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Abstract

In this work we study the well-posedness for the initial value problem associated to a generalized deriva-
tive Schrodinger equation for small size initial data in weighted Sobolev space. The techniques used include
parabolic regularization method combined with sharp linear estimates. An important point in our work is
that the contraction principle is likely to fail but gives us inspiration to obtain certain uniform estimates that
are crucial to obtain the main result. To prove such uniform estimates we assume smallness on the initial
data in weighted Sobolev spaces.
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1. Introduction

We shall study the following initial value problem (IVP)

|
=

{ia,u+a§u+i|u|“axu = (L1)

u(-,0) = uo

where u is a complex valued function of (x,7) e R x R and « > 0.
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The equation in (1.1) is a generalization of the derivative nonlinear Schroédinger equation,
(DNLS)

idu+0%u+id,(JulPu) =0, (x,1)eR xR. (1.2)

The DNLS equation appears in physics as a model that describes the propagation of Alfvén
waves in plasma (see [20,21,23]). In mathematics, this equation has also been extensively studied
in regard to well-posedness for the associated IVP [5,7,9—-12,27,28]. Tsutsumi and Fukuda [29],
using parabolic regularization, proved local well-posedness in Sobolev spaces H*(R), s > 3/2.
Hayashi [10] proved well-posedness for initial data ug € H'(R) satisfying the smallness condi-
tion

luoll 2 < V2. (1.3)

His idea was to use a gauge transformation to turn the DNLS equation into a system of nonlinear
Schrodinger equations without derivative in the nonlinearity. This system, in turn, can be treated
using Strichartz estimates. It is known that DNLS equation can be written as a Hamiltonian
system

du(t
ZE ) LB () (1.4)
where E (u) is the energy of u defined by
1 2 1 2 -
E(u)(t) = 3 |oyul“dx + ZIm |u|“uodudx. (1.5)

As a consequence of (1.4) it follows that E is a conserved quantity. In particular, the result of
Hayashi is global in time. Later on Hayashi and Ozawa [11] based on the same gauge trans-
formation proved global well-posedness for initial condition in H™(R), m € N, also satisfying
the smallness condition (1.3). The best result regarding local well-posedness was obtained by
Takaoka in [27]. He proved that the IVP associated to DNLS equation is well-posed in H*(R),
for s > 1/2. He considered the gauge transformation

X
i
v(x, 1) = u(x, t)exp E/|u(y,r)|2dy
—0o0

to transform DNLS equation into
. 2 P o
i v+ 0;v=—iv axv—§|v| v (1.6)

and used the Fourier restriction norm method introduced by Bourgain [3]. Biagioni and
Linares [2] proved that the IVP associated to DNLS equation is not well-posed in H*(R) for
s < 1/2, which implies that Takaoka’s result is sharp. Using the I-method Colliander, Keel,
Staffilani, Takaoka and Tao [4,5] showed that the IVP associated to DNLS equation is globally
well-posed for s > 1/2.
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The main difficulty to deal with DNLS equation is the presence of the derivative in the nonlin-
earity, which causes the so called loss of derivatives. This means that the standard way of proving
existence of solution of

t

u(t)=U(t)uo—fU(t—t’)Bx(lulzu)dt’ (1.7)
0

cannot be accomplished only by using the property of unitary group and Strichartz estimates of
the Schrodinger propagator U (f) = e'’ 92 In fact the right hand side of (1.7) has less derivative
than the left hand side and Strichartz estimates do not provide us gain of derivatives. This is
one point that makes the study of DNLS equation more difficult than the corresponding cubic

nonlinear Schrédinger equation (NLS), namely
i0pu + 9%u + Mul*u =0.

The equation in (1.1) admits a family of solitary waves solutions given explicitly by

x—ct
c 1
Y(x,1) =¢pc(x —ct)expi { f + E(x —ct) — 5 / P c My ¢,
—00
where @ > ¢2/4 and
" Q2+ a)(4w —c?)
Yo,c ()" = .
N (cosh(%«/4a) — ) - ﬁ)

Liu, Simpson and Sulem in [19] studied the orbital stability of these solitary waves for the equa-
tion in (1.1). More precisely,

Definition 1. The solitary wave v,  is said to be orbitally stable for (1.1) if for each initial data
up € HY(R) sufficiently close to v, .(0) corresponds a unique u global solution of (1.1) and

su inf u(t) —e'? (t, - —
sup , int_ Iu(t) =€t = )l

is sufficiently small. Otherwise ¥, . is said to be orbitally unstable.

Results of orbital stability or instability were obtained according to the value of «. It was
assumed the existence of solution of the IVP (1.1) for arbitrary o > 0, and initial data ug €
H!(R). However, besides the case o = 2 there is only a few well-posedness results for (1.1).
For integer powers « > 5, Hao [8] proved local well-posedness in H 1/2(R). There is also the
work of Ambrose and Simpson [1], who established existence and uniqueness of solution u €
L>®([0, T]; HY(T)) for all values « > 1. Nevertheless, to our knowledge there is no result dealing
with the case o < 2. This case possesses a lot of difficulties. In fact, the gauge transformation
used in the work of Hayashi [9] cannot be applied, because it is required that u actually satisfies
the differential equation, that is u € C2. Turns out we cannot expect such smoothness from u
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when « < 2, since the nonlinear term |«|* is only C'. In the present work we carry out the case
o > 1. The main result regards the most interesting case 1 <« < 2.

