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Abstract

We present a global existence theory for strong solution to the Cucker—Smale—Navier—Stokes system in
a periodic domain, when initial data is sufficiently small. To model interactions between flocking particles
and an incompressible viscous fluid, we couple the kinetic Cucker—Smale model and the incompressible
Navier—Stokes system using a drag force mechanism that is responsible for the global flocking between
particles and fluids. We also revisit the emergence of time-asymptotic flocking via new functionals measur-
ing local variances of particles and fluid around their local averages and the distance between local averages
velocities. We show that the particle and fluid velocities are asymptotically aligned to the common veloc-
ity, when the viscosity of the incompressible fluid is sufficiently large compared to the sup-norm of the
particles’ local mass density.
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1. Introduction

We are concerned with the time-asymptotic interactions between Cucker—Smale (in short C-S)
particles and incompressible viscous fluid, which can be effectively modeled by the coupled sys-
tem of kinetic C—S model and incompressible Navier—Stokes equations. Consider a situation
where many C-S particles are scattered inside a highly viscous incompressible fluid in a periodic
spatial domain T .=R3 /Z3 =0, 1]3. In this case, the dynamics of the particles and fluid can
be described by the coupled system of a Vlasov type equation and the incompressible Navier—
Stokes equations. More precisely, let f = f(x, &, t) be the one-particle distribution function of
the C-S particles with velocity & € R? at position x € T> at time ¢ > 0, and u = u(x, t) be the
bulk velocity of the incompressible fluid. The coupled dynamics of (f, u) is then governed by
the Cucker—Smale—Navier—Stokes (in short CS-NS) system [2]:

Wf+Ve - EL) +Ve-(Fulf1+Fa)f) =0, (x,6)eT’ xR >0,

8tu+(u~Vx)u+pr—MAxu=—/Fdfd§, Vi-u=0, (1.1)
R3

subject to initial data:

(f, wli=0 = (fo, uo), 1.2)

which is requested to satisfy

0) / fodgdx =1,
T3 xR3

(i) supp; fo is bounded in R? for each x € T°. (1.3)

Here F, and F; represent the alignment (flocking) force and the drag force per unit mass, re-
spectively:

Falf10x,£,1) = / V0 W E — ) (3, £y NdErdy,

T3 xR3
Fa(x,&€,t) ==u(x,t) —&. (1.4)

The kernel function v : T3 x T® — R, is a C!-function that satisfies the following conditions of
symmetry and boundedness:

@) Y, y) =9y x).
(i) my <yYx,y) <My, My—my<l, (1.5)

where ¢; is the standard unit vector, my and My, are positive constants.
Note that the first equation in (1.1) is the kinetic Cucker—Smale equation derived from the
particle C—S model using the BBGKY hierarchy in [11]. This kinetic equation is coupled via
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a drag force which is the main mechanism responsible for the flocking between particles and
fluids. For a detailed description of the modeling and related literature, we refer readers to the
authors’ paper [2] and the references therein. The global existence of a weak solution to the
system (1.1) was studied in [2] using Boudin et al.’s framework for dilute spray dynamics, and
a priori flocking estimate was also investigated in the class of smooth solutions. In contrast, the
existence of more regular solutions, i.e., strong and classical solutions to the system (1.1) has not
yet been investigated, which motivated this work. For other related particle-fluid interactions, we
refer to [1,3—-10,12-14].

The main results of this paper are two-fold. First, we present the global existence and unique-
ness of small strong solution to the system (1.1) for a suitable class of small and regular initial
data depending on the existence time interval. By increasing the regularity of the initial data,
we can obtain classical solutions. Second, we revisit the asymptotic flocking problem via new
Lyapunov functionals that measure the local velocity variances and the distance between local
velocity averages of the particles and fluid. From the time-evolution estimates of these function-
als, we show that the local fluctuations from the local averaged velocities of the particles and
fluid tend to zero at least exponentially.

The rest of the paper is organized as follows. In Section 2, we present several simplified
notations and state our main results. In Section 3, we present the global existence of strong
solutions to the CS—NS system in a periodic domain. We study an a priori estimate for asymptotic
flocking in Section 4, and finally give a summary of the main results in Section 5.

2. Statements of the main results

In this section, we present several simplified notations and discuss the main results without
proofs. Detailed proofs will be presented in Sections 3 and 4.

Throughout the paper, we set T € (0, c0) to be a positive constant, and let C be a generic
constant that may differ from line to line, and is not dependent on 7. For a given ¢t € [0, T'), the
set P(t) and n(¢) denote the particle velocity support and its size at time :

P(t):=|& €eR® : 3(x,&) € T? x R? such that f(x,&,1) #0},

n(t) :=max{|§| : £ € P(1)}. 2.1)

We also introduce some simplified notations. Throughout the paper, we denote M,(f(¢)) to be
the p-th velocity moments of the kinetic density f and set several norms:

My (f (1)) = / E17 fdedx, p ey U0},

T3 xR3

lu@] L5 = [u@] L) leellzro.r:ney = Nl pro,7; Lp (13))-

We are now ready to state our main results. Our first result concerns the global existence and
uniqueness of strong solution in any finite-time interval [0, T).

Theorem 2.1. Suppose that T € (0, 00) and ( fo, ug) satisfies (1.3) and an extra assumption:

Je >0 suchthat || follyi.co(m3xr3)y + luoll g2 3y <é.
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Then the system (1.1)—(1.5) has a unique strong solution (f, u) in the time interval [0, T) satis-
fying the following estimates:

(i) feWl(T3 xR x[0,7)),

(i) uecC®0,T; HX(T®)NL*0,T; H*(T*)) N H'(0,T;: H'(T?)),
(iiiy peL™(0,T; H'(T?)),

(iv)  (f,u) satisfies the system (1.1)—(1.5) in the distributional sense.

Remark 2.1. 1. In the proof of Theorem 2.1, the size of ¢ is the order of

9
2

geXT = o), e<kuz,

where X is a big positive constant depending on P (0) and ¢, but is independent of ¢ and 7.
2. For given T € (0, 0c0), we assume that the initial data ( fo, u¢) satisfies
Il foll w2.co (3 w3y + lluoll g3 3y K 1,

Then the same arguments as in Theorem 2.1 yield a strong solution with the regularity:

feW>®(T3 xR} x [0, 7)),

ueC(0,T; H(T?) N L*(0, T; HY(T%)) n H' (0, T; H*(T?)).
In fact, (f, u) is a classical solution according to the Sobolev embedding theorem:

feC (TP xR x[0,7)),  ueL?(0.T;:C*T%)nc'(0,T; L*(T%)).

