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Abstract

Let � =R2 \ B(0,1) be the exterior of the closed unit disc in the plane. In this paper we prove existence 
and enclosure results of multi-valued variational inequalities in � of the form: Find u ∈ K and η ∈ F(u)

such that
〈−�u,v − u〉 ≥ 〈aη, v − u〉, ∀ v ∈ K,

where K is a closed convex subset of the Hilbert space X = D
1,2
0 (�) which is the completion of C∞

c (�)

with respect to the ‖∇ · ‖2,�-norm. The lower order multi-valued operator F is generated by an upper 
semicontinuous multi-valued function f : R → 2R \ {∅}, and the (single-valued) coefficient a : � →R+ is 
supposed to decay like |x|−2−α with α > 0. Unlike in the situation of higher-dimensional exterior domain, 
that is RN \ B(0,1) with N ≥ 3, the borderline case N = 2 considered here requires new tools for its 
treatment and results in a qualitatively different behaviour of its solutions. We establish a sub-supersolution 
principle for the above multi-valued variational inequality and prove the existence of extremal solutions. 
Moreover, we are going to show that classes of generalized variational-hemivariational inequalities turn out 
to be merely special cases of the above multi-valued variational inequality.
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1. Introduction

Let � =R2 \B(0,1) = {x ∈R2 : |x| > 1} be the exterior of the closed unit disc B = B(0, 1) in 
the plane, and let X = D

1,2
0 (�) be the Beppo-Levi space, which is the completion of D = C∞

c (�)

with respect to the norm

‖u‖2
X =

∫
�

|∇u|2 dx.

Our main goal is to prove existence and enclosure results of the following multi-valued varia-
tional inequality (MVI for short) in the unbounded domain �: Find u ∈ K ⊂ X and η ∈ F(u)

such that

〈−�u,v − u〉 ≥ 〈aη, v − u〉, ∀ v ∈ K, (1.1)

where K is a closed convex subset of the Hilbert space X, and 〈·, ·〉 stands for the duality pairing 
between X and its dual space X∗. The lower order multi-valued operator F , which will be speci-
fied later, is generated by an upper semicontinuous multi-valued function f :R → 2R \ {∅}, and 
the (single-valued) coefficient a : � → R+ appearing in (1.1) is supposed to decay like |x|−2−α

with α > 0. A precise description of the inequality (1.1) and its solutions will be discussed in the 
sequel.

Our present work is motivated by the recent paper [5] where extremal solutions of logistic-type 
equations in exterior plane domains were studied. However, due to the general multi-valued lower 
order terms, unlike in [5] the problem investigated here does not have a variational structure, 
and therefore variational approaches are not directly applicable. To the best of our knowledge, 
variational inequalities with multi-valued terms have not been studied in a systematic way on 
(unbounded) exterior domains.

Our primary goal here is not on the most general settings and conditions on the exterior do-
main � or on the principal and lower order terms in the variational inequality, but instead on 
a nonlinear functional analytic framework for inequalities and nonsmooth problems with multi-
valued mappings on exterior domains. We should also mention that exterior domain problems 
in dimension N = 2 considered here represent a borderline case in comparison with exterior 
problems in higher dimension N ≥ 3, that requires a different treatment and which results in a 
qualitatively different behaviour of its solution. The main reason for this is that the underlying 
solution space X = D

1,2
0 (�) for N = 2 is qualitatively different from the corresponding space in 

dimension N ≥ 3, which is readily seen by the following characterization of X = D
1,2
0 (�) for 

N = 2 and N ≥ 3. As for the borderline case N = 2, in [11, Theorems I.2.7, I.2.16] it is shown 
that X coincides with D̂1,2

0 (�) which is given by

D̂
1,2
0 (�) =

{
u ∈ L1,2(�) : u ∈ L2(� ∩ BR), ∀ R > 1,

and ηu ∈ H 1
0 (�) for any η ∈ C∞

c (R2)

}
, (1.2)

where BR = B(0, R) is the open ball of radius R centered at the origin, and

L1,2(�) = {u ∈ L1 (�) : ∇u ∈ [L2(�)]2},
loc
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and H 1
0 (�) denotes the usual Sobolev space of square integrable functions on � with zero traces 

on ∂�. Note that ηu ∈ H 1
0 (�) for any η ∈ C∞

c (R2) implies u||x|=1 = 0 in the sense of traces. In 
case N ≥ 3, due to the Sobolev embedding, we have X = D

1,2
0 (�) ↪→ L2∗

(�) with 2∗ = 2N
N−2 , 

and therefore, X = D
1,2
0 (�) can be characterized as

D
1,2
0 (�) = {u ∈ L1,2(�) : u ∈ L2∗

(�)}. (1.3)

In view of (1.3), u ∈ D
1,2
0 (�) is 2∗-integrable for N ≥ 3, while due to (1.2), u need not be 

p-integrable for any 1 ≤ p < ∞ in case N = 2. To give an idea of the qualitatively different 
behaviour of solutions of (1.1) for N = 2 and N ≥ 3, respectively, let us consider the following 
simple example, which is a special case of (1.1).

−�u(x) = 2

|x|4 in � =RN \ B(0,1), u(x) = 0 for |x| = 1. (1.4)

Note, u ∈ D
1,2
0 (�) is a (weak) solution of (1.4) if

∫
�

∇u∇ϕ dx =
∫
�

2

|x|4 ϕ dx, ∀ ϕ ∈ D
1,2
0 (�).

By elementary calculation the unique solution of (1.4) is

u(x) = 1

2

(
1 − 1

|x|2
)

if N = 2, u(x) = 1

|x|
(

1 − 1

|x|
)

if N = 3,

which shows that

lim|x|→∞u(x) = 1

2
(N = 2), lim|x|→∞u(x) = 0 (N = 3),

and in the case N = 2, the solution u is not even integrable on � for any 1 ≤ p < ∞. Moreover, 
taking advantage of results from [4] one can show that for any N ≥ 3, problem (1.4) has a unique 
solution in D1,2

0 (�) that decays like 1
|x|N−2 as |x| → ∞, and is 2∗-integrable on �.

The sub-supersolution method to be established in this paper for the MVI (1.1) will enable us 
to treat general variational-hemivariational inequalities in (unbounded) exterior plane domains 
of the form: Find u ∈ K such that

〈−�u,v − u〉 +
∫
�

a(−j)o(u,u;v − u)dx ≥ 0, ∀ v ∈ K, (1.5)

where j : R × R → R, (r, s) �→ j (r, s), is supposed to be locally Lipschitz continuous with 
respect to s, and where jo(r, s; 	) denotes Clarke’s generalized directional derivatives at s in the 
direction 	 for fixed r , defined by

jo(r, s;	) = lim sup
j (r, y + ε 	) − j (r, y)

ε
. (1.6)
y→s, ε↓0
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We are going to show that under some regularity assumptions on the function s �→ jo(s, s; 	) to 
be specified later, the variational-hemivariational inequality (1.5) turns out to be only a special 
case of the MVI (1.1). In particular, for a locally Lipschitz function s �→ j (s), that is, j is inde-
pendent of r , (1.5) reduces to the following variational-hemivariational inequality: Find u ∈ K

such that

〈−�u,v − u〉 +
∫
�

a(−j)o(u;v − u)dx ≥ 0, ∀ v ∈ K, (1.7)

which is easily seen to be equivalent to the MVI (1.1) with f (s) = ∂j (s), where ∂j : R →
2R \ {∅} denotes Clarke’s generalized gradient that is known to be upper semicontinuous, see [6, 
Chap. 2].

The paper is organized as follows: in Section 2 we introduce basic notations and function 
spaces. Our main existence and enclosure result is proved in Section 3 along with a character-
ization of the solution set. In Section 4, as an application of our main result, we deal with a 
multi-valued obstacle problem. Finally, in Section 5, we clarify the connection between gen-
eral variational-hemivariational inequalities of the form (1.5) and the multi-valued variational 
inequality (1.1).

2. Assumptions, notations and preliminaries

Let X = D
1,2
0 (�) with � = R2 \ B(0,1), and denote by X∗ the dual space of X and 

〈·, ·〉 = 〈·, ·〉X∗,X the dual pairing between X∗ and X. Note that although X is a Hilbert space 
with the inner product 

∫
�

∇u∇v dx (u, v ∈ X), as will be seen later, it is more convenient for our 
treatment to identify another Hilbert space Y containing X with its dual Y ∗, instead of identify-
ing X with X∗. Throughout this paper we assume the following hypothesis on the nonnegative 
coefficient a:

(Ha) Let a : � → R be a nonnegative measurable function with positive measure support such 
that for some c0, α > 0:

0 ≤ a(x) ≤ c0

|x|2+α
for a.e. x ∈ �.

