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that for the 2N-body problem, the twisted angles must be θ = 0 or
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1. Introduction and main results

The problem on the numbers for central configurations is so important that S. Smale [7] took it as
one of the most important 18 mathematical problems for the 21st century. Central configurations are
important in the Newtonian N-body problems, for example, it’s well known that finding the relative
equilibrium solutions of the classical N-body problem and planar central configurations is equivalent.
Central configurations also play other important roles, there were a lot of works on the existence
and multiplicity and the shapes of central configurations ([1–11] etc.). But finding concrete central
configurations is very difficult, here we consider some particular situations: the central configurations
formed by two twisted regular polygons, we will explain it more clearly in the following.
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Definition. (See [6,8].) A configuration q = (q1, . . . ,qn) ∈ X \� is called a central configuration if there
exists a constant λ ∈ R such that

n∑
j=1, j �=k

m jmk

|q j − qk|3 (q j − qk) = −λmkqk, 1 � k � n. (1.1)

The value of λ in (1.1) is uniquely determined by

λ = U (q)

I(q)
(1.2)

where

X =
{

q = (q1,q2, . . . ,qn) ∈ R3n:
n∑

i=1

miqi = 0

}
, (1.3)

� = {q: q j = qk for some j �= k}, (1.4)

U (q) =
∑

1� j<k�n

m jmk

|q j − qk| , (1.5)

I(q) =
∑

1� j�n

m j|q j|2. (1.6)

Consider the central configurations in R3 formed by two twisted regular N-gons (N � 2) with dis-
tance h � 0. It is assumed that the lower layer regular N-gons lies in horizontal plane, and the upper
regular N-gons parallels to the lower one and z-axis passes through both centers of two regular N-
gons. Suppose that the lower layer particles have masses m1,m2, . . . ,mN and the upper layer particles
have masses m′

1,m′
2, . . . ,m′

N respectively. For convenience, we treat R3 as the direct product of the
complex plane and real axis when choosing the coordinates. More precisely, let ρk be the kth complex
root of unity, i.e.,

ρk = eiθk . (1.7)

And we let

ρ ′
k = aρk · eiθ (1.8)

where a > 0, i = √−1, θk = 2kπ
N (k = 1, . . . , N), 0 � θ � 2π , θ is called twisted angle (see Fig. 1, we

only draw the situation of N = 4).
It is assumed that mk (k = 1, . . . , N) locates at the vertex qk of the lower layer regular N-gons; m′

k
(k = 1, . . . , N) locate at the vertex of the upper layer regular N-gons:

qk = (ρk,0), (1.9)

q′
k = (

ρ ′
k,h

)
(1.10)

where h � 0 is the distance between the two layers. Then the center of mass is

z0 =
∑

j(m jq j + m′
jq

′
j) (1.11)
M
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Fig. 1. The symmetrical configurations considered here.

where

M =
∑

j

(
m j + m′

j

)
. (1.12)

Let

Pk = qk − z0, P = (P1, . . . , P N), (1.13)

P ′
k = q′

k − z0, P ′ = (
P ′

1, . . . , P ′
N

)
. (1.14)

If P1, . . . , P N ; P ′
1, . . . , P ′

N form a central configuration, then ∃λ ∈ R+ , such that

N∑
j=1, j �=k

m j

|Pk − P j|3 (Pk − P j) +
N∑

j=1

m′
j

|Pk − P ′
j|3

(
Pk − P ′

j

) = λPk, 1 � k � N, (1.15)

N∑
j=1, j �=k

m′
j

|P ′
k − P ′

j|3
(

P ′
k − P ′

j

) +
N∑

j=1

m j

|P ′
k − P j|3

(
P ′

k − P j
) = λP ′

k, 1 � k � N, (1.16)

λ = U (P , P ′)
I(P , P ′)

. (1.17)

In the following, we only consider the case of m1 = · · · = mN = m and m′
1 = · · · = m′

N = bm. Then

z0 =
∑

j

(
m jq j + m′

jq
′
j

)
/M =

(
0,0,

bh

1 + b

)
. (1.18)
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And (1.15), (1.16) and (1.17) are equivalent to