The second result is concerned with the asymptotic flocking estimate for the system (1.1).
For this, we introduce a Lyapunov functional £ measuring the local velocity fluctuations and the
distance between local velocity averages:

2 2 2
ew=2 [ g-ef odedr+2 [u) - w0 dx + fucto) - 5.0

T3 xR3 T3

where u. and &, are local velocity averages of the fluid and particles:

fT3XR3 Efd%—d-x
u.(t):= | udx and Ny =—""———. 2.2)
(0= [ sy = (
T3
Theorem 2.2. Suppose that T, ( fo, ug) and  satisfy
S t o0
Te 00, £(0)< oo, . SUP0sizoo 10p Dl 2.3)

3
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Then, for any classical solution (f,u) in the time-interval [0, T) to the system (1.1)—(1.2), the
following estimate of exponential convergence holds:

E@t) < E(0)exp(—min{2my +1,K,2}1), t€[0,T),

where K is a positive constant given by K := 2um3 —2SUpg<, <o | 0p (8)||Loe > 0, 13 is a positive
constant appearing in Poincaré’s inequality for the torus T2 and p p is the local particle density:

Py, 1) i / Fx, £ 1)dE. 2.4)
R3

Remark 2.2. Note that our condition (2.3) depends on the sup-norm of the local particle density
pp which should be determined by the solution of the system (1.1). Thus the theorem has a natural
a priori setting. However, this a priori condition is not that severe. For example, the classical
solutions in Remark 2.1 have a uniform bound for the local particle density (see Lemma 3.1) for
tel0,T]:
2 00
sup Hf(t)”w200<‘937 sup n(t)<7) .
0<t<T 0<t<T

Thus the local mass density for the particles is uniformly bounded in the existence time-interval:
2 2 o
sup [pp()| <3 sup n(t) <e3n™.
0<t<T 0<t<T

3. Global existence of strong solutions to the CS-NS system

In this section, we discuss the global existence of strong solutions to the CS—-NS system
(1.1)—(1.5). As this section is rather lengthy, we first briefly outline its layout, and then present
all necessary estimates. The proof of Theorem 2.1 is divided into three steps.

e In Step A, we present approximate solutions (f”, »") which are solutions of the linearized
system by freezing the nonlinear coefficients by substituting the previous iterates. This iter-
ation scheme is different from that for weak solutions in [2], where we used a regularized
system by mollifying the bulk velocity u in the nonlinear convection term, i.e., (6; * u) - Vu
instead of (u - V)u.

e In Step B, we show that (f") and (u") are Cauchy sequences in L>(T> x R3 x [0, T']) and
L0, T; H'(T3)), respectively.

e In Step C, we show that the limit functions ( f, u) of the Cauchy sequences ( f") and (u")
have the regularity desired for Theorem 2.1.

3.1. Construction of approximate solutions

We describe our iteration scheme as follows. For the first iterate (f 0 uo), we set

(f% u°) := (fo.0).
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Note that if we take u® = ug, which belongs to H>(T?), then u° does not satisfy the required
regularity H? of iterations in Step A of Lemma 3.1. This is why we simply take u° to be zero.
Of course, in this case, the zeroth-iterate (f 0, uo) does not satisfy the given initial data, but this
is O.K, because iterates (f", u"), n > 1 described below will take the same initial data ( fy, ug)
at time ¢ = 0, and our strong solution will be the limit of (", u™).

Suppose that the n-th iterate (", u™) is constructed. Then the (n 4 1)-th iterate (frH unth
is defined as the unique solution of the following linear system:

Ff T Ve EfTY Ve [F(f"u") ] =0, (8 eT xR, 1> 0,

atun+l + (ul’l . Vx)un+l + prn—H _ MAxul’l-‘rl —— /(un _ g)f‘ﬂ-“ldg’
R3
V,-u"t =0, (3.1)

subject to the initial data:

(| o= (fooue),  (x,6) e TP x RY,

where the forcing term F (f", u") is defined as follows:

F(fn’un) :Fa(fn) +un _%-

Y (x, ) Ex =) " (v &, DdEdy +u" —§.

T3 xR3

Note that the equation for f"*! is in a divergent form, so under a suitable decay condition for £,
the total mass is conserved. Hence, without loss of generality, we set

' (x,€E,0)deédx =1, n=>0.

T3 xR3

Next, we present several a priori estimates for the uniform boundedness of the velocity support
in f" and an H?-estimate of u" using the energy estimates.

For a given (x, &) € T3 x R3 at time 7, we define a particle trajectory (x"1(s), &"t1(s)) :=
(x"tl(s; 1, x,8), " (s; 1, x, £)) to be the solution of the following ODEs:

%x”“m =£""1(s),

%E}’Hrl (S) — Fa (fn)(xl’H*l(s)’ gﬂ+1(s)’s) + un(xﬂ+l(s)’ S) _ si’l‘l’l(s)’ (32)

subject to the initial data:

xn+1 (t) =x, §n+1 (t) — %.



H.-O. Bae et al. / J. Differential Equations 257 (2014) 2225-2255 2231

In the following lemma, we study the uniform boundedness of the velocity support and energy of
particles (second velocity moment of kinetic density) under the a priori assumption of the fluid
velocity.

Lemma 3.1. Let (fk, uk) be the solution to the system (3.1) with initial data ( fo, ug) satisfying

My(fo) <oo,  EX0)e P(0) forallk> 1. (3.3)

If there exists a positive constant U > 0 such that

k
o?ﬁgn”” | ciory U

Then, we have

sup  max |&5(s)| <n>, sup  max  Ma(f¥(s)) < M5,
0<s<T 1<k<n+1 0<s<T 0<k<n+1

where P(0) is the initial velocity support defined by (2.1), no and n°° are positive constants
defined as follows.

o U MyJILG T mp 1\
I ) S

M¢,/M§o+UOO
m,/,—i-l

n> :=3<710+ > no :=max{|£| : £ € P(0)}.

