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Abstract

The aim of the paper is to establish optimal stability estimates for the determination of sound-hard polyhe-
dral scatterers in RN , N ≥ 2, by a minimal number of far-field measurements. This work is a significant and 
highly nontrivial extension of the stability estimates for the determination of sound-soft polyhedral scatter-
ers by far-field measurements, proved by one of the authors, to the much more challenging sound-hard case.

The admissible polyhedral scatterers satisfy minimal a priori assumptions of Lipschitz type and may 
include at the same time solid obstacles and screen-type components. In this case we obtain a stability 
estimate with N far-field measurements. Important features of such an estimate are that we have an explicit 
dependence on the parameter h representing the minimal size of the cells forming the boundaries of the 
admissible polyhedral scatterers, and that the modulus of continuity, provided the error is small enough with 
respect to h, does not depend on h. If we restrict to N = 2, 3 and to polyhedral obstacles, that is to polyhedra, 
then we obtain stability estimates with fewer measurements, namely first with N −1 measurements and then 
with a single measurement. In this case the dependence on h is not explicit anymore and the modulus of 
continuity depends on h as well.
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1. Introduction

A set � ⊂R
N , N ≥ 2, is called a scatterer if it is a compact set such that RN\� is connected. 

A scatterer is said to be an obstacle if it is the closure of an open set and it is said to be a screen 
if its interior is empty.

If an incident time-harmonic acoustic wave encounters a scatterer then it is perturbed through 
the creation of a scattered or reflected wave. The total wave is given by the superposition of 
the incident and the scattered wave and it is characterized by the total field u, solution to the 
following exterior boundary value problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�u + k2u = 0 in R
N\�

u = ui + us in R
N\�

B.C. on ∂�

lim
r→∞ r(N−1)/2

(
∂us

∂r
− ikus

)
= 0 r = ‖x‖.

Here k > 0 in the reduced wave equation, or Helmholtz equation, is the wavenumber and ui is the 
incident field, that is the field of the incident wave. The incident field is usually an entire solution 
of the Helmholtz equation, here we shall always assume that the incident wave is a time-harmonic 
plane wave with direction of propagation v ∈ S

N−1, that is ui(x) = eikx·v , x ∈ R
N . Instead us

is the scattered field, that is the field of the scattered wave. The last limit is the Sommerfeld 
radiation condition and corresponds to the fact that the scattered wave is radiating. Moreover it 
implies that the scattered field has the following asymptotic behavior

us(x) = eik‖x‖

‖x‖(N−1)/2

{
u∞(x̂) + O

(
1

‖x‖
)}

,

where x̂ = x/‖x‖ ∈ S
N−1 and u∞ is the so-called far-field pattern of us . We shall also write 

u∞(x̂; �, k, v) to specify its dependence on the observation direction x̂ ∈ S
N−1, the scatterer �, 

the wavenumber k > 0 and the direction of propagation of the incident field v ∈ S
N−1.

Finally, the boundary condition on the boundary of � depends on the physical properties of 
the scatterer �. If � is sound-soft, then u satisfies a homogeneous Dirichlet condition whereas if 
� is sound-hard we have a homogeneous Neumann condition. We remark that other conditions 
such as the impedance boundary condition or transmission conditions for penetrable scatterers 
may be of interest for the applications.

The inverse scattering problem consists of recovering the scatterer � by its corresponding 
far-field measurements for one or more incident waves. Such an inverse problem is of fundamen-
tal importance to many areas of science and technology including radar and sonar applications, 
geophysical exploration, medical imaging and nondestructive testing. For a general introduction 
on this inverse problem see for instance [4,12].

Physically, a far-field measurement is obtained by sending an incident plane wave and mea-
suring the scattered wave field faraway at every possible observation directions, namely by 
measuring the far-field pattern u∞ of us .

If we measure the far-field pattern for just one incident plane wave, then we say that we 
use a single far-field measurement. We can obtain multiple far-field measurements by sending 
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different incident plane waves, changing either the wavenumber or the incident direction of prop-
agation, and measuring the corresponding far-field patterns. In this paper we shall assume that 
the wavenumber k is fixed and, in order to perform more measurements, we shall modify the 
incident direction of propagation.

It is readily seen that the inverse problem is nonlinear and that it is formally determined with 
a single far-field measurement. Establishing the unique determination result in this formally-
determined case is a longstanding problem in the inverse scattering theory.

The first uniqueness result is due to Schiffer who proved the determination of a sound-soft 
obstacle by infinitely many far-field measurements, see [14]. This result was improved to the case 
of finitely many measurements for obstacles in [5] and for screens in [18]. Stability estimates for 
the sound-soft case was proved in [10,11].

For what concerns the sound-hard case, following the method developed in [9] for the trans-
mission conditions, uniqueness for the determination of sound-hard obstacles by infinitely many 
far-field measurements was shown in [13]. The same result was also obtained in the case of the 
impedance boundary condition.

If one reduces to a particular class of scatterers, namely the one of polyhedral scatterers, then 
the number of measurements needed may be considerably reduced. The first contribution in this 
direction may be found in [3] where polyhedral obstacles in dimension 2, with a suitable further 
non-trapping condition, were considered.

In [1] the uniqueness for a general sound-soft polyhedral scatterer with a single measurement 
was proved in any dimension N ≥ 2. In [15] the uniqueness for a general sound-hard polyhedral 
scatterer with N measurements was established, again in any dimension N ≥ 2. It was further 
shown in [16] that the number of measurements may not be reduced if sound-hard screens are 
allowed. However, if one considers only polyhedral obstacles, that is polyhedra, then a single 
measurement is enough in any dimension N ≥ 2. This result was proved first for N = 2, [6], and 
then extended to any N ≥ 3, [7].

Concerning stability results for the determination of polyhedral scatterers by a minimal num-
ber of far-field measurements, the only result available in the literature may be found in [20], 
where stability estimates for the determination of sound-soft polyhedral scatterers in R3 with a 
single measurement were established. The admissible polyhedral scatterers are there assumed to 
satisfy essentially minimal regularity assumptions of Lipschitz type and the stability estimate is 
optimal, although of a logarithmic type. A particularly interesting feature of such an estimate 
is that there is an explicit dependence on the parameter h, h representing the minimal size of 
the cells forming the boundaries of the admissible polyhedral scatterers, and that the modulus 
of continuity, provided the error is small enough with respect to h, does not depend on this size 
parameter h.

In this work we extend the stability results of [20] to the more challenging case of sound-hard 
polyhedral scatterers. In order to deal with sound-hard scatterers, especially when we consider 
determination of polyhedra with fewer measurements, there are many highly technical modifica-
tions. Moreover, there are significant extensions with respect to the sound-soft case as considered 
in [20] that we shall briefly discuss in what follows.

We begin by establishing the stability for the determination of sound-hard polyhedral scatter-
ers of general type, that may include, for instance, obstacles and screens at the same time. We 
consider the general case of RN , with N ≥ 2. In this case the number of far-field measurements 
that are required for uniqueness, thus for stability as well, can not be reduced to a number less 
than N . The stability result for the determination of sound-hard polyhedral scatterers in RN by 
N far-field measurements is contained in Theorem 3.1.



1634 H. Liu et al. / J. Differential Equations 262 (2017) 1631–1670
The strategy that we utilize to establish the stability estimate of Theorem 3.1 follows a similar 
spirit to the one used in [20] for sound-soft scatterers. Apart from some modifications needed 
to deal with the Neumann boundary condition instead of the Dirichlet one, the main significant 
difference is that, in the sound-hard case, the required a priori bounds on the solution of the 
direct scattering problem, which need to be independent on the scatterer, are much harder to 
prove. This key preliminary point requires to establish suitable decay estimates of the scattered 
fields as ‖x‖ → +∞ that are uniform with respect to the scatterer �; see Proposition 2.12. This 
is obtained with the help of the stability result in [17] for the solution of the direct problem with 
respect to the variation of the scatterer �.

Even if the strategy is similar, still there are significant novelties and extensions here with 
respect to the results contained in [20]. One of these is the fact that we generalize the technique 
from R3 to RN , with N ≥ 2.

More importantly, we consider a much more general and versatile class of admissible poly-
hedral scatterers with respect to the one used in [20]. Such a class is characterized by essentially 
minimal regularity assumptions of Lipschitz type. In the preliminary Section 2, in particular in 
Subsection 2.1, we introduce and extensively discuss several classes of admissible scatterers. 
These classes are extremely general and may turn out to be useful on many occasions, even not 
linked to scattering or inverse problems, so we believe that this subsection is of independent 
interest.

The use of such a new improved class of polyhedral scatterers requires solving some technical 
difficulties that are illustrated in Steps I and II of the geometric construction of Section 4.

A remarkable consequence of these developments is that we can also generalize the result of 
[20] to this new class of polyhedral scatterers and to any dimension N ≥ 2; see Theorem 3.2.

Moreover, we notice the following important features of the stability estimates of Theo-
rems 3.1 and 3.2. First of all, these stability estimates are optimal, the dependence on the size 
parameter h is explicit, and the modulus of continuity, when the error is small enough with re-
spect to h, does not depend on h.

Finally, besides far-field measurements, we can also employ near-field measurements and 
even the more general near-field measurements with limited aperture; see Section 2, in particular 
Subsection 2.2. This is actually true for all of our stability results, which are indeed stated with 
respect to near-field measurements with a limited aperture, rather than with respect to far-field 
measurements. However the results of Subsection 2.2 easily allow to obtain the corresponding 
estimates with respect to far-field or near-field measurements; see Remark 3.5.

Having established a general stability result for the determination of sound-hard polyhedral 
scatterers by N far-field measurements, we proceed to prove stability results for the determina-
tion of polyhedral obstacles, that is polyhedra, by fewer than N measurements. In this case, for 
technical reasons, we limit ourselves to N = 2, 3. We are able to prove a stability result with a 
single measurement, see Theorem 3.4. The stability estimate is still of optimal type, however we 
lose the explicit dependence on h and the modulus of continuity depends, in a rather involved 
way, on h as well.

In order to approach the challenging technical difficulties of the proof of Theorem 3.4 in a 
slightly simplified case, we first prove a stability results for polyhedra with N −1 measurements, 
again for N = 2, 3, see Theorem 3.3.

We observe that the inverse sound-hard obstacle problem with a single measurement is sub-
stantially different from the sound-soft case and requires a completely new and rather difficult 
analysis. In fact, the key difficulty, as for the uniqueness issue, is to avoid, in the reflection pro-
cess used in the geometric construction of Section 4, the reflection in a hyperplane whose normal 
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is orthogonal to the incident direction of propagation and with respect to which the obstacle is 
symmetric. In the N − 1 measurements case, for any obstacle actually at most one hyperplane 
must be avoided. Still this is not an easy task, and an ad hoc modification of the general geomet-
ric construction of Section 4 is required, see Subsection 5.2. In the one measurement case in R3, 
the problem becomes even more involved. In fact there might be several planes to be avoided 
and further difficulties arise since we need to take into account all of them simultaneously. This 
is performed in Subsection 5.3.

The plan of the paper is as follows. In Section 2 we discuss a few preliminaries. In particular 
we define and study suitable classes of admissible scatterers and we present a few basic properties 
of the solutions to the corresponding scattering problems. In Section 3 the main stability results 
are stated. In Section 4 we present the main geometric construction. Finally, in Section 5 we 
conclude the proofs of our stability results.

2. Classes of admissible scatterers and preliminaries

The integer N ≥ 2 shall always denote the space dimension. We notice that we always omit 
the dependence of constants on the space dimension N .

For any x ∈ R
N , N ≥ 2, we denote x = (x′, xN) ∈ R

N−1 × R and x = (x′′, xN−1, xN) ∈
R

N−2 × R × R. For any s > 0 and any x ∈ R
N , Bs(x) denotes the ball contained in RN with 

radius s and center x, whereas B ′
s(x

′) denotes the ball contained in RN−1 with radius s and cen-
ter x′. Moreover, Bs = Bs(0) and B ′

s = B ′
s(0). For any ball B centered at zero we denote B± =

B ∩ {y ∈ R
N : yN ≷ 0}. Analogously, for any hyperplane � in RN , we use the following nota-

tion. If, with respect to a suitable Cartesian coordinate system, we have � = {y ∈ R
N : yN = 0}

then for any x ∈ � and any r > 0 we denote B±
r (x) = Br(x) ∩{yN ≷ 0}. Furthermore, we denote 

with T� the reflection in �, namely in this case for any y = (y1, . . . , yN−1, yN) ∈ R
N we have 

T�(y) = (y1, . . . , yN−1, −yN). Finally, for any E ⊂R
N , we denote Bs(E) = ⋃

x∈E Bs(x).
Given a point x ∈ R

N , a vector v ∈ S
N−1, and constants r > 0 and θ , 0 < θ ≤ π/2, we call 

C(x, v, r, θ) the open cone with vertex in x, bisecting vector given by v, radius r and amplitude 
given by θ , that is

C(x, v, r, θ) =
{
y ∈ R

N : 0 < ‖y − x‖ < r and cos(θ) <
y − x

‖y − x‖ · v ≤ 1

}
.

We remark that by a cone we always mean a bounded not empty open cone of the kind defined 
above.

By Hs , 0 ≤ s ≤ N , we denote the s-dimensional Hausdorff measure in RN . We recall that 
HN coincides with the Lebesgue measure.

2.1. Classes of admissible scatterers and obstacles

We recall that by a scatterer in RN we mean a compact set � contained in RN such that 
R

N\� is connected. We say that a scatterer � is an obstacle if � = � where � is an open set. 
If the interior of � is empty then we usually call it a screen. If � is a scatterer in RN we shall 
denote G =R

N\�, which is then a connected open set containing the exterior of a ball.
A more quantitative assumption on the connectedness of G = R

N\� is the following. Let 
δ : (0, +∞) → (0, +∞) be a nondecreasing left-continuous function. Let � be a compact set 
contained in RN . We say that � satisfies the uniform exterior connectedness with function δ if 
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for any t > 0, for any two points x1, x2 ∈R
N so that Bt(x1) and Bt(x2) are contained in RN\�, 

and for any s, 0 < s < δ(t), then we can find a smooth (for instance C1) curve γ connecting x1
to x2 so that Bs(γ ) is contained in RN\� as well.

Let us notice that such an assumption is closed under convergence in the Hausdorff distance 
and that δ(t) ≤ t for any t > 0.

We wish to define suitable classes of admissible scatterers. We begin with some definitions.
Let K be a compact subset of RN . We say that K is a mildly Lipschitz hypersurface, with or 

without boundary, with positive constants r and L if the following holds.
For any x ∈ K there exists a bi-Lipschitz function �x : Br(x) → R

N such that

a) for any z1, z2 ∈ Br(x) we have

L−1‖z1 − z2‖ ≤ ‖�x(z1) − �x(z2)‖ ≤ L‖z1 − z2‖;

b) �x(x) = 0 and �x(K ∩ Br(x)) ⊂ � = {y ∈ R
N : yN = 0}.