∑
1� j�N−1

(1 − ρ j,0)

|1 − ρ j|3 + b
∑

1� j�N

(1 − ρ ′
j,−h)

(|1 − ρ ′
j|2 + h2)

3
2

= λ

m

(
1,0,− bh

1 + b

)
, (1.19)

b

a3

∑
1� j�N−1

(aeiθ − ρ ′
j,0)

|1 − ρ j|3 +
∑

1� j�N

(aeiθ − ρ j,h)

(|aeiθ − ρ j|2 + h2)
3
2

= λ

m

(
aeiθ ,

h

1 + b

)
, (1.20)

λ

m
=

(1 + b2

a )
∑

1� j<k�N
1

|ρ j−ρk| + bN
∑

1� j�N
1

(|1−ρ ′
j |2+h2)1/2

N(1 + ba2 + bh2

1+b )
. (1.21)

In the following, let μ = λ
m , and we only consider the case of 0 � θ � 2π

N or −π
N � θ � π

N because of
the symmetry.

When θ = 0, R. Moeckel and C. Simo [4] proved the following results:

Theorem 1.1 (R. Moeckel and C. Simo). When h = 0, θ = 0, for every mass ratio b, there are exactly two planar
central configurations consisting of two nested regular N-gons. For one of these, the ratio a of the sizes of the
two polygons is less than 1, and for the other it is greater than 1. However, for N � 473 there is a constant
b0(N) < 1 such that for b < b0 and b > 1

b0
, the central configuration with the smaller masses on the inner

polygon is a repeller.

Theorem 1.2 (R. Moeckel and C. Simo). When h > 0, θ = 0, if N < 473, there is a unique pair of spatial central
configurations of parallel regular N-gons. If N � 473, here are no such central configurations for b < b0(N).
At b = b0 a unique pair bifurcates from the planar central configuration with the smaller masses on the inner
polygon. This remains the unique pair of spatial central configurations until b = 1

b0
, where a similar bifurcation

occurs in reverse, so that for b > 1
b0

, only the planar central configurations remain.

Zhang and Zhou [10] studied the necessary and sufficient conditions for the masses of the central
configurations consisting of two planar twisted regular N-gons. They proved the following theorem:

Theorem 1.3. If the central configuration is formed by two twisted regular N-gons (N � 2) with distance
h = 0, then

λ
N

M
= 1

1 + b

( ∑
1� j�N−1

1 − ρ j

|1 − ρ j|3 +
∑

1� j�N

b(1 − aρ jeiθ )

|1 − aρ jeiθ |3
)

, (1.22)

λ
N

M
= e−iθ

a(1 + b)

( ∑
1� j�N−1

b(1 − ρ j)eiθ

a2|1 − ρ j|3 +
∑

1� j�N

aeiθ − ρ j

|aeiθ − ρ j|3
)

. (1.23)

From their theorem, a series of conclusions are derived, especially they have the following corol-
laries:

Corollary 1.4. (See MacMillan and Bartky [3].) For N = 2 and θ = π/2, then b = 1 if and only if a = 1.

Corollary 1.5. (See Perko and Walter [5].) For N � 2, a = 1 and θ = π/N, if (1.15), (1.16) and (1.17) hold,
then b = 1.

When h > 0 Xie, Zhang and Zhou [9] proved:
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Fig. 2. Theorem 1.8.

Theorem 1.6 (Xie–Zhang–Zhou). The configuration formed by two twisted regular N-gons (N � 2) with dis-
tance h > 0 is a central configuration if and only if the parameters a, b, h, θ satisfy the following relationships:

λ
N

M
= 1

1 + b

( ∑
1� j�N−1

1 − ρ j

|1 − ρ j|3 +
∑

1� j�N

b(1 − aeiθρ j)

(|1 − aeiθρ j|2 + h2)3/2

)
, (1.24)

λ
N

M
= e−iθ

a(1 + b)

( ∑
1� j�N−1

b(1 − ρ j)eiθ

a2|1 − ρ j|3 +
∑

1� j�N

aeiθ − ρ j

(|aeiθ − ρ j|2 + h2)3/2

)
, (1.25)