Proof. We prove the desired estimate by the method of induction.

e Step A (initial step n = 0): In this case, we need to show that

sup [£1()[ =0, sup max{Ma(f0()), Ma(f' ()} < M5,

0<s<T 0<s<T
o Step A.1: We first note that fori =1, 2, 3,
(F)i () (x" (), €' (), s) sgn(&} (5))
= ( / ¥ (' ) (& — &) 0, & s)dé*dy> sgn(&(5))
T

3xR3

< My Ma(f0) = my|&!| < My /M5° —my &/

where we used the following relation:

’

Ma(f°) = Ma(fo) < M5°. (3.4)
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On the other hand, by our construction of ud = 0,

d
a\é} )| = [(Fi (f°) (x'5), &' (), 5) +uf (x" (5),5) — &} ()] sgn(&] ()
< (Fi(£°) (x5, £'9), 5) sen (& )) + |4 | oo go.71em) — &' )]

< My Ma(f0(9)) + [lu® ||L°°([O,T]><’]1'3) — (my + D5 ()|

< My [M$° + U™ — (my + D& (5)].

Gronwall’s lemma implies that:

M1//\/ P+ U ( e—(mw-H)t)
my, —|—1

Mw,/ +UOO
+1
Mv,,/MSO-i-UOO n>

<o pr— 3

61 (0)] < |& O]~ tmv D1 4

< gl 0| + ——2——

Thus, we have
3
o] <) |5 o] <. (3.5)
i=1

Therefore, it follows from (3.5) that

sup [1(s)] < n®™
0<s<T

o Step A.2: We multiply the transport equation for f! by |£|? to obtain
0 (1512 f1) + Vi - (1176 1) + Ve - [1EPF (0, u°) f1] =26 - F (0, u) f1.

We can integrate the above relation using the spatial periodicity of f! and its compact support in
&-variable (see (3.5)) to get:

d 0 !

M )=2 / £ Fu(f°) fldedx +2 f £ (u®—¢)fldedx
T3 xR3 T3 xR3

=In+7Ip. (3.6)
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o (Estimate of Z11): From the definition of F, in (1.4) and M; (fl) <VM>(f1), we have

7, =2 / ( [ w(x,y)é~(S*—f)fo(y,S*)fl(x,é)df*dy>d$dx

T3xR3 T3xR3

=2 f ( / wx,y)s-s*fo(y,&)fl(x,g)dg*dy)dgdx

T3xR3 T3 xR3

2 / ( / Iﬁ(x,y)lélzfo(y,&‘*)f](x,E)dé*dy>dédx

T3xR3 T3xR3
< 2My /' Ma(fo) | Ma(f") = 2my Ma(f"). (3.7

o (Estimate of Z17): We use the assumption IIMOIILOO(WX[O’T)) =0< U™ to get

Tio <2UMy (f') —2Ma(f1) <20/ M (f1) — 2Ma(f1). (3.8)
Combining (3.7) and (3.8) in (3.6), we find that

d
EMz(fl) < 2(My~/My(fo) + U®)\/ Mo (1) = 2(my + DMa(f1).

We then set:

Yi=/M(f), e, Y =M(f").

Then we have

dy
o + (my + DY < (My/ Ma(fo) + U™),

which yields:

t

VMo (fY) < VMo(fo)e™ Mot +f€_(m“’+l)(l_s) (My~/Ma(fo) + U)ds

0
t

)6_(mw+1)t+M1/,[6_(m'/’+1)(t_s) /Mz(fo)ds
0

oo oo

U
= + (\/ M>(fo) —

my +1

my +1

U*>® My M U M M
_ N v/ Ma2(fo) n ( Moo — My 2(f°)>e—(mvf+1)t
mw—l—l m¢~|—1 mw—i—l m¢+1

Smax{\/Mz(fo), u= +MV/ Mz(fo)}

my + 1 my + 1

< M5°. (3.9)
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‘We now combine (3.4) and (3.9) to find

sup max{Mz(fO), Mz(fl)} < M;5°.

0<s<T

e Step B (inductive step): Assume that the result is true for n = N + 1. We now show that the
result holds for n = N + 2. Suppose that there exists a positive constant U > 0 such that

k
0§]§2}I\>/+1||u ’|L°°<T3X[O,T)) =U%

Then because

sup [Ju”|

0okoy LT3 x[0,T)) = o sup ”“k ”LOO(T3x[0,T)) =U%,

<k<N+1

by our induction hypothesis, we have

sup  max \Ek(s)| <n*>, sup  max Mz(fk(s)) < M3°.
0<s<T 0<k=N+1 0<s<T 0<k=<N+1

To derive the desired result, we must show that

sup [N T2(5)] < n™, sup Ma(fNT2(s)) < M5°. (3.10)

0<s<T 0<s<T

¢ Step B.1: By the same analysis as in Step A.1, we have

sup [N T2 (s)| < ™. 3.11)

0<s<T
¢ Step B.2: By the same analysis as Step A.2, we have

d

EMz(fNH) <2(My Mo (fNHY) + U®) Mo (fNF2) = 2(my + D)Mo (V).
This yields

t

/Mz(fN+2)§\/We_(m‘/’“)’+/e_(m‘”+1)(’_s)(Mw [ (FN+1) + U%)ds

0
UOO
=y 1 + (sz(fo) -
t
+M¢/e—<mw+1><’—“ Mo (fN+1)ds. (3.12)

0

e—(m¢+l)t
my + 1
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We then set:

Spr1(s) = max ([ M2(fH(5)).

In (3.12), we have

© _ My SN+ _
S < + M _ (my+1)t + MyON+1 | — o~ (my+D
N42 S (\/ 2(fo) m¢+1>e oy + 1 (1-e )
U _ My Sy +2
- S () — (my+Dr o TVONT2 3.13
—m,,,+1+< 2(fo) m,,,+1)e et 1 ©-13)
where we used Sy+1 < Sn+2-
Then the relation (3.13) yields
U My / M>(fo) my + 1
S < VM , =,/M5°. 3.14
N+2_max{ 2(fo) my + 1 + my + 1 my +1— My 2 ( )

Finally, we combine (3.11) and (3.14) to show that (3.10) holds. O

Remark 3.1. Let P"(¢) denote the n-th particle velocity support at time ¢, i.e.,
P"(t):={& e R : 3(x,&) € T° x R? such that f"(x,&,1) # 0}

Then, Lemma 3.1 implies that

sup  max [n*(s)] <n™,
Ognglikf’l‘H

where ¥ is defined as follows:

n*(s) :=max{|§| : £ € PX(9)}.
In the following lemma, we study the H>-energy estimate of the approximate solutions.