We say that x ∈ K belongs to the interior of K if there exists δ, 0 < δ ≤ r , such that Bδ(0) ∩� ⊂
�x(K ∩ Br(x)). Otherwise we say that x belongs to the boundary of K . We remark that the 
boundary of K might be empty. Further we assume that

c) for any x belonging to the boundary of K , we have that

�x(K ∩ Br(x)) = �x(Br(x)) ∩ �+

where �+ = {y ∈R
N : yN = 0, yN−1 ≥ 0}.

Let us notice that, by compactness, such an assumption is enough to guarantee that HN−1(K)

is bounded, hence |K| = 0. In particular, HN−1(K) is bounded by a constant depending on the 
diameter of K , r and L only. Furthermore, the boundary of K has HN−2 measure bounded by a 
constant again depending on the diameter of K , r and L only.

Moreover, K has a finite number of connected components, again bounded a constant de-
pending on the diameter of K , r and L only, and the distance between two different connected 
components of K is bounded from below by a positive constant depending on r and L only.

Let us fix a bounded open set � ⊂R
N , N ≥ 2. We shall call B(r, L, �) the set of K ⊂ � such 

that K is a mildly Lipschitz hypersurface with constants r and L. We notice that such a set is 
compact with respect to the Hausdorff distance, see for instance Lemma 3.6 in [17]. We finally 
remark that such a class is strictly related to a similar one introduced in [8].

Let K be a compact subset of RN . We say that K is a Lipschitz hypersurface, with or without 
boundary, with positive constants r and L if the following holds.

For any x ∈ K , there exists a function ϕ : RN−1 → R, such that ϕ(0) = 0 and which is Lip-
schitz with Lipschitz constant bounded by L, such that, up to a rigid change of coordinates, we 
have x = 0 and

Br(x) ∩ K ⊂ {y ∈ Br(x) : yN = ϕ(y′)}. (2.1)

We say that x ∈ K belongs to the interior of K if there exists δ, 0 < δ ≤ r , such that Bδ(x) ∩K =
{y ∈ Bδ(x) : yN = ϕ(y′)}. Otherwise we say that x belongs to the boundary of K . We remark 



H. Liu et al. / J. Differential Equations 262 (2017) 1631–1670 1637
that the boundary of K might be empty. For any x belonging to the boundary of K , we assume 
that there exists another function ϕ1 : RN−2 → R, such that ϕ1(0) = 0 and which is Lipschitz 
with Lipschitz constant bounded by L, such that, up to the previous rigid change of coordinates, 
we have x = 0 and

Br(x) ∩ K = {y ∈ Br(x) : yN = ϕ(y′), yN−1 ≤ ϕ1(y
′′)}. (2.2)

We call (2.1) and (2.2) the L-Lipschitz representation of K in Br(x), where (2.2) is reserved for 
points belonging to the boundary of K .

We notice that a Lipschitz hypersurface with constants r and L is also a mildly Lipschitz 
hypersurface with positive constants r̃ and L̃ depending on r and L only. Furthermore, we call 
C = C(r, L, �) the class of Lipschitz hypersurfaces with constants r and L contained in �. 
We notice that C is compact with respect to the Hausdorff distance, too, and that C(r, L, �) ⊂
B(r̃, L̃, �).

We need the following notation. For any direction v ∈ S
N−1, we denote by v̂ the couple 

v̂ = {v, −v}. We also define the following distance

d(v̂1, v̂2) = min{‖v1 − v2‖,‖v1 + v2‖} for any v1, v2 ∈ S
N−1.

Let K be a compact subset of RN . We say that K is a strongly Lipschitz hypersurface, with 
or without boundary, with positive constants r and L if the following holds.

First we assume that K is a Lipschitz hypersurface with constants r and L. Then we assume 
the following further property. For any x ∈ K , let e1(x), . . . , eN(x) be the unit vectors represent-
ing the orthonormal base of the coordinate system for which the L-Lipschitz representation of 
K in Br(x), (2.1) and (2.2), holds. Then êN (x) is a Lipschitz function of x ∈ K , with Lipschitz 
constant bounded by L, and eN−1(x) is a Lipschitz function of x, as x varies in the boundary 
of K , with Lipschitz constant bounded by L.

The usefulness of introducing the idea of strongly Lipschitz hypersurfaces is shown in the 
following proposition.

Proposition 2.1. Let � be a scatterer such that K = ∂� is a strongly Lipschitz hypersurface 
with positive constants r and L.

Then there exists a nondecreasing left-continuous function δ : (0, +∞) → (0, +∞), depend-
ing on r and L only, such that � satisfies the uniform exterior connectedness with function δ.

Proof. Under these assumptions, the conclusions of Proposition 4.2 in [17] hold, that is, we can 
find constants 0 < a ≤ 1 ≤ b and h0 > 0, depending on r and L only, and a Lipschitz function 
d̃ :RN → [0, +∞) such that

a dist(x,�) ≤ d̃(x) ≤ b dist(x,�) for any x ∈R
N

and, for any h, 0 < h ≤ h0, RN\�h is connected, where �h = {x ∈ R
N : d̃(x) ≤ h}. Let us 

notice that the assumption used in [17, Proposition 4.2] that K should be oriented is not really 
necessary.

Therefore, fixed t > 0, let x1, x2 ∈ R
N be any two points so that Bt(x1) and Bt(x2) are 

contained in RN\�. Then d̃(xi) ≥ at for any i = 1, 2. Provided h = at/2 ≤ h0, then xi ∈R
N\�h

for any i = 1, 2. Then we can find a smooth (for instance C1) curve γ connecting x1 to x2 so that 
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γ is contained in RN\�h. This means that any point x of γ is such that dist(x, �) ≥ d̃(x)/b >

at/(2b). That is, we can choose

δ(t) =
{

at/(2b) t ∈ (0,2h0/a]
h0/b t ∈ [2h0/a,+∞)

(2.3)

and the proof is concluded. �
Our next aim is to provide sufficient conditions for a Lipschitz hypersurface to be a strongly 

Lipschitz hypersurface. We begin with the following lemma.

Lemma 2.2. Let us fix positive constants r and L. Let K ⊂ K̃ be compact subsets of RN such that 
for any x ∈ K there exists a function ϕ : RN−1 → R, such that ϕ(0) = 0 and which is Lipschitz 
with Lipschitz constant bounded by L, such that, up to a rigid change of coordinates, we have 
x = 0 and

Br(x) ∩ K̃ = {y ∈ Br(x) : yN = ϕ(y′)}. (2.4)

Then there exist positive constants r̃ and L̃, depending on r and L only, such that for any 
x ∈ K there exists a function ϕ̃ : RN−1 → R, such that ϕ̃(0) = 0 and which is Lipschitz with 
Lipschitz constant bounded by L̃, such that, up to a rigid change of coordinates, we have x = 0
and

Br̃(x) ∩ K̃ = {y ∈ Br̃(x) : yN = ϕ̃(y′)} (2.5)

and the following further property holds. For any x ∈ K , let e1(x), . . . , eN(x) be the unit vectors 
representing the orthonormal base of the coordinate system for which the L̃-Lipschitz represen-
tation of K̃ in Br̃(x), (2.5), holds. Then êN (x) is a Lipschitz function of x ∈ K , with Lipschitz 
constant bounded by L̃.

Proof. Let us fix x ∈ K . Locally, we can give an orientation to K̃ near x, therefore without loss 
of generality we can assume that, locally near x, K̃ is the boundary of a Lipschitz open set. More 
precisely, we can assume there exists an open set � such that K̃ ∩ Br(x) ⊂ ∂� and, for any 
y ∈ K̃ whose distance from x is less than r/2, we have K̃ ∩ Br/4(y) = ∂� ∩ Br/4(y) and

� ∩ Br/4(y) = {z ∈ Br/4(y) : zN < ϕ(z′)},

where ϕ and the orientation depend on y.
Let now y1 and y2 be two points belonging to Br/16(x). Let e1

N and e2
N be the corresponding 

vectors for which the previous Lipschitz representation holds. Then for any y ∈ Br/8(x) we can 
find two open cones C1 and C2, with vertex in y, amplitude given by an angle α0, 0 < α0 < π/2
depending on L only, radius r0 = r/16, and bisecting vector given by e1

N and e2
N respectively 

such that Ci does not intersect � whereas the opposite cone is contained in � for any i = 1, 2. 
First we notice that the angle between e1

N and e2
N is bounded by π − 2α0. Then we take any unit 

vector ν on the shorter arc of the great circle on the unit sphere passing through e1
N and e2

N .
Then there exists an absolute constant α̂0, 0 < α̂0 < π/2, such that, provided α0 ≤ α̂0, we 

have that the open cone C with vertex in y, amplitude given by the angle α1 = α0/2, radius 
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r1 = (α0/3)r0, and bisecting vector ν does not intersect � whereas the opposite cone is con-
tained in �. We call this property an interior and exterior cone condition for � at y ∈ ∂�, with 
amplitude α1, radius r1 and bisecting vector ν. The proof follows from an elementary, although 
lengthy, geometric construction and we omit its details.

If one performs such a construction iteratively N times, one obtains

αN = α0

2N
and rN = αN

0

3N2N(N−1)/2
r0.

Then we subdivide the whole RN into (closed) cubes with sides of length r̃1 such that their 
diameter is less than or equal to r/64. We then consider only cubes whose intersection with K
is not empty. Let us fix one of these and let us call it Q. For any vertex xi , i = 1, . . . , 2N , of the 
cube Q we consider a point x̃i ∈ K ∩Q such that dist(xi, K ∩Q) = ‖xi − x̃i‖. Then we consider 
ei
N as the vector corresponding to the Lipschitz representation at the point x̃i . To illustrate our 

construction, let us assume for simplicity that Q = [0, ̃r1]N . We take the points x1 = (0, 0, . . . , 0)

and x2 = (r̃1, 0, . . . , 0) and we construct a Lipschitz function eN on the segment connecting x1
and x2 such that eN(xi) = ei

N , i = 1, 2, and that, for any x in such a segment, eN(x) belongs 
to the shorter arc of the great circle on the unit sphere passing through e1

N and e2
N . Clearly 

the Lipschitz constant of such a function eN may be bounded by a constant depending on r̃1
only. Then we perform the same construction on the segment connecting (0, ̃r1, 0 . . . , 0) and 
(1, ̃r1, 0 . . . , 0) and, then, on the segments connecting (t, 0, 0, . . . , 0) to (t, ̃r1, 0 . . . , 0), for any t , 
0 ≤ t ≤ r̃1. We iterate such a construction until we find a Lipschitz function eN : Q → S

N−1

with Lipschitz constant bounded by a constant depending on r̃1 only, with the following property. 
For any y ∈ Q ∩ K we have that � satisfies an interior and exterior cone condition at any z ∈
K̃ ∩ Br/16(y), with amplitude αN , radius rN and bisecting vector eN(y), therefore we have a 
Lipschitz representation of K̃ at y with constants r̃ and L̃ depending on αN and rN only, thus on 
r and L only. Performing the same construction on any cube, the proof can be concluded. �

Let us notice that if K is oriented, then we can choose eN(x) itself as a Lipschitz function of 
x ∈ K . We also observe that if K is without boundary, then it is oriented, by the Jordan–Brouwer 
separation theorem, and we can choose K̃ = K . Clearly these remarks apply to any connected 
component of K . If we limit ourselves to Lipschitz hypersurfaces without boundary then we have 
the following corollary.

Corollary 2.3. Let us fix positive constants r and L. Let K be a Lipschitz hypersurface with 
constants r and L without boundary. Then there exist positive constants r̃ and L̃, depending on 
r and L only, such that K is a strongly Lipschitz hypersurface with constants r̃ and L̃.

We conclude this discussion on sufficient conditions for a Lipschitz hypersurface to be a 
strongly Lipschitz hypersurface by proving the following proposition.

Proposition 2.4. Let us fix positive constants r and L. Let K be a Lipschitz hypersurface with 
constants r and L. For any x ∈ K , let e1(x), . . . , eN(x) be the unit vectors representing the 
orthonormal base of the coordinate system for which the L-Lipschitz representation of K in 
Br(x), (2.1) and (2.2), holds.

Let us assume that êN (x) is a Lipschitz function of x ∈ K , with Lipschitz constant bounded 
by L.
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Then there exist positive constants r̃ and L̃, depending on r and L only, such that K is a 
strongly Lipschitz hypersurface with constants r̃ and L̃.

Proof. Take two couples of orthogonal vectors e1
N , e1

N−1 and e2
N , e2

N−1 for which the L-Lipschitz 
representation holds for the same point x on the boundary of K in a given ball of radius r . We no-
tice that e2

N = T (e1
N), where T is a rotation. Then, provided the angle between e1

N and e2
N is small 

enough, we have that the same Lipschitz representation holds for e2
N , e2

N−1 and e2
N , T (e1

N−1). 
We then apply the arguments of Lemma 2.2 in RN−1 and the proof may be concluded. �

Let us observe that a sufficient condition for the assumptions of Proposition 2.4 to hold has 
been given in Lemma 2.2.

We say that an open set D ⊂R
N is Lipschitz with constant r and L if the following assumption 

holds. For any x ∈ ∂D, there exists a function ϕ : RN−1 → R, such that ϕ(0) = 0 and which is 
Lipschitz with Lipschitz constant bounded by L, such that, up to a rigid change of coordinates, 
we have x = 0 and

Br(x) ∩ D = {y ∈ Br(x) : yN < ϕ(y′)}
and, consequently,

Br(x) ∩ ∂D = {y ∈ Br(x) : yN = ϕ(y′)}.
Clearly, ∂D is a Lipschitz hypersurface, without boundary, with the same constants r and L. 

Moreover, we notice that D and RN\D satisfy a uniform cone condition, with a cone depending 
on r and L only. We recall that, given C a fixed cone in RN , we say that an open set D ⊂ RN

satisfies the cone condition with cone C if for every x ∈ D there exists a cone C(x) with vertex 
in x and congruent to C such that C(x) ⊂ D.

We call D = D(r, L, �) the class of sets ∂D where D ⊂ � is an open set which is Lipschitz 
with constants r and L. We have that D(r, L, �) ⊂ C(r, L, �) ⊂ B(r̃, L̃, �), for some constants 
r̃ , L̃ depending on r and L only. Moreover, also D(r, L, �) is compact with respect to the Haus-
dorff distance.

We further call D̂ = D̂(r, L, �) the class of compact sets � ⊂ � such that ∂� ∈ D(r, L, �). 
Also this class is compact with respect to the Hausdorff distance.

In the following classes, introduced in [17], we combine different (mildly) Lipschitz hyper-
surfaces to obtain more general and complex structures.

Definition 2.5. Let us fix positive constants r , L, and a bounded open set �. Let us also fix 
ω : (0, +∞) → (0, +∞) a nondecreasing left-continuous function.

We say that a compact set K ⊂ � belongs to the class B̃ = B̃(r, L, �, ω), respectively C̃ =
C̃(r, L, �, ω), if it satisfies the following conditions.

1) K = ⋃M
i=1 Ki where Ki ∈ B(r, L, �), respectively C(r, L, �), for any i = 1, . . . , M .

2) For any i ∈ {1, . . . , M}, and any x ∈ Ki , if its distance from the boundary of Ki is t > 0, 
then the distance of x from the union of Kj , with j �= i, is greater than or equal to ω(t).