Theorem 1. Let | < o < 2. Consider X = H>*(R)N {(feSR);xf € HI/Z(R)}. Ifup e X and
luollx = lluoll g3r2 + llxuoll 172
is sufficiently small then there exist T =T (|lug||x) > 0 and a unique
ue C([0,T]; H*7) N L>([0, T]; X)

solution of the integral equation

t

u(t) =U(t)up — f Ut —t")(Ju|*0yu)(t')dt'. (1.8)

0

Our strategy to prove Theorem | will be based on the technique known as parabolic regular-
ization (or viscosity argument) introduced by T. Kato [14]. It consists in the following: First we
prove that for each positive parameter € (viscosity) the initial value problem

i0ue + 02ue +ilue|*dyue = i€d ue
(1.9)
ue(-,0) = ug

has solution in [0, 7¢]. The second step is to prove that all the solutions u, can be defined at the
same interval of time and they converge as € goes to zero and the limit solves (1.1). The first step
is quite simple due to the presence of the parabolic term ieafu. As usual we can obtain solution
uc € C([0, Tc1; H* (R)), with T, = €/||ug|| gs, in some Sobolev space H*(R). The difficulty lies
in the second step. To prove that the maximal existing time of definition of each solution u is
independent of epsilon we need

sup fluell Lge gy < 0. (1.10)
>0 €

The estimate (1.10) permits to extend all the solutions to an interval of time [0, 7] independent
of € and the extension still satisfies sup, . ¢ |[ue|l LPH; < 00. Using compactness, for each r €
[0, T] we have weak convergence u. (t) of some subsequence to an element u(¢) in H*(R). So, u
is the candidate to be a solution. Thus we have a great chance to be successful with the parabolic
regularization if we can prove the uniform estimate (1.10). In [13] it is already presented how
(1.10) can be obtained in H*(R), s > 3/2, for nonlinearities like ud,u, m € N. There, the
argument can also be adapted to the nonlinearity |u|*9,u whenever we have some smoothness
of the nonlinearity, for example o > 2, that allows us to prove

el s < cllullFs- (1.11)

However, (1.11) is no longer true for low powers « since |z|* does not have enough reg-
ularity. In this work we obtain a uniform estimate like (1.10) in H>/?(R) when 1 <« < 2
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(see Theorem 4). Our argument was inspired by trying to use the contraction mapping princi-
ple. Using sharp smoothing properties associated to the linear equation we define a subspace
E C C([0,T]; H*(R)) and prove that the associated integral operator

t
W(u) = Ut)ug —/U(r —1"Y(u|*dyu)dt’ (1.12)
0

is well defined, i.e., ¥ : E — E for small data. However, the argument we used to prove WV is
well defined in E does not provide contraction when considering o < 2 (see Remark 2).

We will also study the case « > 2. The difficulties we have to perform contraction argument in
the case 1 < « < 2, disappear when considering o > 2. This is because the contraction principle
argument yields us to consider maximal function

sup |u(~,t)|H (1.13)
1€[0,T] L

and there is no estimate for the norm (1.13) when o < 2.

Theorem 2. Let « > 2 and T > 0 be given. There exists § > 0 such that for all initial data
uog € H'72(R) with luwoll 12 < 8 there exists one, and only one u € C([0, T']; H'2(R)) solution

of
t

u(t) = U(t)ug — / Ut —t")(u|®dcu)(t))dt’ (1.14)
0

satisfying
10xull poor2s Nutllrarse <00, llull 2o g0 < 0.

The main point in the proof of Theorem 2 is the fact that we do have maximal estimates when
o > 2 (see Lemma 3).

The remainder of our work is organized as follows: In Section 2 we present a list of results that
will be used along the work; In Section 3 we prove existence of solutions u. to the problem (3.1),
and establish some uniform estimates for these solutions; In Section 4 we prove Theorem 1 by
proving the convergence of the sequence u. as the parameter goes to zero and the limit satis-
fies the integral equation (1.8); In Section 5 we study the case o > 2. In this case we establish
well-posedness for the IVP (1.1) in H 1/2 (R), for small data via contraction argument.

1.1. Notation

Given A, B > 0 the notation A < B means A < ¢B for some constant ¢ > 0. A ~ B means
A < B and B < A. The notation r+ stands r + €, with € > 0 sufficiently small. Also, we
write 77, to denote T raised to some positive power. We denote (x) = (1 + x2)1/2_ The Fourier
transform of a function f, and its inverse Fourier transform are denoted by f and f respectively.
Forans e R, JS = (1 — 8%)5/2, and D° = (—8)%)”2 stand respectively for the Riesz and Bessel
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potential of order —s. The space H*(R) = (1 — 8)%)_3/ 2(L?(R)) denotes the Sobolev space of
order s endowed with the norm || f|| s = ||J* f 2. For two variable functions f = f(x,t), with
(x,t) €e R x [0, T], we consider the mixed spaces L9([0, T]; L?(R)) and L?(R; L4([0, T])),
corresponding to the norms

T 1/q
q/p
i71gee = | [ (170 orar)"ar
0 R
and
T 1/p
plq
= q
ey = | [ ([ 17ennar)™ax)
R 0
respectively.

2. Preliminary estimates

We consider the IVP associated to the free Schrodinger equation

{iatu+8fu=0, x,teR @1

u,0) = f
whose solution is given by
u(x,1) = (e 1Y ()
and is denoted by U (¢) f. The family {U (t)};cr forms a unitary group in H*(R), for all s € R.

In the following we will list some estimates satisfied for solutions of IVP (2.1). We begin by the
so called L9LP estimates or Strichartz estimates.

Lemma 1 (Strichartz estimates). For all pairs (p, q) satisfying
2<p<ooand 2/q=1/2—1/p
we have
N fllpapy =cllfll2 (2.2)

and
t
/U(z —1)F(x,t"dt <c|FI

0 LiL?

2.3)

! /
LiLt

where 1/p' +1/p=1/q’ + 1/q = 1, for some constant c > 0.
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Proof. See Ginibre and Velo [6]. O

Next we have the smoothing effects estimates.

Lemma 2 (Smoothing effects). There exists a constant ¢ > 0, such that:

i)
ID2U ) fll o2 <l fll123 2.4)
forall f e L*(R), and
i)
D2 [UhFedr | =elFlyy: @5)
x=T
R LFL
iii)
t
0x f U@ —1)F(,tdl' <clFlg: (2.6)
0 LeLy

forall Fe LLL3.

The above estimates were proved by Kenig, Ponce and Vega [15]. For a detailed proof of
Lemma 1 to (2.6) see [18, Chapter 4].
Finally, we present the following maximal function estimates for the Schrddinger propagator.