Lemma 3.2. Let (f",u") be the sequence of approximate solutions with initial data ( fo, uo)
satisfying (3.3). If there exists a positive constant U™ > 0 such that

max

]SkSnHuk HLM(O,T;H2> U,

then fort € [0, T), we have
1d

2dt

< C(Ju 2 [V g+ 1 g (" g+ D0 ),

T PR L P
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where C is a generic positive constant that depends on U and the initial data, but is indepen-

dent of t and n.

Proof. Before we proceed with the H2-estimates, note that Sobolev’s inequality implies

< C max <CU®, 0<k<n.

1<k<n

max

I<k=n ”uk”L""(WX[O,T)) Ju* ||L°°(O,T;H2)

We then apply Lemma 3.1 and Remark 3.1 with U® = CU to get

sup max |n*(s)] <n*, sup  max  M(fF(s)) < M5,
0<s<T 0<k=n+1 0<s<T 0<k=n+1

where M3° and n> are positive constants appearing in Lemma 3.1.

e Case A (Zeroth-order estimate): It follows from (3.1), that

1d
P i PR A
— _/(un . V)Mn+l . u”+1dx _ / I/tn+1 A (Mn o g)fn-i-ldé:dx
T3 T3 xR3
=:1&1——31&gr

The terms on the right-hand-side can be estimated as follows.

& (Estimate of Z»1): Since V - uF = 0 for all k > 0, we have

T = —% / u - V|u"Jrl |2dx = % /(V . u”)|u”Jrl |2dx =0.

T T

¢ (Estimate of Z»;): We will show that
oo = max| (1), ()2 Mg L1 | o (e 2+ D) [ o
First, note that

I = / w™ (" — &) i dedx

T3 xR3

Z/u"“-u"(/ f”“dg)dx— / (/u”“-gf”“dg)dx.

sl P”'H(t) pn+l(t) T3

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)
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On the other hand, we have

fn+1d%. < ” fn+1 ” . (noo)3,

Prtl(r)
/ </Mn+1'§fn+ld€)dx < / (/|Mn+1||§|fn+ldx)d§'
Pn+l(l) T3 pn+l(t) T3
1/2
<l s [ (frer i) e
P”'H(t) T3

<t a7 e (0 0) 7 Mo (£ )

< () st o e

where we used particle energy bounds given by (3.15). We can combine the above estimates with
(3.19) to get (3.18). Finally, in (3.16), we combine (3.17) and (3.18) to derive a zeroth-order
energy estimate:

1d
2dt
< max| (1), ()72 w7 o (o 1) 2 (3.20)

e Case B (High-order estimates): For each multi-index o with || = 1,2, we have

o2 ] v

1d |
2dt
= —/8§u”+1 % (" Veu" ) dx — / Au" 9% ((u" — &) frH)dedx

i T3xR3
=:I31 — 3132. (3.21)

[ |G+ el Vo

Next, we estimate 731 and 73, separately.

¢ (Estimate of Z31): We use Leibniz’s rule and Sobolev embedding as in lower-order estimate to
derive the desired estimate:

Ty=-Y (;) / 8% 198", 8% Pum+ dx

B<a T
_/agun+l(agun)(vxun+l)dx
3

= Z (Z) ” a?un+1 ”L(’ || a)/fu" “L* Hvagfﬁurur] ”L2

B<a
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+ o5 u | o flou” | o [ V" s
< Cllu | |V e
where we used the Sobolev embedding:
lullzs < Cllull g1, lullze < Cllull g1

o (Estimate of Z3): Since f € W1, we need to move one-derivative of 3%((u" — &) f"*1) to
3%u"*+! using integration by parts, i.e., for |y| =1,

Ty = / (8g+yu"+l)8f_y((u" _ S)f”H)dex

T3 xR3
_ f (a,‘i‘”u”“) Z (Ol ; V) (afun)(aa—y—ﬁfnﬂ)dgdx
T3xR? O<p=a—y
+ / (ag+yun+1)(un _ E)(aol—}/fn'i‘])dgd‘x
T3 xR3

We use the same arguments as for Case A to find:

Th = CO) 74 e [ o |V o
735 < max{ (1), (1) /Mg L e (1 o+ D96 o
We combine the above estimates in (3.21) to find
1d
2dt
< Clla | o |V e+ COY L g | |70

max{ (1), (1) 2 M e (] 2+ D[V o B22)

Finally, we combine (3.20) and (3.22) to obtain the desired estimate. O

s PR A VR

3.2. Convergence estimate

In this part, we study the uniform boundedness of f” and u”, when the initial data is suf-
ficiently small. We also show that the approximate solutions are Cauchy sequences in suitable
Banach spaces.

We first show that the approximate solutions are uniformly bounded for sufficiently regular
and small initial data.
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Lemma 3.3. Suppose that the initial data ( fo, ug) satisfy (3.3) and the following conditions:

I follwr.ee + lluoll g2 < &

Then, for any approximate solutions (f*, u*) in the time-interval [0, T), we have

2 1 1
[ r* lem(w <R3x[0.T)) < &7 ”“k ||C0([O,T];H2(’]I‘3)) <é€3, “”k ”LZ(O,T;H3(T3)) <é€3.

Proof. Let (", u") be the approximate solutions constructed by the iteration scheme (3.1). To
derive the desired estimate, we use the method of induction.

e Step A (Initial step): Since (fo, u% = (fo,0), we have:

2 3 3
[l <e<e®s Nulleogorpmy <6 N2 rm) <

e Step B (Inductive step): Suppose that the approximate solutions ( f*, u¥) satisfy

2
3
3

|1y < <et, lskzn

k % k
[l HC([O,T];HZ) <é&7, u ||L2(0,T;H3)
We next show that (f"+1, 4" +1) satisfies the desired estimate.

