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Abstract

We show global well-posedness and exponential stability of equilibria for a general class of nonlin-
ear dissipative bulk-interface systems. They correspond to thermodynamically consistent gradient structure 
models of bulk-interface interaction. The setting includes nonlinear slow and fast diffusion in the bulk 
and nonlinear coupled diffusion on the interface. Additional driving mechanisms can be included and 
non-smooth geometries and coefficients are admissible, to some extent. An important application are 
volume-surface reaction-diffusion systems with nonlinear coupled diffusion.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we consider nonlinear bulk-interface systems that arise from thermodynami-
cally consistent gradient structure modelling of the interaction of dissipative dynamics on bulk 
domains and on and across interfaces or surfaces. The modelling concept was introduced in [22], 
[31] and it was shown that it applies to many different processes (examples and references be-
low in Subsection 1.2). Here, the aim is to show global well-posedness and stability, including 
in particular slow and fast diffusion in the bulk, coupled nonlinear diffusion on the interface 
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and general reaction-type nonlinearities on the interface and as boundary conditions. The results 
are based on a specific functional analytic framework that uses maximal parabolic regularity in 
W−1,q and global L∞-bounds that derive from the dissipative structure.

1.1. Model equations

The bulk � ⊂ Rd , d = 2, 3, is a bounded set with boundary ∂� and it can be separated into 
two open disjoint domains �+ and �− by an interface � of dimension d − 1. The domains 
�+, �− and manifold � have unit outer normal vector fields ν+, ν−, ν� at their boundaries. The 
scalar quantities u+ : (0, T ) ×�+ →R, u− : (0, T ) ×�− →R and u� : (0, T ) ×� → R interact 
on and across �, and they satisfy the three sets of equations

⎧⎨
⎩

u̇+ − div(k+(u+)∇u+) = f+(u+), in (0, T ) × �+,

(k+(u+)∇u+)ν+ + m+(u)(u+ − u�) + m�(u)(u+ − u−) = g+(u), on (0, T ) × �,

(k+(u+)∇u+)ν+ = h+(u+), on (0, T ) × {∂�+\�},
(1.1)

and,

⎧⎨
⎩

u̇− − div(k−(u−)∇u−) = f−(u−), in (0, T ) × �−,

(k−(u−)∇u−)ν− + m−(u)(u− − u�) + m�(u)(u− − u+) = g−(u), on (0, T ) × �,

(k−(u−)∇u−)ν− = h−(u−), on (0, T ) × {∂�−\�},
(1.2)

and,

{
u̇� − div�(k�(u)∇�u�) − m+(u)(u+ − u�) − m−(u)(u− − u�) = f�(u), in (0, T ) × �,

(k�(u)∇�u�)ν� = h�(u�), on (0, T ) × ∂�.

(1.3)
To improve the presentation, we write

u = (u+, u−, u�), f = (f+, f−, f�), . . .

The coefficient matrices k, the scalar transmission coefficients m and the external forces and 
inhomogeneous boundary conditions f, g, h may have (locally Lipschitz) dependence of the so-
lution u and continuous dependence of the space variables with

k±(x,u±) ∈Rd×d
≥0 and k�(y,u) ∈R(d−1)×(d−1)

≥0 , (1.4)

and

m�(y,u),m+(y,u),m−(y,u) ∈R≥0. (1.5)

More precise assumptions on k, m, f, g, h are given in Section 2. Examples are slow or fast 
diffusion k+(u+) = κ0u

ρ−1
+ with constants ρ ∈ R and κ0 > 0, where the case k+(u+) = 1

u2+
is 

motivated by the entropic structure for the system in [31] (see Subsection 5.1). The diffusion 
coefficient k� can depend on all three unknowns u in a nonlinear way and the same is true for 
the transmission coefficients m. An example is m+(u) = 1

2 (motivated in Subsection 5.1). 

u+u�
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For the global equilibration result on all three components, it is needed that m±, m� are not only 
non-negative, but that at least two of them are positive, so every pair of components interacts at 
least indirectly across the interface.