We say that a compact set � ⊂ � belongs to the class B̃1 = B̃1(r, L, �, ω), respectively 
C̃1 = C̃1(r, L, �, ω), if ∂� ∈ B̃(r, L, �, ω), respectively ∂� ∈ C̃(r, L, �, ω).
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We observe that, for some constants r̃ and L̃ depending on r and L only, we have 
C̃(r, L, �, ω) ⊂ B̃(r̃, L̃, �, ω) and C̃1(r, L, �, ω) ⊂ B̃1(r̃, L̃, �, ω).

Let us notice that in the previous definition the number M may depend on K . However, there 
exists an integer M0, depending on r , L, the diameter of �, and ω only, such that M ≤ M0 for 
any K ∈ B̃, respectively C̃. As before, we obtain that HN−1(K) is bounded, hence |K| = 0. In 
particular HN−1(K) is bounded by a constant depending on r , L, the diameter of �, and M0 only. 
Furthermore, if we set as the boundary of K the union of the boundaries of Ki , i = 1, . . . , M , 
then the boundary of K has HN−2 measure bounded by a constant again depending on r , L, the 
diameter of �, and M0 only. Finally, the number of connected components of RN\K is bounded 
by a constant M1 depending on r , L, the diameter of �, and ω only.

Without loss of generality, we shall always assume that ω(t) ≤ t for any t > 0, and that 
limt→+∞ ω(t) is equal to a finite real number which we call ω(+∞).

We also remark that, by Condition 2), we have that Ki ∩ Kj is contained in the intersection 
of the boundaries of Ki and Kj , for any i �= j . By [17, Lemma 3.8], we have that the classes B̃
and C̃ are closed, and actually compact, under convergence in the Hausdorff distance. In the next 
lemma we show that this is true for the classes B̃1 and C̃1 as well.

Lemma 2.6. The classes B̃1 and C̃1 introduced in Definition 2.5 are compact under convergence 
in the Hausdorff distance.

Moreover, let � belong to B̃1, or to C̃1, and x ∈ ∂�. We call G = R
N\�. For any r1 > 0, the 

number of connected components U of Br1(x) ∩G such that x ∈ ∂U is bounded by a constant M2

depending on r1, r , L, and ω only. Finally, the number of connected components of Br1(x) ∩ G

intersecting Br1/2(x) is bounded by a constant M3 depending on r1, r , L, and ω only.

Proof. We begin by proving the second part of the lemma. It is clearly enough to consider the 
case in which � ∈ B̃1. Let U be a connected component of Br1(x) ∩G such that x ∈ ∂U . We wish 
to prove that there exists s1 > 0, depending on r1, r , L, and ω only, and y such that Bs1(y) ⊂ U .

Without loss of generality we can assume that r1 ≤ r̃1 for some r̃1 depending on r and L only. 
Let y0 ∈ U be such that ‖y0 − x‖ ≤ r1/8 and let y1 ∈ ∂� ∩ ∂U be such that ‖x − y1‖ ≤ r1/4 and 
such that y1 belongs to the interior of Ki for some i ∈ {1, . . . , M}, where ∂� = K = ⋃M

i=1 Ki

as in Condition 1). If the distance of y1 from the boundary of Ki is greater than r1/8, then the 
conclusion is immediate. Otherwise, let y2 be a point in the boundary of Ki whose distance from 
y1 is less that r1/8. By the local description of Ki near y2, we can find a point y3 ∈ Ki ∩ ∂U

such that ‖x − y3‖ ≤ r1/2 and such that its distance from the boundary of Ki is at least r1/C for 
some constant C ≥ 8 depending on L only. Then again we can conclude.

This property immediately implies that the number of connected components U of Br1(x) ∩G

such that x ∈ ∂U is bounded by a constant M2 depending on r1, r , L, and ω only. Moreover, it 
will be crucial to prove the compactness in the Hausdorff distance. We conclude the proof of the 
second part with the following argument. For any y ∈ Br1/2(x) ∩ G we call U(y) the connected 
component of Br1(x) ∩G containing y. There exists x(y) ∈ ∂U(y) ∩∂�, such that ‖y −x(y)‖ <
r1/2 and ‖x(y) − x‖ < r1/2. Therefore V (y), the connected component of Br1/2(x(y)) ∩ G

containing y is such that V (y) ⊂ U(y) and x(y) ∈ ∂V (y).
We assume that there exist points yn ∈ Br1/2(x) ∩G, for n = 1, . . . , n0, such that Un = U(yn)

are pairwise disjoint. Therefore, also Vn = V (yn) are pairwise disjoint, for n = 1, . . . , n0. By the 
previously proved property, we have that n0 is bounded by a constant M3 depending on r1, r , L, 
and ω only.
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About compactness in the Hausdorff distance, it is enough to prove that the class B̃1 is closed. 
We recall that if �n converges to � in the Hausdorff distance as n → ∞, and we assume that 
�n, n ∈N, and � are compact sets which are uniformly bounded, then

� = {x ∈ R
N : there exists xn ∈ �n such that lim

n
xn = x}.

We assume that �n ∈ B̃1 converges as n → ∞ to �. We already know that, up to subsequences 
that we do not relabel, ∂�n → �̃ ∈ B̃.

It is a general fact that ∂� ⊂ �̃ ⊂ �. Hence we just need to show that �̃ = ∂�. By con-
tradiction, we assume that there exists x ∈ �̃\∂�. Clearly x belongs to the interior of �, that 
is, for some d > 0 we have Bd(x) ⊂ �. We can find xn ∈ ∂�n, n ∈ N, such that limn xn = x. 
We pick r1 = d/4 and we assume that, for n large enough, ‖x − xn‖ < d/4. For any n large 
enough, there exists yn such that Bs1(yn) ∩ �n = ∅ and Bs1(yn) ⊂ Bd/4(xn) ⊂ Bd/2(x). Up to 
a subsequence, that we do not relabel, limn yn = y ∈ Bd/2(x). But y should belong to �, hence 
there exists ỹn ∈ �n, n ∈ N, such that limn ỹn = y, therefore for any n large enough we have that 
‖ỹn − yn‖ < s1 and this is a contradiction.

The argument for the class C̃1 is completely analogous, and the proof is concluded. �
Finally, we consider the following definition. We recall that T : D → D′, D and D′ being 

open subsets of RN , is said to be a bi-W 1,∞ mapping with constant L if T is bijective and 
both ‖JT ‖L∞(D) and ‖J (T −1)‖L∞(D′) are bounded by L. Here T −1 is the inverse of T and JT

denotes the Jacobian matrix of T .

Definition 2.7. Let us fix a bounded open set � and positive constants r , L, 0 < r1 < r and 
C̃ > 0. Let us also fix ω : (0, +∞) → (0, +∞), a nondecreasing left-continuous function.

We call B̂ = B̂(r, L, �, r1, C̃, ω) and Ĉ = Ĉ(r, L, �, r1, C̃, ω) the classes of sets satisfying 
the following assumptions:

i) Any � ∈ B̂, respectively Ĉ, is a compact set contained in � ⊂ R
N such that � belongs to 

B̃1(r, L, �, ω), respectively C̃1(r, L, �, ω). We call G = R
N\�.

ii) For any x ∈ ∂� and any U connected component of G ∩ Br1(x), with x ∈ ∂U , we can find 
an open set U ′ such that

U ⊂ U ′ ⊂ G, (2.6)

and a bi-W 1,∞ mapping T : (−1, 1)N−1 × (0, 1) → U ′, with constant C̃, such that the fol-
lowing properties hold. By the regularity of Q = (−1, 1)N−1 × (0, 1), T can be actually 
extended up to the boundary and we have that T : Q → R

N is a Lipschitz map with Lip-
schitz constant bounded by C̃. Furthermore, if we set � = [−1, 1]N−1 × {0}, we require 
that

T (0) = x and ∂U ∩ Br1(x) ⊂ T (�) ⊂ ∂G, (2.7)

and that, for any 0 < s < r1 and any y ∈ U ∩ Br1−s(x), we have

dist(T −1(y), ∂Q\�) ≥ ω(s). (2.8)
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Remark 2.8. We notice that clearly T (∂Q) = ∂U ′ and ∂U ∩ Br1(x) ⊂ ∂G.
It is pointed out that, up to suitably changing the constants r1 and C̃ involved, Condition ii) 

is satisfied provided it holds only for points x belonging to the boundaries of Ki , i = 1, . . . , M , 
where ∂� = ⋃M

i=1 Ki by Condition i).
Again, we have Ĉ(r, L, �, r1, C̃, ω) ⊂ B̂(r̃, L̃, �, r1, C̃, ω), for some constants r̃ and L̃ de-

pending on r and L only. We also remark that, for some constants and functions depending on 
r , L, and the diameter of � only, we have D̂(r, L, �) ⊂ Ĉ(r̂, L̂, �, r1, C̃, ω).

It is emphasized that Condition ii) is an extremely weak regularity condition and that it is 
satisfied by rather complex structures, see for instance the discussion on sets in R3 satisfying this 
assumption in Section 4 of [19], where several examples are shown.

The following compactness result holds true.

Lemma 2.9. The classes B̂ and Ĉ introduced in Definition 2.7 are compact under convergence 
in the Hausdorff distance.

Proof. The argument is the same for both classes B̂ and Ĉ, so we limit ourselves to the first one. 
It is enough to prove that the class is closed. By Lemma 2.6, we just need to prove that also 
Condition ii) is preserved in the limit. Let �n ∈ B̂, n ∈ N, be such that �n → � ∈ B̃1 in the 
Hausdorff distance as n → ∞.

Let x ∈ ∂� and let U be a connected component of G ∩ Br1(x) with x ∈ ∂U . Let y and 
s > 0 be such that Bs(y) ⊂ U and ‖y − x‖ < r1/2. We also consider a continuous curve γ :
[0, 1] → R

N such that γ (0) = y, γ (1) = x, and γ (t) ∈ U for any t ∈ [0, 1). Let Ũn, n ∈ N, be 
the connected component of Gn containing y, at least for n large enough.

Let {tm}m∈N ⊂ [0, 1) be an increasing sequence such that ‖γ (tm) − x‖ < 1/m. Then there 
exists an increasing sequence {nm}m∈N of integers such that for any n ≥ nm we have γ ([0, tm]) ⊂
Ũn. Since there exists x̃n ∈ �n converging to x as n → ∞, we can conclude that there exists 
xnm ∈ ∂Ũnm ∩ ∂�nm such that limm xnm = x. It is also not difficult to show that, for any m large 
enough, we can find Unm , a connected component of Br1(xnm) ∩ Gnm , such that xnm ∈ ∂Unm , 
y ∈ Unm , ‖y − xnm‖ < r1/2, and Unm ⊂ Ũnm .

We call Tm : Q → U ′
nm

with Unm ⊂ U ′
nm

⊂ Gnm as in Condition ii). Clearly, up to a subse-
quence that we do not relabel, Tm converges uniformly on Q to T : Q → R

N , T being a Lipschitz 
function with constant C̃. Obviously T (0) = x and a straightforward computation shows that T |Q
is actually bi-W 1,∞, with constant C̃, between Q and U ′. We have that U ′ is connected and we 
need to show that U ′ ∩ � = ∅, that is U ′ ⊂ G.

We assume, by contradiction, that there exists w ∈ Q such that T (w) ∈ �. By the bi-W 1,∞
property, we have that Bs(Tm(w)) ⊂ Tm(Q), for some s > 0 independent of m. There exists 
yn ∈ �n, n ∈ N, such that limn yn = T (w). On the other hand, limm Tm(w) = T (w) as well, 
hence for m large enough we have ‖ynm − Tm(w)‖ < s and this is a contradiction to the fact that 
Tm(Q) ∩ �nm = ∅.

Next, we prove the first inclusion of (2.6). Let x1 ∈ U be fixed. There exists a continuous 
curve γ1 in U connecting x1 with y. We have that, for some d > 0, Bd(γ1) ⊂ U , therefore, for 
any m large enough, �nm ∩ Bd/2(γ1) = ∅ and Bd/2(γ1) ⊂ Br1(xnm). Therefore, Bd/2(γ1) ⊂ Unm

and in particular Bd/2(x1) ⊂ Unm ⊂ U ′
nm

. By a reasoning completely analogous to the one used 
to prove that U ′ ⊂ G, we conclude that x1 ∈ U ′.
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For what concerns (2.7) and (2.8), these can be proved with straightforward modifications of 
the above arguments and the proof is complete. �

Now we are ready to define the following classes of admissible scatterers.

Definition 2.10. Let us fix positive constants r , L and R, 0 < r1 < r and C̃ > 0. Let us also 
fix ω : (0, +∞) → (0, +∞) and δ : (0, +∞) → (0, +∞) two nondecreasing left-continuous 
functions.

We call B̂scat = B̂scat(r, L, R, r1, C̃, ω, δ) the class of compact sets � such that � belongs to 
B̂(r, L, BR, r1, C̃, ω) and satisfies the uniform exterior connectedness with function δ.

We also define B̃scat = B̃scat(r, L, R, ω, δ) the class of compact sets � belonging to 
B̃1(r, L, BR, ω) and satisfying the uniform exterior connectedness with function δ.

Completely analogous definitions may be given for Ĉscat and C̃scat.
We further call D̂obst = D̂obst(r, L, R) the class of compact sets � belonging to D̂(r, L, BR)

and such that G =R
3\� is connected.

Obviously, we have B̂scat(r, L, R, r1, C̃, ω, δ) ⊂ B̃scat(r, L, R, ω, δ) and the same relation 
holds between Ĉscat and C̃scat. Moreover, the same relations as before hold between the classes 
B̂scat and B̃scat and the corresponding classes Ĉscat and C̃scat. We notice that any scatterer 
� ∈ D̂obst is indeed an obstacle, that is, � is the closure of its interior which is a bounded 
open set with Lipschitz boundary, with constants r and L. By Corollary 2.3 and Proposition 2.1, 
for some constants and functions depending on r , L, and R only, we have D̂obst(r, L, R) ⊂
Ĉscat(r̃, L̃, R, r1, C̃, ω, δ).

By our earlier discussion, in particular by Lemmas 2.6 and 2.9, it is easy to note that all these 
classes B̃scat, B̂scat, C̃scat , Ĉscat, and D̂obst are compact with respect to the Hausdorff distance.

Finally, the sets belonging to the class B̂, thus in particular scatterers belonging to the class 
B̂scat, satisfy the following property.

Proposition 2.11. Let us fix positive constants r , L and R, 0 < r1 < r , and C̃ > 0. Let us also fix 
ω : (0, +∞) → (0, +∞) a nondecreasing left-continuous functions.

Let B̂ = B̂(r, L, BR, r1, C̃, ω). Then there exist constants p > 2 and C̃1 > 0, depending on B̂
only, such that, for any � ∈ B̂, we have

‖v‖Lp(BR+1\�) ≤ C̃1‖v‖H 1(BR+1\�) for any v ∈ H 1(BR+1\�). (2.9)

Moreover, the immersion of H 1(BR+1\�) into L2(BR+1\�) is compact, for any � ∈ B̂.