¢ Step B-1 (Estimate of f n+1): From now on, we drop the x-dependence in V,, i.e., we use V
instead of V,, however to avoid confusion, we retain V¢ to denote the gradient with respect to
£-variable. We introduce a nonlinear transport operator A on T3 x R3 associated with (3.1):

N:=0,+&-V+F(f" u")- Ve.
It follows from (3.1); that

N(fn+1) _(VS . F(f",u"))f”+1 < Cfn+1,
N (0 f"H) = =0 F(f" ") - Ve f" = (Ve - 0 F(f" u”)) S
— (Ve F(f" u")) oy £
< C((1+axu | o) Ve S+ 17 4 o £,
N (B f"H1) = =0 £ = 0 F(f"u”") - Ve f" = (Ve - F(f",u"))dg, £
< C(|05 "+ Ve S t), (3.23)

where the following estimates are used:

Ve F(f"u") <3My +3, 9 F(f"u") <My +1,
I, F(f" u") <CIVY e + || V" | o
Ve Oy, F(f" u") <3|V pee. (3.24)
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‘We combine estimates (3.23) and (3.24) to get
N( 3 V“vﬁf"“(z)) <CO+ V") Y VEVEFH@). (3.25)
O<lal+|BI=1 O<|a|+]B]=1

We set F"+1(f) to measure the W' *°-norm of f"+!:

fn-‘rl (t) = Z H VO{ Vﬂ n+1 (t) ||L:>c~
O<ler|+|BI=1

We integrate the relation (3.25) along the particle trajectory and take a supremum with respect to
(x,§) to get

F ) < FN0)exp C(T + | V" I i0.:000)s 1€, T
On the other hand, since e*7'e = O(1), we have
FHL0) <&,
| vu" HLl(o T:L%0(T3) = C‘/_“” ||L2(0 T:H3(T3) = Cetel = o).

Thus, we have

2
FHt) < CeeCT < &5,

o Step B-2 (Estimate of u”*!): Note that the estimate in Step B-1 and induction hypothesis imply

2 3 5
| £ ||W1.00(']]‘3>(R3><[0,T)) <e3, " ||c([0,T];H2) <&3, " ||L2(0,T;H3) <eg3.

Recall the energy estimate in Lemma 3.2 and we use the result of Step B-1 and the induction
hypothesis on u" to find

1d||
2dt

2
= C(lu 2 [V g + 1P e (" 2+ D[ )

< C(e3 [V G + e (63 + 1) [ a)

"+ |V

<l e (e 1P I s+ (4 )) 9 ),
where we used Young’s inequality:

10 2 1 2
1,1 ev9 g3+ 1)

3 (ed 4 1) [y = e (63 (65 )1 o) = S+ T 2
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We use the smallness of ¢ to find

d

D o+ [0 o = 0¥ 4 b (e 1) |

<C(e 465 [ut|2). (3.26)

We now apply the Gronwall inequality to (3.26) to have

2
I "H(t)”Hz+[||Vu"+l(s)||H2ds<C||uo|| se 59T+C89( ce?T )

wIN

)
2

IA

(CsSe cedr +Cede ”T)

IA
| Do

This implies

” n+1“L°°(OTH2)+||u ! “L20TH3)<8§

‘We next show that
1
l4" Mo,y m2crny < &7

For this, we use (3.26):

to find

" @5 = " ) 32| = <Cyelt—s), 0<s<t<T.

d
[ Sl i@ e

N

This implies the continuity of |u"*!(1)||7, inz. O

Next, we show that the approximate solution ( f”, u") is Cauchy in L®(T3 x R3 x [0, 7)) x
L>®(0,T; H'(T3) N L%(0, T; H*(T?)).

Proposition 3.1. Let (f7, u™) be a sequence of approximate solutions with initial data ( fo, ug)
satisfying (3.3) and the smallness:

I follwree + lluoll 2 < &

Then f" and u" are Cauchy sequences in L(T> x R x [0, T]) and L=, T; H (T3) N
L2(O, T; H2(T3)), respectively.
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Proof. It follows from Lemma 3.3 that

2 1 1
3 < €3, < g3,

” r* “WLOC(’]I‘3 xR3x[0,T)) <€ ””k ||C0([O,T];HZ(’H‘3)) ””k ||L2(O,T;H3(’]I‘3))

Thus, we have
1
””k ||L°°(T3><]R3><[0,T)) = C””k ||C°([0,T];H2(’]T3)) =Ces.

By applying Lemma 3.1 with U* = Cs%, we obtain the boundedness of the velocity support:

max sup nf(r) <n®™.
k=1 o<t<T

‘We then set
t
8@ = [ (= YO e 1 =Y+ [ [9 =a)ds
0
and claim:
t t
Anr(1) < AGe) / An(s)ds + B(e) f Ansr(s)ds, (3.27)
0 0

where A(g) and B(¢) are positive constants dependent on €.
Proof of claim (3.27).

e Case A (Estimate of the time-evolution of || f*+1 — f” ||%oc): It follows from (3.1) that

at(fn-i-l _ fn) +E . Vx(fn+l _ fn) + F(fn, un) . Vé(fn-’_l _ fn)
= —(F(f", u") _ F(f”_l,u"_l)) . ngn _ (fn+1 _ fn)Vg . (F(f"_l, un—l))
_ fn—HVE . (F(fn, un) _ F(fn_l, un—l))

3
— ZI‘”‘ (3.28)
i=1
Below, we estimate the terms Zy; as follows. We first recall that

F(f"u") = / V() E—E) (), E DdEdy +u" — &. (3.29)

T3 xR3
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¢ (Estimate of Z41): Note that
|F(fn, un) _ F(fnfl’ un71)|
— |F(fn, un) _ F(fnfl, Mn) + F(fnfl,un) _ F(fnfly un71)|
f Y(x, )& — &) (" — £ )dEdy| + [u" —u" Y

T3 xR3

= C“fn _fnilnLoo + ””n —u"! ||L°°'

This yields
Zal < [F(f"u") = F(f"~ L") Ve |
=CeS (| "= M o " = w7 2)
=CeS (1" = £ o + " =" ) (3.30)
¢ (Estimate of Z4»): It follows from (3.29) that
Ve - F(f" L u" )| = ‘— / Y06, ) "N, & DdEdy — 3] <3(My + 1).
T3 xRR3