λ
N

M
=

∑
1� j�N

1

(|1 − aeiθρ j|2 + h2)3/2
. (1.26)

Zhang and Zhu [11] proved the following result for a special case:

Theorem 1.7 (Zhang–Zhu). When h > 0, if a = 1, b = 1, and θ = π/N, then for every N, there exists a unique
central configuration. Particularly, they proved that

∑
1� j�N

cos(θ j + π/N) + 1

(2 − 2 cos(θ j + π/N))3/2
−

∑
1� j�N−1

1 − ρ j

|1 − ρ j|3 > 0. (1.27)

In the following, we let

A =
∑

1� j�N−1

1 − ρ j

|1 − ρ j|3 . (1.28)

In this paper we will prove the following main results:

Theorem 1.8. If the central configuration is formed by two twisted regular N-gons (N � 2) with distance
h � 0, then only θ = 0 or θ = π/N (see Fig. 2). Specifically, if a = 1 and h = 0, i.e., two nested regular N-gons
are on the same unit circle, then only θ = π/N.
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Fig. 3. Corollary 1.9.

Corollary 1.9. For N � 2, h = 0, if a = 1, then b = 1 and θ = π/N, i.e., there is exactly one central configura-
tion formed by two nested regular N-gons on the same unit circle, which is the regular 2N-gons (see Fig. 3).

Corollary 1.10. The configuration formed by two twisted regular N-gons (N � 2) with distance h � 0 is a
central configuration if and only if the parameters a, b, h satisfy the following relationships:

(i) When h = 0 and a �= 1

b

[ ∑
1� j�N

1 − a cos(θ j)

(1 + a2 − 2a cos(θ j))
3/2

− A

a3

]
=

∑
1� j�N

1 − a−1 cos(θ j)

(1 + a2 − 2a cos(θ j))
3/2

− A

or

b

[ ∑
1� j�N

1 − a cos(θ j + π
N )

(1 + a2 − 2a cos(θ j + π
N ))3/2

− A

a3

]
=

∑
1� j�N

1 − a−1 cos(θ j + π
N )

(1 + a2 − 2a cos(θ j + π
N ))3/2

− A.

(ii) When h > 0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ba
∑

1� j�N

cos(θ j)

(1 + a2 − 2a cos(θ j) + h2)3/2
= A −

∑
1� j�N

1

(1 + a2 − 2a cos(θ j) + h2)3/2
,

ba

(
A

a3
−

∑
1� j�N

1

(1 + a2 − 2a cos(θ j) + h2)3/2

)
=

∑
1� j�N

cos(θ j)

(1 + a2 − 2a cos(θ j) + h2)3/2

or
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Fig. 4. Corollary 1.11.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ba
∑

1� j�N

cos(θ j + π
N )

(1 + a2 − 2a cos(θ j + π
N ) + h2)3/2

= A −
∑

1� j�N

1

(1 + a2 − 2a cos(θ j + π
N ) + h2)3/2

,

ba

(
A

a3
−

∑
1� j�N

1

(1 + a2 − 2a cos(θ j + π
N ) + h2)3/2

)

=
∑

1� j�N

cos(θ j)

(1 + a2 − 2a cos(θ j + π
N ) + h2)3/2

.

Corollary 1.11. For N � 2, h > 0, a = 1, if the configuration formed by two twisted regular N-gons (N � 2)

with distance h � 0 is a central configuration, then b = 1, θ = 0 or π/N, and there exists a unique h for each θ .
In other words, there are exactly two spatial central configurations formed by parallel regular N-gons which
have the same sizes (see Fig. 4).

2. Some lemmas

First of all, let’s establish some identical equations to simplify the problem.

Lemma 2.1.

1

N

∑
1� j<k�N

1

|ρ j − ρk| =
∑

1� j�N−1

1 − ρ j

|1 − ρ j|3 = 1

4

∑
1� j�N−1

csc

(
π j

N

)
. (2.1)

Proof. It’s easy to know

∑
1� j�N−1

1 − ρ j

|1 − ρ j|3 = 1

4

∑
1� j�N−1

csc

(
π j

N

)
> 0.
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We only need to prove

∑
1� j<k�N

1

|ρ j − ρk| = N

4

∑
1� j�N−1

csc

(
π j

N

)
.