Proof. We fix � ∈ B̂ and we call G =R
3\�. Let us take v belonging to H 1(BR+1\�). Without 

loss of generality, by an easy extension argument around ∂BR+1, we can assume that v actually 
belongs to H 1(R3\�), it has bounded support, and its H 1 norm is controlled by a constant C, 
depending on R only, times the corresponding H 1 norm in BR+1\�.

We start with a local construction. We fix x ∈ ∂� and U a connected component of Br1(x) ∩G

such that x ∈ ∂U . We consider U ′ and T : Q → U ′ as in Condition ii) of Definition 2.7.
Clearly we have that U ′ satisfies

‖v‖Ls1 (U ′) ≤ C1‖v‖H 1(U ′) for any v ∈ H 1(U ′) (2.10)
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for some constants s1 > 2 and C1 > 0. Since U ∩ B3r1/4(x) ⊂ U ′, we conclude that

‖v‖Ls1 (U∩B3r1/4(x)) ≤ C1‖v‖H 1(U ′) for any v ∈ H 1(U ′). (2.11)

We now consider a covering argument as follows. For any x ∈ ∂�, let Wn, n = 1, . . . , n0, 
be the connected components of Br1/2(x) ∩ G such that Wn ∩ Br1/4(x) �= ∅. By Lemma 2.6, 
n0 ≤ M3, where M3 is a constant depending on r1, r , L, and ω only. Let yn ∈ Wn ∩ Br1/4(x), 
n = 1, . . . , n0. As in the proof of Lemma 2.6, there exists xn ∈ ∂Wn ∩ ∂�, such that ‖yn − xn‖ <
r1/4 and ‖xn − x‖ < r1/4. We call Un the connected component of Br1(xn) ∩ G containing yn

and we observe that xn ∈ ∂Un and Wn ⊂ Un. Actually, Wn ⊂ Un ∩ B3r1/4(xn).
We conclude that for any x ∈ ∂�, there exist n0 points x1, . . . , xn0 , with n0 ≤ M3, with the fol-

lowing property. For any n = 1, . . . , n0, there exists Un, a connected component of Br1(xn) ∩ G, 
such that xn ∈ ∂Un, and moreover

Br1/4(x) ∩ G ⊂
n0⋃

n=1

(Un ∩ B3r1/4(xn)).

We fix δ = r1/16 and define the compact set A1 = Bδ(∂�) ∩ G. We notice that

A1 ⊂
⋃

x∈∂�

Br1/4(x).

By the compactness of A1, we can find a finite number of points zi ∈ ∂�, i = 1, . . . , m1, such 
that

A1 ⊂
m1⋃
i=1

Br1/4(zi).

With a rather simple construction, it is possible to choose m1 depending on r1 and R only, for 
instance by taking points such that Br1/16(zi) ∩ Br1/16(zj ) is empty for i �= j .

We further find a finite number of points zi ∈ ∂BR+1, i = m1 + 1, . . . , m1 + m2, such that

A2 = B1/16(∂BR+1) ⊂
m1+m2⋃
i=m1+1

B1/4(zi),

with m2 depending on R only.
Finally, we call r3 = min{1, r1} and

A3 = {x ∈ BR+1\� : dist(x, ∂(BR+1\�)) ≥ r3/16}.
We can find points zi ∈ A3, i = m1 + m2 + 1, . . . , m1 + m2 + m3, such that

A3 ⊂
m1+m2+m3⋃
i=m1+m2+1

Br3/32(zi).

Again the number m3 may be bounded by a constant depending on r1 and R only.
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By applying (2.11), at most M3 times for any zi , i = 1, . . . , m1, we have

‖v‖Ls1 (A1∩G) ≤ C1(M3m1)C‖v‖H 1(BR+1\�). (2.12)

By a completely analogous argument, we can find s2 > 2 and C2 such that

‖v‖Ls2 (A2∩BR+1) ≤ C2m2‖v‖H 1(BR+1\�). (2.13)

Applying a classical Sobolev inequality to D = Br3/32(zi), for i = m1 + m2 + 1, . . . , m1 +
m2 + m3, we can finally find s3 > 2 and C3 such that

‖v‖Ls3 (A3) ≤ C3m3‖v‖H 1(BR+1\�). (2.14)

Picking p = min{s1, s2, s3} we obtain that

‖v‖Lp(BR+1\�) ≤ C̃1‖v‖H 1(BR+1\�). (2.15)

It is an easy remark that p and C̃1 have the dependence required.
The fact that the immersion of H 1(BR+1\�) into L2(BR+1\�) is compact is an immediate 

consequence of the property described in (2.9). �
We conclude this subsection by introducing suitable classes of polyhedral scatterers. We de-

fine a cell as the closure of an open subset of an (N − 1)-dimensional hyperplane. We say 
that a scatterer � is polyhedral if the boundary of � is given by a finite union of cells Cj , 
j = 1, . . . , M1.

Fixed positive constants h and L, we say that a scatterer � is polyhedral with constants h and
L if the boundary of � is given by a finite union of cells Cj , j = 1, . . . , M1, where each Cj is 
the closure of a Lipschitz domain with constants h and L contained in an (N − 1)-dimensional 
hyperplane and the cells are pairwise internally disjoint, that is, two different cells may intersect 
only at boundary points.

Let B̂scat = B̂scat(r, L, R, r1, C̃, ω, δ) be the class of scatterers defined in Definition 2.10. 
Fixed the size parameter h > 0, let B̂h

scat = B̂h
scat(r, L, R, r1, C̃, ω, δ) be the set of scatterers 

� ∈ B̂scat such that � is polyhedral with constants h and L.
Analogously, let D̂obst = D̂obst(r, L, R) be the class of obstacles defined in Definition 2.10. 

Fixed the size parameter h > 0, let D̂h
obst = D̂h

obst(r, L, R) be the set of obstacles � ∈ D̂obst such 
that � is polyhedral with constants h and L. Notice that in this case any � ∈ D̂h

obst is formed by 
a finite number of polyhedra.

2.2. Preliminaries

In this subsection we fix positive constants r , L and R, 0 < r1 < r and C̃ > 0, and two 
nondecreasing left-continuous functions ω : (0, +∞) → (0, +∞) and δ : (0, +∞) → (0, +∞). 
The class of admissible scatterers that we consider will be called A. Here we pick A =
B̂scat(r, L, R, r1, C̃, ω, δ), as in Definition 2.10, and we take � and �′ belonging to A.
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We set

d = max

{
sup

x∈∂�\�′
dist(x, ∂�′), sup

x∈∂�′\�
dist(x, ∂�)

}
(2.16)

and

d̂ = dH (∂�,∂�′) and d̃ = dH (�,�′). (2.17)

We recall that dH denotes the Hausdorff distance. We notice that the following relationships 
among d , d̂ and d̃ holds. First, d , d̂ and d̃ are all bounded by 2R. We also obviously have 
d ≤ d̂ . Up to swapping the role of � and �′, let x ∈ �′ be such that dist(x, �) = d̃ . Clearly, 
dist(x, ∂�) = d̃ as well. If x ∈ ∂�′, then we immediately conclude that d̃ ≤ d . If x does not 
belong to ∂�′, then, by using the uniform exterior connectedness property of �, for any s < δ(d̃)

we can find a point x1 ∈ ∂�′ such that dist(x1, �) = dist(x1, ∂�) ≥ s. Therefore

δ(d̃) ≤ d ≤ d̂ (2.18)

or, in other words,

d̃ ≤ δ−1(d) ≤ δ−1(d̂) (2.19)

where δ−1 : (0, +∞) → (0, +∞) is a nondecreasing right-continuous function defined as fol-
lows

δ−1(t) = min{sup{s : δ(s) ≤ t},2R} for any t > 0. (2.20)

On the other hand, let x ∈ ∂�′ be such that dist(x, ∂�) = d̂ . If x does not belong to �, then 
dist(x, �) = d̂ hence d = d̂ ≤ d̃ . If x ∈ �, then B

d̂
(x) ⊂ �. Hence, by the properties of the 

boundary of �′, there exists a positive constant C1, depending on the class A only, and a point 
x1 such that B

C1d̂
(x1) ⊂ B

d̂
(x)\�′. We can conclude that

C1d ≤ C1d̂ ≤ d̃ ≤ δ−1(d) ≤ δ−1(d̂). (2.21)

Let us notice that we also have the following property that will be of use later on. If C2 =
(C1 + 1)/C1, then

���′ ⊂ B
C2d̃

(∂�) ∩ B
C2d̃

(∂�′). (2.22)

In fact, if x ∈ �′\�, then dist(x, ∂�) ≤ d̃ , therefore x ∈ B
d̃
(∂�). That is dist(x, ∂�′) ≤ d̃ + d̂ . 

Finally, there exists a constant C3, depending on the class A only, such that for any t , 0 < t ≤ 1, 
we have

|Bt(∂�)| ≤ C3t. (2.23)

We consider the following direct scattering problem. Fixed � ∈ A, for a fixed wavenumber 
k > 0 and a fixed direction of propagation v ∈ S

N−1, let the incident field ui be the corresponding 
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time harmonic plane wave, that is ui(x) = eikx·v , x ∈ R
N . The incident wave is perturbed by the 

presence of the scatterer � through a scattered wave, characterized by its corresponding scattered 
field us . The total field u is the solution to the following exterior boundary value problem

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�u + k2u = 0 in R
N\�

u = ui + us in R
N\�

B.C. on ∂�

lim
r→∞ r(N−1)/2

(
∂us

∂r
− ikus

)
= 0 r = ‖x‖,

(2.24)

where the last limit is the Sommerfeld radiation condition and corresponds to the fact that the 
scattered wave is radiating. The boundary condition on the boundary of � depends on the charac-
ter of the scatterer �. For instance, if � is sound-soft, then u satisfies the following homogeneous 
Dirichlet condition

u = 0 on ∂�, (2.25)

whereas if � is sound-hard we have

∇u · ν = 0 on ∂�, (2.26)

that is a homogeneous Neumann condition. Other conditions such as the impedance boundary 
condition or transmission conditions for penetrable scatterers may occur in the applications.

We recall that the Sommerfeld radiation condition holds uniformly with respect to all direc-
tions x̂ = x/‖x‖ ∈ S

N−1 and it implies that the scattered field has the asymptotic behavior of an 
outgoing spherical wave, namely

us(x) = eik‖x‖

‖x‖(N−1)/2

{
u∞(x̂) + O

(
1

‖x‖
)}

, (2.27)

where x̂ = x/‖x‖ ∈ S
N−1 and u∞ is the so-called far-field pattern of us . In particular, the scat-

tered field satisfies the following decay property for some positive constants E and R1

|us(x)| ≤ E‖x‖−(N−1)/2 for any x ∈R
N so that ‖x‖ ≥ R1. (2.28)

We refer to [22] for further details, such as existence and uniqueness of the solution, on the 
direct scattering problem (2.24). For an introduction to the corresponding inverse problems see 
for instance [4,12].

Let us fix constants 0 < k < k and let us denote, for any N ≥ 2,

IN =
{

[k, k] if N = 2,

(0, k] if N ≥ 3.
(2.29)

Proposition 2.12. Let us fix constants 0 < k < k and let IN be defined as in (2.29). Let A be as 
defined at the beginning of the subsection.
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Fixed � ∈ A, k ∈ IN , and v ∈ S
N−1, let ui(x) = eikx·v , x ∈ R

N , and u�,k,v be the solution to
(2.24), with boundary condition (2.25) or (2.26), and us

�,k,v be its corresponding scattered field.
Then there exists a constant E, depending on A and IN only, such that

|u�,k,v(x)| ≤ E for any x ∈ R
N\�. (2.30)

Furthermore, there exists a constant E1, depending on the constant E in (2.30), IN , R and N
only, such that for any � ∈A, any k ∈ IN , and any v ∈ S

N−1 we have

|us
�,k,v(x)| ≤ E1‖x‖−(N−1)/2 for any x ∈R

N so that ‖x‖ ≥ R + 2, (2.31)

and

‖∇us
�,k,v(x)‖ ≤ E1‖x‖−(N−1)/2 for any x ∈ R

N so that ‖x‖ ≥ R + 2. (2.32)

Proof. First of all, we show that there exists a constant E0, depending on A and IN only, such 
that

‖u�,k,v‖L2(BR+3\�) ≤ E for any � ∈ A, any k ∈ IN , and any v ∈ S
N−1. (2.33)

This is an immediate consequence of Proposition 3.2 and Theorem 3.9 in [17] for the sound-hard 
case and of Lemma 3.5 in [18] for the sound-soft case. Already from this first bound we can 
easily infer that (2.31) and (2.32) hold true.

The main idea of the proof needed to improve the uniform L2 bound in (2.33) to the uniform 
L∞ one contained in (2.30) is the following.

Let x ∈ ∂� and let us exploit Condition ii) of Definition 2.7. By a change of variables, 
a reflection argument and standard regularity estimates, we infer that we can bound |u| almost 
everywhere in Br2(x) by a constant C̃1, where r2 and C̃1 depend on r , r1, C̃ and the L2 norm of 
u which is bounded by (2.33).

This procedure allows to estimate |u| in a neighborhood of ∂�. Away from ∂� the estimate 
is completely standard. �

Let us fix � and �′ belonging to A, A as defined at the beginning of the subsection. We 
also fix k > 0 and a direction of propagation v ∈ S

N−1. Let u be the solution to (2.24) with 
boundary condition (2.25) or (2.26). We denote by us the corresponding scattered field and by 
u∞ its far-field pattern. Moreover, u′, (us)′ and u′∞ denote the same functions when � is replaced 
by �′. Finally, we fix positive R1 and ρ̃ such that R + 1 + ρ̃ ≤ R1.

By Proposition 2.12, we have that

|u(x)| + |u′(x)| ≤ E for any x ∈ R
3, (2.34)

where E depends on k and A only and it may be assumed to be greater than or equal to 1, and u
and u′ are extended to 0 on � and �′, respectively.

Let us fix a point x0 ∈R
N such that R + 1 + ρ̃ ≤ ‖x0‖ ≤ R1. For a fixed ε, 0 < ε ≤ E, let

‖u − u′‖L∞(Bρ̃ (x0)) ≤ ε. (2.35)

We call ε the near-field error with limited aperture.



1650 H. Liu et al. / J. Differential Equations 262 (2017) 1631–1670
Then, let ε1 > 0 be such that

‖u − u′‖L∞(B‖x0‖+ρ̃\B‖x0‖−ρ̃ ) ≤ ε1. (2.36)

We call ε1 the near-field error.
Finally, if

‖u∞ − u′∞‖L2(SN−1) ≤ ε0, (2.37)

ε0 will be referred to as the far-field error.
We investigate the relations among these errors. First of all, let us recall that a three-spheres 

inequality holds for the Helmholtz equation, provided the larger ball has a radius bounded by a 
constant ρ̃0, ρ̃0 depending on k only, see for instance [2] or for a version suited to our case [20, 
Lemma 3.5] which we state here for the convenience of the reader.