Thus, we have
Zaal < C| f" = £ e
o (Estimate of Z3): Note that
Ve - (F(f"u") = F(f"~u""))]
[ v = o sndedy

T3 xR3

53M¢an - fﬂ_l”Lw

Again this yields
2
I Zasl < Ce3 | £ = f*7 1 oo (3.31)
We now combine (3.28) with (3.30)—(3.31) to get:

8 ‘fn+1 _fn| +$ 'Vx’fn-‘rl _fn‘ +F(fn,un) 'V$|fn+l _fn}
<CE D) = " oo + CoF | =" o (3.32)
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Multiplying (3.32) by | f**! — | and using Young’s inequality, we can obtain

at|fn+l _ fn|2+%. . Vx|fn+l _ f}‘l|2 + F(fn,l/in) . V§|fn+l _ f}‘l|2

<CES+ 1)1 = S o 18" = £ ) + €3 " = .

We integrate (3.33) along the particle trajectory to find

[(F = )07

=clet o) [10 =@l + 107 =)ol
0

+ Ce3 /” (u” - u"_l)(s)”zzds.
0
Then we apply Gronwall’s inequality to have
[ =M O

t s
cef+) [ = o lds + e [ [ - w ol pdzas,
0 0

0

where we also used

t s t
[ 16 =@ ladzas 1 [ = )0 s
0 0 0

(3.33)

(3.34)

(3.35)

e Case B (Estimate of the time-evolution of [u"+! — u” ”i{l ): In order to estimate the sequence
("t — u")n>1, we take the difference of (3.1), between the (n + 1)-th and the n-th iterates to

have
8t(un+1 _ un) _ ,bLA(un+l _ un) + Vx(Pn+l _ pn)
= —y". Vx(un—H _ un) _ (un _ un—l) V" — /(un _ un—l)fn—&-ld%.
R3

—/Mn_l(fn+1 _fn)d%._‘_/‘é(fn-i-l _fn)d%',
R3 R3

Vx-(u"+1 —u"):O, t>0, xeT3.

e (Zeroth-order estimate): We take the inner product with "' — 1" and then integrate it over

T3 x R3 using the same estimates as in Case A of Lemma 3.2 to find
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1d
2dt

= C(Ivu| ol == H ] st = e P o e = o e =
ol DA A P Ui PR Ut PP B A PN [ 1

< Cox (| —u) [+ |t = [12) + Ce (Ju = [ 4 [ = 1)

el PR N CEa O P

+ CeF (Ju =™ | o o ™t =t [2) + CeS (|7 = e [ =t 7)
+ O = e+ [ = u]2)
= C(ed 1) (Jurtt = [+ £ = £ ) + o = 0. (3.36)
o (First-order estimate): Similar to the lower-order estimate, we have

1d,
2dt

= —/V(u”“ - u”)V(u" . Vx(u”Jrl - u"))dx

[V =) G+ i VP =)

3

- / V(u"+1 - u")V((u" - u"_l) Vu")dx
el

_ / V(= )V (" — u"Y) ) dEdx
T3 xR3

_ / V(un+1 —Mn)V(Mn7] (fn+1 _fn))dde
T3 xR3

+ / V(un+1 _ Mn)|‘;:V(fn+l _ fn)d%-dx
T3 xR3

5
= ZISi'
i=1

Below, we estimate the terms Zs; separately. We use the same arguments as in Case B of
Lemma 3.2:

o Tst = V("™ =) | s (1Va" | o [V (" =) o 4 " [ | V2 (" = )] 2)
< Ol | [V W =) G = Co3 [V =) [0,

o Tsp = [V("™ =) | s (V0" | o [V (" = =) | o 4 920" | o = ] 1)
< Cosfu = [V =) .

o Tsy = CV ("™ =) o (£ o [V (" =) | o 4 97" " = 1] 12)
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= Celfu —u | [V = a2

0154: / VZ(un—H _Mn)un—l(fn-l—l _ fn)d%-dx

T3 xR3
< CIF = ) o | VP =) e
= Ce | = e |V @ =)

OISS — _ / V2(uﬂ+1 _ un)g(fn+l _ f")di;'dx

T3 xR3
=CImt = [V =) < €L = P IV @ = i)
(3.37)
Combining all estimates in (3.37), we have
ST Yt ) R ) s
< Ced[[v(ut u")||21 + Ced (Ju =+ [V =) )
+CeS (Ju =+ [V =) )
+CeS (| = o H [V =) )
+ O3 £ o3 |V =) [5)
< Ce} |Vt —un) o + CoF |u — |
+C(e% +673) | S = £ e (3.38)
We now combine (3.36) and (3.38) to get
d 2 2
Tl = g [V @ =) [
<Cled + 1w =" [+ C(14e5 + o) [ =
+Co3 |ur — w2 4 Ce 3 VR — )| (3.39)

We integrate (3.39) and combine with (3.35) to obtain

1
I+ = O+ 16+ =) Ol e [ 196 =) s
0

<ot +eh) [ - IO+ 107 - P

0
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t

+C(1+e3 +677) f (1@ =) ) [ + @ = ") @) 51 ds

0
t s !
+C8%/f”V(u”—u"_l)(f)H;.drderCS%/||V2(“n+1 —u")(s)]2ds.
00 0

By the smallness of ¢, we can have

t

[ = Ol + 1w =)ol + (19 =)o) s
0

cired +e7h) [0 = MO e+ 107 = 7)) )ds
0

Fe(i+et+ed) / (1"t =) [0+ (" = =) ) [1)ds

Lo+ /(/”v nl (t)||H1dr+f||Vu - )(f>||H1df)

which proves the claim with A(e) = B(e) =C(1 + g3 + g_%),
Finally, we apply Gronwall’s inequality [3] to derive

t
B @ = [ (7 = O o 16 =) O+ [ 1960 =)0 [
0

_a Fed 4o HTyrt!
(n+ 1)

, t<T.

