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Abstract

In this work we study the well-posedness for the initial value problem associated to a generalized deriva-
tive Schrödinger equation for small size initial data in weighted Sobolev space. The techniques used include 
parabolic regularization method combined with sharp linear estimates. An important point in our work is 
that the contraction principle is likely to fail but gives us inspiration to obtain certain uniform estimates that 
are crucial to obtain the main result. To prove such uniform estimates we assume smallness on the initial 
data in weighted Sobolev spaces.
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1. Introduction

We shall study the following initial value problem (IVP){
i∂tu + ∂2

xu + i|u|α∂xu = 0

u(·,0) = u0
(1.1)

where u is a complex valued function of (x, t) ∈R ×R and α > 0.
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The equation in (1.1) is a generalization of the derivative nonlinear Schrödinger equation, 
(DNLS)

i∂tu + ∂2
xu + i∂x(|u|2u) = 0, (x, t) ∈R×R. (1.2)

The DNLS equation appears in physics as a model that describes the propagation of Alfvén 
waves in plasma (see [20,21,23]). In mathematics, this equation has also been extensively studied 
in regard to well-posedness for the associated IVP [5,7,9–12,27,28]. Tsutsumi and Fukuda [29], 
using parabolic regularization, proved local well-posedness in Sobolev spaces Hs(R), s > 3/2. 
Hayashi [10] proved well-posedness for initial data u0 ∈ H 1(R) satisfying the smallness condi-
tion

‖u0‖L2 <
√

2π. (1.3)

His idea was to use a gauge transformation to turn the DNLS equation into a system of nonlinear 
Schrödinger equations without derivative in the nonlinearity. This system, in turn, can be treated 
using Strichartz estimates. It is known that DNLS equation can be written as a Hamiltonian 
system

du(t)

dt
= −iE′(u(t)) (1.4)

where E(u) is the energy of u defined by

E(u)(t) = 1

2

∫
|∂xu|2dx + 1

4
Im

∫
|u|2ū∂xudx. (1.5)

As a consequence of (1.4) it follows that E is a conserved quantity. In particular, the result of 
Hayashi is global in time. Later on Hayashi and Ozawa [11] based on the same gauge trans-
formation proved global well-posedness for initial condition in Hm(R), m ∈ N, also satisfying 
the smallness condition (1.3). The best result regarding local well-posedness was obtained by 
Takaoka in [27]. He proved that the IVP associated to DNLS equation is well-posed in Hs(R), 
for s ≥ 1/2. He considered the gauge transformation

v(x, t) = u(x, t) exp

⎛⎝ i

2

x∫
−∞

|u(y, t)|2dy

⎞⎠ .

to transform DNLS equation into

i∂t v + ∂2
x v = −iv2∂xv̄ − 1

2
|v|4v (1.6)

and used the Fourier restriction norm method introduced by Bourgain [3]. Biagioni and 
Linares [2] proved that the IVP associated to DNLS equation is not well-posed in Hs(R) for 
s < 1/2, which implies that Takaoka’s result is sharp. Using the I-method Colliander, Keel, 
Staffilani, Takaoka and Tao [4,5] showed that the IVP associated to DNLS equation is globally
well-posed for s > 1/2.



JID:YJDEQ AID:7813 /FLA [m1+; v1.204; Prn:27/04/2015; 10:06] P.3 (1-31)

G.N. Santos / J. Differential Equations ••• (••••) •••–••• 3
The main difficulty to deal with DNLS equation is the presence of the derivative in the nonlin-
earity, which causes the so called loss of derivatives. This means that the standard way of proving 
existence of solution of

u(t) = U(t)u0 −
t∫

0

U(t − t ′)∂x(|u|2u)dt ′ (1.7)

cannot be accomplished only by using the property of unitary group and Strichartz estimates of 
the Schrödinger propagator U(t) = eit∂2

x . In fact the right hand side of (1.7) has less derivative 
than the left hand side and Strichartz estimates do not provide us gain of derivatives. This is 
one point that makes the study of DNLS equation more difficult than the corresponding cubic 
nonlinear Schrödinger equation (NLS), namely

i∂tu + ∂2
xu + λ|u|2u = 0.

The equation in (1.1) admits a family of solitary waves solutions given explicitly by

ψ(x, t) = ϕω,c(x − ct) exp i

⎧⎨⎩ωt + c

2
(x − ct) − 1

α

x−ct∫
−∞

ϕα
ω,c(y)dy

⎫⎬⎭ ,

where ω > c2/4 and

ϕω,c(y)α = (2 + α)(4ω − c2)

4
√

ω
(

cosh(α
2

√
4ω − c2y) − c

2
√

ω

) .

Liu, Simpson and Sulem in [19] studied the orbital stability of these solitary waves for the equa-
tion in (1.1). More precisely,

Definition 1. The solitary wave ψω,c is said to be orbitally stable for (1.1) if for each initial data 
u0 ∈ H 1(R) sufficiently close to ψω,c(0) corresponds a unique u global solution of (1.1) and

sup
t≥0

inf
(θ,y)∈R×R

‖u(t) − eiθψω,c(t, · − y)‖H 1

is sufficiently small. Otherwise ψω,c is said to be orbitally unstable.

Results of orbital stability or instability were obtained according to the value of α. It was
assumed the existence of solution of the IVP (1.1) for arbitrary α > 0, and initial data u0 ∈
H 1(R). However, besides the case α = 2 there is only a few well-posedness results for (1.1). 
For integer powers α ≥ 5, Hao [8] proved local well-posedness in H 1/2(R). There is also the 
work of Ambrose and Simpson [1], who established existence and uniqueness of solution u ∈
L∞([0, T ]; H 1(T)) for all values α ≥ 1. Nevertheless, to our knowledge there is no result dealing 
with the case α < 2. This case possesses a lot of difficulties. In fact, the gauge transformation 
used in the work of Hayashi [9] cannot be applied, because it is required that u actually satisfies 
the differential equation, that is u ∈ C2. Turns out we cannot expect such smoothness from u
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when α < 2, since the nonlinear term |u|α is only C1. In the present work we carry out the case 
α > 1. The main result regards the most interesting case 1 < α < 2.

Theorem 1. Let 1 < α < 2. Consider X = H 3/2(R) ∩{f ∈ S′(R); xf ∈ H 1/2(R)}. If u0 ∈ X and

‖u0‖X = ‖u0‖H 3/2 + ‖xu0‖H 1/2

is sufficiently small then there exist T = T (‖u0‖X) > 0 and a unique

u ∈ C([0, T ];H 3/2−) ∩ L∞([0, T ];X)

solution of the integral equation

u(t) = U(t)u0 −
t∫

0

U(t − t ′)(|u|α∂xu)(t ′)dt ′. (1.8)

Our strategy to prove Theorem 1 will be based on the technique known as parabolic regular-
ization (or viscosity argument) introduced by T. Kato [14]. It consists in the following: First we 
prove that for each positive parameter ε (viscosity) the initial value problem{

i∂tuε + ∂2
xuε + i|uε |α∂xuε = iε∂2

xuε

uε(·,0) = u0
(1.9)

has solution in [0, Tε]. The second step is to prove that all the solutions uε can be defined at the 
same interval of time and they converge as ε goes to zero and the limit solves (1.1). The first step 
is quite simple due to the presence of the parabolic term iε∂2

xu. As usual we can obtain solution 
uε ∈ C([0, Tε]; Hs(R)), with Tε = ε/‖u0‖Hs , in some Sobolev space Hs(R). The difficulty lies 
in the second step. To prove that the maximal existing time of definition of each solution uε is 
independent of epsilon we need

sup
ε>0

‖uε‖L∞
Tε

Hs
x

< ∞. (1.10)

The estimate (1.10) permits to extend all the solutions to an interval of time [0, T ] independent 
of ε and the extension still satisfies supε>0 ‖uε‖L∞

T Hs
x

< ∞. Using compactness, for each t ∈
[0, T ] we have weak convergence uε(t) of some subsequence to an element u(t) in Hs(R). So, u
is the candidate to be a solution. Thus we have a great chance to be successful with the parabolic 
regularization if we can prove the uniform estimate (1.10). In [13] it is already presented how 
(1.10) can be obtained in Hs(R), s > 3/2, for nonlinearities like um∂xu, m ∈ N. There, the 
argument can also be adapted to the nonlinearity |u|α∂xu whenever we have some smoothness 
of the nonlinearity, for example α ≥ 2, that allows us to prove

‖|u|α‖Hs ≤ c‖u‖α
Hs . (1.11)

However, (1.11) is no longer true for low powers α since |z|α does not have enough reg-
ularity. In this work we obtain a uniform estimate like (1.10) in H 3/2(R) when 1 < α < 2
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(see Theorem 4). Our argument was inspired by trying to use the contraction mapping princi-
ple. Using sharp smoothing properties associated to the linear equation we define a subspace 
E ⊂ C([0, T ]; Hs(R)) and prove that the associated integral operator

�(u) = U(t)u0 −
t∫

0

U(t − t ′)(|u|α∂xu)dt ′ (1.12)

is well defined, i.e., � : E → E for small data. However, the argument we used to prove � is 
well defined in E does not provide contraction when considering α < 2 (see Remark 2).