Lemma 3 (Maximal function estimate). Let p € (2,00) and s > max{1/2 — 1/p,1/p}. Then
there exists a constant ¢ > 0 such that

IO SN < el fllms- 2.7)
Proof. See Keith M. Rogers and Paco Villarroya [24]. O

Remark 1. Estimate (2.7) was established by Kenig and Ruiz [17] in the case p =4 and later on
by Kenig, Ponce and Vega [16] for p =2 and s > 1/2.

Lemma 4. Given s and p as in Lemma 3 we have

t
/ Ua—FCOar | <elFll +1Fl L2 (2.8)

0 LYLY
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Proof. Using Lemma 3 and then applying estimate (2.5) in Lemma 2 we get

1
/ Ua—YFC | <ellFllg +1Fl 2. 29)

0 LYLY

According to the proof of Lemma 3 in [22], the nonretarded estimate (2.9) implies the retarded
onein (2.8). O

3. The regularized problem
In this section we shall consider for each € > 0 the problem

{i8[u+83u+i|u|“8xu = ied’u 3.1

u(-,0) = ug
where 1 <o < 2.
3.1. Linear estimates

We shall denote by U (1) f = it f the solution of the linear problem associated to (3.1),
which is, via Fourier transform, given by U (r) f = {e~(+€)%¢ ? Y.

Lemma 5. Given s > 0, there exists a constant ¢ = ¢y > 0 such that

1
IUe (@) fllag < cs (1 + W) (WAVER

Proof. Indeed, using Plancherel Theorem we get

G 2~
1D Ue(0) fll 2 = 1§12 T+ 7 o

<

= let)2 sup{y 2e 2} fll 2. O

y>0

Next we establish properties that are true for {U (¢)} and still hold for Uc (¢) uniformly in the
parameter €. We notice that U (1) = E (1)U (r) where E¢(t)g = {e’€’52§}v, is the heat flow. Let
o(x) = e"”‘2 and denote by ¢,, the function ¢, (x) = p@(px). So the heat flow can be written as

Ec(t)g =¢p,, * &, 3.2)

where p¢ ; = \/g . The formula (3.2) together with the Young inequality and Strichartz estimates
for the Schrodinger group U (¢) (Lemma 1) give us

Please cite this article in press as: G.N. Santos, Existence and uniqueness of solution for a generalized nonlinear
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Lemma 6. There exists a constant ¢ > 0 independent of € such that
IUe@ fligrp =cllfllz2
for all pairs (p, q) satisfying2 <p <oo, 1/2=2/qg+1/p.

In order to prove a smoothing effect for U (¢), with constants independent of € we consider
the following norm

Il- ||1}°.°(L2(Qj)) =sup|l - llz2g))
JEZL
where Q; is the rectangle Q; = [0, T x [j, j + 1].

Lemma 7. Let T > 0 and € > 0 satisfying 0 <€ < m/T. Then there exists ¢ > 0 independent
of € such that

IDV2Ue@) f ez < €ll Iz
forall f e L*(R).
Proof. It is enough to prove that

IEe®8llize(r2(g,)) = €llgllize (20

with ¢ independent of €. Writing E¢(¢) as the convolution in (3.2) we have

Ec(t)g(,n(x) = / ©pe, (V)g(x —y, Hdy + / Ppe, (V)g(x —y, H)dy
lyl<1 lyl>1

=Ip(x,t) + Io(x,1).

By using the Minkowsky inequality, a change of variables and the fact [ —y,j+ 1 —y] C
[/ —1,j+2]forall |y| <1, we get

oG, Ol 2, j+17) < ”g('vt)||L2([j—1,j+2])/(p(y)dy7
R

for all j € Z. Thus
||10||1;?©(L2(Qj)) S ||g||11?0(L2(Q/-))-

To bound ||/ ||lo_o(Lz(Qj)), notice that p¢ ; < ,oft for e <m/T. Then for € sufficiently small
¢ )
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B 2
oo (x, )] < / P2 e g =y, D)y

ly[>1
s 1
<sup{8e°:8 > 0} —lg(x =y, t)ldy.
y
[yI>1

Using change of variables we have

1
||Ioo||L2(Qj)§ / ?||g||Lz([O,T]X[ijy’mj,y+2])dy
[yl>1

where m ; , denotes the integer number such thatm; , < j —y <mj , + 1. Then we conclude
Hoolliee2¢0))) S Iglise 20 B
As a consequence of Lemma 7 we have the dual version:

Lemma 8. There exists ¢ > 0 independent of € such that

t

1/2 Y A+
ID / Uelt =tV F ()t g2 <l Pl 2g,)- (33)
0

Proof. Consider G € L%(R), such that ||G|| 12 = 1. Using Fubini’s theorem, Parserval’s identity
and the definition of U, (¢) we have

t

/(Dl/z/Ue(t—ﬂ)F(-,t’)(x)dt’)G(x)dx

R 0

t
=//F(x,t’)Dl/zEe(t—t’)U(t/—t)G(x)dxdt/. 3.4)
0 R

Splitting the integral with respect to the variable x in (3.4) into a sum of the integral over the
intervals [j, j + 1], using the Holder inequality and then Lemma 7 it follows

t

/(D]/Z/Ue(t—t’)F(-,/)(x)dt’)G(x)dx

R 0

1/2 ~
Y IF 2oty j+ 1P P Ee(t = U ¢ = DGl 20,111,411
JEZL

S Z IF 220,155, j+11)- (3.5)
JEZ

By duality (3.3) holds. O
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We are also able to prove the following inhomogeneous smoothing effect.

Lemma 9. There exists ¢ > 0 independent of € such that

t

o [ Ut = IFC0 Nixgaio =l Pl aio -
0

The proof of this lemma follows basically the ideas presented in [18]. The additional ingredi-
ent is the following:

X
Lemma 10. For each w € C define the function fy,(x) = Zrwl Then there exists a constant
x4 w

¢ > 0 such that
| fuwllLe <c

forall w e C.