Lemma 2.13. There exist positive constants ρ̃0, C and c1, 0 < c1 < 1, depending on k only, such 
that for every 0 < ρ1 < ρ < ρ2 ≤ ρ̃0 and any function u such that

�u + k2u = 0 in Bρ2 ,

we have, for any s, ρ < s < ρ2,

‖u‖L∞(Bρ) ≤ C(1 − (ρ/s))−N/2‖u‖1−β

L∞(Bρ2 )‖u‖β

L∞(Bρ1 ), (2.38)

for some β such that

c1 (log(ρ2/s))
/

(log(ρ2/ρ1)) ≤ β ≤ 1 − c1 (log(s/ρ1))
/

(log(ρ2/ρ1)) . (2.39)

By an iterated application of this three-spheres inequality, we have that there exist positive 
constants C and α, 0 < α < 1, depending on E, ρ̃, R1 and k only, such that

ε ≤ ε1 ≤ Cεα. (2.40)

Moreover, there exist positive constants ε̃0 < 1/e and C1, depending on E, R, ρ̃, R1 and k
only, such that if 0 < ε0 ≤ ε̃0 then

‖u − u′‖L∞(B‖x0‖+ρ̃\B‖x0‖−ρ̃ ) ≤ η1(ε0) = exp
(
−C1(− log ε0)

1/2
)

(2.41)

that is

ε ≤ ε1 ≤ η1(ε0) = exp
(
−C1(− log ε0)

1/2
)

. (2.42)

This estimate follows immediately by the results in [10] for N = 3 and with an easy modification 
for any other N ≥ 2, see for instance Theorem 4.1 in [21].

If we wish to reduce to obstacles only, we use the class of admissible obstacles Aobst. In 
particular, we set Aobst = D̂obst(r, L, R).
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It is important to notice that δ in this case may be chosen to be as in (2.3), therefore δ−1 may 
be chosen to be C2d for any d , for some constant C2 depending on r , L and R only, that is,
(2.21) becomes

C1d ≤ C1d̂ ≤ d̃ ≤ C2d ≤ C2d̂. (2.43)

Finally, if we wish to use classes of admissible polyhedral scatterers or obstacles, fixed the 
size parameter h > 0, we use Ah = B̂h

scat(r, L, R, r1, C̃, ω, δ) for general scatterers and Ah
obst =

D̂h
obst(r, L, R) for obstacles.

3. The main stability results

In this section we present our stability results for the determination of sound-hard polyhedral 
scatterers. We distinguish them with respect to the number of scattering measurements used.

In this section we fix positive constants r , L and R, 0 < r1 < r and C̃ > 0. Let us also fix 
ω : (0, +∞) → (0, +∞) and δ : (0, +∞) → (0, +∞) two nondecreasing left-continuous func-
tions. We recall that ω(t) ≤ t , that limt→+∞ ω(t) is equal to a finite real number which we call 
ω(+∞), and that δ(t) ≤ t for any t > 0. We fix the wavenumber k > 0. Finally, we fix positive 
R1 and ρ̃ such that R + 1 + ρ̃ ≤ R1. We refer to these constants and functions, including N , as 
the a priori data and we let A = B̂scat(r, L, R, r1, C̃, ω, δ) be the class of scatterers defined in 
Definition 2.10. As before, for any fixed h > 0 we call Ah = B̂h

scat(r, L, R, r1, C̃, ω, δ) the set of 
scatterers � ∈A such that � is polyhedral with constants h and L.

We call η : (0, 1/e) → (0, +∞) the following function

η(s) = exp(−(log(− log s))1/2) for any s, 0 < s < 1/e. (3.1)

3.1. Polyhedral scatterers with N measurements

We fix N linearly independent unit vectors v1, . . . , vN . We notice that, given N linearly in-
dependent unit vectors v1, . . . , vN , there exists a positive constant a0, depending on the vectors 
v1, . . . , vN , such that

min
ν∈SN−1

{
max

j∈{1,...,N}
|vj · ν|

}
≥ a0. (3.2)

In fact, maxj∈{1,...,N} |vj · ν| is a continuous function of ν ∈ S
N−1 which never vanishes.

We also fix a point x0 ∈ R
N such that R + 1 + ρ̃ ≤ ‖x0‖ ≤ R1.

Theorem 3.1. Let N ≥ 2. Fix h > 0. Let �, �′ belong to Ah and let d be defined as in (2.16). For 
any j = 1, . . . , N , let ui(x) = eikx·vj , x ∈ R

N , and let uj be the solution to (2.24) with boundary 
condition (2.26) and u′

j be the solution to the same problem with � replaced by �′.
If

max ‖uj − u′
j‖L∞(Bρ̃ (x0)) ≤ ε (3.3)
j=1,...,N
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for some ε ≤ 1/(2e), then for some positive constant C depending on the a priori data and on a0
only, and not on h, we have

min{d,h} ≤ 2eR(η(ε))C. (3.4)

Therefore,

d ≤ 2eR(η(ε))C, (3.5)

provided ε ≤ ε̂(h) where

ε̂(h) = min

{
1/(2e), η−1

(( h

2eR

)1/C
)}

. (3.6)

With little modification, we obtain exactly the same stability result if � and �′ are sound-soft 
scatterers instead of sound-hard ones, even if we reduce the number of measurements from N
to 1. That is, as a byproduct of this work, we can significantly extend Theorem 4.1 in [20] to a 
much more general class of scatterers, namely Ah, and to any dimension N ≥ 2. We state such 
result in the following theorem.

Theorem 3.2. Let N ≥ 2. Fix h > 0. Let �, �′ belong to Ah and let d be defined as in (2.16). 
Let us fix v ∈ S

N−1 and let ui(x) = eikx·v , x ∈ R
N . Let u be the solution to (2.24) with boundary 

condition (2.25) and u′ be the solution to the same problem with � replaced by �′.
If

‖u − u′‖L∞(Bρ̃ (x0)) ≤ ε (3.7)

for some ε ≤ 1/(2e), then for some positive constant C depending on the a priori data only, and 
not on h, we have

min{d,h} ≤ 2eR(η(ε))C. (3.8)

3.2. Polyhedral obstacles with fewer measurements

It is well-known that in general N −1 scattering measurements may not be enough to uniquely 
determine a polyhedral sound-hard screen. However, if we limit ourselves to polyhedral obsta-
cles, that is to polyhedra, then a single measurement is enough, see [6,7].

Here we restrict ourselves to obstacles and we aim to obtain corresponding stability estimates 
with a minimal number of scattering measurements.

For technical reasons we limit ourselves to N = 2 or N = 3 only. Let us then fix N ∈ {2, 3}
and positive constants r , L and R. We fix the wavenumber k > 0. Finally, we fix positive R1 and 
ρ̃ and a point x0 ∈R

N such that R + 1 + ρ̃ ≤ ‖x0‖ ≤ R1.
We let Aobst = D̂obst(r, L, R) be the class of scatterers defined in Definition 2.10. For any 

fixed h > 0, we call Ah
obst = D̂h

obst(r, L, R) the set of obstacles � ∈ Aobst such that � is polyhe-
dral with constants h and L.

We recall that, for some constants and functions depending on r , L and R only, we have 
D̂obst(r, L, R) ⊂ B̂scat(r̃, L̃, R, r1, C̃, ω, δ). Therefore, in this case we may set the constants r , 
L, R, k, R1 and ρ̃, including N , as the a priori data.
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We begin by investigating an intermediate case, namely the one with N − 1 scattering mea-
surements.

Theorem 3.3. Let N = 2, 3. Fix h > 0. Let �, �′ belong to Ah
obst and let d be defined as in

(2.16).
If N = 2, let us fix v ∈ S

1 and let ui(x) = eikx·v , x ∈ R
2. Let u be the solution to (2.24) with 

boundary condition (2.26) and u′ be the solution to the same problem with � replaced by �′. We 
let ε > 0 be such that

‖u − u′‖L∞(Bρ̃ (x0)) ≤ ε. (3.9)

If N = 3, let us fix v1, v2 ∈ S
2, with |v1 · v2| = b0 < 1. For any j = 1, 2, let ui(x) = eikx·vj , 

x ∈ R
3, and let uj be the solution to (2.24) with boundary condition (2.26) and u′

j be the solution 
to the same problem with � replaced by �′. We let ε > 0 be such that

max
j=1,2

‖uj − u′
j‖L∞(Bρ̃ (x0)) ≤ ε. (3.10)

There exists a constant ε̂1(h), 0 < ε̂1(h) ≤ 1/(2e), depending on the a priori data, on b0 if 
N = 3, and on h only, such that if ε ≤ ε̂1(h), then for some positive constants A1, depending on 
the a priori data only, and C, depending on the a priori data, on b0 if N = 3, and on h only, we 
have

d ≤ A1(η(ε))C. (3.11)

The main difference with respect to the sound-hard case with N measurements or the sound-
soft case is that here we do not have an explicit dependence of ε̂1(h) from h, which in Theo-
rems 3.1 and 3.2 is given by (3.6), and that the constant C depends, again in a rather implicit 
way, on h too.

We finally consider the case of a single scattering measurement. We restrict here to N = 3, 
since N = 2 is clearly covered by the previous theorem.

Theorem 3.4. Let N = 3. Fix h > 0. Let �, �′ belong to Ah
obst and let d be defined as in (2.16). 

Let us fix v ∈ S
2 and let ui(x) = eikx·v , x ∈ R

3. Let u be the solution to (2.24) with boundary 
condition (2.26) and u′ be the solution to the same problem with � replaced by �′.

There exists a constant ε̂2(h), 0 < ε̂2(h) ≤ ε̂1(h) ≤ 1/(2e), depending on the a priori data 
and on h only, such that if

‖u − u′‖L∞(Bρ̃ (x0)) ≤ ε (3.12)

for some ε ≤ ε̂2(h), then for some positive constants A2 ≥ A1, depending on the a priori data 
only, and C1 ≤ C, depending on the a priori data and on h only, we have

d ≤ A2(η(ε))C1 . (3.13)

Remark 3.5. We finally notice that, by the arguments developed in the previous section, we can 
easily infer corresponding estimates of Theorems 3.1 and 3.2, and of Theorems 3.3 and 3.4, if we 
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replace d with d̃ = dH (�, �′) or d̂ = dH (∂�, ∂�′) or the near-field error with limited aperture 
ε with a near-field error ε1 or a far-field error ε0 on the corresponding solutions. In the first case, 
it is just enough to use (2.21), with δ−1 defined as in (2.20) and C1 > 0 depending on the a priori 
data only, for the first two theorems, and to use (2.43), with C1 > 0 and C2 depending on the 
a priori data only, for the second two theorems. For the second case, by (2.42), we have exactly 
the same results if we replace ε with the near-field error ε1. If we use the far-field error ε0 instead, 
then we need to replace ε with η1(ε0), η1 as in (2.42), noting that in this case we can choose ρ̃
and R1 as depending on the other a priori data.

4. The general geometric construction

In this section we assume that the assumptions of Theorem 3.1 are satisfied. The a priori data 
will be the one defined at the beginning of Section 3.

Moreover, for the whole section we shall fix j ∈ {1, . . . , N} and we shall consider the solutions 
with respect to the incident direction of propagation v = vj , therefore the subscript j will be 
always dropped.

We call H the connected component of G ∩ G′, where G′ = R
N\�′, such that RN\BR is 

contained in H . We shall also use the following definition.

Definition 4.1. A sequence of balls Bρi
(zi), i = 0, . . . , n, forms a regular chain, with respect to 

an open set G, with constants 0 < a1 < a2 < a3 < 1 < a4 if the following properties are satisfied:

i) for any i = 0, 1, . . . , n, Ba4ρi
(zi) ⊂ G;

ii) for any i = 1, . . . , n, we have ρi ≤ ρi−1 and Ba1ρi
(zi) ⊂ Ba2ρi−1(zi−1) and, for any i =

0, . . . , n − 1, we have Ba1ρi
(zi) ⊂ Ba3ρi+1(zi+1).

We have the following lemmas with simple proofs that we leave to the reader.

Lemma 4.2. Let U1 and Ũ1 be two open sets and let T : U1 → Ũ1 be a bi-W 1,∞ mapping with 
constant C̃.

Let Bρ̃i
(z̃i ), i = 0, . . . , n, be a regular chain with respect to Ũ1 with constants 0 < ã1 < ã2 <

ã3 < 1 < ã4. Then, if we call zi = T −1(z̃i ), ρi = ρ̃i/C̃, i = 0, . . . , n, and a1 = ã1, a4 = ã4, we 
have that Bρi

(zi), i = 0, . . . , n, is a regular chain with respect to U1 with constants 0 < a1 <

a2 < a3 < 1 < a4 provided

a1 < C̃2ã2 ≤ a2 < a3 < 1 and a1 < C̃2ã3 ≤ a3 < 1.

Lemma 4.3. Let C be an open cone with amplitude θ , 0 < θ < π/2, and radius r . For simplicity 
we assume that its vertex is in the origin and that its bisecting vector is eN . We set 0 < a1 < a2 <

a3 < 1 < a4 and we call 0 < c1 = sin(θ)/a4 < 1. Given c2, 0 < c2 ≤ c1, we fix z0 = (r/2)eN and 
ρ0, c2(r/2) ≤ ρ0 ≤ c1(r/2).

We can construct a regular chain Bρi
(zi), i = 0, . . . , n, with respect to C with constants 

0 < a1 < a2 < a3 < 1 < a4, in the following way. For any i = 0, . . . , n, we can choose 
zn = bn(r/2)eN and ρn = bnρ0 provided the constant b satisfies

0 < max

{
1 − a2c2

1 − a1c2
,

1 + a1c2

1 + a3c2

}
≤ b < 1. (4.1)
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We now proceed to describe the geometric construction needed for the proof of Theorem 3.1, 
and of the other stability results as well. We divide the construction into several steps, proving 
alongside their corresponding estimates. Without loss of generality, up to swapping � with �′, 
we can find x1 ∈ ∂�′\� such that d = dist(x1, ∂�) = dist(x1, �).

Step I: from x0 to x1. We construct a sequence of balls Bρi
(zi), i = . . . , −n, −(n − 1), . . . ,

0, . . . , n0 forming a regular chain with respect to G, with constants 0 < a1 < a2 < a3 < 1 <
a4 = 8 and ρ0 depending on the a priori data only, and such that the following conditions are 
satisfied.

First, z0 = x0 and zn0 = x1. Second, ρ0 is a positive constant, depending on the a priori data 
only, such that 16ρ0 ≤ min{ρ̃, ρ̃0, r1/C̃}, where ρ̃0 is the positive constant depending on k only 
that bounds the radius of balls where the three-spheres inequality of Lemma 2.13 holds. On the 
other hand, ρn0 = s0d , where s0 is a positive constant depending on the a priori data only. Third, 
for any n = 1, 2, . . . , we pick z−n = x0 +n(ρ0/4)(x0/‖x0‖) and ρ−n = ρ0. Finally n0 is bounded 
by a constant, depending on the a priori data only, times log(2eR/d).

The sequence is constructed as follows. Let y1 be a point of ∂� such that |x1 − y1| = d . We 
recall that Bd(x1) ⊂ G.