We will also study the case α > 2. The difficulties we have to perform contraction argument in 
the case 1 < α < 2, disappear when considering α > 2. This is because the contraction principle 
argument yields us to consider maximal function∥∥∥ sup

t∈[0,T ]
|u(·, t)|

∥∥∥
Lα

(1.13)

and there is no estimate for the norm (1.13) when α < 2.

Theorem 2. Let α > 2 and T > 0 be given. There exists δ > 0 such that for all initial data 
u0 ∈ H 1/2(R) with ‖u0‖H 1/2 ≤ δ there exists one, and only one u ∈ C([0, T ]; H 1/2(R)) solution 
of

u(t) = U(t)u0 −
t∫

0

U(t − t ′)(|u|α∂xu)(t ′)dt ′ (1.14)

satisfying

‖∂xu‖L∞
x L2

T
, ‖u‖Lα

x L∞
T

< ∞, ‖u‖L2α
x L∞

T
< ∞.

The main point in the proof of Theorem 2 is the fact that we do have maximal estimates when 
α ≥ 2 (see Lemma 3).

The remainder of our work is organized as follows: In Section 2 we present a list of results that 
will be used along the work; In Section 3 we prove existence of solutions uε to the problem (3.1), 
and establish some uniform estimates for these solutions; In Section 4 we prove Theorem 1 by 
proving the convergence of the sequence uε as the parameter goes to zero and the limit satis-
fies the integral equation (1.8); In Section 5 we study the case α > 2. In this case we establish 
well-posedness for the IVP (1.1) in H 1/2(R), for small data via contraction argument.

1.1. Notation

Given A, B > 0 the notation A � B means A ≤ cB for some constant c > 0. A ∼ B means 
A � B and B � A. The notation r+ stands r + ε, with ε > 0 sufficiently small. Also, we 
write T +, to denote T raised to some positive power. We denote 〈x〉 = (1 + x2)1/2. The Fourier 
transform of a function f , and its inverse Fourier transform are denoted by f̂ and f̌ respectively. 
For an s ∈ R, J s = (1 − ∂2

x )s/2, and Ds = (−∂2
x )s/2 stand respectively for the Riesz and Bessel 
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potential of order −s. The space Hs(R) = (1 − ∂2
x )−s/2(L2(R)) denotes the Sobolev space of 

order s endowed with the norm ‖f ‖Hs = ‖J sf ‖L2 . For two variable functions f = f (x, t), with 
(x, t) ∈ R × [0, T ], we consider the mixed spaces Lq([0, T ]; Lp(R)) and Lp(R; Lq([0, T ])), 
corresponding to the norms

‖f ‖L
q
T L

p
x

=
⎛⎝ T∫

0

(∫
R

|f (x, t)|pdx
)q/p

dt

⎞⎠1/q

and

‖f ‖L
p
x L

q
T

=
⎛⎝∫

R

( T∫
0

|f (x, t)|qdt
)p/q

dx

⎞⎠1/p

,

respectively.

2. Preliminary estimates

We consider the IVP associated to the free Schrödinger equation{
i∂tu + ∂2

xu = 0, x, t ∈ R

u(·,0) = f
(2.1)

whose solution is given by

u(x, t) = {e−itξ2
f̂ }∨(x)

and is denoted by U(t)f . The family {U(t)}t∈R forms a unitary group in Hs(R), for all s ∈ R. 
In the following we will list some estimates satisfied for solutions of IVP (2.1). We begin by the 
so called LqLp estimates or Strichartz estimates.

Lemma 1 (Strichartz estimates). For all pairs (p, q) satisfying

2 ≤ p ≤ ∞ and 2/q = 1/2 − 1/p

we have

‖U(t)f ‖L
q
T L

p
x

≤ c‖f ‖L2 (2.2)

and ∥∥∥∥∥∥
t∫

0

U(t − t ′)F (x, t ′)dt ′
∥∥∥∥∥∥

L
q
T L

p
x

≤ c‖F‖
L

q′
T L

p′
x

(2.3)

where 1/p′ + 1/p = 1/q ′ + 1/q = 1, for some constant c > 0.
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Proof. See Ginibre and Velo [6]. �
Next we have the smoothing effects estimates.

Lemma 2 (Smoothing effects). There exists a constant c > 0, such that:
i)

‖D1/2U(t)f ‖L∞
x L2

T
≤ c‖f ‖L2; (2.4)

for all f ∈ L2(R), and
ii) ∥∥∥∥∥∥D1/2

∫
R

U(t ′)F (·, t ′)dt ′
∥∥∥∥∥∥

L∞
T L2

x

≤ c‖F‖L1
xL2

T
; (2.5)

iii) ∥∥∥∥∥∥∂x

t∫
0

U(t − t ′)F (·, t ′)dt ′
∥∥∥∥∥∥

L∞
x L2

T

≤ c‖F‖L1
xL2

T
; (2.6)

for all F ∈ L1
xL

2
T .

The above estimates were proved by Kenig, Ponce and Vega [15]. For a detailed proof of 
Lemma 1 to (2.6) see [18, Chapter 4].

Finally, we present the following maximal function estimates for the Schrödinger propagator.

Lemma 3 (Maximal function estimate). Let p ∈ (2, ∞) and s ≥ max{1/2 − 1/p, 1/p}. Then 
there exists a constant c > 0 such that

‖U(t)f ‖L
p
x L∞

T
≤ c‖f ‖Hs . (2.7)

Proof. See Keith M. Rogers and Paco Villarroya [24]. �
Remark 1. Estimate (2.7) was established by Kenig and Ruiz [17] in the case p = 4 and later on 
by Kenig, Ponce and Vega [16] for p = 2 and s > 1/2.

Lemma 4. Given s and p as in Lemma 3 we have∥∥∥∥∥∥
t∫

0

U(t − t ′)F (·, t ′)dt ′
∥∥∥∥∥∥

L
p
x L∞

T

≤ c(‖F‖L1
xL2

T
+ ‖F‖L1

T L2
x
) (2.8)
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Proof. Using Lemma 3 and then applying estimate (2.5) in Lemma 2 we get

∥∥∥∥∥∥
1∫

0

U(t − t ′)F (·, t ′)dt ′
∥∥∥∥∥∥

L
p
x L∞

T

≤ c(‖F‖L1
xL2

T
+ ‖F‖L1

T L2
x
). (2.9)

According to the proof of Lemma 3 in [22], the nonretarded estimate (2.9) implies the retarded 
one in (2.8). �
3. The regularized problem

In this section we shall consider for each ε > 0 the problem

{
i∂tu + ∂2

xu + i|u|α∂xu = iε∂2
xu

u(·,0) = u0
(3.1)

where 1 < α < 2.

3.1. Linear estimates

We shall denote by Uε(t)f = e(i+ε)t∂2
x f the solution of the linear problem associated to (3.1), 

which is, via Fourier transform, given by Uε(t)f = {e−(i+ε)tξ2
f̂ }∨.