In fact, we have

2
∑

1� j<k�N

1

|ρ j − ρk| =
∑
j �=k

1

|ρ j − ρk| = N
∑

1� j�N−1

1

ρ j − 1
= N

2

∑
1� j�N−1

csc

(
π j

N

)
. �

Then we have

A = 1

N

∑
1� j<k�N

1

|ρ j − ρk| =
∑

1� j�N−1

1 − ρ j

|1 − ρ j|3 = 1

4

∑
1� j�N−1

csc

(
π j

N

)
. (2.2)

Lemma 2.2. We have

∑
1� j�N

cos(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + h2)3/2
=

∑
1� j�N

cos(θ j − θ)

(1 + a2 − 2a cos(θ j − θ) + h2)3/2
, (2.3)

∑
1� j�N

1

(1 + a2 − 2a cos(θ j + θ) + h2)3/2
=

∑
1� j�N

1

(1 + a2 − 2a cos(θ j − θ) + h2)3/2
, (2.4)

∑
1� j�N

1

(1 + a2 − 2a cos(θ j + θ) + h2)1/2
=

∑
1� j�N

1

(1 + a2 − 2a cos(θ j − θ) + h2)1/2
, (2.5)

∑
1� j�N

sin(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + h2)3/2
= −

∑
1� j�N

sin(θ j − θ)

(1 + a2 − 2a cos(θ j − θ) + h2)3/2
. (2.6)

Proof. For (2.3), we notice that

∑
1� j�N

cos(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + h2)3/2
=

∑
1� j�N

cos(2π − θ j − θ)

(1 + a2 − 2a cos(2π − θ j − θ) + h2)3/2

=
∑

1� j�N

cos(θN− j − θ)

(1 + a2 − 2a cos(θN− j − θ) + h2)3/2

=
∑

1�k�N

cos(θk − θ)

(1 + a2 − 2a cos(θk − θ) + h2)3/2

=
∑

1�k�N

cos(θk − θ)

(1 + a2 − 2a cos(θk − θ) + h2)3/2
.

Similarly, we can get (2.4), (2.5) and (2.6). �
From (1.19), (1.20) and (1.21), and using (2.1)–(2.6) we can get five equivalent equations.
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Lemma 2.3. (1.19), (1.20) and (1.21) can be simplified into the following equations:

A + b
∑

1� j�N

1 − a cos(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + h2)3/2
= μ, (2.7)

b

a3
A +

∑
1� j�N

1 − a−1 cos(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + h2)3/2
= μ, (2.8)

∑
1� j�N

sin(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + h2)3/2
= 0, (2.9)

h
∑

1� j�N

1

(1 + a2 − 2a cos(θ j + θ) + h2)3/2
= μh

1 + b
, (2.10)

μ =
(1 + b2

a )A + b
∑

1� j�N
1+a2+h2−2a cos(θ+θ)

(1+a2−2a cos(θ j+θ)+h2)3/2

(1 + ba2 + bh2

1+b )
. (2.11)

Proof. We write every vector in the equations of (1.19) and (1.20) into the forms of components, and
apply (2.1)–(2.6), then (2.7)–(2.10) are obvious. (2.11) is also clear from (2.1)–(2.6) and (1.21). �

When h = 0, we have the next lemma:

Lemma 2.4. (1.19), (1.20) and (1.21) can be simplified into the following equations:

A + b
∑

1� j�N

1 − a cos(θ j + θ)

(1 + a2 − 2a cos(θ j + θ))3/2
= μ, (2.12)

b

a3
A +

∑
1� j�N

1 − a−1 cos(θ j + θ)

(1 + a2 − 2a cos(θ j + θ))3/2
= μ, (2.13)

∑
1� j�N

sin(θ j + θ)

(1 + a2 − 2a cos(θ j + θ))3/2
= 0. (2.14)

Proof. We only indicate that (2.11) can be gotten from (2.7) and (2.8) when h = 0. �
When h > 0, we have

