L : X → Cn with corresponding NBV function μ that satisfies (HL′) with 	 = 1. Consider any
x ∈ C(R,Cn) and let the function f : R → Cn be defined by f (ξ) = −Lxξ . The identity (2.9) in
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(HL′) now implies that we have −f (ξ) = κx(ξ) + ∫ ξ+1
ξ−1 ζ(σ − ξ)x(σ )dσ , from which (i) and

(ii) immediately follow. If in fact f ∈ C1(R,Cn), then differentiation of the above identity yields

κDx(ξ) = −Df (ξ) − ζ(1)x(ξ + 1) + ζ(−1)x(ξ − 1) +
1∫

−1

dζ(σ )x(ξ + σ), (4.7)

showing that x ∈ C1(R,Cn) and hence establishing (iii). An easy calculation involving inte-
gration by parts allows us to establish that also condition (HL) holds, with the corresponding
operator M : X → Cn given by Mφ = κ−1(ζ(−1)φ(−1) − ζ(1)φ(1) + ∫ 1

−1 dζ(σ )φ(σ )). In-
deed, choosing αM = 0 and βM = −κ−1, we may compute

−Δ(z) =
1∫

−1

dμ(σ) ezσ = κI +
1∫

−1

ζ(σ ) ezσ dσ

= κI + 1

z

(
ζ(1)ez − ζ(−1)e−z −

1∫
−1

dζ(σ ) ezσ

)

= κ

z

(
zI − Mez·) = −β−1

M z−1ΔM(z), (4.8)

which shows that (2.7) in (HL) is satisfied.
Now let p > 1 and consider an operator L with corresponding NBV function μ that satisfies

(HL′) with 	 = p. Observe that (2.9) implies that Dμ ∈ L1
loc([−1,1],Cn×n) is also an NBV

function. Therefore it induces the operator L′ : X → Cn given by

L′φ =
1∫

−1

d[Dμ](σ )φ(σ ) (4.9)

and one may easily verify that L′ satisfies the condition (HL′) with 	 = p−1. In particular, using
our induction hypothesis this means that for some operator M ′ : X → Cn, condition (HL) with
	 = p − 1 is satisfied by L′, together with the properties (i) through (iii) listed above.

Now as before, consider an arbitrary x ∈ C(R,Cn) and its corresponding function f given by
f (ξ) = −Lxξ . We may compute

−Df (ξ) = D

[ 1∫
−1

dμ(σ)x(ξ + σ)

]
= D

[ ξ+1∫
ξ−1

Dμ(σ − ξ) x(σ )dσ

]

= Dμ(1)x(ξ + 1) − Dμ(−1)x(ξ − 1) −
1∫
d[Dμ](σ ) x(ξ + σ)
−1
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= −
1∫

−1

d[Dμ](σ ) x(ξ + σ) = −L′xξ , (4.10)

where the penultimate equality follows from the conditions in (HL′) on Dμ. Properties (i)
through (iii) with 	 = p now follow immediately from the fact that these properties with
	 = p − 1 are satisfied by L′. To show that L also satisfies the condition (HL), one may compute

−Δ(z) =
1∫

−1

Dμ(σ)ezσ dσ = 1

z

(
Dμ(1)ez − Dμ(−1)e−z −

1∫
−1

d[Dμ](σ ) ezσ

)

= −1

z

1∫
−1

d[Dμ](σ ) ezσ = 1

z
β−1

M ′ z−p+1ΔM ′(z). (4.11)

We now proceed to show that condition (HL) implies (HL′). Without loss of generality we will
assume βM = 1. Using induction on 	 we will show that if z �→ (z−α)−	ΔM(z) is a holomorphic
function, then there exists an NBV function μ that meets the conditions in (HL′) and in addition
satisfies the identity − ∫ 1

−1 dμ(σ) ezσ = (z − α)−	ΔM(z). Writing ζM for the NBV function

associated with M , we introduce the corresponding NBV function ζ̃ associated to the operator
M̃ : X → Cn given by φ �→ Mφ−αφ(0). Consider the case 	 = 1, write f (z) = (z−α)−1ΔM(z)

and use repeated integration by parts to compute

f (z) = (z − α)−1

(
z −

1∫
−1

dζM(σ) ezσ

)
= (z − α)−1

(
z − α −

1∫
−1

dζ̃ (σ ) ezσ

)

= (z − α)−1ez−α

(
α

1∫
−1

eασ ζ̃ (σ ) dσ − ζ̃ (1)eα

)

+ 1 − α

1∫
−1

e(z−α)σ

σ∫
−1

eατ ζ̃ (τ ) dτ dσ +
1∫

−1

ezσ ζ̃ (σ ) dσ, (4.12)

in which we recall the normalization ζ̃ (−1) = 0. Since f is a holomorphic function, one sees
that the following identity must hold,

α

1∫
eασ ζ̃ (σ ) dσ = ζ̃ (1)eα. (4.13)
−1
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From this it follows that the induction hypothesis is satisfied for the NBV function μ given by

μ(σ) = −H(σ) −
σ∫

−1

ζ̃ (τ ) dτ + α

σ∫
−1

e−ατ

τ∫
−1

eαuζ̃ (u) dudτ. (4.14)

Now consider an integer p > 1 and consider a holomorphic function of the form f (z) =
(z−α)−pΔM(z). Assume that our induction hypothesis is satisfied for 	 = p − 1, which implies
that (z − α)f (z) = − ∫ 1

−1 dν(σ ) ezσ for some NBV function ν that satisfies (HL′) at 	 = p − 1.
We can thus compute

f (z) = −(z − α)−1

1∫
−1

dν(σ ) ezσ

= (z − α)−1ez−α

(
α

1∫
−1

eασ ν(σ )dσ − ν(1)eα

)

+
1∫

−1

ezσ ν(σ ) dσ − α

1∫
−1

e(z−α)σ

σ∫
−1

eατ ν(τ ) dτ dσ. (4.15)

Again, since f is holomorphic, (4.13) must hold with ν instead of ζ̃ and one may readily verify
that the induction hypothesis is satisfied at 	 = p, for the NBV function

μ(σ) = α

σ∫
−1

e−ατ

τ∫
−1

eαuν(u)dudτ −
σ∫

−1

ν(τ) dτ, (4.16)

which concludes the proof. �
We now recall the characteristic matrix ΔM associated to the homogeneous equation ẋ(ξ) =

Mxξ that features in condition (HL) and repeat some useful properties of ΔM that were estab-
lished in [14].

Lemma 4.3. Consider any closed vertical strip S = {z ∈ C | γ− � Re z � γ+} and for any ρ > 0
define Sρ = {z ∈ S | |Im z| > ρ}. Then there exist C,ρ > 0 such that detΔM(z) �= 0 for all z ∈ Sρ

and in addition |ΔM(z)−1| < C
|Im z| for each such z. In particular, there are only finitely many

zeroes of detΔM(z) in S. Furthermore, if detΔM(z) �= 0 for all z ∈ S, then for any α /∈ S the
function

Rα(z) = ΔM(z)−1 − (z − α)−1I (4.17)

is holomorphic in an open neighbourhood of S and in addition there exists C′ > 0 such that
|Rα(z)| � C′

2 for all z ∈ S.