1.2. Applications

The system (1.1) – (1.3) can be related to several types of applications:

• An important example is that f, g are given by chemical reaction rates for the densities 
u+, u− and u� of species that interact and react at the interface. A concrete example is

f+(u+) = 0, g+(u) = −kα(uα+ − κu
β
�), f�(u) = kβ(uα+ − κu

β
�) (1.6)

with k, κ > 0 and α, β ≥ 1. This situation is typical for many (cell) biological, ecological 
and technological processes [2,22,28,31] and these systems have gained increasing attention 
in analysis and numerical analysis [4,17–19,26,30,36]. It is shown in [9] how the main result 
here, Theorem 3.1, applies in this case and allows to extend some of the previous results in 
[4,17,19,26,36] to the case of nonlinear and nonlinearly coupled diffusion and to the case that 
only part of the boundary of � is interactive. Nonlinear and coupled diffusion often appear 
in the modelling of reaction-diffusion systems, and they can be naturally associated to bulk-
interface systems [2,3,22,29,31]. It is the aim of future work to use the analysis started here 
and in [9] to study more complex systems of multicomponent reaction and diffusion.

• A second example is the modelling of heat conduction within a bulk material that is separated 
into two parts by a thin heat-conducting plate. Particularly at high and low temperatures, 
thermal conductivity of bulk and plate materials become nonlinear in their dependence of 
temperature and non-equilibrium modelling of heat conduction across the plate leads to 
nonlinear transmission coefficients m of the type above, see for example [38] for mate-
rial parameters and Subsection 5.1 on the associated Onsager structure. In technological 
applications, the geometry often includes sharp edges and singularities where interface and 
boundary meet. These non-smooth settings are essentially included in the analysis here. To 
the author’s knowledge, it is the first result on this particular quasilinear transmission-type 
problem in a non-smooth setting.

• For models of diffusion and transport of electrical charges in semiconductor devices, like 
solar cells, active interfaces often play a crucial role, cf. [21]. In particular for the case of 
three spatial dimensions, well-posedness for these systems in non-smooth geometric settings 
is still hard to achieve but highly relevant in modelling, simulation and optimization [12]. 
In future work, the method developed here can be adapted to provide well-posedness for 
systems that include coupled diffusion and transport along active interfaces.

• The quasi-linear structure of (1.1) – (1.3) may appear after a change of coordinates that 
transforms a free boundary problem to a fixed domain, [35].

• Here, global existence and uniqueness is shown including semilinear f, g, h as long as 
boundedness is preserved. This includes, for example, driving mechanisms of Allen-Cahn-
type associated to phase separation, cf. Corollary 3.6 and the example in (3.7). The result 
here applies if phase-separation occurs both in a bulk and along a (lower-dimensional) sur-
face part of the material, coupled by (non-linear) transmission terms. Well-posedness for 
Allen-Cahn equations with dynamic interface conditions was shown in [6].
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1.3. Functional analytic setting

We use that system (1.1) – (1.3) can be recast as a quasilinear abstract Cauchy problem of the 
form

u̇(t) +Au(t)u(t) = F(u(t)),

u(0) = u0,

in the space W−1,q,q�

0 of functionals on

W1,q,q� = W 1,q ′
(�+) × W 1,q ′

(�−) × W 1,q ′
�(�)

with q > d , q� > 2 in spatial dimensions d = 2, 3, where Au(t) is a second-order divergence-
form elliptic operator (details in Subsection 2.2). The main result is that this problem is globally 
well-posed. This may seem like a special choice of spaces at first, but actually, there is a good 
reason for this choice in that the quasilinear map

W1,q,q� 	 w 
→ L∞,∞ 	 w 
→ k(w) ∈ L∞,∞ 
→ Aw ∈ B(W1,q,q� ,W−1,q,q�

0 ) (1.7)

is well-defined, locally Lipschitz, and compact (estimate (3.10) and Lemma 3.2). In the usual 
weak setting with w ∈ W1,2,2, without the first embedding, the second mapping is not Lipschitz, 
so local well-posedness is less clear. On the other hand, if W−1,q,q

0 is replaced by a smaller space 
like L2,2 (the strong setting), the third mapping is not bounded, so more than global L∞-estimates 
are needed for global existence.