Lemma 5. Given s > 0, there exists a constant c = cs > 0 such that

‖Uε(t)f ‖Hs
x

≤ cs

(
1 + 1

(εt)s/2

)
‖f ‖L2 .

Proof. Indeed, using Plancherel Theorem we get

‖DsUε(t)f ‖L2
x
= ‖|ξ |s/2e−(i+ε)tξ2

f̂ ‖L2
x

≤ 1

|εt |s/2
sup
y>0

{ys/2e−y}‖f ‖L2 . �

Next we establish properties that are true for {U(t)} and still hold for Uε(t) uniformly in the 
parameter ε. We notice that Uε(t) = Eε(t)U(t) where Eε(t)g = {e−εtξ2

ĝ}∨, is the heat flow. Let 
ϕ(x) = e−πx2

and denote by ϕρ the function ϕρ(x) = ρϕ(ρx). So the heat flow can be written as

Eε(t)g = ϕρε,t ∗ g, (3.2)

where ρε,t =
√

π
εt

. The formula (3.2) together with the Young inequality and Strichartz estimates 

for the Schrödinger group U(t) (Lemma 1) give us
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Lemma 6. There exists a constant c > 0 independent of ε such that

‖Uε(t)f ‖L
q
T L

p
x

≤ c‖f ‖L2

for all pairs (p, q) satisfying 2 ≤ p ≤ ∞, 1/2 = 2/q + 1/p.

In order to prove a smoothing effect for Uε(t), with constants independent of ε we consider 
the following norm

‖ · ‖l∞j (L2(Qj )) = sup
j∈Z

‖ · ‖L2(Qj )

where Qj is the rectangle Qj = [0, T ] × [j, j + 1].

Lemma 7. Let T > 0 and ε > 0 satisfying 0 < ε < π/T . Then there exists c > 0 independent 
of ε such that

‖D1/2Uε(t)f ‖l∞j (L2(Qj )) ≤ c‖f ‖L2

for all f ∈ L2(R).

Proof. It is enough to prove that

‖Eε(t)g‖l∞j (L2(Qj )) ≤ c‖g‖l∞j (L2(Qj ))

with c independent of ε. Writing Eε(t) as the convolution in (3.2) we have

Eε(t)g(·, t)(x) =
∫

|y|<1

ϕρε,t (y)g(x − y, t)dy +
∫

|y|>1

ϕρε,t (y)g(x − y, t)dy

= I0(x, t) + I∞(x, t).

By using the Minkowsky inequality, a change of variables and the fact [j − y, j + 1 − y] ⊂
[j − 1, j + 2] for all |y| < 1, we get

‖I0(·, t)‖L2([j,j+1]) ≤ ‖g(·, t)‖L2([j−1,j+2])
∫
R

ϕ(y)dy,

for all j ∈ Z. Thus

‖I0‖l∞j (L2(Qj )) � ‖g‖l∞j (L2(Qj )).

To bound ‖I∞‖l∞(L2(Q )), notice that ρε,t ≤ ρ2
ε,t for ε ≤ π/T . Then for ε sufficiently small
j j
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|I∞(x, t)| ≤
∫

|y|>1

ρ2
ε,t e

−|ρε,t y|2 |g(x − y, t)|dy

≤ sup{δe−δ : δ > 0}
∫

|y|>1

1

y2
|g(x − y, t)|dy.

Using change of variables we have

‖I∞‖L2(Qj ) �
∫

|y|>1

1

y2
‖g‖L2([0,T ]×[mj,y ,mj,y+2])dy

where mj,y denotes the integer number such that mj,y ≤ j − y < mj,y + 1. Then we conclude

‖I∞‖l∞j (L2(Qj )) � ‖g‖l∞j (L2(Qj )). �
As a consequence of Lemma 7 we have the dual version:

Lemma 8. There exists c > 0 independent of ε such that

‖D1/2

t∫
0

Uε(t − t ′)F (·, t ′)dt ′‖L∞
T L2

x
≤ c‖F‖l1j (L2(Qj )). (3.3)

Proof. Consider G ∈ L2(R), such that ‖G‖L2 = 1. Using Fubini’s theorem, Parserval’s identity 
and the definition of Uε(t) we have

∫
R

(
D1/2

t∫
0

Uε(t − t ′)F (·, t ′)(x)dt ′
)

Ḡ(x)dx

=
t∫

0

∫
R

F(x, t ′)D1/2Eε(t − t ′)U(t ′ − t)G(x)dxdt ′. (3.4)

Splitting the integral with respect to the variable x in (3.4) into a sum of the integral over the 
intervals [j, j + 1], using the Hölder inequality and then Lemma 7 it follows∣∣∣∣∣

∫
R

(
D1/2

t∫
0

Uε(t − t ′)F (·, t ′)(x)dt ′
)

G(x)dx

∣∣∣∣∣∑
j∈Z

‖F‖L2([0,t]×[j,j+1])‖D1/2Eε(t − ·)U(· − t)Ḡ‖L2([0,t]×[j,j+1])

�
∑
j∈Z

‖F‖L2([0,t]×[j,j+1]). (3.5)

By duality (3.3) holds. �
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We are also able to prove the following inhomogeneous smoothing effect.

Lemma 9. There exists c > 0 independent of ε such that

‖∂x

t∫
0

Uε(t − t ′)F (·, t ′)dt ′‖l∞j (L2(Qj )) ≤ c‖F‖l1j (L(Qj )).

The proof of this lemma follows basically the ideas presented in [18]. The additional ingredi-
ent is the following:

Lemma 10. For each w ∈ C define the function fw(x) = x

x2 + w2
. Then there exists a constant 

c > 0 such that

‖f̂w‖L∞ ≤ c

for all w ∈ C.

Proof. Indeed, for Re(w) > 0, we consider for each ξ ∈ R the complex function

F(z) = ei|ξ |z

z2 + w2
,

defined in D+
R = {z ∈ C; Im(z) > 0, |z| ≤ R}. We use residue calculus to compute the integral of 

F along the boundary of D+
R . On the other hand, the integral along the curve {z ∈ C; |z| = R}, 

goes to zero as R goes to zero. Following these ideas we end up with{
1

x2 + w2

}∨
= π

w
e−w|ξ |.

Using the relation between Fourier transform and differentiation we obtain f̂w(ξ) =
−iπsgn(ξ)e−w|ξ |. The case Re(w) < 0 follows from the fact f−w = fw . Finally, when 
Re(w) = 0 we can write fw as

fw = 1

2

[
1

x − Im(w)
+ 1

x + Im(w)

]
,

and then we compute f̂w as a sum of Fourier transform of translations of the principal value 

distribution p.v. 
(

1

x

)
. Thus we get f̂w = −iπ cos(Im(w)ξ)sgn(ξ). In any case it follows 

‖f̂w‖L∞ ≤ π . �
Proof of Lemma 9. Denote by v the following function

v(x, t) =
t∫
Uε(t − t ′)F (·, t ′)(x)dt ′.
0
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The function v can be written as

v(x, t) = −
∫ ∫

eitτ − e−it (1−iε)ξ2

τ + (1 − iε)ξ2
eixξ F̃ (ξ, τ )dξdτ, (3.6)

where F̃ denotes the Fourier transform of F with respect to both variables x and t . Then differ-
entiating v with respect to the variable x we obtain from (3.6)

∂xv(x, t) = −
∫ ∫

iξeitτ

τ + (1 − iε)ξ2
eixξ F̃ (ξ, τ )dξdτ

+
∫ ∫

iξe−it (1−iε)ξ2

τ + (1 − iε)ξ2
eixξ F̃ (ξ, τ )dξdτ

= ∂xv1(x, t) + ∂xv2(x, t).

Write

∂xv1(x, t) = − 1

1 − iε

∫ ∫
iξ

w2 + ξ2
F̃ (ξ, τ )eixξ eitτ dξdτ (3.7)

where w = wε,τ is a complex number such that w2 = τ

1 − iε
. Denoting

Kw(x) =
{

iξ

w2 + ξ2

}∨
(x),

and using the properties of convolution in the integral (3.7) and then applying Plancherel Theo-
rem with respect to the variable t it follows

‖∂xv1(x, ·)‖L2
t
= 1√

1 + ε2
‖{Kwτ,ε ∗ F̂ (t)(τ )}(x)‖L2

τ
.