Concerning f , we denote by L0(�) the set of all real valued measurable functions defined on �
and use the notation

K(Z) = {A ⊂ Z : A �= ∅,A is closed and convex},

where Z is a normed vector space. We impose the following hypothesis on the multi-valued 
function f .

(HF) Let f : R → K(R) be an upper semicontinuous function, that is, for each u ∈R and each 
open U ⊂R such that f (u) ⊂ U , there exists δ > 0 such that if |v−u| < δ then f (v) ⊂ U .

Remark 2.1. We remark that for single-valued function f : R → R, upper semicontinuous as 
defined in (HF) is identical with continuous. Further, from the definition of upper semicontinuous 
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multi-valued functions of the form f : R →K(R) we readily observe that also −f : R →K(R)

is a upper semicontinuous multi-valued function.

Note that since f (u) is a closed and bounded interval in R, (HF) is equivalent to the Hausdorff 
upper semicontinuity (h-u.s.c.) of f (cf. [7, Theorem 2.68, Chap. 1]). There are two properties 
of f that are consequences of assumption (HF), which are important for our later discussions.

Corollary 2.2. Let f satisfy (HF) then f has the following property:

(F1) f is measurable and thus graph-measurable (in the sense of multi-valued functions).

Proof. The measurability property (F1) readily follows from (HF). �
Consequently, f is superpositionally measurable, that is, if u ∈ L0(�) then f (u) = f (u(·)) :

� → K(R) is measurable. Let F(u) be the set of all measurable selections of f (u), that is,

F(u) =
{
η ∈ L0(�) : η(x) ∈ f (u(x)) for a.e. x ∈ �

}
. (2.1)

Due to the measurability of x �→ f (u(x)) on �, we have F(u) �= ∅ whenever u ∈ L0(�). The 
second useful property of f that follows from condition (HF) is given by the following corollary.

Corollary 2.3. Let f satisfy (HF) then f has the following property:

(F2) f is bounded on R, that is, if S ⊂R is bounded then f (S) = ⋃
s∈S f (s) is also a bounded 

subset of R.

Proof. In fact, since f (s) ∈ K(R), it follows from (HF) and [9, Proposition 4.2] that f (s) =
[α(s), β(s)], ∀s ∈ R, where α, β : R → R, α ≤ β on R, and α is lower semicontinuous, β is 
upper semicontinuous on R, in the usual semicontinuity sense of single-valued real functions. 
Let S be a bounded subset of R. Since I = S is compact and α is lower semicontinuous on I , 
α0 = infα(I) = minα(I) is a real number. Similarly, from the upper semicontinuity of β on I , 
β0 = supβ(I) = maxβ(I) ∈ R. For all s ∈ I , we have f (s) = [α(s), β(s)] ⊂ [α0, β0]. Hence, 
f (S) ⊂ f (I) ⊂ [α0, β0]. �

From (HF) it follows in view of (F1) and (F2) that ∅ �= F(u) ⊂ L∞(�) whenever u ∈ L∞(�).
For a precise formulation of solutions of (1.1), we need some auxiliary definitions.

Definition 2.4.

(a) A function g ∈ L0(�) is said to define a bounded linear functional on X if gv ∈ L1(�) for 
all v ∈ X and the functional v �→ ∫

�
gv dx belongs to X∗, that is, there exists a constant 

cg ∈ (0, ∞) such that 
∣∣∫

�
gv dx

∣∣ ≤ cg‖v‖X, ∀v ∈ X.
(b) We denote by X∗

0 the set of all functions g that defines a bounded linear functional on X, 
X∗

0 = {g ∈ L0(�) : gv ∈ L1(�), ∀v ∈ X and ∃ cg > 0 : ∣∣∫
�

gv dx
∣∣ ≤ cg‖v‖X, ∀v ∈ X}.
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If g ∈ X∗
0 , then ĝ is the bounded linear functional generated by g given by

ĝ(v) = 〈ĝ, v〉X∗,X =
∫
�

gv dx, ∀v ∈ X.

In order to simplify notations we agree on the following identification.

Identification. In what follows, in order to simplify the notations, we are going to use for ĝ again 
g, that is, the function g ∈ X∗

0 stands likewise also for the associated linear functional generated 
by g.

We are now ready for a precise formulation of (1.1). (Note for u, v ∈ X : 〈−�u, v〉 =∫
�

∇u∇v dx.)

Definition 2.5. A function u ∈ K is a solution of (1.1) if there exist η ∈ F(u), that is, η ∈ L0(�),

η(x) ∈ f (u(x)), for a.e. x ∈ �, (2.2)

such that aη ∈ X∗
0 , and

∫
�

∇u(∇v − ∇u)dx ≥
∫
�

aη(v − u)dx, ∀v ∈ K. (2.3)

Inequality (1.1) can also be stated as an inclusion in the dual space X∗ as follows. Let IK be 
the indicator functional of K , IK : X → [0, ∞],

IK(u) =
{

0 if u ∈ K

∞ if u /∈ K,

which is a proper, convex, and lower semicontinuous functional on X with effective domain 
D(IK) = K . Let ∂IK be the subdifferential of IK (in the sense of Convex Analysis), and define 
the multi-valued functions fa and Fa by

fa(x, s) = a(x)f (s), for a.e. x ∈ � and for all s ∈ R,

Fa(u) = aF(u), (2.4)

then (1.1) can be reformulated as the following inclusion: Find u ∈ K such that

−�u − Fa(u) + ∂IK(u) � 0. (2.5)

Finally, let us introduce the concepts of sub- and supersolution of (2.2)-(2.3). To this end let us 
first introduce the following notation: For functions w, z and sets W and Z of functions defined 
on � we use the notations: w∧z = min{w, z}, w∨z = max{w, z}, W ∧Z = {w∧z : w ∈ W, z ∈
Z}, W ∨ Z = {w ∨ z : w ∈ W, z ∈ Z}, and w ∧ Z = {w} ∧ Z, w ∨ Z = {w} ∨ Z. In particular, 
we denote w+ = w ∨ 0, and w− = (−w) ∨ 0. For functions u ≤ u, we denote by
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[u,u] = {u : u(x) ≤ u(x) ≤ u(x) for a.e. x ∈ �}

the ordered interval formed by u and u.

Definition 2.6. A function u ∈ X is called a subsolution of (1.1), or more precisely of (2.2)-(2.3), 
if

u ∨ K ⊂ K,

and if there exists η ∈ F(u), i.e.,

η(x) ∈ f (u(x)) for a.e. x ∈ �, (2.6)

such that aη ∈ X∗
0 and

∫
�

∇u(∇v − ∇u)dx ≥
∫
�

aη(v − u)dx, ∀ v ∈ u ∧ K. (2.7)

Similarly, u ∈ X is called a supersolution of (2.2)-(2.3) if

u ∧ K ⊂ K,

and if there exists η ∈ F(u), i.e.,

η(x) ∈ f (u(x)) for a.e. x ∈ �, (2.8)

such that aη ∈ X∗
0 and

∫
�

∇u(∇v − ∇u)dx ≥
∫
�

aη(v − u)dx, ∀ v ∈ u ∨ K. (2.9)

Finally let us introduce the weighted Lebesgue space Y = L2(�; w), which will be used 
in the proof of our main result (see Section 3). Let w0(r) = 1

r2+α (r ∈ (1, ∞)), we shall use 

the weight w(x) = w0(|x|) = 1
|x|2+α (x ∈ �), and the corresponding weighted Lebesgue space 

Y = L2(�; w), which is a Hilbert space with the usual norm

‖u‖2
Y = ‖u‖2

L2(�;w)
=

∫
�

|u(x)|2w(x)dx

and inner product

〈u,v〉Y = 〈u,v〉L2(�;w) =
∫

u(x)v(x)w(x)dx, u, v ∈ Y.
�
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Since w0 ∈ L1((1, ∞); r ln r), according to [1, Lemma 2.2], the embedding iw : X ↪→ Y, u �→
iw(u) = u, is compact. Moreover, we identify Y with its dual Y ∗, which yields the embeddings: 
X ↪→ Y = Y ∗ ↪→ X∗. The adjoint i∗w : Y ↪→ X∗ is also compact and for all u ∈ Y, v ∈ X, the 
following relations are valid:

〈i∗w(u), v〉X∗,X = 〈u, iw(v)〉Y = 〈u,v〉Y =
∫
�

uvw dx.