1+|Im z|
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The final result of this section uses Laplace transform techniques to characterize solutions to
−Lxξ = f that have controlled exponential growth at ±∞.

Proposition 4.4. Consider the operator L defined by (2.2) and suppose that the condition (HL) is
satisfied. Fix constants η−, η+ ∈ R and consider any x ∈ C(R,Cn) that satisfies x(ξ) = O(eη±ξ )

as ξ → ±∞. Define the function f : ξ �→ −Lxξ . Then for any γ+ > η+ and γ− < η− such that
the characteristic equation detΔM(z) = 0 has no roots with Re z = γ± and for any ξ ∈ R, we
have

x(ξ) = 1

2πi

γ++i∞∫
γ+−i∞

eξz
(
K(ξ, z, x) + Δ(z)−1f̃+(z)

)
dz

+ 1

2πi

γ−−i∞∫
γ−+i∞

eξz
(
K(ξ, z, x) − Δ(z)−1f̃−(z)

)
dz, (4.18)

in which K : R × C × C(R,Cn) → Cn is given by

K(ξ, z, x) =
0∫

ξ

e−zτ x(τ ) dτ + Δ(z)−1

1∫
−1

dμ(σ) ezσ

0∫
σ

e−zτ x(τ ) dτ. (4.19)

The Laplace transforms f̃+ and f̃− are as defined above in (4.3) and (4.4).

Proof. Note that Proposition 4.2 implies that f shares the growth rate of x at ±∞. An applica-
tion of Lemma 4.1 hence shows that

1

2
x(ξ) = 1

2πi

γ++i∞∫
γ+−i∞

eξz

( 0∫
ξ

e−zτ x(τ ) dτ + x̃+(z)

)
dz. (4.20)

Taking the Laplace transform of the identity −Lxξ = f (ξ) yields

0 = f̃+(z) +
1∫

−1

dμ(σ) ezσ

(
x̃+(z) +

0∫
σ

e−zτ x(τ ) dτ

)
(4.21)

and thus after rearrangement

x̃+(z) = Δ(z)−1

(
f̃+(z) +

1∫
−1

dμ(σ) ezσ

0∫
σ

e−zτ x(τ ) dτ

)
. (4.22)

As in [14], a similar argument applied to the function y(ξ) = x(−ξ) completes the proof. �



H.J. Hupkes et al. / J. Differential Equations 244 (2008) 803–835 819
5. The state space

In this section we study the state space X = C([−1,1],Cn) in the spirit of the corresponding
treatment for MFDEs employed in [14]. We recall the linear operator L : X → Cn defined by
(2.2) and define a closed operator A : D(A) ⊂ X → X, via

D(A) =
{

φ ∈ X

∣∣∣ φ is C1-smooth and satisfies 0 = Lφ =
1∫

−1

dμ(σ)φ(σ )

}
,

Aφ = Dφ. (5.1)

Notice that the domain D(A) now differs from the corresponding definition in [14] and in addi-
tion, A is no longer densely defined. Nevertheless, it is still possible to relate the resolvent of A

to the characteristic matrix Δ. We refer to [15] for a general discussion on characteristic matrices
for unbounded operators.

Lemma 5.1. The operator A defined in (5.1) has only point spectrum with σ(A) = σp(A) =
{z ∈ C | detΔ(z) = 0}. In addition, for z ∈ ρ(A), the resolvent of A is given by

(zI − A)−1ψ = e·zK(·, z,ψ), (5.2)

in which K : [−1,1] × C × X → Cn is the appropriate restriction of the operator K defined
in (4.19).

Proof. Fix ψ ∈ X and consider the equation (zI − A)φ = ψ for φ ∈ D(A), which is equivalent
to the system

Dφ = zφ − ψ,

0 =
1∫

−1

dμ(σ)φ(σ ). (5.3)

Suppose that detΔ(z) �= 0. Solving the first equation yields

φ(θ) = eθzφ(0) + eθz

0∫
θ

e−zτψ(τ) dτ (5.4)

and hence the fulfillment of the second equation requires

0 =
1∫
dμ(σ) ezσ

(
φ(0) +

0∫
e−zτψ(τ) dτ

)
. (5.5)
−1 σ
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Thus setting

φ(0) = Δ(z)−1

1∫
−1

dμ(σ) ezσ

0∫
σ

e−zτψ(τ) dτ, (5.6)

we see that z ∈ ρ(A). On the other hand, choosing a non-zero v ∈ Rn such that Δ(z)v = 0 for
some root z of detΔ(z) = 0, one sees that the function φ(θ) = ezθv satisfies φ ∈ D(A) and
Aφ = zφ. This shows that z ∈ σp(A), completing the proof. �

For any pair of reals γ− < γ+ such that the characteristic equation detΔ(z) = 0 has no roots
with Re z = γ±, define the set Σ = Σγ−,γ+ = {z ∈ σ(A) | γ− < Re z < γ+}. Using Lemma 4.3 it
is easy to see that Σ is a finite set. Furthermore, the representation (5.2) implies that (zI − A)−1

has a pole of finite order at z = λ0 for every λ0 ∈ Σ . Standard spectral theory [9, Theorem IV.2.5]
now yields the decomposition X = MΣ ⊕ RΣ for some closed linear subspace MΣ , together
with a spectral projection QΣ : X → MΣ , which is explicitly given by

QΣ = 1

2πi

∫
Γ

(zI − A)−1 dz, (5.7)

for any Jordan path Γ ⊂ ρ(A) with int(Γ ) ∩ σ(A) = Σ . The following result gives conditions
under which this Dunford integral can be related to the integral representation in (4.18).

Lemma 5.2. Consider an operator L of the form (2.2) that satisfies (HL). Suppose that
φ ∈ C	−1([−1,1],Cn) satisfies LDsφ = 0 for all 0 � s � 	 − 2, with 	 as introduced in (HL).
Then the spectral projection QΣφ defined above is given by

(QΣφ)(θ) = 1

2πi

γ++i∞∫
γ+−i∞

eθzK(θ, z,φ)dz + 1

2πi

γ−−i∞∫
γ−+i∞

eθzK(θ, z,φ)dz, (5.8)

with K as defined in (4.19).

Proof. For any ρ > 0 such that |Imλ| < ρ for any λ ∈ Σ , we introduce the path Γρ = Γ
↑
ρ ∪

Γ ←
ρ ∪ Γ

↓
ρ ∪ Γ →

ρ , consisting of the line segments

Γ ↑
ρ = seg[γ+ − iρ, γ+ + iρ], Γ ↓

ρ = seg[γ− + iρ, γ− − iρ],
Γ ←

ρ = seg[γ+ + iρ, γ− + iρ], Γ →
ρ = seg[γ− − iρ, γ+ − iρ]. (5.9)

Note that it suffices to show that for every θ ∈ [−1,1], we have

lim
ρ→∞

∫
Γ

�

eθz

0∫
θ

e−zτ φ(τ ) dτ dz +
∫

Γ
�

eθzΨ (z,φ)dz = 0, (5.10)
ρ ρ
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with Ψ (z,φ) given by

Ψ (z,φ) = βM(z − αM)	ΔM(z)−1

1∫
−1

dμ(σ) ezσ

0∫
σ

e−zτ φ(τ ) dτ . (5.11)

The first integral in (5.10) can be shown to converge to zero as in [14]. To treat the second
integral, use integration by parts to compute

0∫
σ

e−zτ φ(τ ) dτ = 1

z	−1

0∫
σ

e−zτD	−1φ(τ) dτ +
	−2∑
k=0

1

zk+1

(
e−zσ Dkφ(σ ) − Dkφ(0)

)
.