Then applying the Minkowsky inequality for integrals and finally Lemma 10 we obtain

‖∂xv1(x, ·)‖L2
t
≤ sup

τ,ε
‖Kwτ,ε‖L∞

∫
‖F̂ (y, ·)(t)‖L2

τ
dy

� ‖F‖L1
xL2

t
.

Since ‖ · ‖l∞j (L2(Qj )) ≤ ‖ · ‖L∞
x L2

T
and ‖ · ‖L1

xL2
T

≤ ‖ · ‖l1j (L2(Qj )) we conclude

‖∂xv1‖l∞j (L2(Qj )) � ‖F‖l1j (L2(Qj )).

Now we turn our attention to ∂xv2. First of all note that one can be written as

∂xv2(x, t) = D1/2Uε(t)G(x) (3.8)
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where G is defined via Fourier Transform by

Ĝ(ξ) =
∫

isgn(ξ)|ξ |1/2F̃ (ξ, τ )

τ + (1 − iε)ξ2
dτ.

Notice that {
p.v.

1

τ + (1 − iε)ξ2

}∨
(t) = c sgn(t)e−it (1−iε)ξ2

. (3.9)

So using Parseval Identity and (3.9) we have

Ĝ(ξ) =
{
HD1/2

∫
Uε(t)F (·, t)sgn(t)dt

}∧
(ξ) (3.10)

where H is the Hilbert transform. Using (3.8), Lemma 7, (3.10) and Lemma 8 we conclude

‖∂xv2‖l∞j (L2(Qj )) � ‖F‖l1j (L2(Qj )). �
Lemma 11. If f is differentiable then for all x, t ∈ R we have

xUε(t)f (x) = Uε(t)(xf )(x) − 2(i + ε)tUε(t)(∂xf )(x)

Proof. By using properties of the Fourier transform and the definition of Uε(t) we have

xUε(t)f (x) = i{∂ξ (e
−(ε+i)tξ2

f̂ )}∨(x)

= −2(i + ε)t{e−(ε+i)tξ2
iξ f̂ }∨(x) + {e−(ε+i)tξ2

∂ξ f̂ }∨(x)

= −2(i + ε)tUε(t)(∂xf )(x) + Uε(t)(xf )(x). �
3.2. Local existence theory

Now we deal with the problem of existence of solution to (3.1). We shall prove the existence 
of solution to the corresponding integral equation

u(t) = Uε(t)u0 −
t∫

0

Uε(t − t ′)(|u|α∂xu)(t ′)dt ′. (3.11)

Theorem 3. Let ε > 0 and u0 ∈ H 3/2(R) be given. Then there exists one, and only one, uε ∈
C([0, T ]; H 3/2(R)) solution of the integral equation (3.11), where

Tε = ε3

c‖u0‖4α
H 3/2

for some constant c, independent of ε.
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Proof. We define the integral operator �ε given on the right hand side of (3.11). Using Lemma 5
it follows

‖�ε(u)‖
H

3/2
x

≤ ‖u0‖H 3/2 +
t∫

0

(
1 + c

(ε|t − t ′|)3/4

)
‖(|u|α∂xu)(t ′)‖L2

x
dt ′

≤ ‖u0‖H 3/2 +
(

T + 4cT 1/4

ε3/4

)
‖|u|α∂xu‖L∞

T L2
x
.

Using the Sobolev embedding H 1/2+(R) ⊂ L∞(R) we conclude

‖�ε(u)‖
L∞

T H
3/2
x

≤ ‖u0‖H 3/2 +
(

T + 4cT 1/4

ε3/4

)
‖u‖α+1

L∞
T H

3/2
x

. (3.12)

Therefore the operator �ε maps

ET = {u ∈ C([0, T ];H 3/2(R)); ‖u‖
L∞

T H
3/2
x

≤ 2‖u0‖H 3/2}

into itself. Next, we prove

�ε : ET −→ ET

is a contraction with respect to the norm ‖ · ‖
L∞

Tε
H

3/2
x

. Indeed, consider u, v ∈ ET and denote 

G(u, v) = |u|α∂xu − |v|α∂xv. We have

�ε(u) − �ε(v) = −
t∫

0

Uε(t − t ′)G(u, v)(t ′)dt ′.

Then using Lemma 5 we obtain similarly

‖�ε(u) − �ε(v)‖
H

3/2
x

�
(

T + 4cT 1/4

ε3/4

)
‖G(u,v)‖L∞

T L2
x
. (3.13)

Using the property ∣∣|u|α − |v|α∣∣ �
(
|u|α−1 + |v|α−1

)
|u − v| (3.14)

combined with the Sobolev embedding we can obtain

‖G(u,v)‖L∞
T L2

x
� (‖u‖α−1

H 3/2 + ‖u‖α−1
H 3/2)‖u − v‖

L∞
T H

3/2
x

. (3.15)

Plugging estimate (3.15) into (3.13) we conclude

‖�ε(u) − �ε(v)‖
L∞

Tε
H

3/2
x

≤ 1

2
‖u − v‖

L∞
Tε

H
3/2
x

.

From the Banach fixed point theorem for contractions we conclude our proof. �



JID:YJDEQ AID:7813 /FLA [m1+; v1.204; Prn:27/04/2015; 10:06] P.15 (1-31)

G.N. Santos / J. Differential Equations ••• (••••) •••–••• 15
3.3. Uniform estimates for the solutions of the regularized problem

We consider the norm

�(u) ≡ ‖u‖
L∞

T H
3/2
x

+ ‖xu‖
L∞

T H
1/2
x

+ ‖∂2
xu‖l∞j (L2(Qj )) + ‖∂x(xu)‖l∞j (L2(Qj ))

≡ �1(u) + �2(u) + �3(u) + �4(u)

We intend to prove that supε>0 �(uε) is finite whenever the initial data belongs to the weighted 
space

X = H 3/2(R) ∩ {f ∈ S ′(R);xf ∈ H 1/2(R)}

and

‖u0‖X = ‖u0‖H 3/2 + ‖xu0‖H 1/2

is sufficiently small.
I-The norms �1 and �3:
Using Lemma 7, Lemma 8 and Lemma 9 we obtain

�1(uε) + �3(uε) � ‖u0‖H 3/2 + ‖|uε |α∂2
xuε‖l1j (L2(Qj ))

+ ‖|uε |α−1(∂xuε)
2‖l1j (L2(Qj )). (3.16)

Let us take care of each term in (3.16) separately. First use the Hölder inequality to obtain

‖|uε |α∂2
xuε‖l1j (L2(Qj )) ≤ ‖uε‖α

lαj (L∞(Qj ))�3(u).

To control ‖ · ‖lαj (L∞(Qj )) we introduce a weight. Indeed, by the Hölder inequality we have

‖uε‖l1+
j (L∞(Qj ))

� ‖〈x〉1−uε‖L∞
T L∞

x
.

Then, the Sobolev embedding gives us

‖uε‖l1+
j (L∞(Qj ))

� ‖J 1/2+(〈x〉1−uε

)‖L∞
T L2

x
.

Combining Lemma 14, and Lemma 16 we deduce

‖uε‖l1+
j (L2(Qj ))

� �(uε). (3.17)

Consequently

‖|uε |α∂2
xuε‖l1(L∞(Q )) � �(uε)

α+1. (3.18)

j j
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Now we turn our attention to ‖|u|α−1(∂xu)2‖l1j (L2(Qj )). First we use the Hölder inequality and 

(3.17) to obtain

‖|uε |α−1(∂xuε)
2‖l1j (L2(Qj )) ≤ �(uε)

α−1‖∂xuε‖2

l

2
2−α

−
j (L4(Qj ))

. (3.19)

To examine (3.19) we consider two cases:
Case 1: 3/2 < α < 2.
In this case ‖ · ‖L4(Qj ) ≤ T +‖ · ‖

L
2

2−α
−

(Qj )
, so and then

‖∂xuε‖
l

2
2−α

−
j (L4(Qj ))

≤ T +‖∂xuε‖
L

2
2−α

−
T L

2
2−α

−
x

. (3.20)

Applying the Sobolev embedding to (3.20) we conclude

‖∂xuε‖
l

2
2−α

−
j (L4(Qj ))

� T +�1(uε).