Proof. Indeed, for Re(w) > 0, we consider for each & € R the complex function

CilEle

FZ el — )
@ 22+ w?

defined in D;F ={z € C;Im(z) > 0, |z] < R}. We use residue calculus to compute the integral of
F along the boundary of D;F. On the other hand, the integral along the curve {z € C; |z| = R},
goes to zero as R goes to zero. Following these ideas we end up with

R N R
x2+w? % ’

Using the relation between Fourier transform and differentiation we obtain ﬁ,(&) =
—insgn(S)e"‘"s'. The case Re(w) < 0 follows from the fact f_, = f,. Finally, when
Re(w) = 0 we can write f, as

1 1 1
= + ,
Jo=3 |:x—lm(w) x+Im(w)i|
and then we compute ?,; as a sum of Fourier transform of translations of the principal value

1 ~
distribution p.v. <—> Thus we get f, = —imcos(Im(w)&)sgn(§). In any case it follows
X

I fuwllLe <7. O

Proof of Lemma 9. Denote by v the following function

t

v(x,t) :/Ue(t —tYF(,tH(x)dt'.

0
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The function v can be written as

—iz(l—ie)gz o
v(x, ) =— // A iR e F (&, T)dEdr, (3.6)

where F denotes the Fourier transform of F with respect to both variables x and ¢. Then differ-
entiating v with respect to the variable x we obtain from (3.6)

e v(x, 1 B ik fe pyded
v(x,t)=— //T—i—(l—le)éz (§,7)dédr

ige—it(-io)E’ .
//14-(1_, )52 F(&,v)dédT

=0,y v1(x, 1) + 0xv2(x, ).

Write

1 j - L
3"“1(“):‘1_,-6/ / wzﬁng & 1)l e dgdr 37

where w = w, . is a complex number such that w? = . Denoting

— i€

Ku(@) = {wz’—jgz} (x).

and using the properties of convolution in the integral (3.7) and then applying Plancherel Theo-
rem with respect to the variable ¢ it follows

loxvr(x, )l 2 = 1Ko % FO@}@ 2.

1
V1+e?
Then applying the Minkowsky inequality for integrals and finally Lemma 10 we obtain

— (1)
10xv1Cx, Il 2 < sup | K, Nz [ [1F(y,-)  ll2dy
T,€
S ”F”LiL?
Since | - ||[J°.°(L2(Qj)) <I-lpeepz and - llpiz2 <11 IIIJI_(Lz(Q_/.)) we conclude
19xvillizec2;) S NF 2o,

Now we turn our attention to 0, v;. First of all note that one can be written as

3 v2(x, 1) = DV2U ()G (x) (3.8)

Please cite this article in press as: G.N. Santos, Existence and uniqueness of solution for a generalized nonlinear
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where G is defined via Fourier Transform by

Do [isen@®IEI'VPEE D)
G(g)_/ t+(1—i€)§2 dr.

Notice that
! "o (t)e~i11=i0%? (3.9)
v,—— =C S€n e . .
S Y g

So using Parseval Identity and (3.9) we have

N
GE) = {’HD”2 f Ue(F (., r)sgn(t)dt} &) (3.10)
where H is the Hilbert transform. Using (3.8), Lemma 7, (3.10) and Lemma 8 we conclude
||axU2||l;?°(L2(Qj)) S ”F”[}(LZ(Qj)y o
Lemma 11. If f is differentiable then for all x, t € R we have

xUe(0) f(x) = Ue () (x f)(x) — 2 + €)tUe (1) (9x f) (x)

Proof. By using properties of the Fourier transform and the definition of Uc(¢) we have

XU() £ (x) = i{de (e & £}V (x)
= —2(i + )t{e” T i [V (x) + e ©HE g £}V (x)
= 2 + OtU)B: f)(X) + U (O f)x). O

3.2. Local existence theory

Now we deal with the problem of existence of solution to (3.1). We shall prove the existence
of solution to the corresponding integral equation

t

u(t)=Ue(t)uo—/Ug(t—t’)(|u|°‘8xu)(t’)dt/. (3.11)
0

Theorem 3. Let € > 0 and ug € H 3/ 2(R) be given. Then there exists one, and only one, u. €
C([0, T1; H32(R)) solution of the integral equation (3.11), where
63

€ = 4,
clluoll*,

for some constant c, independent of €.
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Proof. We define the integral operator W, given on the right hand side of (3.11). Using Lemma 5
it follows

c
||\If€(u)||H3/z < lluoll g3 +/ (1 + W) ||(|M|a3xu)(f/)||L§dl/
0

4cTVA "
< luol|l y32 + T—i—w [ ee] 3x”||L<;°L§~

Using the Sobolev embedding H'/2*(R) ¢ L (R) we conclude

4cT1/4 el
IWe @, 0032 < Mutoll gz +\ T+ —577— ) lull¥L 5. (3.12)

LF H; e3/4 LP H;
Therefore the operator W maps

Er ={ueC(0,T]; H*(R)); lull , o 32 < 2ol 32}

L Hy
into itself. Next, we prove
V. :Er — Er

3,2. Indeed, consider u, v € E7 and denote

is a contraction with respect to the norm || - || 1K
Te %

G(u,v) = |u|*0yu — |v|“0,v. We have
t

W (1) — W (v) = —/Ug(t — G (u, v)(t)dt'.

0
Then using Lemma 5 we obtain similarly
4eT/4
1We ) = We)l 3 S (T + W) 1G @, v)lz2- (3.13)
Using the property
[l = 01| S (1= + 1= ) e = (3.14)

combined with the Sobolev embedding we can obtain

—1 -1
G, )l ooz S Ulull Gy + el gz lu — vl

13/ H 3/2. (3.15)

LFH;

Plugging estimate (3.15) into (3.13) we conclude

1
[ We (u) — ‘I/e(v)IIL?g i = 5l = UHL?‘Q 32

From the Banach fixed point theorem for contractions we conclude our proof. O
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3.3. Uniform estimates for the solutions of the regularized problem
We consider the norm
— 2
Q) =l g3+ 10l e 172 + 1030l 2200, + 136 ) e 2,
= Qi) + Q) + Q3(u) + Q4(u)

We intend to prove that sup, . €2 (u¢) is finite whenever the initial data belongs to the weighted
space

X=HP PR N{f S Ry:xf € HR)
and
luollx = lluoll g3z + llxuoll g1/2
is sufficiently small.