(5.12)

Using the fact that LDsφ = 0 for 0 � s � 	 − 2, we conclude that Ψ (z,φ) can be rewritten as

Ψ (z,φ) =
	−2∑
k=0

Dkφ(0)

zk+1
+ βM(z − αM)	−1

z	−1

(
z − αM

z − α
+ (z − αM)Rα(z)

)

×
1∫

−1

dμ(σ) ezσ

0∫
σ

e−zτD	−1φ(τ) dτ, (5.13)

where Rα(z) = O(1/|z|2) as Im z → ±∞, uniformly in vertical strips. Ignoring the terms in
Ψ (z,φ) that behave as O(1/z) as Im z → ±∞, it remains to show that

lim
ρ→∞

∫
Γ

�
ρ

eθz

1∫
−1

dμ(σ) ezσ

0∫
σ

e−zτD	−1φ(τ) dτ dz = 0. (5.14)

This however can also be established using the arguments in [14]. �
In order to show that MΣ is finite dimensional, we introduce a new operator Â on the larger

space X̂ = Cn × X,

D(Â) = {
(c,φ) ∈ X̂

∣∣ Dφ ∈ X and c = φ(0)
}
,

Â(c,φ) = (
Lφ + Dφ(0),Dφ

)
. (5.15)

We write j : X → X̂ for the canonical continuous embedding φ �→ (φ(0),φ). The reader should
note that the definition of Â given here differs from the corresponding definition in [14]. How-
ever, this construction ensures that the part of Â in jX is equivalent to A and that the closure
of D(Â) is given by jX. Hence the spectral analysis of A and Â is one and the same. The next
result shows that Δ(z) is a characteristic matrix for Â, in the sense of [9, Definition IV.4.17].
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Lemma 5.3. Consider the holomorphic functions E : C → L(X̂,D(Â)) and F : C → L(X̂, X̂),
given by

E(z)(c,ψ)(θ) =
(

c, eθzc + eθz

0∫
θ

e−zτψ(τ) dτ

)
,

F (z)(c,ψ)(θ) =
(

c − ψ(0) +
1∫

−1

dμ(σ) ezσ

0∫
σ

e−zτψ(τ) dτ,ψ(θ)

)
, (5.16)

in which D(Â) is considered as a Banach space with the graph norm. Then E(z) and F(z) are
bijective for every z ∈ C and we have the identity(

Δ(z) 0
0 I

)
= F(z)(zI − Â )E(z). (5.17)

Proof. The bijectivity of E(z) follows as in [14], while the bijectivity of F(z) is almost immedi-
ate. The last identity in the statement of the lemma follows easily by using the definition of Δ(z)

and computing

(zI − Â)E(z)(c,ψ)

=
(

ψ(0) −
1∫

−1

dμ(σ) ezσ c −
1∫

−1

dμ(σ) ezσ

0∫
σ

e−zτψ(τ) dτ,ψ

)
. � (5.18)

In [14] similar results were obtained for the system ẋ(ξ) = Mxξ . In particular, writing ΣM =
ΣM

γ−,γ+ = {z ∈ C | detΔM(z) = 0 and γ− < Re z < γ+}, the decomposition X = MΣM ⊕ RΣM

was obtained, together with a projection QM
Σ : X → MΣM . Using (HL) it is easy to see that

Σ ⊂ ΣM . In addition, the next result exhibits how the generalized eigenspaces are related.

Proposition 5.4. Consider the operator L defined in (2.2) and suppose that (HL) holds. Then we
have the inclusion MΣ ⊂ MΣM , together with the identity QM

ΣM ◦ QΣ = QΣ .

Proof. First recall from [14] that ΔM(z) is a characteristic matrix for the operator ÂM : D(Â) →
X given by ÂM(c,φ) = (Mφ,Dφ). As in the proof of [9, Theorem IV.4.18], a basis for MΣ

can be constructed using maximal generalized Jordan chains. It hence suffices to show that every
such chain for Δ at z = λ is also a Jordan chain for ΔM at the same value of z. Indeed, for any
such chain v0, . . . , vm−1 of length m we have by definition

Δ(z)
(
v0 + (z − λ)v1 + · · · + (z − λ)m−1vm−1

) = O
(
(z − λ)m

)
, (5.19)

which immediately implies that also
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ΔM(z)
(
v0 + (z − λ)v1 + · · · + (z − λ)m−1vm−1

)
=βM(z − αM)	Δ(z)

(
v0 + (z − λ)v1 + · · · + (z − λ)m−1vm−1

) = O
(
(z − λ)m

)
. (5.20)

The inclusion MΣ ⊂ MΣM now easily follows, which in turn implies that QM
ΣM acts as the

identity on MΣ , upon which the proof is complete. �
Proof of Proposition 2.1. Choose γ > 0 such that detΔM(z) = 0 has no roots with 0 < |Re z| �
γ and write X0 = MΣ−γ,γ , together with Q0 = QΣ−γ,γ . Consider any x ∈ ⋂

η>0 BCη(R,Cn)

that satisfies 0 = Lxξ . Using Proposition 4.2 it follows that x ∈ C1(R,Cn). However, this im-
plies that also Lẋξ = 0 for all ξ ∈ R and repeated application of this argument shows that in
fact x ∈ C∞(R,Cn). We can hence combine Proposition 4.4 with Lemma 5.2 to conclude that
Q0x0 = x0 and hence by shifting x along the line, Q0xξ = xξ for all ξ ∈ R. Due to the fact that a
basis for X0 can be constructed using functions of the form p(θ)eλθ , in which p is a polynomial
and detΔM(λ) = 0, one sees that any φ ∈ X0 can be extended to a solution x = Eφ of Lxξ = 0
on the line, with x0 = φ. To see the uniqueness of this extension, suppose that both x1 and x2

satisfy x1
0 = x2

0 = φ, with 0 = Lx1
ξ = Lx2

ξ for all ξ ∈ R. Write y(ξ) = x1(ξ) − x2(ξ) for ξ � 0

and y(ξ) = 0 for ξ < 0. Then y ∈ C(R,Cn) satisfies 0 = Lyξ , with y(ξ) = O(eζξ ) as ξ → ±∞
for some ζ > 0, which can be chosen in such a way that there are no roots of detΔM(z) = 0
in the strip ζ − ε � Re z � ζ + ε, for some ε > 0. This however implies that for all ξ ∈ R, we
have yξ = QΣζ−ε,ζ+ε yξ = Q{0}yξ = 0, i.e., y = 0. A similar construction for ξ � 0 completes the
proof. �
6. Linear inhomogeneous equations

In this section we study the interplay between the linear inhomogeneous equations

0 = Lxξ + f (ξ),

ẏ(ξ) = Myξ + g(ξ), (6.1)

with L as defined in (2.2) and M as in (HL). Associated to these equations we define the linear
operators Λ : C(R,Cn) → C	−1(R,Cn) and ΛM : W 1,1

loc (R,Cn) → L1
loc(R,Cn) by

(Λx)(ξ) = −Lxξ ,

(ΛMx)(ξ) = ẋ(ξ) − Mxξ . (6.2)