Lemma 2.5. For h > 0, (1.19), (1.20) and (1.21) can be simplified into the following equations:

A − ab
∑

1� j�N

cos(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + h2)3/2
= μ

1 + b
, (2.15)

b

a3
A − a−1

∑
1� j�N

cos(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + h2)3/2
= bμ

1 + b
, (2.16)
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∑
1� j�N

sin(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + h2)3/2
= 0, (2.17)

∑
1� j�N

1

(1 + a2 − 2a cos(θ j + θ) + h2)3/2
= μ

1 + b
. (2.18)

Proof. It is obvious by (2.7)–(2.10). We only indicate that (2.11) can be gotten from (2.7) and (2.8)
and (2.18). �
Remark 2.1. The important equation (2.9) or (2.17) could also be derived as follows: With h, a, b,
and N fixed, the potential function U = m2 AN(1 + b2

a ) + bN
∑

1� j�N
m2

(1+a2−2a cos(θ j+θ)+h2)1/2 depends

only on the angle θ . Central configurations are critical points of U when the moment of inertia I
is constrained to be constant. Varying θ does not change the moment of inertia, so the derivative
of U with respect to θ must be zero. When this derivative is computed, Eq. (2.9) or (2.17) appears.
This simple method comes from Reviewer’s comments, since we have some other results, we write it
down here as a remark.

Lemma 2.6. (See [8].) For n � 3, m1 = · · · = mn, if m1, . . . ,mn locate at vertices of a regular polygon, then
they form a central configuration.

Lemma 2.7. Let

gn(x) =
∑

1� j�N

sin(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + x)(2n+3)/2
,

where θ ∈ (0, π
N ) and a > 0, n ∈ N, x � 0. If gn(x) > 0 in {x: x � 0} for some n � 1, then g j(x) > 0 in

{x: x � 0} for 0 � j � n − 1.

Proof. First of all, it is easy to know that gm(x) → 0 when x → ∞ for any m ∈N. Since

g′
n−1(x) =

(
−2n + 1

2

) ∑
1� j�N

sin(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + x)(2n+3)/2
=

(
−2n + 1

2

)
gn(x) < 0.

Thus gn−1(x) > 0 in {x: x � 0}. Similarly, we can get gn−2(x) > 0 in {x: x � 0}, . . . , g0(x) > 0 in
{x: x � 0}. �
Lemma 2.8. Let a j > 0, 1 � j � k, A1 � · · · � Ak � 0. Then limn→∞(

∑
1� j�k a j An

j )
1
n = A1 .

Proof. Let

B � a j � b > 0 for 1 � j � k.

Then

b
1
n A1 �

( ∑
1� j�k

a j An
j

) 1
n

� (kB)
1
n A1.

So limn→∞(
∑

1� j�k a j An
j )

1
n = A1. �
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Lemma 2.9. Let f (θ) = ∑
1� j�N

sin(θ j+θ)

|1+a2−2a cos(θ j+θ)+h2|3/2 , then f ( π
N ) = 0, f (−θ) = − f (θ) and

f (θ + 2π
N ) = f (θ).

Proof.

f

(
π

N

)
=

∑
1� j�N

sin((2 j + 1)π/N)

|1 + a2 − 2a cos((2 j + 1)π/N) + h2|3/2

= −
∑

1� j�N

sin((2N − 2 j − 1)π/N)

|1 + a2 − 2a cos((2n − 2 j − 1)π/N) + h2|3/2

= −
∑

−1�k�N−2

sin((2k + 1)π/N)

|1 + a2 − 2a cos((2k + 1)π/N) + h2|3/2

= −
∑

1�k�N

sin((2k + 1)π/N)

|1 + a2 − 2a cos((2k + 1)π/N) + h2|3/2

= − f

(
π

N

)
. (2.19)

Thus, f ( π
N ) = 0.

From (2.6) we have f (−θ) = − f (θ), and f (θ + 2π
N ) = f (θ) is obvious by the definition of f (θ). �

Lemma 2.10. We have f (θ) = ∑
1� j�N

sin(θ j+θ)

|1+a2−2a cos(θ j+θ)+h2|3/2 > 0 for any a > 0 and h � 0 when θ ∈
(0, π

N ).