The W−1,q,q�

0 -setting is also well adapted to non-smooth situations like non-smooth coef-
ficients, non-smooth boundaries and mixed boundary conditions. In [11], there is a survey on 
results on the corresponding elliptic isomorphy that is used for the quasilinear theory. Here, this 
means that it is not necessary that all of the surface of the bulk domain is active and that lo-
cal well-posedness in this setting extends to mixed Dirichlet and Neumann boundary conditions 
[10] and that �+ and �− and the coefficients k, m are allowed to be (spatially) non-smooth to 
some extent. This is natural from a modelling point of view, as the separation of a smooth do-
main by an interface, even a plane, will usually create a kink. It can also be highly relevant in 
semiconductor device modelling [12] and for catalysis modelling [4]. A general advantage of the 
quasilinear approach to (1.1) – (1.3) is that it has a very good perturbation theory. It is a well-
studied problem how to include lower-order terms, time-dependence of coefficients and external 
forces, cf. Subsection 5.2. For example, in [8], local well-posedness of similar systems is shown 
in an Lp-setting with smooth coefficients and geometries.

Here, in the proof of global well-posedness, a Schaefer fixed point argument is used to prove 
existence of solutions, and the local Lipschitzianity of the map (1.7) is used afterwards, to show 
uniqueness. This method needs an explanation as a maximal regularity approach with Lips-
chitzian nonlinearity is already tailored to a contraction mapping argument that provides both 
existence and uniqueness. The point here is that we are interested in global existence. The usual 
quasilinear maximal parabolic regularity approach provides well-posedness up to possible blow-
up in the time-trace norm (the space of local semiflow). In the present weak setting, the trace 
space Xr

q,q�
of solutions u ∈ C0(JT , Xr

q,q�
) embeds into the space of Hölder-continuous func-

tions, Xr ↪→ Cβ,β� (Lemma 2.4), so for global existence, with the usual arguments, (at least) 
q,q�
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global Hölder bounds would be needed. The method presented here circumvents the need for 
uniform higher-order a priori bounds by splitting existence and uniqueness proofs. To apply 
Schaefer’s fixed point result, it is sufficient to know a posteriori L∞-bounds, rather than a priori
bounds. This appears to be a technical simplification only, but it is a standard method used for 
quasilinear elliptic problems [20], so it may in principle be rewarding for parabolic systems as 
well.

Regarding the nonlinearities in f, g, h in the system (1.1) – (1.3), the need for global L∞-
estimates can be a severe restriction, in particular, on reaction-diffusion problems. On the other 
hand, it is not a stronger condition than what is used in the semilinear theory [17,19,36], so the 
main result here can be applied in these situations. The boundedness-by-entropy method devel-
oped by Jüngel [27] shows that there is a connection between the entropic gradient structures of 
a system and L∞-estimates. A direct argument for this in a simple nonlinear diffusion-reaction 
case was also made in [9]. The proof of L∞-bounds, equilibration and exponential rates for sys-
tem (1.1) – (1.3), Lemma 3.5 and Theorem 4.1, make exact use of the gradient structure of the 
bulk-interface interaction in that for convex energies, the linearization of the dual dissipation 
potentials acts like a discrete gradient on the components.