I-The norms Q1 and 23:
Using Lemma 7, Lemma 8 and Lemma 9 we obtain

Q1 (o) + Qa(ue) S luoll e + Nute1*03uel 120,
el @eue) 120, (3.16)
Let us take care of each term in (3.16) separately. First use the Holder inequality to obtain
aq2 o
el axué ”l}l-(Lz(Qj)) < llue ||]31(L00(Q./))Q3(u)-

To control || - || 19(L*(Q;) We introduce a weight. Indeed, by the Holder inequality we have

1—
||Me||l;+(Loo(Qj)) S ||(.X> ue”L?ﬁL;C'
Then, the Sobolev embedding gives us
1/2+ 1-
e ”l}Jr(LOC(Qj)) ,S I/ (()C) “e)”L‘;OL%'

Combining Lemma 14, and Lemma 16 we deduce

<
el 2, < Rwe): (3.17)

Consequently

aq2 a+1
e 3xue||1}(L00(Qj)) 5 Q(ue) . (3.18)
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Now we turn our attention to || u|* ™ (d,u)> ll1 (L2(Q))" First we use the Holder inequality and
J ”
(3.17) to obtain

el @)l 120,y = @@ ™ Hldeuel® 5 : (3.19)
175 (140))
To examine (3.19) we consider two cases:
Casel1:3/2 < <?2.
Inthiscase || - |;40 <T7T|-l 2 _ ,soandthen
LYQ)) LT (Q))
[0y uell . = T+||axue l —— (3.20)
174 (140)) L7 L]
Applying the Sobolev embedding to (3.20) we conclude
el 2 - STHQ1 o).
1 CA())
Case2: 1 <o <3/2.
Notice that
loeuell 2 S 1) cucl 3,0
174 (L4 .
STV ) )l o2
for p > %. To finish the analysis of this case, we claim that
IDYVA () Beue) 2 S NI ue) g2+ 1T 2ue]| 2. (3.21)
In fact, note that
1D ()7 8xue) 2 < 1DV () uell 2 + I DV* (uede (1)) Il 2. (3.22)
Since 9, ({(x)#) and 8)%((x)") are bounded we have
IDY* (uede (())) 12 S Nwedr ((X)P) 112 + 19 (ede (X)) I .2
S luell g (3.23)
Applying Lemma 14 with 6 = 1 — p we have
IDY4 () ue 2 < 17124 () ue)l 2
STV u 50 13 )l . (3.24)
Using Lemma 16 we conclude the proof of the claim. Therefore
luel™™ @)l 120,y = R, (3.25)
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and so
Qi (ue) + 3(ue) S luoll o + 1+ THQu)* . (3.26)

II-Norms Q27 and Q4:
From Lemma 11 we have

xu(x, 1) = Ue (1) (xup) — 2(i + €)1Ue (1) (dxu0)

t

- / Uelt — 1) (e Bue) (e’
0

1
—2(1 —ie) /(t — YUt —1')(Bx (|ue|*xue)) (1)1’
0

=L+NL{+NL,

Thus

Qo (ue) + Qa(ue) < ||L||L?OHX1/2 F10xLllize (220,

FINLill oo 12 + 19N Lilliee 200

LPH,
+ ”NL2||L;°H):/2 + ||8XNL2”17°(L2(QJ~))~

Applying Lemma 8 to the linear term it follows
||L||LCT>OHXI/2 T N0 Llliee 200, S lluollx-

Regarding the nonlinear terms, Lemma 8 implies for each ¢ € [0, T']

t
INLi®ll g1z = |l / Ue(t — 1) (x|ue|*dxue) (t)dt'|| 2
0

t
+D'? / Ue(t — 1) (xlue|* Ogue) ()1 || 2
0

<712 o a
STV x|uel axue”L%L% + [lx|uel ax”e”[Jl,(LZ(Qj))-
Note that
a _ a
[l feee | axuellL%L}C = [|x|uel axué”ljz.(Lz(Qj))’
Thus

1/2 o o
INL HL?"H;/Z ST | x uel”0cue ”1?(L2(Qj)) + llxfuel ax“e”]}(LZ(Qj))- (3.27)
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Using Holder’s inequality and the estimate in (3.17) we obtain
||x|ue|a8xue||1]1_(L2(Qj)) = ||ue||;f;t(Loo(Qj))”xaxue||[7°(L2(Qj))
= Q(ue)a”xaxué”l;.’o(Lz(Qj))‘
We conclude

[l |te %Oy ute “lj'.(Lz(Q‘,-)) <A+ THQu)! (3.28)

The term ||x|uc|*0yucl| 2(L2(Q;) can be estimated similarly. We bound the term
J
|0 N L ||lQO(L2(Qj)) applying Lemma 9 followed by estimate (3.28). Finally,
J

t
INLal 12 = 2(1 + €l /(t —1)Ue(t — t/)(|ue|a8xue)(t/)dt/”H3/2
0

S 20+ T [ el dattell 3212 + N (el D)y 120, |
Estimates (3.18) and (3.25) provide us
3 (ueel*Betee) 1 1200, < (1 + TR )™ (3.29)
and the Sobolev embedding
late Bl e 12 = Nute o e Nrte o 2
S Qo
Then we conclude

INLall oo iz S (14 TR ue) >

L¥H,
By Lemma 9 and estimate (3.29) we get
||axNL2||l;>O(L2(QJ)) 5 (1 4+ T+)Q(ME)01+I .
Therefore
Q(ue) + Qaue) S lluollx + (1+THQu)* . (3.30)

Gathering the estimates (3.26) and (3.30) we conclude that there exist positive constants
and c, independent of € such that

Q7 (ue) < clluollx +c(1+ TH)Qr (we)* ! (3.31)

for all € > 0 whenever we have u, solution of (3.11) defined in [0, T']. As a consequence we have
the following:
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Theorem 4. Let ug € X, with ||ug||x < 1/4c. Considering the constants ¢ and B in (3.31) we

define
- (1 —4c||uo||x>‘/f’
. 4clluollx '