We have the following simple connection between Y , and X∗
0 defined in Definition 2.4, which 

will be useful in our proofs later. (Note: we identify g ∈ X∗
0 with the corresponding linear func-

tional.)

Lemma 2.7. If u ∈ Y then uw ∈ X∗
0 and uw = i∗w(u).

Proof. Let v ∈ X, since iw(v) = v ∈ Y , we have uv ∈ L1(�; w), i.e., (uw)v ∈ L1(�). Further-
more, 

∣∣∫
�
(uw)vdx

∣∣ = |〈u, v〉Y | ≤ ‖u‖Y ‖v‖Y ≤ C‖u‖Y ‖v‖X . Since this is true for all v ∈ X, we 
see that uw ∈ X∗

0 . Moreover, 〈uw, v〉X∗,X = ∫
�
(uw)v dx = 〈u, v〉Y = 〈i∗w(u), v〉X∗,X , ∀v ∈ X, 

which means that uw = i∗w(u). �
3. Main result: existence and enclosure of solutions

In this section we are going to prove our main existence and enclosure result, and qualitatively 
characterize the solution set. We have the following general existence and enclosure/comparison 
theorem for (1.1) when bounded and ordered sub- and supersolutions exist.

Theorem 3.1. Let a and f satisfy (Ha) and (HF), respectively. Suppose there are subsolutions 
ui ∈ X ∩L∞(�), i = 1, . . . , k, and supersolutions uj ∈ X ∩L∞(�), j = 1, . . . , m, of (2.2)-(2.3)
such that

u := max{ui : 1 ≤ i ≤ k} ≤ u := min{uj : 1 ≤ j ≤ m}. (3.1)

Then, there exists a solution u of (2.2)-(2.3) such that

u ≤ u ≤ u a.e. on �. (3.2)

Proof. The proof of this theorem is divided into 5 steps.

Step 1. Auxiliary MVI
We shall define in this step some functions to truncate and regularize the original MVI and 

define next an auxiliary MVI.
Note that since ui and uj are bounded functions on �, according to property (F2), the sets 

F(ui) and F(uj ) are bounded subsets of L∞(�) (with respect to the usual L∞(�)-norm). For 
each i ∈ {1, . . . , k} (resp. j ∈ {1, . . . , m}), η

i
(resp. ηj ) is a function in L∞(�) satisfying (2.6)

and (2.7) with η
i

instead of η (resp. (2.8) and (2.9) with ηj instead of η). We construct families 

{�i : 1 ≤ i ≤ k} and {�j : 1 ≤ j ≤ m} of subsets of � inductively as follows. Let �1 = {x ∈ � :
u(x) = u (x)}, and
1



S. Carl, V.K. Le / J. Differential Equations 267 (2019) 4863–4889 4871
�i =
{

x ∈ � \
i−1⋃
l=1

�l : u(x) = ui(x)

}
for i = 2, . . . , k.

Similarly, let �1 = {x ∈ � : u(x) = u1(x)}, and

�j =
⎧⎨
⎩x ∈ � \

j−1⋃
l=1

�l : u(x) = uj (x)

⎫⎬
⎭ for j = 2, . . . ,m.

It is clear that �i(1 ≤ i ≤ k) (resp. �j(1 ≤ j ≤ m)) are disjoint measurable subsets of � and 
� = ⋃k

i=1 �i = ⋃m
j=1 �j . Let us define

η =
k∑

i=1

η
i
χ�i

and η =
m∑

j=1

ηjχ�j ,

where χA (A ⊂ �) is the characteristic function of A. From their definitions, we see that η, η ∈
L∞(�). Moreover, since η(x) = η

i
(x) and u(x) = ui(x) for a.e. x ∈ �i (1 ≤ i ≤ k), we have

η(x) ∈ f (u(x)) for a.e. x ∈ �. (3.3)

Similarly, η(x) ∈ f (u(x)) for a.e. x ∈ �. Next, let us define a truncated function for f (u). Let 
f0 : � ×R → 2R be given by

f0(x,u) =
⎧⎨
⎩

{η(x)} if u < u(x)

f (u) if u(x) ≤ u ≤ u(x)

{η(x)} if u > u(x).

(3.4)

We see directly from this definition that f0(x, s) ∈ K(R) for a.e. x ∈ �, all s ∈ R. Also, (3.3) and 
property (F1) imply that for a.e. x ∈ �, the function f0(x, ·) is also upper semicontinuous from R
to K(R). Moreover, we see from the graph-measurability of f that f0 is also graph-measurable. 
In particular, f0 is superpositionally measurable. Therefore, for any u ∈ L0(�), the set F0(u) of 
all measurable selections of f0(·, u(·)),

F0(u) = {η ∈ L0(�) : η(x) ∈ f0(x,u(x)) for a.e. x ∈ �},
is nonempty. Furthermore, since u, u, η, η ∈ L∞(�), we see from property (F2) that for any 
u ∈ L0(�), the set F0(u) is a subset of L∞(�). Moreover, the range F0(L

0(�)) of the mapping 
F0 is a bounded subset of L∞(�), that is

c1 := sup{‖η‖L∞(�) : η ∈ F0(u),u ∈ L0(�)} < ∞. (3.5)

Next, we need the following single-valued regularizing function b : � ×R → R,

b(x,u) =
⎧⎨
⎩

[u − u(x)]w(x) if u > u(x)

0 if u(x) ≤ u ≤ u(x)

[u − u(x)]w(x) if u < u(x), for x ∈ �,u ∈ R,

(3.6)



4872 S. Carl, V.K. Le / J. Differential Equations 267 (2019) 4863–4889
and denote by B the associated Nemytskii operator, that is, B(u)(x) = b(x, u(x)). It is clear that 
b is a Carathéodory function and since u, u ∈ L∞(�), there exists b1 > 0 such that

|b(x,u)| ≤ b1(|u| + 1)w(x), (x ∈ �,u ∈R). (3.7)

Moreover, for some constants b2, b3 > 0,∫
�

b(x,u(x))u(x)dx ≥ b2‖u‖2
Y − b3, ∀u ∈ Y. (3.8)

Next, let us define certain truncation functions needed for the regularization of the involved 
multivalued mappings. For i ∈ {1, . . . , k}, let Ti(x, u) be a Carathéodory function such that for 
x ∈ �, u ∈R,

Ti(x,u) =
{ |η

i
(x) − η(x)| if u ≤ ui(x)

0 if u ≥ u(x),
(3.9)

and

0 ≤ Ti(x,u) ≤ |η
i
(x) − η(x)|, for a.e. x ∈ �, all u ∈R. (3.10)

A simple choice of such function is

Ti(x,u) = |η
i
(x) − η(x)|σ

(
u − ui(x)

u(x) − ui(x)

)
, (3.11)

for x ∈ �, u ∈ R, where σ ∈ C(R, R), 0 ≤ σ(s) ≤ 1, ∀s ∈ R, σ(s) = 1 if s ≤ 0, and σ(s) = 0 if 
s ≥ 1, such as for example

σ(s) =
⎧⎨
⎩

1, s ≤ 0
1 − s, 0 ≤ s ≤ 1
0, s ≥ 1.

(3.12)

It is clear that Ti given by (3.11)-(3.12) is a Carathéodory function satisfying (3.9) and (3.10). 
Similarly, for j = 1, . . . , m, we define T j : � ×R →R by

T j (x,u) = |ηj (x) − η(x)|
[

1 − σ

(
u − u(x)

uj (x) − u(x)

)]
. (3.13)

T j is a Carathéodory function with

T j (x,u) =
{ |ηj (x) − η(x)| if u ≥ uj (x)

0 if u ≤ u(x),
(3.14)

and similarly to (3.10),

0 ≤ T j (x,u) ≤ |ηj (x) − η(x)|, for a.e. x ∈ �, all u ∈R. (3.15)
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Consequently,

Ti(·, u), T j (·, u) ∈ L∞(�), ∀ u ∈ L0(�), (3.16)

and the mappings u �→ Ti(·, u) and u �→ T j (·, u) are bounded mappings from L0(�) to L∞(�). 
Moreover, there exists c2 > 0 such that

0 ≤ Ti(x,u), T j (x,u) ≤ c2, (3.17)

for a.e. x ∈ �, all u ∈R, i ∈ {1, . . . , k}, j ∈ {1, . . . , m}.
Let us consider the following auxiliary variational inequality related to (2.3): Find u ∈ K , 

η ∈ L0(�) such that η ∈ F0(u), i.e.,

η(x) ∈ f0(x,u(x)) a.e. x ∈ � (3.18)

and ∫
�

∇u(∇v − ∇u)dx − ∫
�

a(x)η(x)(v − u)dx + ∫
�

b(x,u)(v − u)dx

−∑k
i=1

∫
�

a(x)Ti(x,u)(v − u)dx + ∑m
j=1

∫
�

a(x)T j (x,u)(v − u)dx ≥ 0,

∀v ∈ K.