The operator ΛM has been extensively studied in [14,21] and we will use these results to facilitate
our treatment of Λ. We will be particularly interested in the spaces

W	,p
(
R,Cn

) = {
x ∈ Lp

(
R,Cn

) ∣∣ Dsx ∈ Lp
(
R,Cn

)
for all 1 � s � 	

}
, (6.3)

with p = 2 or p = ∞. In the first result we choose p = 2, which enables us to use Fourier
transform techniques to define an inverse for Λ on the space W	,2(R,Cn). This inverse will turn
out to be closely related to the inverse of ΛM .
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Lemma 6.1. Consider the operator L defined in (2.2) and assume that (HL) is satisfied. Suppose
further that the characteristic equation detΔM(z) = 0 has no roots with Re z = 0. Then Λ is a
bounded linear isomorphism from W 1,2(R,Cn) onto W	,2(R,Cn), with

(D − αM)	Λx = β−1
M ΛMx (6.4)

for x ∈ W 1,2(R,Cn), in which D denotes the differentiation operator. Conversely, suppose
x = Λ−1f for f ∈ W	,2(R,Cn), then x is given by

x̂(η) = Δ(iη)−1f̂ (η). (6.5)

In addition, there is a representation

x(ξ) =
∞∫

−∞
G(ξ − s)

(
(D − αM)	f

)
(s) ds = βM

(
Λ−1

M (D − αM)	f
)
(ξ), (6.6)

with a Green’s function G that satisfies G ∈ Lp(R,Cn×n) for all 1 � p � ∞ and whose Fourier
transform is given by

Ĝ(η) = (iη − αM)−	Δ(iη)−1 = βMΔM(iη)−1. (6.7)

The function G decays exponentially at both ±∞. In particular, fixing a− < 0 and a+ > 0 such
that detΔM(z) �= 0 for all a− � Re z � a+ and choosing an α < a−, we have the estimate

∣∣G(ξ)
∣∣ �

{
βM(1 + K(a−))ea−ξ for all ξ � 0,

βMK(a+)ea+ξ for all ξ < 0,
(6.8)

in which

K(a) = 1

2π

∞∫
−∞

∣∣Rα(a + iω)
∣∣dω, (6.9)

with Rα as introduced in (4.17).
Finally, suppose that f and its derivatives satisfies a growth condition Dsf (ξ) = O(e−λξ ) as

ξ → ∞ for some 0 < λ < −a− and all 0 � s � 	. Then also x = Λ−1f satisfies x(ξ) = O(e−λξ )

as ξ → ∞, with the same estimate for ẋ. The analogous statement also holds for ξ → −∞.

Proof. Suppose that Λx = 0 for some x ∈ W 1,2(R,Cn). Due to the Sobolev embedding
W 1,2(R,Cn) ⊂ C(R,Cn) ∩ L∞(R,Cn), we know that x is bounded, hence we can apply Propo-
sition 2.1 with X0 = {0} to conclude x = 0. Recall the fact that f ∈ W	,2(R,Cn) is equivalent to
η �→ (1+|η|+· · ·+|η|	)f̂ (η) ∈ L2(R,Cn). The fact that Λ maps W 1,2(R,Cn) into W	,2(R,Cn)

now follows after noting that for some constants C, C′ and C′′, we have(
1 + |η| + · · · + |η|	)F+Λx(η) = (

1 + |η| + · · · + |η|	)β−1
M (iη − αM)−	ΔM(iη)x̂(η)

� CΔM(iη)x̂(η) �
(
C′|η| + C′′)x̂(η). (6.10)
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Observe also that the identity (D − αM)	Λx = β−1
M ΛMx follows immediately from

F+(
(D − αM)	Λx

)
(η) = (iη − αM)	Δ(iη)x̂(η) = β−1

M ΔM(iη)x̂(η). (6.11)

To show that Λ is invertible, fix any f ∈ W	,2(R,Cn) and define x ∈ W 1,2(R,Cn) by

x̂(η) = Δ(iη)−1f̂ (η) = ΔM(iη)−1βM(iη − αM)	f̂ (η)

= βMΔM(iη)−1F+(
(D − αM)	f

)
(η). (6.12)

It is clear that indeed Λx = f and the remaining statements now follow easily from this identity
together with the theory developed in [14] for the operator ΛM . �

As in [14], we need to obtain results on the behaviour of Λ on the exponentially weighted
spaces

W	,∞
η

(
R,Cn

) = {
x ∈ L1

loc

(
R,Cn

) ∣∣ e−η·x(·) ∈ W	,∞(
R,Cn

)}
. (6.13)

To ease notation, we introduce the function eνf = eν·f (·) for any f ∈ L1
loc(R,Cn) and ν ∈ R.

Upon defining a transformed operator Λη : C(R,Cn) → C	−1(R,Cn) by

(Ληx)(ξ) = −
1∫

−1

dμ(σ) e−ησ x(ξ + σ), (6.14)

one may easily verify the following identity,

Ληeηx = eηΛx. (6.15)

The corresponding transformation of the characteristic matrix is given by

Δη(z) = −
1∫

−1

e(z−η)σ dμ(σ) = Δ(z − η) = (z − αη,M)−	Δη,M(z), (6.16)

with αη,M = αM + η and Δη,M(z) = ΔM(z − η).
We now wish to use the fact that Λ is invertible as a map from W 1,2(R,Cn) into W	,2(R,Cn)

to prove a similar result when considering Λ as a map from W 1,∞
η (R,Cn) into W	,∞

η (R,Cn).
An inverse for Λ will be constructed by writing any f ∈ W	,∞

η (R,Cn) as a sum of func-

tions in W
	,2
ζ (R,Cn) for appropriate values of ζ , on which we can use the inverse of Λ de-

fined in Lemma 6.1. In contrast to the situation in [14], where we merely needed to consider
f ∈ L∞(R,Cn), care has to be taken when splitting the inhomogeneity f to ensure that the
components remain sufficiently smooth.

To accommodate this, we choose C∞-smooth basis functions χi for 0 � i � 	 − 1 that have
compact support contained in [−1,1], such that Diχj (0) = δij for 0 � i, j � 	 − 1. We now
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define the finite dimensional space BC�(R,Cn) = span{χi | 0 � i � 	 − 1} ⊂ C∞
c (R,Cn) and

an operator Φ� : W	,1
loc (R,Cn) → BC�(R,Cn) by

Φ�f =
	−1∑
i=0

χiD
if (0). (6.17)

Notice that DiΦ�f (0) = Dif (0) for all 0 � i � 	 − 1, which ensures that we can define the
cutoff operators Φ± : W	,1

loc → W
	,1
loc via

Φ+f (ξ) = H(ξ)(f − Φ�f )(ξ), Φ−f (ξ) = (
1 − H(ξ)

)
(f − Φ�f )(ξ), (6.18)

where H(ξ) denotes the Heaviside function, i.e., H(ξ) = 1 for ξ � 0 and H(ξ) = 0 for ξ < 0.