If d ≥ r1/3, then we use the exterior connectedness property of � and may easily construct 
such a chain keeping the radius ρn = ρ0 for any n ≤ n0, that is simply constant and depending 
on the a priori data only. In this case we easily infer that n0 is bounded by a constant depending 
on the a priori data only as well.

If instead d ≤ r1/3, we proceed in the following way. Let U be the connected component of 
G ∩Br1(y1) containing Bd(x1). In particular we have y1 ∈ ∂U . By Condition ii) of Definition 2.7
applied to y1, we have the transformation T : Q → U ′ and we consider the point x̃1 = T −1(x1). 
We call ỹ2 the point in Q such that ỹ2 = (x̃′

1, 3/4) and y2 = T (ỹ2). We have that B
d/C̃

(x̃1) ⊂
Q and that dist(x̃1, ∂Q\�) ≥ ω(2r1/3). In particular, ‖x̃′

1‖ ≤ 1 − ω(2r1/3). We conclude that 
dist(y2, �) is greater than or equal to a constant depending on the a priori data only. By the 
exterior connectedness property of � we construct such a chain first from x0 to y2, keeping 
the radius constant and depending on the a priori data only. We notice that this part requires 
a number of balls that may be bounded by a constant depending on the a priori data only. In 
order to proceed from y2 to x1, we use Lemma 4.3 to construct a regular chain in Q, with 
suitable constants, connecting ỹ2 to x̃1. Then our chain in G is obtained by using Lemma 4.2
and we easily infer that the number of elements of such a chain may be bounded by a constant, 
depending on the a priori data only, times log(2eR/d), therefore the claim is proved.

Let us finally notice that here the geometric construction is different from that of [20]. It is 
actually more general and more complicated and allows us to consider a wider class of admissible 
scatterers.

Starting from z0 = x0, we take j1 ∈ {1, . . . , n0} such that, for any i = 0, 1, . . . , j − 1, 
Bρi

(zi) ⊂ H and Bρj1
(zj1) ∩ �′ �= ∅. We apply the three-spheres inequality of Lemma 2.13

as follows. For any i = 0, 1, . . . , j − 1,

‖u − u′‖L∞(Ba1ρi+1 (zi+1)) ≤ ‖u − u′‖L∞(Ba2ρi
(zi )) ≤

≤ C‖u − u′‖1−βi

L∞(Bρi
(zi ))

‖u − u′‖βi

L∞(Ba1ρi
(zi ))

,

where any βi , i = 0, . . . , j − 1, satisfies
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0 < a ≤ βi ≤ b < 1

with a and b depending on k only.
If βi , i = 0, 1, 2, . . . , are positive constants, we shall use the following notation for any j =

0, 1, 2, . . .

Bj =
j∑

r=0

j∏
i=r

βi, �j =
j∏

i=0

βi.

Recalling that ‖u − u′‖L∞(R3) ≤ E and that ‖u − u′‖L∞(Bρ̃ (x0)) ≤ ε, and by iterating the 
previous estimate, we obtain

‖u − u′‖L∞(Ba1ρj1
(zj1 )) ≤ C1+Bj1−1E1−�j1−1ε�j1−1 . (4.2)

Step II: towards the cell and back. We call ĥ = min{d, h}. Following the notation of the previ-
ous step, we set z = zj1 and ρ = ρj1 . Then, Ba1ρ(z) ⊂ H , Ba4ρ(z) ⊂ G, with a4 = 8, and there 
exists w ∈ ∂�′ such that ‖z − w‖ < ρ and B‖z−w‖(z) ⊂ H . Let U be the connected component 
of G′ ∩ Br1(w) containing z. Clearly w ∈ ∂U . Let C′ be one of the cells of ∂�′ such that w ∈ C′
and C′ ∩ Br1/2(w) ⊂ ∂U .

We call �′ the plane containing C′ and, up to a rigid change of coordinates, without loss of 
generality, we assume �′ = {y ∈ R

N : yN = 0}. By the properties of C′, C′ satisfies a uniform 
cone property, namely there exist ω1 ∈ S

N−1 ∩ � and constants c1, 0 < c1 ≤ 1, and θ , 0 < θ <

π/2, depending on L and R only, such that C(w, ω1, c1ĥ, θ) ∩ �′ ⊂ C′ ∩ Br1/2(w) ⊂ ∂U .
By looking at the points on the bisecting line of C(w, ω1, c1ĥ, θ), we may find w1 on this line, 

that is w1 = w + s1ĥω1, such that B
s2ĥ

(w1) ⊂ Br1/2(w) ∩ B7ρ/(4C̃2)
(w), and B

s2ĥ
(w1) ∩ �′ ⊂

C′ ∩ Br1/2(w) ⊂ ∂U , for some positive s1 and s2 depending on the a priori data only.
We claim that there exists s3, 0 < s3 ≤ s2, depending on the a priori data only, such that, up to 

changing the orientation of eN , we have B+
s3ĥ

(w1) ⊂ U .

The proof of this claim is the following. We apply Condition ii) of Definition 2.7 to w, and 
we consider the corresponding transformation T : Q → U ′. For some ε > 0, possibly taking s2
slightly smaller but still depending on the a priori data only, we have that (B

s2ĥ
(w1) ∩ �′) ×

(0, ε] ⊂ U ∩ Br1/2(w). The function T −1 restricted to such a set is bi-Lipschitz onto A ⊂ Q. We 
observe that A has a positive distance, depending on r1 and ω only, from ∂Q\�.

It is not difficult to show that T −1 can be extended to a function T̃ −1 in such a way that 
T̃ −1 : (B

s2ĥ
(w1) ∩ �′) × [0, ε] → A is still bijective, with inverse T , and thus bi-Lipschitz. 

We conclude that also T̃ −1 : (B
s2ĥ

(w1) ∩ �′) → A ∩ � is bijective, with inverse T , and thus 

bi-Lipschitz. Then let us fix a, 0 < a ≤ s2ĥ such that B+
a (w1) ⊂ U ∩ Br1/2(w) ⊂ U ′. If a can be 

chosen to be s2ĥ, the claim is proved, otherwise we assume that there exists y ∈ ∂U ′ such that 
y ∈ B+

s2ĥ
(w1) and ‖y − w1‖ = a. Actually, y ∈ ∂U ∩ Br1/2(w). Then we call w̃1 = T̃ −1(w1), 

thus T (w̃1) = w1, and, by a similar reasoning, extending T −1 up to the closure of B+
a (w1), we 

can find ỹ ∈ � such that T (ỹ) = y and ‖ỹ − w̃1‖ ≤ C̃a. Moreover, we also have that ỹ /∈ A ∩ �. 
But B

s2ĥ/C̃
(w̃1) ∩ � ⊂ A ∩ �, therefore C̃a must be greater than s2ĥ/C̃, that is, a > s2ĥ/C̃2 and 

the claim is proved.
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Then we notice that, through an even reflection, we can extend u′ on B
s3ĥ

(w1) by setting 

u′(y) = u′(T�′(y)) for any y ∈ B−
s3ĥ

(w1). In this way u′ solves the Helmholtz equation on the 

whole B
s3ĥ

(w1). We notice that B
s3ĥ

(w1) ⊂ G, therefore on H ∪B
s3ĥ

(w1) both u and u′ are well 
defined and solve the Helmholtz equation.

We construct a regular chain, with respect to H ∪ B
s3ĥ

(w1) and with constants depending on 
the a priori data only, satisfying the following properties. The first ball is centered in z and it has 
radius less than or equal to ρ, whereas the last ball is B

s5ĥ
(w1) with s5 depending on the a priori 

data only. Finally, the number of balls of such a chain is bounded by a constant depending on the 
a priori data only times log(2eR/ĥ).

The argument is the following. By a reasoning similar to the one used before, we can 
find w̃ ∈ � such that T (w̃) = w and ‖w̃1 − w̃‖ ≤ C̃s1ĥ. Since B7ρ(w) ∩ U ⊂ H , we have 
T (B7ρ/C̃

(w̃) ∩ Q) ⊂ H . Since s1 ≥ s3, we have T −1(B+
s3ĥ

(w1)) ⊂ B2C̃s1ĥ
(w̃). Without loss of 

generality, we require that 2C̃s1ĥ ≤ 7ρ/(2C̃), that is, T −1(B+
s3ĥ

(w1)) ⊂ B7ρ/(2C̃)
(w̃) ∩ Q.

Then we perform the following construction. Take w0 on the segment connecting z to w such 
that ‖w0 − w‖ = 7ρ/(4C̃2), if this number is less than ‖z − w‖. Otherwise we pick w0 = z. We 
observe that T −1(w0) ∈ B7ρ/(2C̃)

(w̃) ∩ Q.
We construct a regular chain of balls, with a number of balls bounded by a constant depending 

on the a priori data only, contained in B‖z−w‖(z) ⊂ H and connecting z to w0. We consider w2 =
w1 + s4ĥeN so that B

s5ĥ
(w2) ⊂ B+

s3ĥ
(w1). Then with a construction similar to one described 

before during Step I, which exploits the properties of the change of variables T , we can extend 
our regular chain, which is still contained in H , from w0 till we connect to w2. The number 
of steps required at this stage is of the order of a constant times log(2eR/ĥ). Then we move 
along the segment connecting w2 to w1 and, with a finite number of steps depending only on the 
a priori data, we are able to reach w1 and thus conclude the construction.

We notice again that, as in the first Step I, the construction developed here is much more 
general and much more involved than that used in [20]. Overcoming this technical difficulty is 
the key ingredient to obtain our results for a more general class of admissible scatterers than the 
one used in [20].

Again by a repeated use of the three-spheres inequality, and by recalling (4.2), we obtain that

‖u − u′‖L∞(B
a1s5 ĥ

(w1)) ≤ C1+Bn−1E1−�n−1ε�n−1 (4.3)

where, for some constants C̃1 and a, b, with 0 < a < b < 1, depending on the a priori data only, 
we have

n ≤ C̃1

(
log

(
2eR

ĥ

)
+ log

(
2eR

d

))
and a ≤ βi ≤ b for any i = 0, . . . , n − 1. (4.4)

We then apply a reflection argument. We call �1 = �′ the hyperplane containing the cell C′. 
Moreover, ν1 will be the unit normal to �1 and T1 = T�1 is the reflection in �1. We define �1 as 
the reflection of � with respect to the plane �1, G1 =R

3\�1, and u1 as the even reflection of u
with respect to the same plane �1, namely for any x ∈ RN , we set u1(x) = u(T�1(x)). Without 
loss of generality, and since a4 = 8, we can assume that B

s5ĥ
(w1) ⊂ B2ρ(z) ⊂ B8ρ(z) ⊂ G, 

therefore Bρ(z) ⊂ B3ρ(w1) ⊂ B4ρ(w1) ⊂ G ∩G1. Both u and u1 satisfy the Helmholtz equation 
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on B4ρ(w1). Notice that ∇u′ · ν1 = 0 on �1 ∩ B
s5ĥ

(w1), therefore u′ = u′ ◦ T�1 and

u − u1 = u − u′ + u′ − u1 = (u − u′) − (u − u′) ◦ T�1 .

We can conclude, using (4.3), that

‖u − u1‖L∞(B
a1s5ĥ

(w1)) ≤ 2‖u − u′‖L∞(B
a1s5 ĥ

(w1)) ≤ 2C1+Bn−1E1−�n−1ε�n−1 . (4.5)

Then by using the arguments of Step IV of Section 5 in [20], we obtain that

‖u − u1‖L∞(Bρj1
(zj1 )) ≤ C1+Bn(2E)1−�nε�n (4.6)

where C ≥ 1 and 2E ≥ 1 are constants depending on the a priori data only, (4.4) is satisfied and 
βn satisfies

c1
log(8/7)

log(c2ρ0/ĥ)
≤ βn ≤ 1 − c1 + c1

log(8/7)

log(c2ρj/ĥ)
,

with c1, c2 depending on the a priori data only.
Finally, we call w1 the first reflection point and �1 the first reflection hyperplane.

Step III: returning back towards x0 and infinity. Let us begin by fixing a constant R2 ≥
max{2R1, 4R}, depending on the a priori data and on a0 only, such that

E1R
−(N−1)/2
2 ≤ ka0/2

where E1 is as in (2.32).
Let us now consider the regular chain of balls Bρi

(zi), i = . . . , −n, . . . , −1, 0, 1 . . . , j1, we 
have constructed in Step I. We have that Bρj1

(zj1) is contained in G1. We proceed backwards 
along the chain, until we find j2, j2 < j1, such that, for any i = j2 + 1, . . . , j1, we have Bρi

(zi) ∩
G1 = ∅, whereas Bρj2

(zj2) ∩G1 �= ∅. Then, we apply Step II to u, u1, � and �1. We find a second 
reflection point w2 and a second reflection hyperplane �2, with unit normal ν2. By reflection in 
such a hyperplane �2, from � we obtain �2 and from u we obtain u2. In a completely analogous 
way as in (4.6), we may estimate ‖u − u2‖L∞(Bρj2

(zj2 )).

We repeat this procedure as many times as needed, until we reach z−n1 , where n1 is an integer 
bounded by a constant depending on the a priori data and on a0 only, with R3 = ‖z−n1‖ ≥
2R2 + 2. Fixed a hyperplane �, to be decided later, that is passing through a point belonging to 
BR2+1, and a point z̃ ∈ ∂BR3 ∩�, by a regular chain of balls with constant radius ρ0, we proceed 
from z−n1 along the boundary of ∂BR3 towards the point z̃ ∈ ∂BR3 ∩ �.

Before reaching z̃, we have done M reflection procedures as in Step II, where M is a positive 
integer bounded by n0 plus a constant depending on the a priori data and on a0 only.

We now distinguish between two cases. In the first, setting �0 = �′ and u0 = u′, we assume 
that there exists a reflection point wn ∈ ∂�n−1, 1 ≤ n ≤ M , as above with ‖wn‖ ≥ R2 + 1. Then 
we have, since ∇un−1(wn) · νn = 0,

∇u(wn) · νn = ∇(u − un−1)(wn) · νn.
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Otherwise, in the second case, we can assume that the last reflection point wM is such that 
‖wM‖ ≤ R2 + 1 and, without loss of generality, we may pick � = �M . Then, since uM =
u ◦ T�M

, we have ∇uM(z̃) · νM = −∇u(z̃) · νM , hence

2∇u(z̃) · νM = ∇(u − uM)(z̃) · νM.

In either cases, picking either z = wn or z = z̃, we can prove the following lemma, see [20, 
Section 5] for further details on the computations.

Lemma 4.4. We can find a point z, ‖z‖ ≥ R2 + 1 and a unit vector ν such that

h|∇u(z) · ν| ≤ C0ε2 (4.7)

where for some βi , i = 0, . . . , n,

ε2 ≤ C1+Bn(2E)1−�nε�n, (4.8)

with C ≥ 1, 2E ≥ 1 and

n ≤ Ĉ log(2eR/d)(log(2eR/d) + log(2eR/ĥ)).