Case 2: 1 < α ≤ 3/2.
Notice that

‖∂xuε‖
l

2
2−α

−
j (L4(Qj ))

� ‖〈x〉ρ∂xuε‖L4
T L4

x

� T 1/4‖J 1/4(〈x〉ρ∂xuε)‖L∞
T L2

x
,

for ρ > 3−2α
4 . To finish the analysis of this case, we claim that

‖D1/4(〈x〉ρ∂xuε)‖L2 � ‖J 1/4(xuε)‖L2 + ‖J 3/2uε‖L2 . (3.21)

In fact, note that

‖D1/4(〈x〉ρ∂xuε)‖L2 ≤ ‖D5/4(〈x〉ρuε)‖L2 + ‖D1/4 (uε∂x(〈x〉ρ)
)‖L2 . (3.22)

Since ∂x(〈x〉ρ) and ∂2
x (〈x〉ρ) are bounded we have

‖D1/4 (uε∂x(〈x〉ρ)
)‖L2 � ‖uε∂x(〈x〉ρ)‖L2 + ‖∂x

(
uε∂x(〈x〉ρ)

)‖L2

� ‖uε‖H 1 . (3.23)

Applying Lemma 14 with θ = 1 − ρ we have

‖D5/4(〈x〉ρuε)‖L2 ≤ ‖J 1/2+θ (〈x〉1−θuε)‖L2

� ‖J 1/2(〈x〉uε)‖1−θ

L2 ‖J 3/2uε‖θ
L2 . (3.24)

Using Lemma 16 we conclude the proof of the claim. Therefore

‖|uε |α−1(∂xuε)
2‖l1(L2(Q )) ≤ �(uε)

α+1, (3.25)

j j
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and so

�1(uε) + �3(uε) � ‖u0‖H 3/2 + (1 + T +)�(uε)
α+1. (3.26)

II-Norms �2 and �4:
From Lemma 11 we have

xu(x, t) = Uε(t)(xu0) − 2(i + ε)tUε(t)(∂xu0)

−
t∫

0

Uε(t − t ′)(x|uε |α∂xuε)(t
′)dt ′

− 2(1 − iε)

t∫
0

(t − t ′)Uε(t − t ′)
(
∂x(|uε |α∂xuε)

)
(t ′)dt ′

= L + NL1 + NL2

Thus

�2(uε) + �4(uε) ≤ ‖L‖
L∞

T H
1/2
x

+ ‖∂xL‖l∞j (L2(Qj ))

+ ‖NL1‖L∞
T H

1/2
x

+ ‖∂xNL1‖l∞j (L2(Qj ))

+ ‖NL2‖L∞
T H

1/2
x

+ ‖∂xNL2‖l∞j (L2(Qj )).

Applying Lemma 8 to the linear term it follows

‖L‖
L∞

T H
1/2
x

+ ‖∂xL‖l∞j (L2(Qj )) � ‖u0‖X.

Regarding the nonlinear terms, Lemma 8 implies for each t ∈ [0, T ]

‖NL1(t)‖H
1/2
x

≤ ‖
t∫

0

Uε(t − t ′)(x|uε |α∂xuε)(t
′)dt ′‖L2

x

+ ‖D1/2

t∫
0

Uε(t − t ′)(x|uε |α∂xuε)(t
′)dt ′‖L2

x

� T 1/2‖x|uε |α∂xuε‖L2
T L2

x
+ ‖x|uε |α∂xuε‖l1j (L2(Qj )).

Note that

‖x|uε |α∂xuε‖L2
T L2

x
= ‖x|uε |α∂xuε‖l2j (L2(Qj )).

Thus

‖NL1‖ ∞ 1/2 � T 1/2‖x|uε |α∂xuε‖l2(L2(Q )) + ‖x|uε |α∂xuε‖l1(L2(Q )). (3.27)

LT Hx j j j j
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Using Hölder’s inequality and the estimate in (3.17) we obtain

‖x|uε |α∂xuε‖l1j (L2(Qj )) ≤ ‖uε‖α
lαj (L∞(Qj ))‖x∂xuε‖l∞j (L2(Qj ))

≤ �(uε)
α‖x∂xuε‖l∞j (L2(Qj )).

We conclude

‖x|uε |α∂xuε‖l1j (L2(Qj )) � (1 + T +)�(uε)
α+1 (3.28)

The term ‖x|uε |α∂xuε‖l2j (L2(Qj )) can be estimated similarly. We bound the term

‖∂xNL1‖l∞j (L2(Qj )) applying Lemma 9 followed by estimate (3.28). Finally,

‖NL2‖H
1/2
x

≤ 2(1 + ε)‖
t∫

0

(t − t ′)Uε(t − t ′)
(|uε |α∂xuε

)
(t ′)dt ′‖

H
3/2
x

� 2(1 + ε)T + [
‖|uε |α∂xuε‖L∞

T L2
x
+ ‖∂x(|uε |α∂xuε)‖l1j (L2(Qj ))

]
.

Estimates (3.18) and (3.25) provide us

‖∂x(|uε |α∂xuε)‖l1j (L2(Qj )) � (1 + T +)�(uε)
α+1 (3.29)

and the Sobolev embedding

‖|uε |α∂xuε‖L∞
T L2

x
≤ ‖uε‖α

L∞
T L∞

x
‖∂xuε‖L∞

T L2
x

� �(uε)
α+1.

Then we conclude

‖NL2‖L∞
T H

1/2
x

� (1 + T +)�(uε)
2+a.

By Lemma 9 and estimate (3.29) we get

‖∂xNL2‖l∞j (L2(Qj )) � (1 + T +)�(uε)
α+1.

Therefore

�2(uε) + �4(uε) � ‖u0‖X + (1 + T +)�(uε)
α+1. (3.30)

Gathering the estimates (3.26) and (3.30) we conclude that there exist positive constants β
and c, independent of ε such that

�T (uε) ≤ c‖u0‖X + c(1 + T β)�T (uε)
α+1 (3.31)

for all ε > 0 whenever we have uε solution of (3.11) defined in [0, T ]. As a consequence we have 
the following:
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Theorem 4. Let u0 ∈ X, with ‖u0‖X < 1/4c. Considering the constants c and β in (3.31) we 
define

T∗ =
(

1 − 4c‖u0‖X

4c‖u0‖X

)1/β

.

If uε is a solution of (3.11) defined in [0, T ] with T < T∗ we have

�T (uε) ≤ 1 −√
1 − 4c(1 + T β)‖u0‖X

2c
. (3.32)

Proof. For 0 ≤ T̃ ≤ T consider the polynomial p(x) = c
T̃
x2 − x + c‖u0‖X , c

T̃
= c(1 + T̃ β), 

and note that p(x) has two roots

r0 = 1 −√
1 − 4c

T̃
‖u0‖X

2c
T̃

and r1 = 1 +√
1 − 4c

T̃
‖u0‖X

2c
T̃

that, in its turn, belong to (0, 1). Since c
T̃
xα+1 − x + c‖u0‖X ≤ p(x) in (0, 1) and p(x) is 

negative in (r0, r1) we have c
T̃
xα+1 − x + c‖u0‖X < 0 for all x ∈ (r0, r1). Thus, from (3.31) we 

conclude �
T̃
(uε) ∈ (0, r0] ∪ [r1, +∞). Using the fact that �

T̃
(uε) depends continuously on T̃ , 

it follows that either

�
T̃
(uε) ≤ r0, for all 0 ≤ T̃ ≤ T (3.33)

or

�
T̃
(uε) ≥ r1, for all 0 ≤ T̃ ≤ T (3.34)

However, (3.34) cannot happen because

lim
T̃ →0

�
T̃
(uε) = ‖u0‖X

and ‖u0‖X ≤ r0. �
Corollary 1. Given u0 ∈ X and T∗ as in Theorem 4, then, all the solutions uε can be extended to 
[0, T∗] and satisfy (3.32) for all 0 < T < T∗.