Proposition 6.2. Consider any η ∈ R and ε0 > 0 such that there are no roots of detΔM(z) = 0 in
the strip η−ε0 � Re z � η+ε0. Then the operator Λ is an isomorphism from W 1,∞

η (R,Cn) onto

W	,∞
η (R,Cn). In addition, for any 0 < ε < ε0 and any f ∈ W 1,∞

η (R,Cn) such that Φ�f = 0,

we have the following integral expression for x = Λ−1f ,

x(ξ) = 1

2πi

η+ε+i∞∫
η+ε−i∞

eξzΔ(z)−1f̃+(z) dz + 1

2πi

η−ε+i∞∫
η−ε−i∞

eξzΔ(z)−1f̃−(z) dz, (6.19)

where the Laplace transforms f̃+ and f̃− are defined as in Section 4. Finally, for any
f ∈ W	,∞

η (R,Cn), we have the following Green’s formula for x = Λ−1f ,

x(ξ) = eηξ

∞∫
−∞

G−η(ξ − s)e−ηs
(
(D − αM)	f

)
(s) ds = βMΛ−1

M (D − αM)	f, (6.20)

in which G−η has exponential decay at both ±∞ and is given by

F+G−η(k) = βMΔM(ik + η)−1. (6.21)

Proof. We first show that we can indeed define an inverse for Λ on the space W	,∞
η (R,Cn).

Pick any 0 < ε < ε0 and use the cutoff operators introduced above to define f± ∈ W	,∞
η (R,Cn)

by f± = Φ±f and similarly f� = Φ�f . Note that f� ∈ W	,2
η (R,Cn) and hence we can define

x� = eηx� ∈ W 1,2
η (R,Cn), with x� = Λ−1−ηe−ηf�. Since e−ηf� ∈ C∞

c (R,Cn), one can use the
Green’s function representation (6.6) to conclude that also x� and its derivative are uniformly
bounded, showing that x� ∈ W 1,∞

η (R,Cn).
It remains to invert the functions f±. To this end, we define

f ± = e−(η±ε)f± ∈ W	,2(R,Cn
) ∩ W	,∞(

R,Cn
) ∩ W

	,∞
∓ε

(
R,Cn

)
, (6.22)

which allows us to introduce the functions x± = eη±εx±, in which

x± = Λ−1−η∓εf ± ∈ W 1,2(R,Cn
) ∩ W 1,∞(

R,Cn
) ∩ W

1,∞
∓ε

(
R,Cn

)
, (6.23)
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where the last two inclusions follow from the Green’s function representation of Λ−1 in
Lemma 6.1. This shows that indeed x± ∈ W 1,∞

η (R,Cn) and hence x = x� + x+ + x− sat-
isfies Λx = f . The integral expression (6.19) now follows upon applying the substitution
z = η ± ε + ik to the equality

F+x±(k) = Δ−1−η∓ε(ik)F+f ±(k) = Δ−1(ik + η ± ε)f̃±(ik + η ± ε). (6.24)

The injectivity of Λ can be shown in exactly the same manner as the corresponding result
in Lemma 6.1. Notice that Proposition 4.2 immediately implies that Λ maps W 1,∞

η (R,Cn) into

W	−1,∞
η (R,Cn)∩W

	,1
loc (R,Cn). To show that the mapping is actually into W	,∞

η (R,Cn), we no-
tice that in a similar fashion as above, any y ∈ W 1,∞

η (R,Cn) can be split into y = y� + y+ + y−
with y� ∈ C∞

c (R,Cn) and y± ∈ W
1,2
η±ε(R,Cn). Applying Lemma 6.1 to these individual func-

tions and using (6.15), we find that again (D − αM)	Λy = β−1
M ΛMy ⊂ L∞

η (R,Cn), which
together with Proposition 4.2 shows that also D	Λy ∈ L∞

η (R,Cn).
Finally, we show that the Green’s formula representation (6.6) continues to hold. For con-

venience, we write ζ = η + ε and note that for any f ∈ W
	,1
loc (R,Cn) the identity Deζ f =

eζ (D + ζ )f implies that

eζ (D − α−ζ,M)	e−(η+ε)f = eη+ε(D − αM + η + ε)	e−ζ f = eζ

(
(D − ζ ) − αM + ζ

)	
f

= (D − αM)	f. (6.25)

This allows us to compute

x+(ξ) = (
eζ Λ

−1
−ζ e−ζ f+

)
(ξ)

= eζξ

∞∫
−∞

G−ζ (ξ − s)e−ζ s(D − αM)	f+(s) ds

= eηξ

∞∫
−∞

eε(ξ−s)G−ζ (ξ − s)e−ηs(D − αM)	f+(s) ds. (6.26)

Now noticing that F+eεG−ζ (k) = Ĝ−ζ (k + iε), we find,

F+eεG−ζ (k) = (ik − ε − α−ζ,M)−	Δ−ζ (ik − ε)−1

= (ik − αM + η)−	Δ(ik + η)−1 = Ĝ−η(k), (6.27)

upon which the proof can be completed using similar identities for x− and x�. �
7. The pseudo-inverse

The goal of this section is to define a pseudo-inverse for the linear inhomogeneous equation
Λx = f in the spirit of [14]. However, the construction here will differ from the corresponding
construction in [14], due to the fact that we cannot modify the nonlinearities R(s) to become
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globally Lipschitz continuous in such a way that the differentiation structure in (HR1) is pre-
served. To by-pass this difficulty, we need to decouple the inhomogeneity f from its derivatives,
allowing us to replace the vector of functions (f,Df, . . . ,D	f ) by general vectors (g0, . . . , g	)

for which there is no relation between the components. This decoupling should be seen in the
context of so-called jet manifolds, which play a role when studying PDEs and DAEs from an
algebraic point of view, see e.g. [25].

To formalize this construction, we introduce the product spaces

L∞,×(	+1)
η

(
R,Cn

) = L∞
η

(
R,Cn

) × · · · × L∞
η

(
R,Cn

)︸ ︷︷ ︸
	+1 times

,

BC×(	+1)
η

(
R,Cn

) = BCη

(
R,Cn

) × · · · × BCη

(
R,Cn

)︸ ︷︷ ︸
	+1 times

(7.1)

and the canonical inclusions BC	
η(R,Cn) ↪→ BC

×(	+1)
η (R,Cn) and W	,∞

η (R,Cn) ↪→
L

∞,×(	+1)
η (R,Cn) via J x = (x,Dx, . . . ,D	x). For any 0 � s � 	 write D̃s : L∞,×(	+1)

η (R,Cn)→
L∞

η (R,Cn) for the canonical extensions of the differentiation operators and similarly define

Φ̃� : BC
×(	+1)
η (R,Cn) → C∞

c (R,Cn) and Φ̃± : BC
×(	+1)
η (R,Cn) → L

∞,×(	+1)
±η (R,Cn). Using

the explicit representation (6.20) for Λ−1 : W	,∞
η (R,Cn) → W 1,∞

η (R,Cn), we can naturally ex-

pand the domain of definition to obtain an operator Λ−1 : L
∞,×(	+1)
η (R,Cn) → W 1,∞

η (R,Cn),
given by

Λ−1f = βMΛ−1
M (D̃ − αM)	f, f ∈ L∞,×(	+1)

η

(
R,Cn

)
. (7.2)

We will use the longer notation Λ−1
(η) for this operator whenever we wish to emphasize the η-

dependence of the underlying exponentially weighted function spaces.
Pick any γ > 0 such that there are no roots of detΔM(z) = 0 with 0 < |Re z| � γ and

fix an η ∈ (0, γ ). Using the construction above we can define the bounded linear operators
Λ−1± = Λ−1