(3.19)

Note that for any u ∈ X, any η ∈ F0(u), the functions a
w

η, 1
w

B(u), a
w

Ti(·, u), and a
w

T j (·, u) all 
belong to L∞(�)(⊂ Y). Thus by Lemma 2.7, aη, B(u), aTi(·, u), aT j (·, u) belong to X∗

0 . Since 
for any η ∈ F0(u) we have aη ∈ X∗

0 , which generates the linear functional v �→ ∫
�

aηv dx that is 
again denoted by aη ∈ X∗, we see that aF0(u) ⊂ X∗ for any u ∈ X. Therefore, the multi-valued 
mapping F0,a : X → 2X∗ \ {∅} given by

F0,a(u) = aF0(u) (3.20)

is well defined. Using the multi-valued operator F0,a the auxiliary MVI (3.18), (3.19) is equiva-
lent to the following: Find u ∈ K and η ∈ F0(u) such that

〈−�u − a η + B(u) − T (u), v − u〉 ≥ 0, ∀ v ∈ K, (3.21)

where

T (u) =
k∑

i=1

aTi(·, u) −
m∑

j=1

aT j (·, u).

The auxiliary MVI (3.19) can be rewritten as the following inclusion: Find u ∈ X such that

−�u − F0,a(u) + B(u) − T (u) + ∂IK(u) � 0. (3.22)

Step 2. F0,a : X →K(X∗) is pseudomonotone
We show in this step that the multi-valued mapping F0,a is a pseudomonotone mapping 

from X to K(X∗). We shall use here and also in the next steps the definitions and properties 
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of pseudomonotone and generalized pseudomonotone mappings in the original works [2], [3], 
and standard references such as [10] or [12].

Let us consider the multi-valued function f1(x, s) = a(x)
w(x)

f0(x, s) for x ∈ �, s ∈ R. It follows 
from the corresponding properties of f0 that f1(x, s) ∈ K(R) for a.e. x ∈ �, all s ∈ R, and for 
a.e. x ∈ �, the function f1(x, ·) is upper semicontinuous from R to K(R). Moreover, since f0 is 
graph-measurable, so is f1. For u ∈ L0(�), let F1(u) denote the set of all measurable selections 
of f1(·, u),

F1(u) = {ζ ∈ L0(�) : ζ(x) ∈ f1(x,u(x)) for a.e. x ∈ �}
= { a

w
η ∈ L0(�) : η(x) ∈ f0(x,u(x)) for a.e. x ∈ �}

= { a
w

η : η ∈ F0(u)}
= a

w
F0(u).

Moreover, according to (3.5) and condition (Ha), for any u ∈ Y and η ∈ F0(u),∣∣∣∣ a(x)

w(x)
η(x)

∣∣∣∣ ≤ c0c1 for a.e. x ∈ �. (3.23)

Since the constant function c0c1 belongs to Y , we see that a
w

η also belongs to Y . Hence, for any 
u ∈ Y , F1(u) is a (nonempty) bounded subset of Y . Since f0(x, ·) and thus f1(x, ·) are intervals, 
we see immediately that F1(u) is convex. Let us prove that F1(u) is closed in Y . In fact, let {ηn}
be a sequence in F0(u) such that a

w
ηn → p in Y for some p ∈ Y . By passing to a subsequence if 

necessary, we have

a(x)

w(x)
ηn(x) → p(x) for a.e. x ∈ �. (3.24)

Let �0 = {x ∈ � : a(x) = 0} and let s0 be any element of F0(u), i.e. s0(x) ∈ f0(x, u(x)) for a.e. 
x ∈ �, and thus, for a.e. x ∈ �0. Define the following function:

η0 =
{

s0(x), x ∈ �0
w(x)
a(x)

p(x), x ∈ � \ �0.

For a.e. x ∈ �0, it follows from (3.24) that p(x) = 0 = a(x)
w(x)

η0(x). Thus, p(x) = a(x)
w(x)

η0(x) for 
a.e. x ∈ �. Let us verify that η0 ∈ F0(u). In fact, for x ∈ �0, η0(x) = s0(x) ∈ f0(x, u(x)) by the 
choice of s0. For a.e. x ∈ � \ �0, since a(x) �= 0, (3.24) implies that ηn(x) → w(x)

a(x)
p(x) = η0(x)

as n → ∞. Since ηn(x) ∈ f0(x, u(x)) for all n, and f0(x, u(x)) is a closed interval, we obtain 
that η0(x) ∈ f0(x, u(x)). This shows that η0 ∈ F0(u) and, consequently, that p ∈ F1(u). Thus, 
F1(u) is a closed subset of Y . We have shown that F1(u) ∈ K(Y ) for every u ∈ Y and thus 
F1 : u �→ F1(u) defines a mapping from Y to K(Y ).

Also, since F1(u) is convex, we have that F1(u) is weakly closed, which, together with its 
boundedness, proves that F1(u) is weakly compact in Y . From the continuity of i∗w from Y to 
X∗, both spaces equipped with weak topologies, we see from Lemma 2.7 that for any u ∈ X, 
F0,a(u) = aF0(u) = i∗wF1(u) is a weakly compact subset of X∗. Together with the convexity of 
F0,a(u), which is a direct consequence of the convexity of f0(x, ·), we see that F0,a(u) ∈ K(X∗)
for all u ∈ X. In particular, F0,a has effective domain D(F0,a) = X. Moreover, (3.5) shows that 
F0,a is a bounded mapping.
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The properties of f1 established above also show that all assumptions of [7, Theorem 7.26, 
Chap. 2] are satisfied by the function f1 on � with the weighted measure dμ = wdx and 
Y = L2(�; w). According to this theorem, the mapping F1 is Hausdorff upper semicontinuous 
(h-upper semicontinuous, cf. [7, Definition 2.60, Chap. 1]) on Y .

Next, let {un} ⊂ X and {u∗
n} ⊂ X∗ be sequences such that

un ⇀ u0 in X, (3.25)

u∗
n ⇀ u∗

0 in X∗, (3.26)

and

u∗
n ∈ F0,a(un) = aF0(un), ∀ n ∈N. (3.27)

First, let us prove that

u∗
0 ∈ F0,a(u0). (3.28)

In fact, for each n ∈ N , there is ηn ∈ F0(un) such that u∗
n = aηn. From (3.25) we have un =

iw(un) → iw(u0) = u0 in Y . Because of the h-uppersemicontinuity of F1 on Y noted above, this 
implies that

lim
n→∞h∗

Y (F1(un),F1(u0)) = 0, (3.29)

where h∗
Y is the Hausdorff semi-distance between subsets of Y defined by

h∗
Y (A,B) := sup

u∈A

(distY (u,B)) = sup
u∈A

(
inf
v∈B

‖u − v‖Y

)
for A,B ⊂ Y .

Since ηn ∈ F0(un), we have a
w

ηn ∈ F1(un), and it follows from (3.29) that

lim
n→∞ distY

( a

w
ηn,F1(u0)

)
= 0.

Consequently, there exists a sequence {ζn} in F1(u0) such that

lim
n→∞

∥∥∥ a

w
ηn − ζn

∥∥∥
Y

= 0. (3.30)

On the other hand, since F1(u0) is closed, bounded, and convex in Y , it is bounded and weakly 
closed, and thus weakly compact in Y . Thus, by passing to a subsequence if necessary, we can 
assume that ζn ⇀ ζ0 in Y for some ζ0 = a

w
η0 ∈ F1(u0), with η0 ∈ F0(u0). This limit and (3.30)

imply that

a

w
ηn ⇀ ζ0

(
= a

w
η0

)
in Y. (3.31)

Since i∗w is continuous from Y to X∗, both equipped with weak topologies, Lemma 2.7 gives

u∗
n = aηn = i∗w

( a
ηn

)
⇀ i∗w

( a
η0

)
= aη0 ∈ X∗
w w
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in X∗. Together with (3.26), this yields u∗
0 = aη0. Since η0 ∈ F0(u0), we have u∗

0 ∈ aF0(u0) =
F0,a(u0), proving (3.28).