Remark 2. Applying the argument presented in this section to the operator �(u) (defined 
in (1.12)) we may have

�T (�(u)) ≤ c‖u0‖X + c(1 + T β)�T (u)α+1. (3.35)

However, applying the same ideas to �(u) − �(v) instead of �(u) would only lead us to con-
clude that

�T (�(u) − �(v)) � (�T (u) + �T (v))�T (u − v)α−1. (3.36)
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Indeed, because of (3.16) we would have

‖|u|α−1(∂xu)2 − |v|α−1(∂xv)2‖l1j (L2(Qj )) (3.37)

and it is not obvious how to bound (3.37) by a factor �(u − v) when α < 2.

4. Proof of Theorem 1

Consider the solutions uε all defined in the same interval of time. Since for each t ∈ [0, T ]
the family of solutions {uε(t)}ε>0 is bounded in H 3/2(R) there must exist, for each t , a sequence 
{εj }∞j=1 and an element u(t) ∈ H 3/2(R) such that uεj

(t) converges weakly in H 3/2(R) to u(t) as 
j −→ ∞. Throughout this section we shall prove that the function u in fact satisfies (1.8).

4.1. Convergence in L2

To prove the convergence in L2 it will be necessary the following lemma:

Lemma 12. There exists a constant c > 0 such that

‖∂xuε‖L4
T L∞

x
< c

for all ε > 0.

Proof. First we differentiate the integral equation (3.11) and we apply Lemma 6 to the pair 
(4, ∞) to obtain

‖∂xuε‖L4
T L∞

x
� ‖∂xu0‖L2 + α

T∫
0

‖|uε |α−1(∂xuε)
2‖L2

x
dt ′

+
T∫

0

‖|uε |α∂2
xuε‖L2

x
dt ′

� ‖∂xu0‖L2 + T ‖uε‖α+1
L∞

T H
3/2
x

+ T 1/2‖|uε |α∂2
xuε‖L2

T L2
x
. (4.1)

Using the computation (3.17) we have

‖|uε |α∂2
xuε‖L2

T L2
x
= ‖|uε |α∂2

xuε‖l2j (L2(Qj ))

≤ ‖uε‖α

l2α
j (L∞(Qj ))

‖∂2
xuε‖l∞j (L(Qj ))

≤ �(uε)
α+1. (4.2)

Then substituting (4.2) into (4.1) we conclude

‖∂xuε‖ 4 ∞ � ‖u0‖H 1 + T +�(u)α+1 �
LT Lx
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Fix uε , uε′ and consider w = wε,ε′ = uε − uε′ . A straightforward calculation gives us

i
d

dt
‖w(·, t)‖L2

x
+ 2iε‖∂xw(·, t)‖2

L2
x
= 2i(ε − ε′)Re

∫
w̄∂2

xuε′dx

+ 2iRe
∫

(|uε′ |α − |uε |α)w̄∂xuεdx

+ i

∫
∂x(|uε′ |α)|w|2dx

= I + II + III.

So

d

dt
‖w(·, t)‖2

L2
x
≤ |I | + |II| + |III|. (4.3)

Next we are going to estimate each of the terms I , II and III. First we take care of I . Indeed, 
using integration by parts and the Hölder inequality

|I | ≤ 2|ε − ε′|‖∂xw̄‖L2
x
‖∂xuε′ ‖L2

x
(4.4)

In the terms II and III we apply the Hölder inequality as well. So

|II| �
∫

(|uε′ |α−1 + |uε |α−1)|w|2|∂xuε |dx

� (�(uε) + �(uε′))α−1‖∂xuε‖L∞
x

‖w‖2
L2

x
, (4.5)

and

|III| ≤ ‖∂x(|uε′ |α)‖L∞
x

‖w‖2
L2

x

� �(uε′)α−1‖∂xuε′ ‖L∞
x

‖w‖2
L2

x
. (4.6)

Gathering the estimates (4.4), (4.5) and (4.6) and recalling supμ>0 �(uμ) < ∞ we obtain

d

dt
‖w(·, t)‖2

L2
x
� |ε − ε′| + (‖∂xuε(·, t)‖L∞

x
+ ‖∂xuε′(·, t)‖L∞

x
)‖w(·, t)‖2

L2
x
. (4.7)

Finally, applying the Gronwall inequality we obtain from (4.7)

‖w(·, t)‖2
L2

x
� |ε − ε′|T exp

[
c̃T 3/4(‖∂xuε‖L4

T L∞
x

+ ‖∂xuε′ ‖L4
T L∞

x
)
]
, (4.8)

for some constant c̃ > 0. Therefore, there exists ũ ∈ C([0, T ]; L2(R)) such that

lim
ε→0

‖uε − ũ‖L∞
T L2

x
= 0.

Also, the limit ũ coincides with the weak limit u. Consequently uε −→ u in L∞L2
x as ε → 0.
T
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4.2. Existence

We have proved that there exists u ∈ C([0, T ]; L2(R)) to which uε converges strongly in 
L∞

T L2
x and weakly in H 3/2(R) for each t ∈ [0, T ]. Using that

‖ · ‖Hs ≤ ‖ · ‖1−θ

L2 ‖ · ‖θ
H 3/2, θ = 3/2 − s

3/2

we obtain that uε converges strongly to u in L∞
T Hs

x as ε goes to zero, for all 0 ≤ s < 3/2. In 
particular u ∈ C([0, T ]; Hs(R)), for all 0 ≤ s < 3/2.

We shall prove that u is solution of the integral equation (1.8). Indeed, using Plancherel’s 
Theorem and Dominated Convergence Theorem we have the convergence of the linear part. To 
investigate the nonlinear part denote

v(x, t) =
t∫

0

U(t − t ′)F (t ′)dt ′ and vε(x, t) =
t∫

0

Uε(t − t ′)Fε(t
′)dt ′

where F(x, t) = |u|α∂xu and Fε(x, t) = |uε |α∂xuε . We have

‖v − vε‖L2
x
≤ 2T ‖F − Fε‖L∞

T L2
x
+

t∫
0

‖(1 − e−ε(t−t ′)ξ2
)F̂ (t ′)‖L2

ξ
dt ′. (4.9)

Since t ′ ∈ [0, t] �−→ |(1 − e−ε(t−t ′)ξ2
)F̂ (t ′)| is bounded by 2|F̂ | which in turn belongs to L1

T L2
ξ , 

it follows from the Dominated Convergence Theorem that

lim
ε→0

t∫
0

‖(1 − e−ε(t−t ′)ξ2
)F̂ (t ′)‖L2

ξ
dt ′ = 0.

Finally, we take care of ‖F − Fε‖L∞
T L2

x
. Adding and subtracting |uε|1+a∂xu we have

‖F − Fε‖L∞
T L2

x
≤ ‖|u|α − |uε |α‖L∞

T L∞
x

‖∂xu‖L∞
T L2

x
+ ‖uε‖α

L∞
T L∞

x
‖∂x(u − uε)‖L∞

T L2
x
.

Using (3.14), the Sobolev embedding and that supε>0 ‖uε‖L∞
T H

3/2
x

< ∞ we can obtain

‖F − Fε‖L∞
T L2

x
� ‖u − uε‖L∞

T H 1
x
.

Then we conclude

lim
ε→0

‖vε(t) − v(t)‖L∞
T L2

x
= 0 (4.10)

for each t ∈ [0, T ]. It follows

u(t) = lim
ε→0

uε(t) = U(t)u0 −
t∫

0

U(t − t ′)(|u|α∂xu)(t ′)dt ′

in L2(R), for each t ∈ [0, T ].
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Theorem 5. Given u0 ∈ X, and T∗ satisfying the hypothesis of Theorem 4, then there exists u
belonging to L∞([0, T∗]; X) ∩ C([0, T∗]; H 3/2−(R)) solution of (1.8).

4.3. Uniqueness

Here we will prove that the function u is the unique solution of the integral equation (1.8) in 
the class L∞([0, T ]; X) ∩ C([0, T ]; H 3/2−(R)).