Proof. It is easy to know that we only need to prove

g0(x) =
∑

1� j�N

sin(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + x)3/2
> 0 in {x: x � 0}

for any θ ∈ (0, π
N ) and a > 0. But by Lemma 2.7 we know that we only need to prove that

gn(x) =
∑

1� j�N

sin(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + x)(2n+3)/2
> 0 in {x: x � 0}

for some sufficiently large n ∈ N. Since

gn(x) =
∑

0� j�N−1

sin(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + x)(2n+3)/2

=
∑

0� j�[ N−1
2 ]

sin(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + x)(2n+3)/2

+
∑

[ N−1 ]+1� j�N−1

sin(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + x)(2n+3)/2
2
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=
∑

0� j�[ N−1
2 ]

sin(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + x)(2n+3)/2

+
∑

1�k�N−1−[ N−1
2 ]

sin(θN−k + θ)

(1 + a2 − 2a cos(θN−k + θ) + x)(2n+3)/2

=
∑

0� j�[ N−1
2 ]

sin(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + x)(2n+3)/2

−
∑

1�k�N−1−[ N−1
2 ]

sin(θk − θ)

(1 + a2 − 2a cos(θk − θ) + x)(2n+3)/2

=
∑

0� j�[ N−1
2 ]

sin(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + x)(2n+3)/2

−
∑

1�k�[ N
2 ]

sin(θk − θ)

(1 + a2 − 2a cos(θk − θ) + x)(2n+3)/2
.

We only need to prove that:

(i) dn =
[ ∑

0� j�[ N−1
2 ]

sin(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + x)(2n+3)/2

] 1
n

−
[ ∑

1�k�[ N
2 ]

sin(θk − θ)

(1 + a2 − 2a cos(θk − θ) + x)(2n+3)/2

] 1
n

> 0

in {x: 1 � x � 0} for some sufficiently large n ∈N.

(ii) en = x2dn > 0 in {x: x � 1} for some sufficiently large n ∈N.

From Lemma 2.8, we know that

dn → 1

1 + a2 − 2a cos(θ) + x
− 1

1 + a2 − 2a cos( 2π
N − θ) + x

, when n → ∞.

But

1

1 + a2 − 2a cos(θ) + x
− 1

1 + a2 − 2a cos( 2π
N − θ) + x

> 0,

when θ ∈
(

0,
π

N

)
in {x: 1 � x � 0}.

So dn > 0 in {x: 1 � x � 0} for sufficiently large n ∈N.
Similarly we have

en → x2

1 + a2 − 2a cos(θ) + x
− x2

1 + a2 − 2a cos( 2π − θ) + x
, when n → ∞.
N
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However it holds

x2

1 + a2 − 2a cos(θ) + x
− x2

1 + a2 − 2a cos( 2π
N − θ) + x

= 2ax2(cos(θ) − cos( 2π
N − θ))

(1 + a2 − 2a cos(θ) + x)(1 + a2 − 2a cos( 2π
N − θ) + x)

> 0,

when θ ∈ (0, π
N ) in {x: x � 1}.

So en > 0 in {x: x � 1} for sufficiently large n ∈ N.
As a result

gn(x) =
∑

0� j�N−1

sin(θ j + θ)

(1 + a2 − 2a cos(θ j + θ) + x)(2n+3)/2
> 0

for sufficiently large n ∈ N for any θ ∈ (0, π
N ) in {x: x � 0}. �

3. The proofs of main results

Proof of Theorem 1.8. (1) When h = 0 and a = 1, in order to avoid overlap, we assume θ �= 0,2π/N .
So we only consider θ ∈ (0,2π/N). From Lemma 2.9, we know that, if we can prove

f (θ) =
∑

1� j�N

sin(θ j + θ)

|1 + a2 − 2a cos(θ j + θ) + h2|3/2
> 0

for any a > 0, h � 0 and θ ∈ (0, π
N ), then there must be θ = π/N .