This implies that (") and (u") are Cauchy sequences in L>®(T? x R? x [0,T]) and
L0, T; H(T3) N L?(0, T; H*(T3)), respectively. O

3.3. Proof of Theorem 2.1
In this part, we present the proof of Theorem 2.1. We divide its proof into two parts.

e Part A (Existence): Let (") and (#") be sequences of approximate solutions, as constructed
in Section 3.1. Then by Proposition 3.1, (f,) and (u,) are Cauchy sequences in Lo°(T3 x
R3 x [0, 7)) and L0, T; H'(T3)) N L%(0, T; H3(T?)), respectively. Thus they converge
strongly to some pair of limit functions (f, i) € L%®°(T> x R3 x [0, T)) x L>®(0, T; H'(T?) N
L2(0, T; HX(T?%)) as n — oo:
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"= f in L®(T3 xR x [0, T)),
u" =i in L®(0,T; H'(T?)) N L*(0, T; H*(T?)).
It is easy to see that the pair of limit functions (f, i) is a weak solution to the CS-NS system
(1.1)—(1.5) in a distributional sense (see [2]). We must verify that the limit functions (f, #) do
have the required regularity of strong solution (see the required regularity in Theorem 2.1).
Note that f” and u” are bounded in W°(T3 x R3 x [0, T)) and C°(0, T; H*(T?)) N
L2(0,T; H¥(T*)NnHY0, T; H (T3)), respectively (see Lemma 3.3). Hence by the weak com-
pactness theorem for reflexive Banach spaces and the Banach—Alaoglu theorem, there exist
subsequences (f"*, u"*) and the pair ( f, u) of weak limits:
FeWh®(T3 xR x[0,7)),  f™ —* f inWh®(T3 x R? x [0, 7)),
ueC®0,7; H(T*)NL*(0,T; H*(T?)), and
u™ — u inC°(0, T; H*(T?)) N L*(0, T; H*(T%)).

By the uniqueness of weak limits, we have

f=F inL®(T*xR?x[0,T)),
u=i inL®(0,T; H'(T?)) N L*(0, T; H*(T?)).

Therefore, the pair of weak limits (f, u) is also the weak solution to the system (1.1)—(1.5)
and (f,u) has the required regularity of a strong solution. The required regularity of u; €
L?(0, T; H'(T3)) and p € L>(0, T; H'(T?)) follow from the Navier—Stokes equations in (1.1)
and the regularity of f and u. Hence, (f, u) is our strong solution to the system (1.1)—(1.5).

e Part B (Uniqueness): Let (f, ) and ( £, i) be the two strong solutions in Part A corresponding
to the same initial data ( fy, ug). We set:

D)= | f @) = FO s + ) = @)1

Then, by the same arguments as in Proposition 3.1, A,4(¢) satisfies Gronwall’s inequality:

t t
Ag () + / [V —a)(s) | 3ds < Ace) / Aq(s)ds,  Aq(0)=0,
0 0

and the standard Gronwall’s lemma implies that

Ag()=0, ie,f=f inL®([0,T]x T xR?),
w=ii in L®(0,T; H'(T?)) N L*(0, T; H*(T%)).
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We now need to verify that

f=f inwhe([0,7]x T? x R?),

u

i in L2(0, T; H*(T?)) N L*(0, T; H3(T?)).

For the uniqueness of f, we set that £2 denotes one of sets [0, '), T3, R3 and ¢ denotes one
of variables ¢, x, £. Then, for any ¢ € c! (£2), we have

‘f b (f — f_)¢dé‘ - ‘/(f - f_)3;¢>d§‘
Q Q
< CIlf = fllzoqo,r1x15x23) 19 Pll 222 = 0.
Thus we have 0, f = B;f a.e.on [0, T] x T3 x R3, which implies

f=f in Wl’oo([O, T] x T3 x R3).

On the other hand, for any ¢ € C 1(T3), we have

<Cllu—ullpooo,1: 11 (13 I Vi@ llLe =0.

/V)%(u — i)pdx /Vx(u — i)Vedx

T T

Thus we have Vfu = Vfﬁ a.e.on [0, T] x T3 x R3, which implies
u=i inL®(0,T; H*(T?)).
We can similarly show that
u=i inL*(0, T; H(T?)).
This completes the proof of Theorem 2.1.
4. An exponential flocking estimate
In this section, we revisit the asymptotic flocking problem for the system (1.1)—(1.5) on the
domain T3 x R3, which has been studied in the authors’ earlier work [2]. In fact, the analysis in
this section can be generalized to any dimension, but for consistentency with the existence theory
in Section 3, we restrict our analysis to the three dimensional spatial domain T3.

4.1. A Lyapunov functional

We showed in the previous section that if the initial data is sufficiently regular, a unique clas-
sical solution to (1.1)—(1.5) can be obtained. Thus it is natural to wonder whether these classical
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solutions exhibit asymptotic flocking behavior, a justification of the modeling of the interaction
between particles and fluids. In [2], we used the following Lyapunov functionals to measure the
deviations from the time-dependent averaged particle velocity &.:

1
gwi= [ l-aolradx g0 =3 [lo-swlar
T3 xR3 T3

where &, is defined by (2.2).
To close the time-evolution estimate of 5;, we need to control the term fT3 lu — Eclzdx in

terms of fw |V (u — &:)|?dx. The proof of Lemma 3.2 in [2] is technically vague since u — &
does not have a zero mean, and as a result we cannot use Poincaré’s inequality. To remedy this
mistake in [2], we introduce the modified sub-functionals &£,, £ and &4:

() = 26,(1) + 261(1) + Ea(), Ep(1) = / & — &0 fdedx.
T3 xR3

E(t) = /;u —uc@Pdx, Eat) = [ue®) — E(0)

sl

2
)

t207

where u, and &, are the mean bulk velocity of the fluid and the averaged C-S particle velocity de-
fined in (2.2). More precisely, we will use Poincaré inequality to get dissipation corresponding to
sub-functional £ from the diffusion Au. Next we investigate the evolution of distance between
the averaged velocities &.(r) and u.(¢) using the functional &;. Together with these observations,
we finally show that the Lyapunov functional £(¢) will be exponentially dissipated as time goes
on. This is our new strategy for the estimate of asymptotic flocking behavior compared to the
one in [2]. On the other hand, by the triangle inequality, 5;’» (Ey in Section 3, [2]) is bounded by
&y + &4, which are defined above, therefore, the asymptotic result in [2] still works.