Lemma 13. If v ∈ L∞([0, T ]; X) ∩ C([0, T ]; H 3/2−(R)) is a solution of the integral equa-
tion (1.8) then ∂xv ∈ L∞

x L2
T .

Proof. In fact, using Lemma 2.4 and Lemma 2.5 we have

‖∂xv‖L∞
x L2

T
� ‖D1/2u0‖L2 + ‖|v|α∂xv‖L1

xL2
T

� ‖u0‖H 3/2 + T 1/2‖|v|α‖L2
xL∞

T
‖∂xv‖L∞

T L2
x
. (4.11)

Therefore

‖∂xv‖L∞
x L2

T
� ‖u0‖H 3/2 + T 1/2‖v‖α+1

L∞([0,T ];X)
. �

To help us to prove uniqueness we consider the norm

‖|v‖| = ‖v‖
L∞

T H
1/2
x

+ ‖∂xv‖L∞
x L2

T

Let ũ be another solution of (1.8) in L∞([0, T ]; X) ∩ C([0, T ]; H 3/2−(R)). Using Lemma 2.4 it 
follows

‖|u − ũ‖| � ‖|u|α∂xu − |ũ|α∂xũ‖L1
T L2

x
+ ‖|u|α∂xu − |ũ|α∂xũ‖L1

xL2
T
.

Using (3.14), the Hölder inequality with 
1

2
= 1

p
+ 1

q
and q ≥ 2

α − 1
and then the Sobolev em-

bedding we get

‖|u|α∂xu − |ũ|α∂xũ‖L1
T L2

x
� T ‖|ũ|α−1 + |u|α−1‖L∞

T L
q
x
‖ũ − u‖L∞

T L
p
x
‖∂xũ‖L∞

T L2
x

+ T 1/2‖|u|α∂x(ũ − u)‖L2
T L2

x

� T (‖ũ‖
L∞

T H
3/2
x

+ ‖u‖
L∞

T H
3/2
x

)α‖ũ − u‖
L∞

T H
1/2
x

+ ‖|u|α‖L2
xL∞

T
‖∂x(ũ − u)|‖L∞

T L2
T
.

The argument we used to obtain (3.17) also gives us

‖u‖
L1+

x L∞
T

� ‖u‖L∞([0,T ];X). (4.12)

Thus
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‖|u|α∂xu − |ũ|α∂xũ‖L1
T L2

x
� T (‖ũ‖

L∞
T H

3/2
x

+ ‖u‖
L∞

T H
3/2
x

)α‖ũ − u‖
L∞

T H
1/2
x

+ ‖u‖L∞([0,T ];X)‖|ũ − u‖|. (4.13)

Regarding the norm L1
xL

2
T we have

‖|u|α∂xu − |ũ|α∂xũ‖L1
xL2

T
� ‖|ũ|α−1 + |u|α−1‖

L

1
α−1 +
x L∞

T

‖|ũ − u|∂xũ‖
L

1
2−α

−
x L2

T

+ ‖u‖α
Lα

x L∞
T

‖∂x(ũ − u)‖L∞
x L2

T

� (‖u‖α−1
L1+

x L∞
T

+ ‖ũ‖α−1
L1+

x L∞
T

)‖|ũ − u|∂xũ‖
L

1
2−α

−
x L2

T

+ ‖u‖α
Lα

x L∞
T

‖|ũ − u‖|.

Now choose n sufficiently large and use the Hölder inequality with

1
1

2 − α
−

= 1
1

2 − α

+ 1

n
, and

1

2
= 1

2+ + 1

n

and then we use the Sobolev embedding to obtain

‖|ũ − u|∂xũ‖
L

1
2−α

−
x L2

T

≤ ‖∂xũ‖
L

1
2−α
x L2+

T

‖ũ − u‖Ln
xLn

T

� ‖∂xũ‖
L

1
2−α
x L2+

T

‖ũ − u‖
L∞

T H
1/2
x

Using one more time ‖ · ‖
L1+

x L∞
T

� ‖ · ‖L∞([0,T ];X) we obtain

‖|u|α∂xu − |ũ|α∂xũ‖L1
xL2

T

�
(
‖ũ‖α−1

L∞([0,T ];X)
+ ‖u‖α−1

L∞([0,T ];X)

)
‖∂xũ‖

L

1
2−α
x L2+

T

‖|ũ − u‖|

+ ‖u‖α
L∞([0,T ];X)‖|ũ − u‖|.

It remains to estimate ‖∂xũ‖
L

1
1−a
x L2+

T

. We consider two cases.

Case 1: 3/2α < 2.
In this case we can take 2+ = 1

2−α
and then

‖∂xũ‖
L

1
2−α
x L2+

� T +‖ũ‖
L∞

T H
3/2
x

.

T
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Case 2: 1 < α ≤ 3/2.

In this case we consider ρ >
3 − 2α

2
. Then using the Hölder inequality with

1
1

2 − α

= 1

2+ + 2

3 − 2α

and that the function 〈·〉−ρ ∈ L
2

3−2α
−(R), since ρ >

3 − 2α

2
, we obtain

‖∂xũ‖
L

1
2−α
x L2+

T

≤ ‖〈·〉ρ∂xũ‖
L2+

x L2+
T

‖〈·〉−ρ‖
L

2
3−2α

−

� T +‖〈·〉ρ∂xũ‖
L∞

T L2+
x

� T +‖Dε(〈·〉ρ∂xũ)‖L∞
T L2

x
, (4.14)

where ε = 1
2 − 1

2+ is sufficiently small. Applying the same argument we used to justify (3.21) it 
follows

‖Dε(〈x〉ρ∂xũ)‖L2 � ‖J 1/2(xũ)‖L2 + ‖J 3/2ũ‖L2 . (4.15)

Replacing (4.15) in (4.14) we deduce that

‖∂xũ‖
L

1
2−α
x L2+

T

� T +‖ũ‖L∞([0,T ];X).

Hence

‖|u|α∂xu − |ũ|α∂xũ‖L1
xL2

T

� T + (‖ũ‖L∞([0,T ];X) + ‖u‖L∞([0,T ];X)

)α ‖|u − ũ‖|
+ ‖u‖α

L∞([0,T ];X)‖|ũ − u‖|. (4.16)

Therefore

‖|u − ũ‖| � T + (‖ũ‖L∞([0,T ];X) + ‖u‖L∞([0,T ];X)

)α ‖|u − ũ‖|
+ ‖u‖α

L∞([0,T ];X)‖|u − ũ‖|. (4.17)

Consider

J = {T ∈ [0, T∗];u(t) = ũ(t), t ∈ [0, T ]}.

Estimate (4.17) implies T ∈ J for all T sufficiently small. We claim T ′∗ := supJ = T∗. In fact, 
if T ′∗ < T∗ we can consider T ∈ (T ′∗, T∗). Repeating the argument we presented to obtain (4.17)
and noticing u − ũ = 0 in [0, T ′∗] we get
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‖|u − ũ‖| � (T − T ′∗)+
(‖ũ‖L∞([0,T ];X) + ‖u‖L∞([0,T ];X)

)α ‖|u − ũ‖|
+ ‖u‖α

L∞([0,T ];X)‖|u − ũ‖|.

It follows T ∈ J if T is sufficiently close to T ′∗. That is a contradiction. So T ′∗ = T∗.

5. Proof of Theorem 2

In this section we carry out the proof of Theorem 2. A great difficulty we had in the low power 
case 1 < α < 2 was to control the term ‖u‖Lα

xL∞
T

. Since we do not have maximal estimates 
for ‖U(t)f ‖L

p
x L∞

T
when 1 ≤ p < 2, we were obligated to introduce weights and many other 

difficulties arose from that. But now, for α ≥ 2 we are in a more comfortable situation because 
of Lemma 2.7. This maximal estimate will be our main ingredient in our approach here.