(±η) : L∞,×(	+1)
±η (R,Cn) → W

1,∞
±η (R,Cn). As in the proof of Proposition 2.1, we write

X0 = MΣ−γ,γ for the generalized eigenspace corresponding to roots of detΔ(z) = 0 on the imag-
inary axis and Q0 = QΣ−γ,γ for the corresponding spectral projection. Similarly, we introduce
XM = MΣM−γ,γ

and QM = QM
Σ−γ,γ

for the analogues of X0 and Q0 associated to the opera-

tor ΛM . Recalling the extension operator E : X0 → BC1
η(R,Cn) from Proposition 2.1, we have

all the ingredients we need to define the pseudo-inverse Kη : BC
×(	+1)
η (R,Cn) → BC1

η(R,Cn).
It is given explicitly by the formula

Kηf = Λ−1+
(

1

2
Φ̃�f + Φ̃+f

)
+ Λ−1−

(
1

2
Φ̃�f + Φ̃−f

)
− EQ0 ev0

[
Λ−1+

(
1

2
Φ̃�f + Φ̃+f

)
+ Λ−1−

(
1

2
Φ̃�f + Φ̃−f

)]
, (7.3)

in which we have introduced the evaluation function evξ x = xξ ∈ X. Note that by construc-
tion we have the identity Q0 ev0 Kηf = 0. In addition, from (7.2) together with the inclusion
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X0 ⊂ XM , we see that ΛMKηf = βM(D̃ − αM)	f. The following result shows that K is well

behaved on the scale of Banach spaces BC
×(	+1)
ζ (R,Cn).

Lemma 7.1. Consider any pair η1, η2 ∈ R with 0 < η1 < η2 < γ . Then for any f ∈
BC

×(	+1)
η1 (R,Cn), we have

Kη1f = Kη2f. (7.4)

Proof. We will merely establish (7.4) under the assumption f = Φ̃+f, noting that the remain-
ing components of f can be treated in a similar fashion. Note that h+ = e−η2(D̃ − αM)	Φ̃+f ∈
L∞(R,Cn) satisfies a growth condition h+(ξ) = O(e−(η2−η1)ξ ) as ξ → ∞ and hence x+ =
βMΛ−1

−η2,M
h+ shares this growth rate by [14, Corollary 3.3]. This implies that the function

x+ = eη2x+ satisfies x+ = O(eη1ξ ) as ξ → ∞. We can hence argue x+ ∈ W 1,∞
η1

(R,Cn) ∩
W 1,∞

η2
(R,Cn), from which we conclude

Λ−1
(η1)

Φ̃+f = Λ−1
(η2)

Φ̃+f, (7.5)

which directly implies that also (7.4) holds. �
The final result of this section should be seen as the analogue of Lemma 5.4 in [14]. The con-

clusions here are however somewhat weaker, due to the fact that in this more general setting we
no longer have an automatic interpretation of Kηf in terms of the operator Λ. The consequences
of this fact shall become clear in Section 8, during the analysis of the dynamics on the center
manifold.

Lemma 7.2. For any f ∈ BC
×(	+1)
η (R,Cn) and ξ0 ∈ R, define the function y ∈ BC1

η(R,Cn) by

y(ξ) = (Kηf)(ξ + ξ0) − (
Kηf(ξ0 + ·))(ξ). (7.6)

Then we have ΛMy = 0. In particular, we have the identity

(I − QM) evξ0 Kηf = (I − QM) ev0 Kηf(ξ0 + ·). (7.7)

In addition, suppose that for all integers s with 0 � s � 	 we have

(fs)|J = Dsg (7.8)

for some g ∈ C	(J,Cn), with J = [−1 − |ξ0|,1 + |ξ0|]. Then in fact Λy = 0 and

(I − Q0) evξ0 Kηf = ev0 Kηf(ξ0 + ·). (7.9)

Proof. We can no longer as in [14] apply Λ directly to the definition of K. Instead, we introduce
the shift operator Tξ0 that acts as (Tξ0f )(ξ) = f (ξ + ξ0) and compute

y = x + Tξ0Λ
−1
(η)

[
1

2
Φ̃� + Φ̃+

]
f − Λ−1

(η)

[
1

2
Φ̃� + Φ̃+

]
Tξ0 f

+ Tξ0Λ
−1
(−η)

[
1
Φ̃� + Φ̃−

]
f − Λ−1

(−η)

[
1
Φ̃� + Φ̃−

]
Tξ0f
2 2
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= x + Λ−1
(η)g+ + Λ−1

(−η)g− (7.10)

for some x ∈ BC1
η(R,Cn) with Λx = 0. Using the fact that Tξ0 and Λ−1± commute, we can write

g+ = Tξ0

[
1

2
Φ̃� + Φ̃+

]
f −

[
1

2
Φ̃� + Φ̃+

]
Tξ0 f,

g− = Tξ0

[
1

2
Φ̃� + Φ̃−

]
f −

[
1

2
Φ̃� + Φ̃−

]
Tξ0 f. (7.11)

Now using the identity I = Φ̃� + Φ̃+ + Φ̃−, one easily sees that g+ = −g−. Using (7.2) it now
easily follows that indeed ΛMy = 0.

Now suppose that the differentiability condition (7.8) holds. Since (Tξ0Φ̃±f)(ξ) =
(Φ̃±Tξ0f)(ξ) = f(ξ + ξ0) for all ξ � max(1,1 − ξ0) and ξ � min(−1,−1 − ξ0), it follows that
both g± have compact support and in addition satisfy g± = J g∗ for some g∗ ∈ C	(R,Cn). In
this case the conclusion Λy = 0 is immediate from (7.10). �
8. The center manifold

We are now in a position in which we can use the pseudo-inverse defined in the previ-
ous section to construct a center manifold for the nonlinear equation (2.1). In order to apply
the Banach contraction theorem, we consider the set of nonlinearities R(s) for 0 � s � 	 in-
troduced in condition (HR1) and modify them simultaneously to become globally Lipschitz
continuous with a sufficiently small Lipschitz constant. We choose a C∞-smooth cutoff-function
χ : [0,∞) → R with ‖χ‖∞ = 1 that satisfies χ(ξ) = 0 for ξ � 2 while χ(ξ) = 1 for ξ � 1. For
any δ > 0 we define χδ(ξ) = χ(ξ/δ). We use the projection QM defined in the previous section
to modify the nonlinearities separately in the hyperbolic and nonhyperbolic directions and define
Rδ : X → Cn×(	+1) componentwise by

Rδ(φ)s = χδ

(‖QMφ‖)χδ

(∥∥(I − QM)φ
∥∥)

R(s)(φ), 0 � s � 	. (8.1)

The fact that we use QM instead of Q0 is motivated by (7.7), which allows us to control the
growth of ξ �→ (I − QM) evξ K on the center manifold.

The map Rδ induces the map R̃δ : BCη(R,Cn) → BC
×(	+1)
η (R,Cn) via R̃δx(ξ) = Rδxξ .

Notice that R̃δ is well defined, since ix : R → X which sends ξ �→ xξ is a continuous mapping
for any continuous x and hence the same holds for R̃δx = Rδ ◦ ix . The next lemma follows
directly from [14, Section 6] and shows that the construction above indeed yields a globally
Lipschitz smooth substitution operator R̃δ .