Next, let us check that

〈u∗
n,un〉X∗,X → 〈u∗

0, u0〉X∗,X. (3.32)

In fact, we have

〈u∗
n,un〉X∗,X − 〈u∗

0, u0〉X∗,X = 〈u∗
n,un − u0〉X∗,X + 〈u∗

n − u∗
0, u0〉X∗,X.

From (3.26), it follows

〈u∗
n − u∗

0, u0〉X∗,X → 0. (3.33)

On the other hand, from condition (Ha), (3.5), and Lemma 2.7,

|〈u∗
n,un − u0〉X∗,X| = 〈aηn,un − u0〉X∗,X

= |〈i∗w( a
w

ηn), un − u0〉X∗,X|
= |〈( a

w
ηn), iw(un − u0)〉Y |

≤ ‖ a
w

ηn‖Y ‖un − u0‖Y

≤ c0c1‖un − u0‖Y .

Since ‖un − u0‖Y → 0 in Y , as a consequence of (3.25), we see that 〈u∗
n, un − u0〉X∗,X → 0, 

which together with (3.33), implies (3.32). The conclusions in (3.28) and (3.32) from the assump-
tions (3.25)–(3.27) show that F0,a is generalized pseudomonotone. Since F0,a(u) ∈ K(X∗), ∀u ∈
X, and F0,a is bounded, we see that F0,a is also pseudomonotone.

Step 3. −� : X → X∗, B : X → X∗ and T : X → X∗ are pseudomonotone
We show in this step the pseudomonotonicity and some other needed properties of the other 

single-valued mappings in (3.21).
First, the mapping −� defined by 〈−�u, v〉X∗,X = ∫

�
∇u∇v dx (u, v ∈ X), is a linear 

bounded and monotone mapping from X to X∗ with domain D(−�) = X. Hence, −� is pseu-
domonotone.

Next, let us consider the mapping u �→ B(u). It follows from the estimate (3.7) that 1
w

B(u) ∈
Y whenever u ∈ Y . Moreover standard convergence arguments in Lebesgue spaces show that if 
un → u in Y then 1

w
B(un) → 1

w
B(u) in Y , in other words, the Nemytskii operator u �→ 1

w
B(u)

is bounded and continuous from Y into itself. Let u ∈ X. Since u = iw(u) ∈ Y , it follows from 
Lemma 2.7 that B(u) ∈ X∗

0 , which according to the identification with the corresponding element 
of X∗, is given by B(u) = i∗w( 1

w
B(u)). Moreover, if un ⇀ u in X then un = iw(un) → iw(u) = u

in Y . Hence, as noted above, 1
w

B(un) → 1
w

B(u) in Y , which implies that

X∗ � B(un) = i∗w
(

1

w
B(un)

)
→ i∗w

(
1

w
B(u)

)
= B(u) in X∗.

This limit shows that the mapping u �→ B(u) is completely continuous and thus (single-valued) 
pseudomonotone on X.



S. Carl, V.K. Le / J. Differential Equations 267 (2019) 4863–4889 4877
By analogous proofs, we see that the mappings u �→ a
w

Ti(·, u), i = 1, . . . , k, and u �→
a
w

T j (·, u), j = 1, . . . , m, are also continuous from Y into itself. Hence, from the compactness of 
the embedding iw we see that the mappings

u �→ aTi(·, u) = i∗w ◦
( a

w
Ti

)
◦ iw, u �→ aT j (·, u) = i∗w ◦

( a

w
T j

)
◦ iw

are completely continuous and are thus (single-valued) pseudomonotone mappings from X to 
X∗, which implies that u �→ T (u) is a pseudomonotone mapping from X to X∗.

The results above, together with that in Step 2, imply that the mapping

u �→ −�u − F0,a(u) + B(u) − T (u)

is pseudomonotone from X to K(X∗).

Step 4. Coercivity of −� − F0,a + B − T : X → K(X∗)
Next, we prove in this step that the multi-valued operator −� − F0,a + B − T : X → K(X∗)

of (3.21) satisfies the following coercivity condition for some u0 ∈ K

lim‖u‖X→∞

{
inf

η∈F0(u)

〈 − �u − aη + B(u) − T (u),u − u0
〉} = ∞, (3.34)

which, together with the pseudomonotone property established in Step 3, implies the existence 
of solutions of (3.21), and equivalently, of (3.19).

Letting u0 be any (fixed) element of K , we have

∣∣∣∣∣∣
∫
�

∇u∇u0 dx

∣∣∣∣∣∣ ≤ ‖u0‖X‖u‖X (3.35)

In the next estimates, c stands for a generic positive constant that does not depend on u and 
η ∈ F0(u), and may change from line to line. For any η ∈ F0(u), we have from (3.5) and property 
(F2) that a

w
η ∈ Y . Hence, from Lemma 2.7,

|〈aη,u − u0〉| =
∣∣∣〈i∗w (

a
w

η
)
, u − u0

〉
X∗,X

∣∣∣
= ∣∣〈 a

w
η, iw(u − u0)

〉
Y

∣∣
≤ ∥∥ a

w
η
∥∥

Y
(‖u‖Y + ‖u0‖Y )

≤ c(‖u‖X + 1).

(3.36)

Similarly, from (Ha) and (3.17), we see for i ∈ {1, . . . , k} that

|〈aTi(·, u), u − u0〉| =
∣∣∣〈i∗w (

a
w

Ti(·, u)
)
, u − u0

〉
X∗,X

∣∣∣
= ∣∣〈 a

w
Ti(·, u), iw(u − u0)

〉
Y

∣∣
≤ ∥∥ a

w
Ti(·, u)

∥∥
Y

(‖u‖Y + ‖u0‖Y )

≤ c(‖u‖X + 1).
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Hence,

k∑
i=1

|〈aTi(·, u), u − u0〉| ≤ c(‖u‖X + 1) (3.37)

and analogously,

m∑
j=1

|〈aT j (·, u), u − u0〉| ≤ c(‖u‖X + 1). (3.38)

Lastly, for any u ∈ X(⊂ Y), it follows from (3.7) that

∣∣∫
�

b(x,u)u0 dx
∣∣ ≤ b1

∫
�
(|u| + 1)|u0|wdx

≤ c(‖u0‖Y ‖u‖Y + 1)

≤ c(‖u‖X + 1).

Together with (3.8), this yields

∫
�

b(x,u)(u − u0)dx ≥ b2‖u‖2
Y − c(‖u‖X + 1). (3.39)

Combining the estimates from (3.35) to (3.39) shows that for any u ∈ X, η ∈ F0(u) we get

〈 − �u − aη + B(u) − T (u),u − u0
〉 ≥ ‖u‖2

X − c(‖u‖X + 1),

which immediately implies the coercivity condition (3.34).

Step 5. Existence and enclosure
It follows from the conclusions in Steps 1–4 and [8, Corollary 2.6 ] that the auxiliary MVI 

(3.21), or equivalently (3.18)-(3.19), has solutions. Let u ∈ K be any solution of (3.18)-(3.19). 
In this step, we prove that

u ≤ u ≤ u a.e. on �, (3.40)

and next that u is indeed a solution of the original MVI (1.1). To verify the first inequality, we 
let s be any number in {1, . . . , k} and prove that

us ≤ u a.e. on �. (3.41)

By definition of subsolutions we have us ∨ u ∈ K . Letting v = us ∨ u = u + (us − u)+ in (3.19)
yields

∫
�

∇u∇[(us − u)+]dx − ∫
�

aη(us − u)+ dx + ∫
�

b(x,u)(us − u)+ dx

−∑k
∫

aT (x,u)(u − u)+ dx + ∑m
∫

aT j (x,u)(u − u)+ dx ≥ 0.
(3.42)
i=1 � i s j=1 � s
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From (2.7) with us and η
s

instead of u and η, and v = us − (us − u)+ = us ∧ u ∈ us ∧ K , we 
obtain

−
∫
�

∇us∇[(us − u)+]dx +
∫
�

aη
s
(us − u)+ dx ≥ 0. (3.43)

Adding inequalities (3.42) and (3.43) yields

∫
�
(∇u − ∇us)∇[(us − u)+]dx − ∫

�
a(η − η

s
)(us − u)+ dx

+ ∫
�

b(x,u)(us − u)+ dx − ∑k
i=1

∫
�

aTi(x,u)(us − u)+ dx

+∑m
j=1

∫
�

aT j (x,u)(us − u)+ dx ≥ 0.