Furthermore, there are at most M ≤ Ĉ1 log(2eR/d) of these β such that

β ≥ c1
log(8/7)

log(c2ρ0/ĥ)

and they are never consecutive ones, and all the others satisfy 0 < a ≤ β ≤ b < 1. Here C0, C, 
E, a, b, c1, c2, Ĉ and Ĉ1 depend on the a priori data only.

This lemma concludes the general geometric construction that is the basic step for proving 
our stability results.

5. Proofs of the stability results

In this section, using the geometric construction of the previous Section 4 as a starting point, 
we prove our stability results. For the N measurements case the conclusion is straightforward, 
whereas if we consider less than N measurements, we need to develop new arguments.

5.1. The N measurements case

We conclude the proof of Theorem 3.1, and thus also of Theorem 3.2.

Proof of Theorem 3.1. By Lemma 4.4, and using its notation, we have for any j = 1, . . . , N

max |∇uj (z) · ν| ≤ C0
ε2.
j=1,...,N h
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Therefore, using Proposition 2.12 and our choice of R2, for any j = 1, . . . , N , we have

k|vj · ν| − ka0/2 ≤ |∇uj (z) · ν| ≤ C0

h
ε2.

Therefore, choosing one of the available incident waves we can infer that

ka0/2 ≤ C0

h
ε2. (5.1)

Then, by straightforward although lengthy computations, see [20, Section 5] for further de-
tails, the proof may be easily concluded. �
5.2. The N − 1 measurements case

Here we assume that the hypotheses of Theorem 3.3 are satisfied. Since we would like to keep 
our argument as general as possible, let us assume for the time being that N ≥ 2 and that we have 
fixed N − 1 linearly independent directions v1, . . . , vN−1.

We need the following lemma.

Lemma 5.1. There exists a constant ã0 > 0, depending on the a priori data only, such that for 
any direction v, and any polyhedral � ∈ Aobst, we can find a cell C in ∂�, with unit normal ν, 
such that |ν · v| ≥ ã0.

Proof. Let us assume, by contradiction, that such a positive constant ã0 does not exist. Then we 
can find a sequence of polyhedral obstacles �n ∈ Aobst and of directions vn, n ∈ N, such that, 
for HN−1 almost any point x of ∂�n, we have |ν(x) · vn| ≤ 1/n. Without loss of generality, 
we can assume that, as n → ∞, �n converges, in the Hausdorff distance, to � ∈ Aobst and that 
vn → v ∈ S

N−1. We can conclude that for HN−1 almost any point x of ∂� we have |ν(x) ·v| = 0, 
which is impossible since � is an obstacle. �

We begin with the following interesting and not that difficult case. Let us consider the geo-
metric construction of the previous section, in particular Lemma 4.4. If the point z defined there 
is a reflection point wn, then a single measurement would be enough to obtain a stability result. 
In fact the following result holds.

Proposition 5.2. Let N ≥ 2. Fix h > 0. Let �, �′ belong to Ah
obst and let d be defined as in

(2.16). Let us fix v ∈ S
N−1 and let ui(x) = eikx·v , x ∈ R

N . Let u be the solution to (2.24) with 
boundary condition (2.26) and u′ be the solution to the same problem with � replaced by �′. 
Let us assume that

‖u − u′‖L∞(Bρ̃ (x0)) ≤ ε

for some ε ≤ 1/(2e).
Let us further assume that the point z defined in Lemma 4.4 is a reflection point. Then for 

some positive constant C depending on the a priori data only, and not on h, we have

min{d,h} ≤ 2eR(η(ε))C.
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Proof. The main idea of the proof is the following. Let z = wn ∈ �n−1 be the reflection point 
such that ‖z‖ ≥ R2 + 1. We consider σ the connected component of �n−1 containing z and we 
find, using Lemma 5.1, a point z̃ ∈ ∂σ such that |ν(z̃) · v| ≥ ã0.

Clearly σ is far away from �, therefore we are able to modify our regular chain by moving 
around ∂σ till we get close to the point z̃ ∈ ∂σ and we can use such a point z̃ as a reflection point. 
Therefore the proof follows as in the proof of Theorem 3.1, simply by replacing a0 by ã0. �

The difficult part arises when the assumptions of Proposition 5.2 are not met, namely when 
in the geometric construction of the previous section we have M reflection points, all of them 
contained in BR2+1.

In the sequel, without loss of generality, we assume that in our geometric construction we 
have M reflection points, all of them contained in BR2+1. Using the construction of the previous 
section, we can reach with a regular chain any point z̃ ∈ (B2R2+3\B2R2+2) ∩ �M . Therefore, for 
any j = 1, . . . , N − 1, we have

Aj = max
z̃∈(B2R2+3\B2R2+2)∩�M

|∇uj (z̃) · ν| ≤ C0ε2 (5.2)

where ν = νM is the unit normal to �M and C0 and ε2 satisfy the same properties as those in 
Lemma 4.4.

Let us illustrate what is the difficult point. In order to obtain our stability result we need 
to match the upper bound in (5.2) with a corresponding lower bound. Let us begin with the 
following remark. Let v = vj , j ∈ {1, . . . , N −1}, be one of the incident directions of propagation 
and, for the time being, let us drop the subscript j from our solutions. Let us call

A = max
z̃∈(B2R2+3\B2R2+2)∩�M

|∇u(z̃) · ν|.

Can A be equal to 0? Indeed this can happen, although only in certain circumstances. Namely, 
we claim that A = 0 if and only if v · ν = 0 and � is symmetric with respect to the hyperplane 
�M . One direction is obvious, let us show the more interesting one, that is, A = 0 implies that 
v · ν = 0 and � is symmetric with respect to the hyperplane �M .

In fact, if A = 0, then |∇u · ν| ≡ 0 on (B2R2+3\B2R2+2) ∩ �M and, by unique continuation, 
we actually have that |∇u · ν| ≡ 0 on (RN\BR) ∩ �M . By the decay properties at infinity of 
∇us , this may hold only if v · ν = 0. Moreover, we can easily infer that u is even symmetric 
with respect to �M . Let us call �̃ the complement of the unbounded connected component of 
R

N\(� ∪ T�M
(�)). We have that �̃ is a polyhedral obstacle which is symmetric with respect 

to �M and that u solves (2.24) with boundary condition (2.26) also with � replaced by �̃. By 
the uniqueness result for sound-hard polyhedral obstacles with a single measurement, [6,7], we 
immediately infer that � = �̃ thus � itself is symmetric with respect to �M .

Therefore, in order to bound A away from 0, we need to guarantee either that � is not 
symmetric with respect to a hyperplane whose normal is orthogonal to v or, if � is actually 
symmetric with respect to a hyperplane whose normal is orthogonal to v, that �M is different 
from such a hyperplane. As we shall see, if we use N − 1 measurements, instead, in order to 
bound maxj=1,...,N−1 Aj away from zero, we need to guarantee either that � is not symmetric 
with respect to a hyperplane whose normal is orthogonal to any vj , j = 1, . . . , N − 1, or, if � is 
actually symmetric with respect to such a hyperplane, that �M is different from it.
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Here lies the main difference between the N − 1 measurements and 1 measurement case. In 
fact, in the N − 1 measurements case, for any obstacle � there is at most one hyperplane whose 
normal is orthogonal to any vj , j = 1, . . . , N − 1, with respect to which � is symmetric. On 
the contrary, with only one measurement, for any obstacle � there might be many hyperplanes 
whose normal is orthogonal to v with respect to which � is symmetric. This is the main reason 
why the N −1 measurements case is relatively simpler and the corresponding result is somewhat 
stronger.

We then first consider the N − 1 measurements case, leaving the 1 measurement case to the 
next subsection. Another difficulty is that we not only need to bound maxj=1,...,N−1 Aj away 
from zero but that we require a suitable quantitative estimate of maxj=1,...,N−1 Aj from below.

Let us begin with the following definitions. Let us call �̃ = span{v1, . . . , vN−1}. For any 
� ∈ Aobst, we denote with P(�) its center of mass and �̃(�) = �̃ + P(�). We define Asym the 
set of � ∈ Aobst such that � is symmetric with respect to �̃(�).

We then define the metric space

X = {� : � is a hyperplane in R
N passing through BR2+1}

with the distance

d(�1,�2) = dH (�1 ∩ B2R2+1,�2 ∩ B2R2+1) for any �1,�2 ∈ X.

Finally, we call X = Aobst × X, with the standard metric of the product of two metric spaces, 
and Y = {(�, �̃(�)) : � ∈ Asym} ⊂X .

We have the following preliminary properties.

Proposition 5.3. We have that � → P(�) is a Lipschitz continuous function on Aobst endowed 
with the Hausdorff distance, with a Lipschitz constant depending on the a priori data only. Con-
sequently Asym is a closed subset of Aobst and Y is closed in X .

Proof. This is a straightforward consequence of (2.22), (2.23) and (2.43). �
Lemma 5.4. Let � ∈ Asym. For simplicity, let us assume that �̃(�) = {yN = 0}. Then we call 
G± = {y ∈ G : yN ≷ 0} and we have that G± are Lipschitz domains with constants depending 
on the a priori data only.

Proof. The difficult part of the proof is to consider the points z of ∂G± such that z ∈ ∂�∩�̃(�).
Let us consider a point z ∈ ∂� ∩ �̃(�). By the Lipschitz properties of �, we have that there 

exists a given cone C, with vertex in 0, such that, for any y ∈ ∂� ∩ Br/2(z), y + C ⊂ G. Since �
is symmetric with respect to �̃(�), we also have that y + T̃ (C) ⊂ G, T̃ being the reflection in 
�̃(�). Hence it is not difficult to show that there exists a cone C1, with vertex in 0 and symmetric 
with respect to �̃(�), such that, for any y ∈ ∂� ∩ Br̃(z), y + C1 ⊂ G. We notice that r̃ > 0 and 
the amplitude of the cone C1 depends on r and L only.

Therefore, for any point z ∈ ∂� ∩ �̃(�), locally in Br̃1(z), ∂� is the graph of a Lipschitz 
function, with Lipschitz constant bounded by L̃1, with respect to a Cartesian coordinate system 
such that eN ∈ �̃. Hence it is not difficult to show that, locally in Br̃2(z) and with respect to a 
different Cartesian coordinate system, ∂G+, and by symmetry ∂G− as well, is the graph of a 
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Lipschitz function, with Lipschitz constant bounded by L̃2. Here r̃i and L̃i , i = 1, 2, are positive 
constants depending on r and L only.

The proof now can be easily concluded. �
In order to obtain the required lower bound on maxj=1,...,N−1 Aj , we distinguish between two 

cases. The good one is when either � is not close to Asym or, if it is, the hyperplane �M is not 
close to �̃(�). The bad one is when � is close to Asym and the hyperplane �M is close to �̃(�).

In the next proposition we deal with the good case, in the sequel of the proof we shall show 
that, by a suitable modification of our geometric construction, the bad case actually never occurs.

Let us consider the map

X � (�,�) �→ f (�,�) = max
j=1,...,N−1

(
max

z̃∈(B2R2+3\B2R2+2)∩�

|∇uj (z̃) · ν|
)

,

where ν = ν� is the normal to � and, for any j = 1, . . . , N − 1, uj is the solution to the di-
rect scattering problem (2.24) with boundary condition (2.26) and incident field ui(x) = eikx·vj , 
x ∈ R

N . Then the following result holds.

Proposition 5.5. Let us fix a positive constant c̃. For any a > 0, let us consider the follow-
ing subset Xa of X . We say that (�, �) ∈ X belongs to Xa if there exists �̂ ∈ Asym such that 
dH (�, �̂) < a and d(�, �̃(�)) < c̃a.

Then there exists a positive constant â0, depending on the a priori data, on c̃, on a and on 
{v1, . . . , vN−1} only, such that

min {f (�,�) : (�,�) ∈ X \Xa} ≥ â0.

Remark 5.6. In the previous proposition, if N = 2 the result does not depend on the direction v. 
If N = 3, the dependence on v1 and v2 is only through the constant b0 = |v1 · v2| < 1. We also 
notice that â0 does not depend on h.

Proof. We observe that, by the stability result for the direct scattering problem with respect to 
sound-hard scatterers � proved in [17], such a map f is continuous on X .

If f (�, �) = 0, then the unit normal to � is orthogonal to vj , for any j = 1, . . . , N − 1, and 
� is symmetric with respect to �, that is � = �̃(�) and (�, �) ∈ Y .

Then the proof immediately follows by the fact that X \Xa is closed and obviously does not 
contain any point of Y . �

Up to now, we are able to prove a stability result if either the assumptions of Proposition 5.2
are satisfied or, otherwise, if (�, �M) ∈ X \Xa for a suitable a > 0. In both cases we use the 
same computation as in the N measurements case, with a0 replaced by ã0 and â0, respectively. 
We notice that in this second case â0 depends on a.

Therefore our strategy is now the following. We choose a suitable value of a and we construct 
a modified regular chain for � as in the general geometric construction such that for any possible 
reflection hyperplane �n, n = 1, . . . , M (including the first one!) we have that (�, �n) ∈ X \Xa . 
As we shall see, actually the first reflection hyperplane is the one that presents the greatest diffi-
culties.
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We notice that, so far, all our arguments work for any dimension N ≥ 2. However the con-
struction of such a modified regular chain presents some technical challenges, in particular for 
the proof of Lemma 5.8 below. Therefore in the sequel we limit ourselves to the space dimension 
N = 3 and we notice that when the space dimension is N = 2 the result may be proved along the 
same lines.

A crucial remark is that, unfortunately, we are not able to choose a independently of h. This 
is the main reason why we lose the precise dependence of our stability result on the size parame-
ter h, that we instead have in the sound-soft case or in the sound-hard case with N measurements.

The following two technical lemmas shall be needed.

Lemma 5.7. Let N = 3 and h > 0.
There exist positive constants c̃0, c̃1, c̃2 ≤ 1 and L̃ ≥ L, depending on the a priori data only, 

such that the following holds.
Let a = c̃0h and let � ∈ Ah

obst satisfy the following. We assume that there exists �̂ ∈ Asym

such that dH (�, �̂) ≤ a.
For simplicity, let us assume that �̃(�) = {yN = 0}. Then, for any c̃, 0 ≤ c̃ ≤ c̃1, if we call 

G±
a = {y ∈ G : yN ≷ ±c̃a}, we have that G±

a are Lipschitz domains with constants r̃ = c̃2h

and L̃.

Proof. This is an extension of Lemma 5.4, which can be proved by exploiting [20, Proposi-
tion 6.1]. �
Lemma 5.8. Let N = 3, h > 0 and c̃0 and c̃1 be as in Lemma 5.7. Let �, �′ belong to Ah

obst and 
let d be defined as in (2.16). Let x1 ∈ ∂�′\� be such that d = dist(x1, ∂�) = dist(x1, �).

There exist positive constants c̃3 ≤ 1, c̃4 ≤ c̃1 and K1 ≤ 1, depending on the a priori data 
only, such that the following holds.