4.2. Time-decay estimates

In this part, we show that the functional £ converges to zero exponentially fast, when the
viscosity u is sufficiently large.

Lemma 4.1. Let (f, u) be any global classical solutions to the system (1.1)—(1.5). Then we have

o dE,
O —E==2myEp+2 / (§—&) (u—§)fdsdx.

T3 xR3
y d€&y
G S s-oume 42 [ - w-ordeds.
T3 xR3
dé€,
iy T~ 4 / (e — &) - (u— &) fdEdx,

T3 xR3

where 3 is an optimal constant appearing in Poincaré’s inequality for the domain T>.
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Proof. (i) Since the estimate for £, can be found in Lemma 3.1 [2], we simply estimate the
time-variation of the functionals £ and &;.

(ii) We use (2.2) and the definition of £ to get

&y

2 =2f(u—uc)-8,udx—2uc~/(u—uc)dx
T3 T3

:2/(u —ue) - dudx =27T.
T3

Below, we estimate the term 7. We use the second equation in (1.1) to find

T=—/(M~V)u~(u—uc)dx—/(u—uc)-Vpdx
T3 T3

+M/(u—uc)-Audx— / (U —1e) - (u — &) fdxds
T3 T3 xR3
T+ B4 T+ T

o (Estimate of 77): We use integration by parts and V - u = 0 to get

1

1
/(M-V)u~udx=5/u-V|u|2dx=—§/(V~u)|u|2dx=0,
'ﬂ*”é

T3 T3
/(u -Vudx = —/(V -w)udx = 0.
T3 T3
This implies
Ti=0.

o (Estimate of 7;): We use V - u = 0 and the periodicity of p to find

7'2:/(14—14(.)~Vpdx=—f(V'U)de:0'
T3 T

o (Estimate of 73): We use integration by parts and Poincaré’s inequality to obtain

Ts= —M/ |Vul*dx < —um/ u — ucl?dx = —pumsy,
']1'3 ']1'3

where 73 is the Poincaré constant for T3.
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(iii) Because

i = f (u—&) fdsdx and e = — / (u— &) fdtdx,

T3 xR3 T3 xR3
we have

déq .
W =2(uc—§&) - (uc— &)

— —due—E)- / -8 fdedx. O

T3xR3
4.3. Proof of Theorem 2.2

We are now ready for the proof of Theorem 2.2. To get rid of the annoying term fT3 o3 (e —
&:) - (u — &) fd&dx in the time-decay estimates of £, £ and £; in Lemma 4.1, we consider the
following linear combination of sub-functionals:

£ =28, +2E7 + &u.

Then it follows from Lemma 4.1 that

d&

E§—4mw5p—4un35f—4 f lu— &> fdedx. 4.1)
T3 xR3

Note that our purpose is to derive Gronwall’s inequality for £, however, the estimates in (4.1) do

not contain &; on the right-hand-side, so in order to extract a good term —|O(1)|&; out of

4 f u — £P fdedx,

T3 xR3
we use the following standard interpolation technique:
| P razax
T3 xR3

_ / = e + 1 — Eo + & — P fdEdx

T3 xRR3

_ 2 2 2
—fppm—ua dx + lue — &P + / (b — £ fdEdx
T3 T3 xR3

+2 / (= 110) - (e — &) fdEdx +2 f (e — ) - (b0 — £) fdEdx

T3 xR3 T3 xR3
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+2 / (= ue) - (5 — &) fdEdsx, 4.2)
T3 xR3

where p,(x, t) is the particle density defined by (2.4).
e (Second cross term in (4.2)):
[ w0 -orpasax=we-s0- [ &-ordear=o
T3 xR3 T3 xR3
o (First and third cross terms in (4.2)): For the remaining two terms in (4.2), we estimate

‘2 f (= ue) - (e — &) fdEdx

T3 xR3

<25/|u—ucl (/fdg)dx+— / luec — E)? fdEdx

T3 xRR3

2 1 2 2
=25/,0P|M—MC| dx+%<|uc_fc| + / 1§ — & fd&dx)

T3 T3 xR3
=28/,0p|u — u|*dx + 35 (Sd(t) +Ep(1)). (4.3)
3

In (4.2), it follows from (4.3) that
1
/ lu— &1 fdedx > (1 — 28)/,0P|u —uc|?dx + (1 - ﬁ)(é’d +&p). (4.4)
T3 xR3 T

Finally we combine (4.1) and (4.4) to obtain

d€é 1 1
— <-4 1—— —4 41— —
s (mI/, + 28)5[) /JLJT35f ( 28>gd

—4(1 —26) / pplu — uc|*dx.
'11‘3

We now choose § = 1 to satisfy

1——>0.
26
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For such §, we have

d€
— = 20my + D€y - 2(2ums = 2| pp () || ;o) EF — 24
< —20my + &, —2(2um3 =2 sup [y, )Er — 264, 4.5)
0<t<o0
where we used
/pp|” - uc|2dx = "pp”Loogf-

gl

If the viscosity u is sufficiently large so that

su t 0
2um3 —2 sup |pp()] ;0 >0, ie,p> Pot=o0 1Py (1L ,
0<t<o0

3

then the relation (4.5) implies

d&é

I < —=QCmy +1)Q2Ep) — KQ2Ey) —2E3 < —min{2my + 1, K, 2}E,

where K =2um3 — 28Upy</ <0 |0p(#)||Le > 0. Then, Gronwall’s lemma yields an exponential
decay:

EM) <&, 1>0,
where y :=min{2my + 1, K, 2}. This completes the proof.
5. Conclusion

In this paper, we showed the global existence of the unique strong solution to the Cucker—
Smale—Navier—Stokes system for a sufficiently regular and small data depending on the length of
the existence time-interval 7' € [0, 00). Theorem 2.1 implies that if the initial data is sufficiently
regular and small, then the strong solution obtained are smooth enough to be classical solution.
We also revisited the asymptotic flocking estimate for a family of classical solutions, in which the
kinematic viscosity u is sufficiently large compared to the sup-norm of the local particle density.
Hence we corrected some mistakes in previous literature [2]. Of course our asymptotic flock-
ing estimates are conducted in an a priori setting, but this is good enough to cover the classical
solutions obtained in Theorem 2.1 (see Remark 2.1) as a corollary of Theorem 2.2.
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