(3.44)

Stampacchia’s theorem gives

∫
�

(∇u − ∇us)∇[(us − u)+]dx = −
∫

{x∈�:us(x)>u(x)}
|∇(us − u)|2 dx ≤ 0. (3.45)

At x ∈ � such that us(x) > u(x), since us(x) ≤ u(x) ≤ u(x), we have from (3.14) that 
T j (x, u(x)) = 0 and thus

∫
�

aT j (x,u)(us − u)+ dx =
∫

{x∈�:us(x)>u(x)}
aT j (x,u)(us − u)dx = 0, (3.46)

for all j ∈ {1, . . . , m}. Furthermore, for x ∈ � such that us(x) > u(x), we have u(x) < u(x)

which, together with (3.18) and (3.4), implies that η(x) ∈ {η(x)}, i.e.,

η(x) = η(x). (3.47)

Also, for such x, (3.9) gives

Ts(x,u(x)) = |η
s
(x) − η(x)|. (3.48)

As a direct consequence of (3.10),

∫
�

aTi(x,u)(us − u)+ dx ≥ 0, ∀i ∈ {1, . . . , k}.

Thanks to (3.47) and (3.48), we get

− ∫
�

a(η − η
s
)(us − u)+ dx − ∑k

i=1

∫
�

aTi(x,u)(us − u)+ dx

≤ − ∫
�

a(η − η
s
)(us − u)+ dx − ∫

�
aTs(x,u)(us − u)+ dx

= ∫
{x∈�:us(x)>u(x)} a{(η

s
(x) − η(x)) − |η(x) − η

s
(x)|}(us − u)dx

≤ 0.

(3.49)
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Combining (3.44) with (3.45), (3.46), and (3.49), we obtain

0 ≤
∫
�

b(x,u)(us − u)+ dx =
∫

{x∈�:us(x)>u(x)}
b(x,u)(us − u)dx.

From (3.6), if us(x) > u(x) then u(x) > u(x) and b(x, u(x)) = [u(x) − u(x)]w(x). Hence,

0 ≤ −
∫

{x∈�:us(x)>u(x)}
[u(x) − u(x)][us(x) − u(x)]w(x)dx.

Since u(x) − u(x) > 0 and us(x) − u(x) > 0 on the set {x ∈ � : us(x) > u(x)}, this inequality 
implies that this set must have measure 0, which means that u(x) ≥ us(x) for a.e. x ∈ �, and 
hence it follows (3.41). Since (3.41) holds for all s ∈ {1, . . . , k}, we get the first inequality of 
(3.40). The second inequality of (3.40) is verified analogously.

From (3.40) and (3.6)-(3.9)-(3.14), we have

b(·, u) = Ti(·, u) = T j (·, u) = 0 a.e. on �,

for all i ∈ {1, . . . , k}, j ∈ {1, . . . , m}. Also, from (3.40) and (3.4), together with (3.18), we see 
that η(x) ∈ f0(x, u(x)) = f (u(x)) for a.e. x ∈ �. In view of these observations, (3.18)-(3.19)
reduce to (2.2)-(2.3). Our proof of Theorem 3.1 is complete. �

Let ui, 1 ≤ i ≤ k and uj , 1 ≤ j ≤ m, be sub- and supersolutions that satisfy the conditions in 
Theorem 3.1. We have proved that the set S of solutions of (1.1) (i.e. of (2.2)-(2.3)) between u
and u,

S = {u ∈ K : u satisfies (2.2)-(2.3) and u ≤ u ≤ u a.e. on �},

is nonempty. As consequences of Theorem 3.1, some further qualitative properties of S are given 
in the following result.

Corollary 3.2. The solution set S possesses the following properties:

(a) S is a compact subset of X.
(b) If

K ∧ K ⊂ K and K ∨ K ⊂ K, (3.50)

then
(i) any u ∈ S is a subsolution and a supersolution of (1.1).

(ii) S is directed downward and upward, that is, for all u1, u2 ∈ S , there exist u ∈ S and 
ũ ∈ S such that

u ≤ min{u1, u2} and ũ ≥ max{u1, u2}, respectively.
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(iii) S has smallest and greatest elements, that is, there are u∗, u∗ ∈ S such that u∗ ≤ u ≤ u∗
for all u ∈ S .

Proof. Ad (a). Since u, u ∈ L∞(�), it follows from (3.2) that the set {‖u‖L∞(�) : u ∈ S} is 
bounded. Let {un} be a sequence in S . For each n ∈ N , let ηn be the corresponding function in 
F(un) that satisfies (2.2) and (2.3) (for each u = un and η = ηn). Let f0 be defined by (3.4). 
Since S ⊂ [u, u], we see from (3.4) that f can be replaced by f0 in (2.2) and (2.3). In particular, 
ηn ∈ F0(un), ∀n ∈ N . From (3.4), {ηn} is a bounded sequence in L∞(�). Using (2.3) with un, 
ηn, and v = v0, a fixed element of K , we see that {∫

�
|∇un|2dx} is a bounded sequence, i.e., 

{un} is a bounded sequence in X. Therefore, there exists a subsequence {unl
} of {un} such that

unl
⇀ u0 in X, (3.51)

for some u0 ∈ K (as K is weakly closed in X). Thus, unl
= iw(unl

) → iw(u0) = u0 in Y . In 
particular, u0 ∈ [u, u].

Arguing as in Step 2 in the proof of Theorem 3.1 (cf. (3.31)), we see that

a

w
ηnl

⇀
a

w
η0 in Y, (3.52)

for some η0 ∈ F0(u0). For any v ∈ K , we have from Lemma 2.7 and (3.52) that

∫
�

aηnl
(v − unl

) dx = 〈i∗w( a
w

ηnl
), v − unl

〉X∗,X
= 〈 a

w
ηnl

, iw(v − unl
)〉Y

→ 〈 a
w

η0, iw(v − u0)〉Y
= 〈i∗w( a

w
η0), v − u0〉Y

= ∫
�

aη0(v − u0) dx.

Letting l → ∞ in (2.3) with u = unl
and η = ηnl

, and noting the limits

lim
∫
�

∇unl
∇v dx =

∫
�

∇u0∇v dx

and

lim inf
∫
�

|∇unl
|2 dx = lim inf‖unl

‖2
X ≥ ‖u0‖2

X =
∫
�

|∇u0|2 dx,

we obtain ∫
�

∇u0(∇v − ∇u0)dx ≥ lim sup
[∫

�
∇unl

(∇v − ∇unl
)dx

]
≥ lim inf

[∫
�

∇unl
(∇v − ∇unl

)dx
]

≥ lim
∫
�

aηnl
(v − unl

)dx

= ∫
�

aη0(v − u0)dx.

(3.53)

Hence, u0 is a solution of (1.1), i.e., u0 ∈ S . Using v = u0 in (3.53) also yields lim sup
∫
�

|∇unl
|2

dx ≤ ∫ |∇u0|2dx. Hence, lim
∫ |∇un |2dx = ∫ |∇u0|2dx, that is, ‖un ‖X → ‖u0‖X , which, 
� � l � l
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together with (3.51), implies that unl
→ u0 in X. This completes the proof of the compactness 

of S in X.

Ad (b). The proof of (i) is straightforward from the definitions of solutions and sub-supersolu-
tions of (1.1) given in Definitions 2.5 and 2.6. To prove (ii), assume u1, u2 ∈ S . Since they are 
also subsolutions of (1.1), Theorem 3.1 thus implies the existence of a solution ũ of (1.1) such 
that max{u1, u2} ≤ ũ ≤ min{uj : 1 ≤ j ≤ m} = u, which shows that S is upward directed. But 
u1, u2 ∈ S are also supersolutions of (1.1), Theorem 3.1 thus implies the existence of a solution u
of (1.1) such that max{ui : 1 ≤ i ≤ k} = u ≤ u ≤ min{u1, u2}, which proves that S is downward 
directed.