Let a = c̃0h and c̃ = c̃4. Let us assume that there exists �̂ ∈ Asym such that dH (�, �̂) ≤ a. 
Let us call G±

a = {y ∈ G : yN ≷ ±c̃a}, assuming that �̃(�) = {yN = 0}.
If d ≤ c̃3h, then, up to swapping the role of G+

a and G−
a , there exists x̃1 ∈ ∂�′\� such that 

x̃1 ∈ G+
a and

dist(x̃1, ∂G+
a ) ≥ K1d

3. (5.3)

Proof. This is a straightforward consequence of [20, Proposition 6.2]. �
We are now in the position of concluding the proof of the N − 1 measurements case.

Proof of Theorem 3.3. Without loss of generality we can assume that h ≤ min{r, 1}.
Let us assume, for the time being, that d ≤ c̃3h ≤ h. Let us set a = c̃0h, c̃0 as in Lemma 5.7, 

and c̃ = c̃4 as in Lemma 5.8.
Then we distinguish between two cases. If there does not exist any �̂ ∈ Asym such that 

dH (�, �̂) ≤ a, then we conclude using the geometric construction of Section 4 and the ar-
guments used for the proof of the N measurements case. Here we use either Proposition 5.2, 
replacing a0 with ã0, or Proposition 5.5, with c̃ = c̃4 as in Lemma 5.8 and replacing a0 with â0. 
We have to notice that â0 here depends on a thus on h.

Otherwise, let us assume that there does exist �̂ ∈ Asym such that dH (�, �̂) ≤ a. Then we use 
the geometric construction and estimates of Section 4 with the following differences. We replace 
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x1 with x̃1 and G with G+
a , x̃1 and G+

a as in Lemma 5.8. Using Lemma 5.7, we further replace 
r and L with c̃2h and L̃, respectively. Finally, using (5.3), we replace d with K1d

3 ≤ d . Then 
we can repeat the previous argument using either Proposition 5.2 or Proposition 5.5. In fact any 
possible reflection point belongs to G+

a , therefore any reflection plane is far enough from �̃(�).
We conclude that, for any ε, 0 < ε < 1/(2e), provided d ≤ c̃3h, we have

K1d
3 ≤ 2eR(η(ε))3C

for some constant C depending on the a priori data, on b0 and on h as well. Therefore

d ≤ A1(η(ε))C (5.4)

where A1 depends on the a priori data only and C depends on the a priori data, on b0 and on h.
Finally, we need to drop the assumption that d ≤ c̃3h. We claim that there exists ε̂1(h), 0 <

ε̂1(h) ≤ 1/(2e), depending on the a priori data and on h only, such that

ε̂1(h) <

inf
{
‖u − u′‖L∞(Bρ̃ (x0)) : v ∈ S

N−1, �,�′ ∈ Ah
obst such that dH (�,�′) ≥ C1c̃3h

}
(5.5)

where C1 is as in (2.43). If this is true, then obviously we obtain that if ε ≤ ε̂1(h) then 
dH (�, �′) < C1c̃3h that is d ≤ dH (�, �′)/C1 < c̃3h and the proof would be concluded.

Therefore we just need to prove the claim in (5.5). It is not difficult to show that the infimum 
on the right hand side is actually a minimum. Again it is enough to use the stability result of the 
direct scattering problem with respect to the variation of sound-hard scatterers proved in [17]. 
Finally, if such a minimum were zero we would contradict the uniqueness result for the determi-
nation of a sound-hard obstacle by a single scattering measurement proved in [6,7]. �
5.3. The single measurement case

We restrict here to N = 3, since N = 2 is clearly covered by the previous section. We consider 
the assumptions and notation of Theorem 3.4 to hold.

The main technical difficulty we have to tackle if we have only one measurement, compared 
to the two measurements case, is that we may have several planes whose normal is orthogonal 
to v with respect to which � might be symmetric. As we discussed in the previous subsection, 
using two measurements with two directions of propagation v1 and v2 allows us to consider only 
one possible symmetry plane for �.

We begin with the following definition. Here we call Asym, respectively Ah
sym, the set of �

belonging to Aobst, respectively Ah
obst, such that � is symmetric with respect to at least one 

plane whose normal is orthogonal to the incident direction of propagation v. Moreover, for any 
� ∈ Ah

obst we call n(�) the number of planes whose normal is orthogonal to v with respect to 
which � is symmetric. Notice that n(�) is always a nonnegative integer that, obviously, could 
also be zero. In other words, Ah

sym is the set of � ∈Ah
obst such that n(�) > 0.

We shall use the following notation. For any � ∈ Ah
sym we call �i(�), i = 1, . . . , n(�), the 

planes whose normal is orthogonal to v with respect to which � is symmetric. Correspondingly, 
we define νi(�), i = 1, . . . , n(�), their corresponding unit normals, noticing that they all belong 
to the plane that is orthogonal to v.
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We have the following properties whose proof is elementary and will be omitted.

Proposition 5.9. There exists an integer M = M(h), depending on the a priori data and on h
only, such that n(�) ≤ M for any � ∈Ah

sym. As a consequence, there exists a constant α = α(h), 
0 < α < π/2, such that, for any � ∈ Ah

sym, the angle between νi(�) and νj (�), with i �= j , is 
bounded from below by α.

We consider Aobst endowed with the Hausdorff distance. Then the map Ah
obst � � �→ n(�) is 

upper semicontinuous. Consequently, Ah
sym is a compact subset of Ah

obst.

Let us define, for any n = 1, . . . , M(h), Ah
sym,n as the set of � ∈Ah

sym such that n(�) = n.
The crucial difference with respect to the 2 measurements case is that we need to define 

the set Xa , for a positive constant a, in a rather more involved way. Next we describe such a 
construction, for any positive a and for a fixed constant c̃ to be decided later.

Given M = M(h) we begin in the following way. For any �̂ ∈ Ah
sym,M , we find r(�̂), 0 <

r(�̂) ≤ a, such that for any � ∈ Ah
sym with dH (�, �̂) ≤ r(�̂) the following holds. For any 

i = 1, . . . , n(�) there exists j ∈ {1, . . . , n(�̂)} such that d(�i(�), �j(�̂)) ≤ c̃a/4.
Then, by compactness, we have that

Ah
sym,M ⊂

mM⋃
j=1

B
r(�̂j )/2(�̂j ) = Ah

M

where, for any j = 1, . . . , mM , �̂j ∈ Ah
sym,M and r(�̂j ) ≤ r(�̂j−1). Here by convention we set 

r(�̂0) = a.
Then we consider Ah

sym,M−1\Ah
M , which is again a compact set. We consider a similar con-

struction as before. Namely, for any �̂ ∈ Ah
sym,M−1\Ah

M , we find r(�̂), 0 < r(�̂) ≤ r(�̂mM
), 

such that for any � ∈Ah
sym with dH (�, �̂) ≤ r(�̂) the following holds. For any i = 1, . . . , n(�)

there exists j ∈ {1, . . . , n(�̂)} such that d(�i(�), �j(�̂)) ≤ c̃a/4. Then, by compactness, we 
have that

Ah
sym,M−1\Ah

M ⊂
mM−1⋃

j=mM+1

B
r(�̂j )/2(�̂j ) = Ah

M−1

where, for any j = mM + 1, . . . , mM−1, �̂j ∈Ah
sym,M−1\Ah

M and r(�̂j ) ≤ r(�̂j−1).
We proceed in a completely analogous way until we have that

Ah
sym ⊂

m1⋃
j=1

B
r(�̂j )/2(�̂j ) =

M⋃
l=1

Ah
l = Ah.

For any l = 2, . . . , M , and any j = ml + 1, . . . , ml−1, �̂j ∈ Ah
sym,l−1\ 

(⋃M
i=l A

h
i

)
and r(�̂j ) ≤

r(�̂j−1).
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We call X h the subset of (�, �) ∈ X such that � ∈ Ah
obst. We also call Yh the subset of X h

defined as follows

Yh = {(�,�) ∈ X h : � ∈ Ah
sym and � = �i(�) for some i ∈ {1, . . . , n(�)}}.

Then we define X h
a the subset of X h with the following properties. We say that (�, �) /∈X h

a

either if � /∈ Ah or if � ∈ Ah and d(�, �̂) ≥ c̃a/2 for any plane �̂ such that �̂ = �i(�̂j ) for 
some j ∈ {1, . . . , m1} such that dH (�, �̂j ) < r(�̂j )/2 and for some i ∈ {1, . . . , n(�̂j )}.

It is an easy remark that, for any a > 0, Yh ⊂ X h
a and X h\X h

a is closed. Let us consider the 
map

X h � (�,�) �→ f (�,�) = max
z̃∈(B2R2+3\B2R2+2)∩�

|∇u(z̃) · ν|,

where ν = ν� is the normal to � and u is the solution to the direct scattering problem (2.24)
with boundary condition (2.26) and incident field ui(x) = eikx·v , x ∈ R

N . Hence, arguing as in 
the proof of Proposition 5.5, we can obtain the following result.

Proposition 5.10. Let us fix a positive constant c̃. For any a > 0, we define the subset X h
a of X

as before.
Then there exists a positive constant â0, depending on the a priori data, on c̃, on a and on h

only, such that

min
{
f (�,�) : (�,�) ∈ X h\X h

a

}
≥ â0.

We now consider the corresponding results to Lemmas 5.7 and 5.8. We need the following 
notation, recalling that positive constants a and c̃ are fixed. For any � ∈ Ah we choose �̂(�)

as the first �̂j , j ∈ {1, . . . , m1}, such that � ∈ B
r(�̂j )/2(�̂j ). For any i = 1, . . . , n(�̂(�)), we 

define the infinite strips

Si = �i(�̂(�)) + {caνi(�̂(�)) : |c| ≤ c̃}.

We notice that R3\(⋃n(�̂(�))
i=1 Si) consists of 2n(�̂(�)) different connected open sectors that we 

shall call Gj
a , j = 1, . . . , 2n(�̂(�)).

Then, with the notation introduced above, the following important results hold.

Lemma 5.11. Let N = 3 and h > 0.
There exist positive constants c̃0, depending on the a priori data only, and c̃1, c̃2 ≤ 1 and 

L̃ ≥ L, depending on the a priori data and on h only, such that the following holds.
Let a = c̃0h and let � ∈ Ah. Then, for any c̃, 0 ≤ c̃ ≤ c̃1, we have that, for any j =

1, . . . , 2n(�̂(�)), Gj
a\� is a Lipschitz domain with constants r̃ = c̃2h and L̃.

Proof. If �̂(�) ∈ Ah
sym,1, then the result is contained in Lemma 5.7. Therefore, without loss of 

generality we assume that �̂(�) ∈ Ah
sym,n for some n ≥ 2.

We begin by proving the following claim, which is the corresponding result to Lemma 5.4. 
We fix an arbitrary �̂ ∈ Ah

sym,n with n ≥ 2. Then we call Gj , j = 1, . . . , 2n, the connected 
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components of R3\(⋃n
i=1 �i(�̂)). We claim that, for any j = 1, . . . , 2n, Gj\�̂ is a Lipschitz 

domain with constants r̃1 and L̃1 depending on the a priori data and on h only.
We deal with the points z belonging to ∂�̂ and �i(�̂) for some i = 1, . . . , n. Let P(�̂) be 

the center of mass of �̂ and let l be the line defined as follows

l = {x ∈R
3 : x = P(�̂) + rv, r ∈ R}.

It is obvious that l = �i(�̂) ∩ �j(�̂) for any i �= j .
If we have a point z belonging to ∂�̂ and �i(�̂) for some i = 1, . . . , n, which is far enough 

from l, we can treat it exactly as in the proof of Lemma 5.4. Therefore the most delicate case 
is the one in which z ∈ ∂�̂ ∩ l. However, following the kind of reasonings used in the proof 
of Lemma 5.4, it is not difficult to show that, locally in Br̃2(z), ∂� is the graph of a Lipschitz 
function, with Lipschitz constant bounded by L̃2, with respect to a Cartesian coordinate system 
such that e3 is parallel to v, with r̃2 and L̃2 depending on the a priori data only.

Then the claim easily follows, with the dependence of r̃1 and L̃1 on h essentially given by the 
angle α(h).

The proof of the proposition can be concluded by using the claim, arguments similar to the 
ones used to prove the claim, and [20, Proposition 6.1]. �

We notice that the difference with respect to Lemma 5.7 is that now c̃1, c̃2 and L̃ depend on h
as well.

Lemma 5.12. Let N = 3, h > 0 and c̃0 and c̃1 be as in Lemma 5.11. Let �, �′ belong to Ah
obst

and let d be defined as in (2.16). Let x1 ∈ ∂�′\� be such that d = dist(x1, ∂�) = dist(x1, �).
There exist positive constants c̃3 ≤ 1, c̃4 ≤ c̃1, depending on the a priori data and on h only, 

and K1 ≤ 1, depending on the a priori data only, such that the following holds.
Let a = c̃0h and c̃ = c̃4. Let us assume that � ∈ Ah.
If d ≤ c̃3h, then there exist x̃1 ∈ ∂�′\� and j ∈ {1, . . . , 2n(�̂(�))} such that x̃1 ∈ G

j
a\� and

dist(x̃1, ∂(G
j
a\�)) ≥ K1d

3. (5.6)

Proof. The result is a rather straightforward consequence of [20, Proposition 6.2]. �
Again, it is important to remark that the difference with respect to Lemma 5.8 is that now c̃3

and c̃4 depend on h too.
We are now in the position of proving our stability result with one measurement.

Proof of Theorem 3.4. The proof follows the same arguments of the proof of Theorem 3.3, 
replacing Proposition 5.5, Lemmas 5.7 and 5.8 with Proposition 5.10, Lemmas 5.11 and 5.12, 
respectively. We point out the modification that we need to adopt in this case.

Without loss of generality we can assume that h ≤ min{r, 1}. Let us assume, for the time 
being, that d ≤ c̃3h ≤ h. Let us set a = c̃0h, c̃0 as in Lemma 5.11, and c̃ = c̃4 as in Lemma 5.12.

We distinguish two cases. If � /∈ Ah, then we conclude using Proposition 5.2 and Proposi-
tion 5.10 with c̃ = c̃4 as in Lemma 5.12.

If instead � ∈ Ah, we replace x1 with x̃1 and G with Gj
a\�, x̃1 and Gj

a\� as in Lemma 5.12. 
Notice that in this case, any possible reflection point belongs to Gj

a\�, therefore any reflection 
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plane � is far from any �i(�̂(�)), i = 1, . . . , n(�̂(�)), at least c̃a. On the other hand, recalling 
the construction of Ah and how we choose �̂(�), for any j ∈ {1, . . . , m1}, if dH (�, �̂j ) <
r(�̂j )/2, we have that dH (�̂j , �̂(�)) < r(�̂(�)). We conclude that d(�, �̂) ≥ 3c̃a/4 for any 
plane �̂ such that �̂ = �i(�̂j ) for some j ∈ {1, . . . , m1} such that dH (�, �̂j ) < r(�̂j )/2 and 
for some i ∈ {1, . . . , n(�̂j )}. That is (�, �) ∈X h\X h

a .

The rest of the argument is the same. However, we notice that, since the domains Gj
a\� used 

in Lemmas 5.11 and 5.12 are Lipschitz with constants both depending on h, the dependence of 
the stability result on h may be worse than the one in the 2 measurements case. �
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