If ue is a solution of (3.11) defined in [0, T] with T < T, we have

1= /1 —4c(1+TP)|lugllx

Qr(ue) < e

(3.32)

Proof. For 0 < T < T consider the polynomial p(x) = c7x% — x + cllugllx, c; = c(1 + T#),
and note that p(x) has two roots

1—./1—4cz||u 1+ /1 —4c||u
v 7lluwollx and i = v 7lluwollx

ZCT 2Cf

ro =

that, in its turn, belong to (0, 1). Since cfx"‘+1 — x + clluollx < p(x) in (0, 1) and p(x) is
negative in (rp, r1) we have cfx"“rl —x +cllugllx < O for all x € (rg, r1). Thus, from (3.31) we
conclude Q7 (ue) € (0, ro] U [r, +00). Using the fact that Q7 (u) depends continuously on T,
it follows that either

Q) <ro, forall 0<T <T (3.33)
or

Qz(ue)>ry, forall 0<T <T (3.39)
However, (3.34) cannot happen because

lim Q7 (ue) = lluollx
T—0

and [lugllx <rp. O

Corollary 1. Given ug € X and Ty as in Theorem 4, then, all the solutions u. can be extended to
[0, T.] and satisfy (3.32) for all 0 < T < T.

Remark 2. Applying the argument presented in this section to the operator W(u) (defined
in (1.12)) we may have

Qr (¥ w) < cllugllx +c(1 + TF)Qr)**. (3.35)

However, applying the same ideas to W (u) — W (v) instead of W(x) would only lead us to con-
clude that

Qr (¥ () — ¥ () S (Qr @) + Q) Qr @ —v)* . (3.36)
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Indeed, because of (3.16) we would have
el @) = 1l @) 1120, (3.37)
and it is not obvious how to bound (3.37) by a factor Q (# — v) when o < 2.
4. Proof of Theorem 1
Consider the solutions u, all defined in the same interval of time. Since for each ¢ € [0, T']
the family of solutions {u. (¢)}¢~0 is bounded in H 3/2(R) there must exist, for each 7, a sequence
{'Ej}?il and an element u(7) € H3/2(R) such that ue; (t) converges weakly in H32(R) to u(t) as
Jj —> oo. Throughout this section we shall prove that the function u in fact satisfies (1.8).
4.1. Convergence in L?
To prove the convergence in L? it will be necessary the following lemma:
Lemma 12. There exists a constant ¢ > 0 such that
lcttell s e < €
forall e > 0.
Proof. First we differentiate the integral equation (3.11) and we apply Lemma 6 to the pair

(4, 00) to obtain

T
-1 2
IBxuellpa poo < Nxuoll 2 +Ot/ uel®™ @cue) |l 2dt’
0

T
2
+/ it |*B5uell 2dt’
0

1 1/2 2
Sldcuoll 2 + Tlue | 5 + T2 Nuel82ucll 22 (4.1)
L7 Hy Tx

Using the computation (3.17) we have
e Fuell 2 2 = el uellp 200 ),
T™x J J
2
< ”ue||;);za(Loo(Qj))||8xue||lj.’°(L(Qj))
< Qo). 42)
Then substituting (4.2) into (4.1) we conclude

1
10xucll 4 00 S ol + TTQ@* T O
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Fix ue, ue and consider w = we ¢» = ue — uer. A straightforward calculation gives us
i%llw(nt)lng +2i€lldsw(, D}, =2i(e —e’)Re[ Doguedx
+ 2iRe/(|u€/|°‘ — |ue|*)Woyuedx

+i/ax(|uef|“)|w|2dx
=1+1T+1l.
So
d 2
DI, <1+ |+ @3)

Next we are going to estimate each of the terms I, II and /1. First we take care of /. Indeed,
using integration by parts and the Holder inequality

1] <2le — €'yl 2 105l 2 (4.4)
In the terms /I and /Il we apply the Holder inequality as well. So
LIS /(|ue/|°‘—1 +lue "D w [ Bxueldx
< Qo) + Qe Mdsue e lwll7 (4.5)
and

| < ||3x(lue'|°‘)||Lg°||wI|i%

< Que)* el llwl - (4.6)
Gathering the estimates (4.4), (4.5) and (4.6) and recalling sup,,. o €2 (u;,) < 00 we obtain
d 2 / 2
Ellw(u Dllza Sle— €1+ ([0xue (-, )l Lo + [[9xuer ¢, )| L2o) Jw (-, DIlZz- 4.7)
Finally, applying the Gronwall inequality we obtain from (4.7)
w02, S le = €17 exp [T/ (Nl g e + 000510 | (4.8)
for some constant ¢ > 0. Therefore, there exists & € C([0, T']; L2(R)) such that
lim (e — il 212 =0.

Also, the limit # coincides with the weak limit u. Consequently u — u in L’ Li ase — 0.
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4.2. Existence

We have proved that there exists u € C([0, T']; L2(R)) to which u. converges strongly in
LL?2 and weakly in H/?(R) for each 7 € [0, T]. Using that

3/2—5s
1-6, 0 _
s S 1170 s 0= 255

we obtain that u. converges strongly to u in L H} as € goes to zero, for all 0 <s < 3/2.In
particular u € C([0, T]; H*(R)), forall 0 <s < 3/2.