As for (iii) let us show the existence of a greatest element only, since the existence of the 
smallest element is proved analogously. Since X is separable with the metric generated by ‖ · ‖X, 
so is S . Let {wn} be a dense sequence in S . Using the directedness of S , we can construct 
inductively a sequence {un} in S such that wn ≤ un ≤ un+1, ∀n ∈ N . Let u∗(x) = sup{un(x) :
n ∈ N} = limn→∞ un(x), x ∈ �. As a consequence of the compactness of S , un → u∗ in X and 
u∗ ∈ S . Since u∗ ≥ wn a.e. in � for all n ∈N , from the density of {wn} in S , we see that u∗ ≥ u

a.e. in � for all u ∈ S . �
Remark 3.3. Examples of closed convex sets of X that satisfy (3.50) are given by

K = {u ∈ X : u ≥ φ a.e. on �},
which represents an obstacle problem, or

K = {u ∈ X : |∇u| ≤ C a.e. on �},
with the constraint on the gradient, like in an elasto-plastic torsion problem. In order for K �= ∅
in the obstacle problem, we need to impose conditions on φ such as for instance φ ∈ L0(�) with 
φ(x) ≤ 0 for a.e. x ∈ �, or φ ∈ H 1,2(�) with trace(φ) ≤ 0 on ∂� = ∂B(0, 1).

4. Multi-valued obstacle problem

As an application of the theory developed in Section 3, here we consider the obstacle problem: 
Find u ∈ K and η ∈ F(u) such that

〈−�u,v − u〉 ≥ 〈aη, v − u〉, ∀ v ∈ K, (4.1)

where

K = {u ∈ X : u ≥ φ a.e. on �},
and φ ∈ L0(�) with φ(x) ≤ 0 for a.e. x ∈ �, and a : � → R+ satisfies (Ha). The multi-valued 
operator F is the Nemytskii operator generated by the multi-valued function f : R → 2R \ {∅}
that is supposed to fulfill the following hypotheses:

(H1) f :R → 2R \ {∅} is upper semicontinuous and uniformly bounded, that is,

∃ C > 0 : |η| ≤ C, ∀ η ∈ f (s), and ∀ s ∈ R.



S. Carl, V.K. Le / J. Differential Equations 267 (2019) 4863–4889 4883
As seen from the proof of Corollary 2.3, the multi-valued function f satisfying (H1) has the 
representation

f (s) = [α(s),β(s)], ∀ s ∈ R, (4.2)

where the single-valued function α : R →R is bounded and lower semicontinuous, and β :R →
R is bounded and upper semicontinuous.

(H2) Let α :R → R of (4.2) satisfy

lim
s→0

α(s)

s
= μ > λ1, (4.3)

where λ1 > 0 is the first eigenvalue of the eigenvalue problem:

−�u = λa(x)u in �, u = 0 on ∂�. (4.4)

Note, (H1) implies hypothesis (HF), which along with (H2) will allow us to construct a pair of 
sub-supersolutions such that our main existence and enclosure result is applicable. Regarding the 
eigenvalue problem (4.4) let us recall [5, Corollary 3.3].

Corollary 4.1. Under hypothesis (Ha) the eigenvalue problem (4.4) has a sequence of eigenval-
ues 0 < λ1 ≤ λ2 ≤ . . . ≤ λj → ∞, with corresponding eigenfunctions ψj ∈ X ∩ L∞(�) for all 
j ∈ N .

Next let us consider the linear problem

−�u = a(x) in �, u = 0 on ∂�. (4.5)

From [5, Theorem 4.1] we deduce the following result.

Corollary 4.2. Assume hypothesis (Ha). Then (4.5) has a unique solution ϒ ∈ X which enjoys 
the following properties:

(i) ϒ(x) > 0 for all x ∈ �.
(ii) ϒ ∈ C

1,β

0,loc(�) and ∂ϒ(x)
∂n

< 0 for x ∈ ∂�, with ∂/∂n denoting the outward normal deriva-
tive.

(iii) 0 ≤ ϒ(x) ≤ c for all x ∈ �.

Finally, from [5, Theorem 2.5] and [5, Corollary 6.1] we obtain

Corollary 4.3. Assume (Ha) and let ψ1 be the eigenfunction belonging to the first eigenvalue λ1
of (4.4). Then ψ1(x) ≈ ϒ(x) for all x ∈ �, that is, there are positive constants c1, c2 > 0 such 
that

c1ψ1(x) ≤ ϒ(x) ≤ c2ψ1(x), x ∈ �. (4.6)
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By means of the above Corollary 4.1–Corollary 4.3 as well as Theorem 3.1 and Corollary 3.2
of Section 3 we are now able to prove the following existence and enclosure result for the multi-
valued obstacle problem (4.1).

Theorem 4.4. Assume hypotheses (Ha), (H1), and (H2). Then for ε > 0 sufficiently small and 
M > 0 sufficiently large, u = ε ψ1 and u = M ϒ are sub- and supersolutions, respectively, of the 
multi-valued obstacle problem (4.1) satisfying u ≤ u. Moreover, there exist extremal solutions of 
(4.1) within the interval [u, u].

Proof. We only need to show that u = ε ψ1 is a subsolution for ε > 0 sufficiently small, and 
u = M ϒ is a supersolution for M > 0 sufficiently large of (4.1). The existence of extremal 
solutions of (4.1) then follows immediately from Theorem 3.1 and Corollary 3.2 of Section 3.

Clearly, u∨K = ε ψ1 ∨K ⊂ K . Let η = α(ε ψ1), then η(x) ∈ f (u(x)), and since η is bounded 
we have aη ∈ X∗

0 . To finish the proof for u = ε ψ1 being a subsolution we need to verify the 
inequality (2.7), that is,

∫
�

∇u(∇v − ∇u)dx ≥
∫
�

aη(v − u)dx, ∀ v ∈ u ∧ K. (4.7)

Note, v ∈ u ∧ K is represented by v = u ∧ ϕ = u − (u − ϕ)+ for any ϕ ∈ K , and thus (4.7) is 
equivalent to ∫

�

∇u∇(u − ϕ)+ dx ≤
∫
�

aη(u − ϕ)+ dx, ∀ ϕ ∈ K. (4.8)

Since (u − ϕ)+ ∈ X+ = {u ∈ X : u(x) ≥ 0 for a.e. x ∈ �}, the proof of (4.8) is done provided 
u = ε ψ1 ∈ X is a subsolution of the equation

−�u = a α(u). (4.9)

Using the properties of the first eigenfunction ψ1 along with hypotheses (Ha), (H1), and (H2), 
we have for ε > 0 small α(ε ψ1)

ε ψ1
≥ λ1 + δ for some 0 < δ < μ − λ1 and thus

−�u − a α(u) = λ1a ε ψ1 − a α(ε ψ1)

= a ε ψ1

(
λ1 − α(ε ψ1)

ε ψ1

)

≤ a ε ψ1

(
λ1 − (λ1 + δ)

)
≤ 0,

which shows that u = ε ψ1 is a subsolution of (4.1).
To prove that u = M ϒ is a supersolution of (4.1) for M > 0 sufficiently large, note that 

u ∧ K = M ϒ ∧ K ⊂ K is trivially satisfied. Let η = β(M ϒ), then η(x) ∈ f (u(x)), and since η
is bounded we have a η ∈ X∗

0 . So it remains to verify inequality (2.9), that is,

∫
∇u(∇v − ∇u)dx ≥

∫
aη(v − u)dx, ∀ v ∈ u ∨ K. (4.10)
� �
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Clearly, v ∈ u∨K is represented by v = u+(ϕ−u)+ for any ϕ ∈ K , and thus (4.10) is equivalent 
to ∫

�

∇u∇(ϕ − u)+ dx ≥
∫
�

aη(ϕ − u)+ dx, ∀ ϕ ∈ K. (4.11)

Since (ϕ − u)+ ∈ X+ for all ϕ ∈ K , the proof of (4.11) is finished provided u = M ϒ is a 
supersolution of the semilinear equation

−�u = a β(u), (4.12)

that is −�u − a β(u) ≥ 0 in the weak sense. Taking into account that ϒ ∈ X is a weak solution 
of (4.5) we see

−�u − a β(u) = −�(M ϒ) − a β(M ϒ) = a M − a β(M ϒ)