Lemma 8.1. For any η ∈ R, the substitution operator R̃δ viewed as an operator from BCη(R,Cn)

into BC
×(	+1)
η (R,Cn) is globally Lipschitz continuous with Lipschitz constant exp(|η|)Lδ , in

which Lδ → 0 as δ → 0. In addition, we have |(Rδφ)s | � 4δLδ for all φ ∈ X and integers s with
0 � s � 	.

We will apply a fixed point argument to the operator G : BC1
η(R,Cn) × X0 → BC1

η(R,Cn),
defined by

G(u,φ) = Eφ +KηR̃δ(u). (8.2)
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Theorem 8.2. Consider the system (2.1) and suppose that the conditions (HL), (HR1) and (HR2)
are all satisfied. Fix γ > 0 such that the characteristic equation detΔM(z) = 0 has no roots with
0 < |Re z| < γ and consider any interval [ηmin, ηmax] ⊂ (0, γ ) with kηmin < ηmax, where k is as
defined in (HR2). Then there exist constants 0 < ε < δ such that

(i) For all η ∈ [ηmin, ηmax] and for any φ ∈ X0, the fixed point equation u = G(u,φ) has a
unique solution u = u∗

η(φ) ∈ BC1
η(R,Cn).

(ii) For any pair ηmin � η1 < η2 � ηmax, we have that u∗
η2

= J 1
η2η1

u∗
η1

.
(iii) For all ξ ∈ R and all φ ∈ X0, we have∥∥(I − QM) evξ u∗

η(φ)
∥∥ < δ. (8.3)

(iv) For any φ ∈ X0 with ‖φ‖ < ε, we have for all −2 � θ � 2 that∥∥QM evθ u∗
η(φ)

∥∥ < δ. (8.4)

(v) For all η ∈ (kηmin, ηmax], the mapping J 1
ηηmin

◦u∗
ηmin

: X0 → BC1
η(R,Cn) is of class Ck and

admits the Taylor expansion

u∗
η(φ) = Eφ + 1

2
KηD

2Rδ(0)(evξ Eφ, evξ Eφ) + o
(‖φ‖2), (8.5)

if k � 2, in which Kη acts on the variable ξ .

Proof.
(i) First note that as in [14] we can use the Green’s function representation (6.20) to uniformly

bound ‖Kη‖ for η ∈ [ηmin, ηmax], hence it is possible to choose δ in such a way that for all such
η we have

exp(η)Lδ‖Kη‖ <
1

4
. (8.6)

This ensures that G(·, φ) is Lipschitz continuous with constant 1
4 . Since G(·, φ) leaves the

ball with radius ρ in BC1
η(R,Cn) invariant when ‖E‖η‖φ‖ <

ρ
2 , the mapping u∗

η : X0 →
BC1

η(R,Cn) can be defined using the contraction mapping theorem. By computing∥∥u∗
η(φ1) − u∗

η(φ2)
∥∥

BC1
η
� ‖E‖η‖φ1 − φ2‖ + ‖Kη‖ exp(η)Lδ

∥∥u∗
η(φ1) − u∗

η(φ2)
∥∥

BC1
η

� ‖E‖η‖φ1 − φ2‖ + 1

4

∥∥u∗
η(φ1) − u∗

η(φ2)
∥∥

BC1
η
, (8.7)

it is clear that u∗
η is in fact Lipschitz continuous.

(ii) Observing that |Rδ(evξ u
∗
η(φ))s | � 4δLδ for all 0 � s � 	, Lemma 7.1 implies that

Kη2R̃δ(u
∗
η1

(φ)) = Kη1R̃δ(u
∗
η1

(φ)), from which the result follows immediately.
(iii) If δ > 0 is chosen sufficiently small to ensure that for some 0 < η0 < γ

‖I − QM‖ exp(η0)Lδ <
(
4‖Kη0‖

)−1
, (8.8)
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then we can use Lemmas 7.2 and 7.1 to compute∥∥(I − QM) evξ u∗
η(φ)

∥∥ = ∥∥(I − QM) evξ Kη0R̃δ

(
u∗

η(φ)
)∥∥

= ∥∥(I − QM) ev0 Kη0R̃δ

(
u∗

η(φ)
)
(· + ξ)

∥∥
� ‖I − QM‖ exp(η0)‖Kη0‖4δLδ < δ. (8.9)

(iv) If δ > 0 and ε > 0 are chosen sufficiently small to ensure that for some 0 < η0 < γ

(
8‖Kη0‖

)−1
> Lδ

(
exp(3η0) + ‖I − QM‖ exp(η0)

)
and

1

2
δ > ε exp(3η0)‖E‖η0, (8.10)

then we can compute

QM evθ u∗
η(φ) = evθ Eφ + evθ Kη0R̃δ

(
u∗

η(φ)
) − (I − QM) ev0 Kη0R̃δ

(
u∗

η(φ)(θ + ·))
(8.11)

and hence

QM evθ u∗
η(φ) � exp(2η0) exp(η0)‖E‖η0‖φ‖ + 4δLδ

(
exp(2η0) exp(η0)‖K‖η0

+ ‖I − QM‖ exp(η0)‖K‖η0

)
< δ. (8.12)

(v) Notice that item (iii) ensures that u∗
η maps precisely into the region on which the modi-

fication of R in the infinite dimensional hyperbolic direction is trivial, which means that Rδ is
Ck-smooth in this region. This fact ensures that we can follow the approach in [14] to prove that
u∗ is in fact Ck-smooth, in the sense defined above. �

In order to show that u∗
η behaves appropriately under translations, we need to be able to control

the size of the center part of u∗
η(φ), as is made precise in the next result.

Lemma 8.3. Consider the setting of Theorem 8.2 and let φ ∈ X0. Consider any ξ0 ∈ R such that
‖QM evξ u∗

η(φ)‖ < δ for all −1 − |ξ0| � ξ � 1 + |ξ0|. Then the following identity holds,

u∗
η(φ)(ξ0 + ·) = [

u∗
η

(
Q0 evξ0 u∗

η(φ)
)](·). (8.13)

Proof. Due to item (iii) of Theorem 8.2, we have ‖(I − QM) evξ u∗
η(φ)‖ < δ for all ξ ∈ R.

From (HR1), the definition of Rδ in (8.1) and the condition in the statement of the lemma,
it now follows that R̃δ(u

∗
η(φ))|J = J g for some g ∈ C	(J,Cn), where J denotes the interval

J = [−1 − |ξ0|,1 + |ξ0|]. We can hence apply Lemma 7.2 to conclude that the function

y(ξ) = Eφ(ξ0 + ξ) +KηR̃δ

(
u∗

η(φ)
)
(ξ0 + ξ) −KηR̃δ

(
u∗

η(φ)(ξ0 + ·))(ξ) (8.14)

satisfies Λy = 0, with y = Eψ for ψ = Q0 evξ0 u∗
η(φ). Upon calculating
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G
(
u∗

η(φ)(ξ0 + ·),ψ)
(ξ) = y(ξ) +KηR̃δ

(
u∗

η(φ)(ξ0 + ·))(ξ)

= Eφ(ξ0 + ξ) +KηR̃δ

(
u∗

η(φ)
)
(ξ0 + ξ)

= u∗
η(φ)(ξ0 + ξ), (8.15)

the conclusion follows from the uniqueness of fixed points for G. �
We are now ready to construct the ODE that describes the dynamics on the center manifold.