Given u0 ∈ H 1/2 we consider the integral operator � = �u0 defined as in (1.12). Also we 
consider the norm

�(u) = ‖u‖
L∞

T H
1/2
x

+ ‖∂xu‖L∞
x L2

T
+ ‖u‖Lα

x L∞
T

+ ‖u‖L2α
x L∞

T

and the space EA,T = {u ∈ C([0, T ]; H 1/2(R)); �(u) ≤ A}. Applying Lemma 2.5 and Lem-
ma 2.6 in the nonlinear part of �(u) we have

‖�(u)‖
L∞

T H
1/2
x

+ ‖∂x�(u)‖L∞
x L2

T
� ‖u0‖H 1/2 + ‖|u|α∂xu‖L1

xL2
T

+ ‖|u|α∂xu‖L1
T L2

x
.

We obtain the same bound for ‖�(u)‖Lα
xL∞

T
+ ‖�(u)‖L2α

x L∞
T

by using Lemma 3 and Lemma 4. 
Therefore

�(�(u)) � ‖u0‖H 1/2 + ‖|u|α∂xu‖L1
xL2

T
+ ‖|u|α∂xu‖L1

T L2
x
. (5.1)

On the other hand we have

‖|u|α∂xu‖L1
xL2

T
≤ ‖u‖α

Lα
x L∞

T
‖∂xu‖L∞

x L2
T

(5.2)

and, using that ‖ · ‖L1
T L2

x
≤ T 1/2‖ · ‖L2

xL2
T

,

‖|u|α∂xu‖L1
T L2

x
≤ T 1/2‖u‖α

L2α
x L∞

T
‖∂xu‖L∞

x L2
T
. (5.3)

Therefore

�(u) ≤ c‖u0‖H 1/2 + c(1 + T 1/2)�(u)α+1. (5.4)

Taking A = 2c‖u0‖H 1/2 sufficiently small (5.4) implies �(EA,T ) ⊂ EA,T for some T =
T (‖u0‖H 1/2). Finally, using the property

||u|α − |v|α| � (|u|α−1 + |v|α−1)|u − v| (5.5)
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it follows from the same argument that

�(�(u) − �(v)) � (�(u)α−1 + �(v)α−1)�(u − v). (5.6)

That completes the proof of Theorem 2.
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Appendix A

Lemma 14. For θ ∈ [0, 1] we have

‖J 1/2+θ (〈x〉1−θf )‖L2 � ‖J 1/2(〈x〉f )‖1−θ

L2 ‖J 3/2f ‖θ
L2 .

To prove this lemma we will use the following characterization of Sobolev spaces.

Theorem 6 (Characterization I). Let 0 < σ < 2 and 1 < p < ∞. Consider

Dσ f (x) = lim
ε→0

∫
|y|>ε

f (x + y) − f (x)

|y|1+σ
dy. (A.1)

Then f ∈ L
p
σ (R) if, only if, f ∈ Lp(R) and the limit defined in (A.1) converges in Lp norm. In 

this case

‖J σ f ‖Lp ≈ ‖f ‖Lp + ‖Dσ f ‖Lp .

The proof of this theorem can be found in [25] or [26].
Before proving Lemma 14 we also need the following.

Lemma 15. Let 0 < σ < 1 and 1 < p < ∞. Then there exists a constant c > 0 such that

(c(1 + |t |))−1‖J σ (〈·〉it f )‖Lp ≤ ‖J σ f ‖Lp ≤ c(1 + |t |)‖J σ (〈·〉it f )‖Lp .

Proof. Denote ϕ(x) = log〈x〉.

Dσ (〈·〉it f )(x) = eitϕ(x)φσ,t (f )(x) + eitϕ(x)Dσ f (x).

So

‖Dσ (〈·〉it f )(x)‖Lp ≤ ‖φσ,t (f )‖Lp + ‖Dσ f ‖Lp .

Let us estimate ‖φσ,t (f )‖Lp .
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φσ,t (f )(x) = lim
ε→0

∫
ε<|y|<1

eitϕ(x+y)f (x + y) − eitϕ(x)f (x)

|y|1+σ
dy

+
∫

|y|>1

eitϕ(x+y)f (x + y) − eitϕ(x)f (x)

|y|1+σ
dy

= I + II.

We have from the Minkowsky inequality

‖II‖Lp ≤ 2
∫

|y|>1

1

|y|1+σ
‖f (· + y)‖Lpdy

= cσ ‖f ‖Lp .

Since ϕ is Lipschitz we have

|eit (ϕ(x+y)−ϕ(x)) − 1| ≤ |t ||y|. (A.2)

Applying the Minkowsky inequality again we get

‖I‖Lp ≤ |t | lim
ε→0

∫
ε<|y|<1

1

|y|σ ‖f (· + y)‖Lpdy

= cσ |t |‖f ‖Lp .

Therefore applying Theorem 6

‖J σ (〈·〉it f )‖Lp � ‖Dσ (〈·〉it f )‖Lp + ‖f ‖Lp

� (1 + |t |)‖J σ f ‖Lp . (A.3)

The opposite inequality follows immediately by applying (A.3) to the function 〈·〉it f instead 
of f . �
Proof of Lemma 14. Given g ∈ L2(R) such that ‖g‖L2 = 1 define Fg : S −→ C by

Fg(z) = ez2−1
∫
R

J 1/2+z(〈x〉1−zf )(x)ḡ(x)dx

where S is the strip S = {z ∈ C; 0 ≤ Re(z) ≤ 1}. Using the Cauchy–Schwartz inequality and 
Lemma 15

|Fg(iy)| � (1 + |y|)e−(y2+1)‖J 1/2(〈x〉f )‖L2

� ‖J 1/2(〈x〉f )‖L2 (A.4)
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Similarly we have

|Fg(1 + iy)| � ‖J 3/2f ‖L2 .

Then using the three lines theorem we obtain

|Fg(θ)| � ‖J 1/2(〈x〉f )‖1−θ

L2 ‖J 3/2f ‖θ
L2 (A.5)

for all θ ∈ [0, 1]. Taking the supremum over all g ∈ L2(R) such that ‖g‖L2 = 1 in (A.5) we 
conclude

‖J 1/2+θ (〈x〉1−θf ))‖L2 ≤ c‖J 1/2(〈x〉f )‖1−θ

L2 ‖J 3/2f ‖θ
L2 . �

Lemma 16. Given 0 < s < 1 we have

‖J s(〈x〉f )‖L2 � ‖J s(xf )‖L2 + ‖J sf ‖L2 .

To prove this lemma we will use another characterization of the Sobolev spaces whose proof can 
also be found in [25] or [26].

Theorem 7 (Characterization II). Let s ∈ (0, 1) and 2/(1 + 2s) < p < ∞. Consider

Dsf (x) =
⎛⎝∫

R

|f (x + y) − f (x)|2
|y|1+2s

dy

⎞⎠1/2

. (A.6)

Then f ∈ L
p
s (R) if, and only if f and Dsf belong to Lp(R). Moreover

‖J sf ‖Lp ≈ ‖f ‖Lp + ‖Dsf ‖Lp

for all f ∈ L
p
s (R).

Proof of Lemma 16. It is enough to prove

‖Ds(|x|f )‖L2 � ‖J s(xf )‖L2 + ‖J sf ‖L2 .

Consider the cut-off function χ ∈ C∞
c (R), supported in [−2, 2] and identically 1 in [−1, 1]. We 

have

‖Ds(|x|f )‖L2 ≤ ‖Ds(|x|χ(x)f )‖L2 + ‖Ds(|x|(1 − χ(x))f )‖L2

≤ I + II.

From Theorem 7 we have

‖Ds(|x|χ(x)f )‖L2 � ‖|x|χ(x)f ‖L2 + ‖Ds(|x|χ(x)f )‖L2

� ‖f ‖L2 + ‖Ds(|x|χ(x))‖L∞‖f ‖L2 + ‖|x|χ(x)‖L∞‖Dsf ‖L2

� ‖f ‖L2 + ‖Dsf ‖L2 .
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Then we conclude I � ‖J sf ‖L2 . Similarly, using Theorem 7,

‖Ds(|x|(1 − χ(x))f )‖L2 � ‖J s(xf )‖L2 + ‖xf ‖L2

Then II � ‖J s(xf )‖L2 . This finishes the proof of Lemma 16. �
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