We shall prove that u is solution of the integral equation (1.8). Indeed, using Plancherel’s
Theorem and Dominated Convergence Theorem we have the convergence of the linear part. To
investigate the nonlinear part denote

t t

v(x,t):/U(t—t/)F(t’)dt/ and ve(x,t):/Ue(t—t/)FE(t/)dt/
0 0

where F(x,t) = |u|“0yu and F¢(x,t) = |uc|*0yue. We have

t
lv = vellp2 <2TIF = Felleop2 + / 11— e~ F @)l adr’ 4.9)
0

Since ¢/ € [0, 1] —> [(1 — e~€¢ =" YF (/)| is bounded by 2|F| which in turn belongs to L1TL§,
it follows from the Dominated Convergence Theorem that

t
lim / (1 — e €CEYE @) | 2dt’ =0.
e—=0 &
0

Finally, we take care of ||F — F¢ ||L;oL)2c. Adding and subtracting |u.|'t¢9,u we have
o o o
IF = Fellpsera < Hul™ = fuel"ll g roe |cull g2 + lluellgoo oo l10x (= te)ll o2

Using (3.14), the Sobolev embedding and that sup, . ¢ [|ue || 3/2 < 00 We can obtain

L¥ H;
_ <y —
| F Fe“L‘;OL?r S llu “e”L‘}OH}'
Then we conclude

lim [[ve(£) — v(®)|l e 2 = O (4.10)
e—0 T =x

for each ¢ € [0, T]. It follows
t
u(t) = lin}) ues(t) =U(t)ug — / Ut —t)(lu)|*du)(t)dt
€—>
0

in L2(R), for each 7 € [0, T].
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Theorem 5. Given ug € X, and T, satisfying the hypothesis of Theorem 4, then there exists u
belonging to L= ([0, Ty]; X) N C([0, Ty.]; H3/?>~(R)) solution of (1.8).

4.3. Uniqueness

Here we will prove that the function u is the unique solution of the integral equation (1.8) in
the class L ([0, TT; X) N C([0, T]; H3*~ (R)).

Lemma 13. If v € L*°([0,T]; X) N C([0, TT; H3/2’(R)) is a solution of the integral equa-
tion (1.8) then dyv € L°L3..

Proof. In fact, using Lemma 2.4 and Lemma 2.5 we have
P < D\? @y
0xvll foor2 Sl uollz2 +Ilvl"dxvll 12
x =T x=T
1/2
S Muoll g + T2V 210 N0Vl o2 (.11
Therefore
1/2 a+1
”axv”L)OCOL% ,S ”uO”H3/2 +T ||v||L°°([O,T];X)' O
To help us to prove uniqueness we consider the norm
ol = 10l 2+ 1000 2012

Let i be another solution of (1.8) in L>([0, T]; X) N C([0, T]; H*?>~(R)). Using Lemma 2.4 it
follows

lloe = aell < Moel® Oyue — |l Ot 1 2 + IHeel® Dwe — il it 1 2 -

1 1 1
Using (3.14), the Holder inequality with 3= + —and g > 7 and then the Sobolev em-
p

q o —
bedding we get

~ ~ ~ —1 —1 ~ ~
el Bte — 1|0t 1 2 S TG+ (el o pa 18— ull o p 10l o2
1/2 ~
T2 ul®0x @ =10l 12,12

STl ooz + Nl oo yae)* Nl —ull

LY H; LY H; L2 H!?

o " —_
a1l 250 N0 @ = )02
The argument we used to obtain (3.17) also gives us
laall 1 poo S Nl oo o, 71 ) - (4.12)

Thus
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a % o < ~ ans
ul*Byte = Vil Bl 3 2 S TNl g+ Nl y32) i = 0l 1

+ lluell oo o, 71, x) e — welll. (4.13)

Regarding the norm L ;LZT we have
~ ~ ~a—1 1 ~ ~
el 0xue — | Oxtill 12 S WA + 1wl o, llE —uldill 1 _
T Lty LI 13
+ ”u”%gtL?_OHax(ﬁ - u)”Lj’oL%

< (a7t i)t i — uldyii
Sl IIL};L%OHI ||L}+L%O)III |0x ”Ls%szT

o -
F el e oo it — ulll-

Now choose n sufficiently large and use the Holder inequality with

1 1 +1 d 1 1+1
= Z,and —=— 4=
1 1 n 2 24 n

2—« 2—«a

and then we use the Sobolev embedding to obtain

M —wulocull 1  <loxull o |l —ullpnge
L7 2 e T

< |0, 1 u—u
S 110y ”L?I“L?” IIL?ng/z

Using one more time || - ||, 1+, 00 S || - [lLoo(j0,7]; x) We obtain
x L7

etk e — |l Bl 12

~a—1 —1 -
S (”u”%oo([()yr];x) + ”uHZOO([O,T];X)) ”axu”LﬁLHHIM —ull
x T

+ ||“||%00([0,T];X) iz —ulll.

It remains to estimate ||d,u|| 1 . We consider two cases.
L7

Case 1: 3/2a < 2.
In this case we can take 2+ = ﬁ and then

3/2.

A, il <T%\a
loxall 1 b S l IIL%OHX
Ly 7
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Case2: 1 <o <3/2.
3 -2«

In this case we consider p > . Then using the Holder inequality with

1 1 2

1 _ﬁ+3—2a
2—«a

. 2 . o .
and that the function (-) 7 € L32 " (R), since p > , we obtain

[|9cae | <O Bl 2e 20 172N 2

X2+o( 24+ L3 2a
ST x| o 24
STHID () 0cit) ez (4.14)

;vllllere €= % - ﬁ is sufficiently small. Applying the same argument we used to justify (3.21) it
ollows

ID€ ()Pl 2 S T2 (xdi) 2+ 1172 2. (4.15)
Replacing (4.15) in (4.14) we deduce that

ol o+ STHileqo,rrx)-
L2701 L2+
X

T
Hence
| 2e]* 0 — |ﬁ|"‘8xﬁ||L)chzT
ST (Nl oo, 7130 + lull oo o, 71:)) Ml — il
+ ||”||i00([(),r];x) ez — ulll. (4.16)
Therefore
M — il S T (Nl oo, 71:x) + lull oo qo,r1:x0) " e — il
+ 1l T oo 0. 77,3 e — @l 4.17)
Consider

J={T [0, T.];u(t) =i(t),t €[0, T1}.