Note that in contrast to the situation in [14], this is no longer possible globally, but upon com-
bining the results in Lemma 8.3 and item (iv) of Theorem 8.2 the ODE can at least be defined
locally. Nevertheless, the next result will turn out to be strong enough to lift sufficiently small
solutions of the ODE (8.16) back to solutions of (2.1).

Proposition 8.4. Consider for any φ ∈ X0 the function Φ : R → X0, given by Φ(ξ) =
Q0 evξ u∗

η(φ). Suppose that for some ξ0 > 0 we have ‖Φ(ξ)‖ < ε for all ξ ∈ (−ξ0, ξ0). Then
Φ satisfies the following ODE on the interval (−ξ0, ξ0),

Φ̇(ξ) = AΦ(ξ) + fδ

(
Φ(ξ)

)
. (8.16)

Here the function fδ : X0 → X0 is Ck-smooth and is explicitly given by

fδ(ψ) = Q0
(
Mevθ

(
u∗

η(ψ) − Eψ
) + βM(D − αM)	Rδ

(
evθ u∗

η(ψ)
))

, (8.17)

in which the projection Q0 is taken with respect to the variable θ and the expression DsRδ(·)
should be read as Rδ(·)s . Finally, we have fδ(0) = 0 and Dfδ(0) = 0.

Proof. Notice first that Φ is a continuous function, since ξ �→ evξ u∗
η(φ) is continuous. We cal-

culate

Φ̇(ξ)(σ ) = lim
h→0

1

h

(
Φ(ξ + h)(σ ) − Φ(ξ)(σ )

)
= lim

h→0

1

h

([
Q0 evξ+h u∗

η(φ)
]
(σ ) − [

Q0 evξ u∗
η(φ)

]
(σ )

)
= [

Q0
[
Du∗

η(φ)
]
(ξ + ·)](σ ), (8.18)

where the continuity of the projection Q0, together with the fact that Kη maps into C1(R,Cn),
was used in the last step. Using the definition of Kη, we compute[

Du∗
η(φ)

]
(ξ + θ) = M evξ+θ u∗

η(φ) + βM(D − αM)	Rδ

(
evξ+θ u∗

η(φ)
)
. (8.19)

Assume for the moment that for all ξ ∈ (−ξ0, ξ0) and all −1 � θ � 1 we have that evξ+θ u∗
η(φ) =

evθu
∗
η(ψ), where ψ = Φ(ξ). Then the ODE (8.16) follows upon noting that

Q0(M evθ Eψ) = Q0
(
Dψ(θ)

) = Q0
(
(Aψ)(θ)

) = Aψ, (8.20)
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in which Q0 acts on the variable θ . The fact that f is Ck-smooth follows from the fact that
the Ck-smooth function u∗

η : X0 → BC1
η(R,Cn) maps into a region on which R̃δ is itself Ck-

smooth by part (iii) of Theorem 8.2. It is easy to see that fδ(0) = 0 and from (HR2) and the
Taylor expansion (8.5), it follows that Dfδ(0) = 0. The fact that Φ is Ck+1-smooth follows from
repeated differentiation of (8.16).

To conclude the proof, write φ = Φ(0) and notice that ‖φ‖ < ε, which by (iv) of Theorem 8.2
implies that ‖QM evξ u∗

η(φ)‖ < δ for all −2 � ξ � 2. This allows us to apply Lemma 8.3 to
conclude that for all −1 � ξ ′ � 1 and all θ ∈ R, we have

evξ ′+θ u∗
η(φ) = evθ u∗

η

(
Q0 evξ ′ u∗

η(φ)
) = evθ u∗

η

(
Φ(ξ ′)

)
. (8.21)

Since also ‖Φ(ξ ′)‖ < ε for all −ξ0 � ξ ′ � ξ0, the above identity implies that also
‖QM evξ u∗

η(φ)‖ < δ for all −min(ξ0,1) − 2 � ξ � min(ξ0,1) + 2, implying (8.21) for all
−min(ξ0,1) − 1 � ξ ′ � 1 + min(ξ0,1). Repeating this procedure a sufficient number of times
ensures that in fact (8.21) holds for all ξ ′ ∈ (−ξ0, ξ0), as required. �
Proof of Theorem 2.2. We choose δ > ε > 0 as in the statement of Theorem 8.2 and fix the
constant ε∗ > 0 such that ε∗ max(‖QM‖,‖Q0‖,‖I −QM‖) < ε. Pick any η ∈ (kηmin, ηmax] and
write u∗ = u∗

η .

(i) This follows from Theorem 8.2 together with u∗ = u∗
ζ = J 1

ζηmin
u∗

ηmin
for any ζ ∈

(kηmin, ηmax].
(ii) The conditions (HR1) and (HR2) together with (i) imply that f is Ck-smooth with

f (0) = Df (0) = 0. Since ξ �→ xξ maps into the subset of X on which R and Rδ agree, it is
easy to see that G(x,Q0x0) = x which due to the uniqueness of fixed points immediately implies
x = u∗(Q0x0). An application of Lemma 8.3 shows that indeed xξ = ev0 u∗(Φ(ξ)). Note that
for all ξ ∈ R we have ‖Φ(ξ)‖ < ε, which implies that Φ satisfies the ODE (8.16) on the line. It
hence suffices to show f and fδ agree on all Φ(ξ). This however follows immediately from the
fact that ‖QM evθ u∗(Φ(ξ))‖ = ‖QMxξ+θ‖ < ε < δ.

(iii) This is clear from the fact that ξ �→ evξ u∗(φ) maps into the subset of x on which R and
Rδ agree.

(iv) Define the function Ψ (ξ) = Q0 evξ u∗(Φ(0)). Since ‖Ψ (0)‖ = ‖Φ(0)‖ < ε, there exists
an interval (−ξ0, ξ0) with ξ0 > 0, on which the ODE (8.16) is satisfied for Ψ . However, since
f and fδ agree on the set {φ ∈ X0 | ‖φ‖ < ε} and both nonlinearities are Lipschitz continuous,
we can conclude that in fact (8.16) is satisfied on the line, with Ψ (ξ) = Φ(ξ) for all ξ ∈ R.
Thus defining x = u∗(Φ(0)), we have by construction that Φ(ξ) = Q0xξ . It remains to show
that ‖QMxξ‖ < δ for all ξ ∈ R and xξ = ev0 u∗(Φ(ξ)). Writing φ = Φ(0), note that ‖φ‖ < ε

which implies that ‖QM evξ u∗(φ)‖ < δ for all −2 � ξ � 2. This allows us to apply Lemma 8.3
to conclude that for all −1 � ξ ′ � 1 and all θ ∈ R, we have

evξ ′+θ u∗
η(φ) = evθ u∗

η

(
Q0 evξ ′ u∗

η(φ)
) = evθ u∗

η

(
Ψ (ξ ′)

) = evθ u∗
η

(
Φ(ξ ′)

)
. (8.22)

Arguing as in Proposition 8.4 we can extend the conclusions above to ξ ∈ R and ξ ′ ∈ R, which
concludes the proof. �
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