But by Lemma 2.10, it is obvious.
(2) Except for h = 0 and a = 1, from Lemma 2.9 and Lemma 2.10, we know that there must be

θ = 0 or θ = π/N . �
Proof of Corollary 1.9. From Theorem 1.8 we know θ = π/N , thus we have b = 1 by Corollary 1.5. We
know it is really a central configuration because of Lemma 2.6. �
Proof of Corollary 1.10. It is obvious from Lemma 2.4, Lemma 2.5 and Theorem 1.8. �
Proof of Corollary 1.11. We have the following equations from Lemma 2.5 for a = 1:

A − b
∑

1� j�N

cos(θ j + θ)

(2 − 2 cos(θ j + θ) + h2)3/2
= μ

1 + b
, (3.1)

b A −
∑

1� j�N

cos(θ j + θ)

(2 − 2 cos(θ j + θ) + h2)3/2
= bμ

1 + b
, (3.2)

∑
1� j�N

sin(θ j + θ)

(2 − 2 cos(θ j + θ) + h2)3/2
= 0, (3.3)

∑
1� j�N

1

(2 − 2 cos(θ j + θ) + h2)3/2
= μ

1 + b
. (3.4)

By (3.1) and (3.2) we have
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(
b2 − 1

) ∑
1� j�N

cos(θ j + θ)

(2 − 2 cos(θ j + θ) + h2)3/2
= 0, (3.5)

(
b2 − 1

)
A = (b2 − 1)μ

1 + b
. (3.6)

(i) If b �= 1, then

∑
1� j�N

cos(θ j + θ)

(2 − 2 cos(θ j + θ) + h2)3/2
= 0, (3.7)

A = μ

1 + b
. (3.8)

From (3.3) and (3.7) we can get

∑
1� j�N

sin(θ j)

(2 − 2 cos(θ j + θ) + h2)3/2
= 0. (3.9)

However, we have

∑
1� j�N

sin(θ j)

(2 − 2 cos(θ j + θ) + h2)3/2

=
∑

1� j�[ N
2 ]

sin(θ j)

(2 − 2 cos(θ j + θ) + h2)3/2
+

∑
[ N

2 ]+1� j�N

sin(θ j)

(2 − 2 cos(θ j + θ) + h2)3/2

=
∑

1� j�[ N
2 ]

sin(θ j)

(2 − 2 cos(θ j + θ) + h2)3/2
+

∑
0�k�N−1−[ N

2 ]

sin(θN−k)

(2 − 2 cos(θN−k + θ) + h2)3/2

=
∑

1� j�[ N
2 ]

sin(θ j)

(2 − 2 cos(θ j + θ) + h2)3/2
+

∑
1�k�[ N−1

2 ]

sin(θN−k)

(2 − 2 cos(θN−k + θ) + h2)3/2

=
∑

1� j�[ N
2 ]

sin(θ j)

(2 − 2 cos(θ j − θ) + h2)3/2
−

∑
1�k�[ N−1

2 ]

sin(θk)

(2 − 2 cos(θk − θ) + h2)3/2

=
∑

1�k�[ N−1
2 ]

[
sin(θk)

(2 − 2 cos(θk + θ) + h2)3/2
− sin(θk)

(2 − 2 cos(θk − θ) + h2)3/2

]

+
∑

[ N−1
2 ]<k�[ N

2 ]

sin(θk)

(2 − 2 cos(θk − θ) + h2)3/2
. (3.10)

It is easy to know that no matter what N is even or odd, we can get

∑
[ N−1 ]<k�[ N ]

sin(θk)

(2 − 2 cos(θk − θ) + h2)3/2
= 0.
2 2
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Because when N is even, from [ N−1
2 ] < k � [ N

2 ], k has to be N
2 , then sin θk = 0. When N is odd, from

[ N−1
2 ] < k � [ N

2 ], k does not exist.
So (3.10) must be

∑
[1� j�N]

sin(θ j)

(2 − 2 cos(θ j + θ) + h2)3/2

=
∑

1�k�[ N−1
2 ]

[
sin(θk)