= a (M − β(M ϒ)) ≥ 0,

for M > 0 sufficiently large, since by (H1), β :R → R is uniformly bounded. Thus u = M ϒ is a 
supersolution of (4.1), which according to Corollary 4.3 satisfies u = M ϒ ≥ ε ψ1 for a possibly 
even larger M . This completes the proof of the theorem. �
Remark 4.5. In Theorem 4.4 the obstacle function φ ∈ L0(�) of K = {u ∈ X : u ≥ φ a.e. on �}, 
is supposed to satisfy φ(x) ≤ 0 for a.e. x ∈ �. In view of (4.6), more general obstacle functions 
φ are admissible such that Theorem 4.4 remains true. For instance, any function φ ∈ L0(�)

satisfying

ess sup
x∈�

φ(x)

ϒ(x)
< ∞ or ess sup

x∈�

φ(x)

ψ1(x)
< ∞ (4.13)

In case of an obstacle problem with an obstacle being from above, that is,

K = {u ∈ X : u ≤ φ a.e. on �},
and φ ∈ L0(�), Theorem 4.4 still remains true for obstacle functions satisfying one of the fol-
lowing conditions:

ess inf
x∈�

φ(x)

ϒ(x)
> 0 or ess inf

x∈�

φ(x)

ψ1(x)
> 0 or simply ess inf

x∈�
φ(x) > 0. (4.14)

5. Generalized variational-hemivariational inequalities

The sub-supersolution method for the MVI (1.1) established in Section 3 will enable us to 
treat general variational-hemivariational inequalities in (unbounded) exterior plane domains of 
the form: Find u ∈ K such that

〈−�u,v − u〉 +
∫

a(−j)o(u,u;v − u)dx ≥ 0, ∀ v ∈ K, (5.1)
�
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where jo(r, s; 	) denotes Clarke’s generalized directional derivatives at s in the direction 	 for 
fixed r of some function j :R ×R →R, (r, s) �→ j (r, s), that is supposed to satisfy the following 
hypothesis:

(HJ) For each r ∈R, the function s �→ j (r, s) is locally Lipschitz, and for 	 = ±1, the function 
s �→ jo(s, s; 	) is locally bounded and upper semicontinuous.

We recall here for convenience the definition of Clarke’s generalized directional derivatives at s
in the direction 	 for fixed r , jo(r, s; 	),

jo(r, s;	) = lim sup
y→s, ε↓0

j (r, y + ε 	) − j (r, y)

ε
, (5.2)

see [6, Chap. 2]. The main goal of this section is to pave the way for dealing with variational-
hemivariational type inequalities in unbounded domains. We are going to show that under 
hypothesis (HJ) the general variational-hemivariational inequality (5.1) turns out to be only a 
special case of the MVI (1.1). To this end let us recall the notion of Clarke’s generalized gradient 
of the locally Lipschitz function s �→ j (r, s) at s for fixed r , which is denoted by ∂j (r, s) and 
defined by

∂j (r, s) = {ξ ∈R : jo(r, s;	) ≥ ξ 	, ∀ 	 ∈ R}, (5.3)

see [6, Chap. 2]. Let us introduce the multi-valued function f : R → 2R \ {∅} given by

f (s) = ∂j (s, s). (5.4)

Lemma 5.1. If (r, s) �→ j (r, s) satisfies hypothesis (HJ), then the multi-valued function f : R →
2R \ {∅} given by (5.4) satisfies hypothesis (HF).

Proof. From the definition of ∂j (r, s) and the positive homogeneity of the mapping 	 �→
jo(r, s; 	) for r fixed we see that for all r, s ∈ R,

∂j (r, s) = [−jo(r, s;−1), jo(r, s;1)], (5.5)

which shows that f : R → K(R). To prove that f : R → 2R \ {∅} is a multi-valued upper semi-
continuous function, we make use of the upper semicontinuity of s �→ jo(s, s; ±1). Let s0 ∈ R
and U be an open neighborhood of f (s0) = ∂j (s0, s0). In view of (5.5), there exists ε > 0 such 
that

(−jo(s0, s0;−1) − ε, jo(s0, s0;1) + ε) ⊂ U.

From the upper semicontinuity of the (single-valued) functions s �→ jo(s, s; ±1) at s0, there 
exists an open neighborhood O of s0 such that for all s ∈ O we have

jo(s, s;1) < jo(s0, s0;1) + ε, and jo(s, s;−1) < jo(s0, s0;−1) + ε,

and hence it follows for all s ∈ O ,
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f (s) = ∂j (s, s) = [−jo(s, s;−1), jo(s, s;1)]
⊂ (−jo(s0, s0;−1) − ε, jo(s0, s0;1) + ε) ⊂ U,

which proves the upper semicontinuity of f at s0. �
From Lemma 5.1 we see that f given by (5.4) is a special multi-valued function that satisfies 

(HF). Let us now consider the MVI associated with f , that is: Find u ∈ K ⊂ X and η ∈ F(u), 
i.e., η(x) ∈ f (u(x)) = ∂j (u(x), u(x)) such that

〈−�u,v − u〉 ≥ 〈a η, v − u〉, ∀ v ∈ K. (5.6)

The following equivalence of problems (5.1) and (5.6) holds.

Theorem 5.2. Assume hypotheses (Ha), (HJ) and let the lattice condition K ∧ K ⊂ K and K ∨
K ⊂ K be satisfied. Then u ∈ X ∩ L∞(�) is a solution of (5.1) if and only if u is a solution of 
(5.6).

Proof. Let u be a solution of (5.6), that is,

〈−�u,v − u〉 +
∫
�

a(−η) (v − u) ≥ 0, ∀ v ∈ K, (5.7)

with −η(x) ∈ −f (u(x)) = −∂j (u(x), u(x)), and due to the calculus for Clarke’s gradient we 
have

−η(x) ∈ ∂(−j)(u(x),u(x)),

which by the definition of Clarke’s gradient of (−j) yields

−η(x)(v(x) − u(x)) ≤ (−j)o(u(x),u(x);v(x) − u(x)) for a.e. x ∈ �. (5.8)

Since a ≥ 0, we get from (5.7) and the last inequality (5.8) that u satisfies (5.1).
Let us prove the reverse, and assume that u is a solution of (5.1). In order to show that u is 

a solution of the multi-valued variational inequality (5.6), we are going to show that u is both 
a subsolution and a supersolution for the multi-valued problem (5.6), which then by applying 
Theorem 3.1 completes the proof.

Since K has the lattice condition, we can use in (5.1), in particular, v ∈ u ∧K , i.e., v = u ∧ϕ =
u − (u − ϕ)+ with ϕ ∈ K , which yields

〈−�u,−(u − ϕ)+〉 +
∫
�

a(−j)o(u,u;−(u − ϕ)+) dx ≥ 0, ∀ ϕ ∈ K. (5.9)

Since (−j)o(s, s; ·) is positive homogeneous, (5.9) becomes

〈−�u,−(u − ϕ)+〉 +
∫

a(−j)o(u,u;−1)(u − ϕ)+ dx ≥ 0, ∀ ϕ ∈ K. (5.10)
�
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Further, by applying Clarke’ gradient calculus from [6, Chap. 2] we see

(−j)o(u(x),u(x);−1) = max{−ζ(x) : ζ(x) ∈ ∂(−j)(u(x),u(x))}
= −min{ζ(x) : ζ(x) ∈ ∂(−j)(u(x),u(x))}
= −η(x),

where

η(x) ∈ ∂(−j)(u(x),u(x)) = −∂j (u(x),u(x). (5.11)

From (5.10) and (5.11) we get by using v ∈ u ∧ K , that is v = u − (u − ϕ)+ for ϕ ∈ K

〈−�u,v − u〉 ≥
∫
�

a(−η)(v − u)dx, ∀ v ∈ u ∧ K, (5.12)

where −η(x) = η̂(x) ∈ ∂j (u(x), u(x) = f (u(x)), which proves that u is a subsolution of (5.6). 
In a similar way one can show that u is also a supersolution of (5.6). Applying Theorem 3.1, 
there exists a solution ũ of (5.6) such that u ≤ ũ ≤ u, and hence u = ũ, that is u is a solution of 
the MVI (5.6). This completes the equivalence proof. �
Remark 5.3. We are not seeking here to establish existence and enclosure results for the inequal-
ities (1.1) and (5.1) in the most general settings on the exterior domain � or on the operators 
involved in the inequalities, but concentrate instead on a new working framework for such 
inequalities on exterior domains. More general nonsmooth problems with quasilinear elliptic 
operators of monotone type can therefore be studied by the theory and tools developed here. 
Moreover, the connection between hemi-variational inequalities and variational inequalities with 
multi-valued terms elaborated in Section 5 allows extending their application scope further to 
hemi-variational inequalities on exterior domains.
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