Estimate (4.17) implies T € J for all T sufficiently small. We claim T, := sup J = T. In fact,
if T) < T we can consider T € (T, T,). Repeating the argument we presented to obtain (4.17)
and noticing u — i = 0 in [0, T}]] we get
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M — il < (T — T (lldll oo, 71: ) + Nl oo qo,71: ) Ml — @l
+ ||u||ioo([0,T];X) llee —alll.
It follows T € J if T is sufficiently close to 7. That is a contradiction. So T, = T.
5. Proof of Theorem 2
In this section we carry out the proof of Theorem 2. A great difficulty we had in the low power

case 1 <o <2 was to control the term |[jul| e L Since we do not have maximal estimates
for |U@) [l Ly when 1 < p < 2, we were obligated to introduce weights and many other

difficulties arose from that. But now, for o« > 2 we are in a more comfortable situation because
of Lemma 2.7. This maximal estimate will be our main ingredient in our approach here.

Given ug € H'/? we consider the integral operator W = W, defined as in (1.12). Also we
consider the norm

Q) = lull e 12 + 1030l o3 + Nilgrge + lull s

and the space Eq.r = {u € C([0,T]; H'/2(R)); Q(u) < A}. Applying Lemma 2.5 and Lem-
ma 2.6 in the nonlinear part of W(u) we have

I GON e 172+ 19: W @l Lo 2 S ol e + Ml 0xullpyp2 + el dull 1 p2-

We obtain the same bound for ||\If(u)||LgL;c + |V (u) ||L§aLC%O by using Lemma 3 and Lemma 4.
Therefore

QW) S lluoll iz + Ml Oxuellpy 2 + el i1 p2- (5.1
On the other hand we have
ol sl 2 = S oo N0l e 2 (52)
and, using that | - ”LITL)% <1V IIL%L%,
a0l y 2 < T2 Nt oo o sl oo 2. (5.3)
Therefore
Q) < clluoll e +e(+TVHQ)* . (5.4)

Taking A = 2cllug|| 12 sufficiently small (5.4) implies W(E4,7) C Ea,7 for some T =
T (lluoll g1/2). Finally, using the property

el — [0l S (a4 w* D — vl (5.5)
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it follows from the same argument that
QYw) — V() S (2 W* '+ QW)* HQw —v). (5.6)
That completes the proof of Theorem 2.
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Appendix A
Lemma 14. For 6 € [0, 1] we have
172 Pl S U2 DN 172 £,
To prove this lemma we will use the following characterization of Sobolev spaces.

Theorem 6 (Characterization I). Let 0 <o <2 and 1 < p < oo. Consider

Do f(x) = lim / SN =7@,. (A1)

|y|l+cr
|>|>e

Then f € LY(R) if. only if, f € LP(R) and the limit defined in (A.1) converges in LP norm. In
this case

177 flle =W flle + 1D fllzr-

The proof of this theorem can be found in [25] or [26].
Before proving Lemma 14 we also need the following.

Lemma 15. Let 0 <o < 1 and 1 < p < 00. Then there exists a constant ¢ > 0 such that
@+ 1) NI7E Hllee NI fllee < e+ DI Hlliee.
Proof. Denote ¢ (x) =log(x).
o (1) )00 =" (f)(0) + D, £ (1),
So
1D (Y HY N Lr < lpoe (e + 1D fllLr-

Let us estimate ||¢g:(f)llLr.
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eit(p(x-‘ry)f(x + y) _ eit(p(x)f(x)
|y|l+a

0.0 (f)(x) = lim f

e<|yl<l1

eit(p(x-'ry)f(x + y) _ eitga(x)f(x)
" / v+ “

dy

[y[>1
=141l

We have from the Minkowsky inequality

1
il <2 [ N4 lurdy
[yI>1

=collfller.
Since ¢ is Lipschitz we have
et PN 1| < r]|y]. (A2)
Applying the Minkowsky inequality again we get

. 1
1llLr < |¢] tim / LG lirdy
e—0 |yle

e<|yl<l

=coltlllfllLe.
Therefore applying Theorem 6
177" Pllze S 1Pe () Pllze + 11 1z
S A+ 1D fller. (A.3)

The opposite inequality follows immediately by applying (A.3) to the function (-)/' f instead
of f. O

Proof of Lemma 14. Given g € L*>(R) such that ||g|| 12 =1 define F, : § — C by

Fy(z) = ! / TV ()12 ) (0 g () dx
R

where S is the strip S = {z € C; 0 < Re(z) < 1}. Using the Cauchy—Schwartz inequality and
Lemma 15

|Fo )] < (1 + [yDe™ D72 ((x) £l
SIT2(x) Ol 2 (A4)
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Similarly we have
|Fe(L+ iy S 1T 11 2
Then using the three lines theorem we obtain

|Fe @O SN2 D12 1119, (A5)

for all 6 € [0, 1]. Taking the supremum over all g € L%(R) such that lgll;2 =1 1in (A.5) we
conclude

17250 () = )l < el 2y OIG NP £11,. o
Lemma 16. Given 0 < s < 1 we have
15 ) Ol SIS 2 + 1 £l 2

To prove this lemma we will use another characterization of the Sobolev spaces whose proof can
also be found in [25] or [26].

Theorem 7 (Characterization Il). Let s € (0, 1) and 2/(1 + 2s) < p < oo. Consider

1/2

_ 2
|f(x+y)— fx)] dy . (A6)

|y|1+23

D f(x)=

Then f € LY (R) if. and only if f and D* f belong to LP (R). Moreover
I° flle = 1 flliee + 1D fllze
forall f e LP(R).
Proof of Lemma 16. It is enough to prove
ID* (x| Hll 2 SN )2 + 17 fll 2

Consider the cut-oft function x € C°(R), supported in [—2, 2] and identically 1 in [—1, 1]. We
have

I1D° (x| Al 2 < 1D (x| x ) Hll g2 + 1D (x1(X = x () )l 2
<I+Il.

From Theorem 7 we have

1D (lxlx (o) Nl 2 S Mxlx ) fll gz + 1D (xlx () )l 2
S U2 + 1D Axlx GDleee L f 12 + Hxlx GOl 1D £l .2
Sz + 1D fll 2.
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Then we conclude I < ||J* f|| 2. Similarly, using Theorem 7,

ID*(Ix (X1 = xCN Ol 2 SN )2 + Ixfll 2
Then II < ||J*(xf)|l;2. This finishes the proof of Lemma 16. O
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