(2 − 2 cos(θk + θ) + h2)3/2
− sin(θk)

(2 − 2 cos(θk − θ) + h2)3/2

]
. (3.11)

Let

fk(θ) = sin(θk)

(2 − 2 cos(θk + θ) + h2)3/2
− sin(θk)

(2 − 2 cos(θk − θ) + h2)3/2
. (3.12)

Then

f ′
k(θ) = −3 sin(θk)

[
sin(θk + θ)

(2 − 2 cos(θk + θ) + h2)5/2
+ sin(θk − θ)

(2 − 2 cos(θk − θ) + h2)5/2

]
. (3.13)

For every k satisfying 1 � k � [ N−1
2 ], it is easy to know that θk + θ ∈ (0,π ] and θk − θ ∈ (0,π ] for

every θ ∈ [−π
N , π

N ].
Furthermore, both θk + θ and θk − θ can’t be π at the same time. So f ′

k(θ) < 0 for every θ ∈
[−π

N , π
N ].

Hence we know that (3.9) has at most one solution. But we know that θ = 0 is one solution
of (3.9).

As a result we have θ = 0.
Then by (3.4) and (3.7) we have

∑
1� j�N

1 − cos(θ j)

(2 − 2 cos(θ j) + h2)3/2
= μ

1 + b

or

∑
1� j�N

2 sin2(θ j/2)

(4 sin2(θ j/2) + h2)3/2
= μ

1 + b
.

So

μ

1 + b
<

∑
1� j�N

2 sin2(θ j/2)

(4 sin2(θ j/2))3/2
= A.

But this contradicts (3.8).
Hence it must be:
(ii) b = 1. Then (3.1)–(3.4) turn into

A −
∑

1� j�N

cos(θ j + θ)

(2 − 2 cos(θ j + θ) + h2)3/2
= μ

2
, (3.14)
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∑
1� j�N

sin(θ j + θ)

(2 − 2 cos(θ j + θ) + h2)3/2
= 0, (3.15)

∑
1� j�N

1

(2 − 2 cos(θ j + θ) + h2)3/2
= μ

2
. (3.16)

Thus we have

∑
1� j�N

cos(θ j + θ)

(2 − 2 cos(θ j + θ) + h2)3/2
+

∑
1� j�N

1

(2 − 2 cos(θ j + θ) + h2)3/2
− A = 0. (3.17)

Let

g(h) =
∑

1� j�N

cos(θ j + θ)

(2 − 2 cos(θ j + θ) + h2)3/2
+

∑
1� j�N

1

(2 − 2 cos(θ j + θ) + h2)3/2
− A. (3.18)

Then

g′
n(h) =

∑
1� j�N

−3h cos(θ j + θ)

(2 − 2 cos(θ j + θ) + h2)5/2
+

∑
1� j�N

−3h

(2 − 2 cos(θ j + θ) + h2)3/2

= −3h
∑

1� j�N

cos(θ j + θ) + 1

(2 − 2 cos(θ j + θ) + h2)5/2
.

It is easy to know that g′(h) < 0 for h > 0 and every θ .
However we have

lim
h→∞

g(h) = lim
h→∞

( ∑
1� j�N

cos(θ j + θ) + 1

(2 − 2 cos(θ j + θ) + h2)3/2
− A

)
= −A < 0. (3.19)

When θ = 0 or θ = 2π/N , it is easy to know that

lim
h→0

g(h) = lim
h→0

( ∑
1� j�N

cos(θ j + θ) + 1

(2 − 2 cos(θ j + θ) + h2)3/2
− A

)
= ∞. (3.20)

When θ = π/N , from (1.27) we have

lim
h→0

g(h) =
∑

1� j�N

cos(θ j + π
N ) + 1

(2 − 2 cos(θ j + π
N ))3/2

− A > 0. (3.21)

So there is exactly one h > 0, which satisfies (3.17) for θ = 0 or θ = π/N .
In conclusion, if a = 1, then b = 1, θ = 0 or θ = π/N , there exists a unique h for θ = 0 or θ = π/N .

In other words, there are exactly two spatial central configurations of parallel regular N-gons with the
same sizes. �
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