Outline The paper is organized as follows. The next section contains basic assumptions on the 
geometry and coefficient functions in (1.1) – (1.3) and collects preliminary results on the bilinear 
form and linearized operator associated to the system. In Section 3, the main result on existence 
and uniqueness of global solutions is proved. In Section 4, the bulk-interface Poincaré inequality 
and exponential stability for the global equilibrium under mass conservation are shown. In the last 
Section 5, the relation of the model to the entropic Onsager system of heat diffusion and transfer 
derived in [31] are discussed and extensions of the main results like the case of �− = ∅, higher 
regularity, dependence of coefficients on time, and the inclusion of lower-order perturbations are 
given.

2. Basic assumptions and functional analytic framework

2.1. Assumptions on geometry and coefficients

Assumption 2.1. The bulk domains �+ and �− are bounded Lipschitz domains [23, Def. 
1.2.12]. The interface � is a d − 1-dimensional C1-part of the boundary of both �+ and �−
with Lipschitz boundary ∂� if d = 3.

For q ∈ [1, ∞], Lq(ω) denotes the usual real Lebesgue space of q-integrable functions on a 
domain or manifold ω, Wm,q(ω) denote the usual Lq -Sobolev spaces of order m ∈N and Cα(ω)

are the uniform Hölder spaces of exponent α ≥ 0 with C0(ω) = C(ω) if ω is bounded. Function 
spaces related to (1.1) – (1.3) are: for q, q� ∈ [1, ∞], α, α� ≥ 0 and Hd−1 the d − 1-dimensional 
Hausdorff measure on �,

Lq,q� := Lq(�+) × Lq(�−) × Lq�(�),

W1,q,q� := W 1,q (�+) × W 1,q(�−) × W 1,q�(�), and

Cα,α� := Cα(�+) × Cα(�−) × Cα�(�),
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where W 1,q(�) is defined through the standard notion of weak differentiability on the manifold 
� that preserves embedding and trace theorems, integration by parts and Poincaré inequalities.

The trace operator

tr� : W 1,q (�+) → Lq(�) (2.1)

is well-defined and continuous (likewise for �−). Set

tr� u = (tr� u+, tr� u−, u�) (2.2)

for the trace components of u on the interface �. Often we omit the operator tr� (like in the 
statement of the model equations (1.3) on �). Dual Sobolev spaces are denoted by

W
−1,q

0 (ω) := (W 1,q ′
(ω))′ and W−1,q,q�

0 := (W1,q ′,q ′
�)′

with 1
q

+ 1
q ′ = 1

q�
+ 1

q ′
�

= 1. For −∞ < l ≤ L < +∞ and n ∈N , let

(RL
l )n := {v ∈ Rn : l ≤ vi ≤ L for i = 1, . . . , n}, and

CL
l = {u ∈ C0,0 : l ≤ u±(x), u�(y) ≤ L for all x ∈ �±, y ∈ �}.

Assumption 2.2. Let k and m be given as in (1.4) and (1.5) and let −∞ < l < L < +∞ be given 
constants.

(1) Uniformly in u ∈ (RL
l )3, the coefficient matrices k(·, u) are measurable, bounded and ellip-

tic, i.e. there are constants k, k > 0 such that

‖k(·, u)‖L∞ ≤ k, (2.3)

and such that for all x ∈Rd , y ∈Rd−1,

x · k±(·, u)x ≥ k|x|2 and y · k�(·, u)y ≥ k|y|2, (2.4)

almost everywhere in �±, �. In particular, k and k may depend on l, L, but not on u ∈ (RL
l )3.

(2) Uniformly in u ∈ (RL
l )3, the transmission coefficients m±, m� are measurable and there are 

constants m, m > 0 such that

‖m(·, u)‖L∞(�) ≤ m (2.5)

and such that at least two of the three transmission functions, e.g. m+, m� are positively 
bounded from below,

m ≤ m+(·, u),m�(·, u), (2.6)

and the third transmission function is non-negative,

0 ≤ m−(·, u),
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almost everywhere in �. Note that again, m, m may depend on l, L, but not on u ∈ (RL
l )3.

(3) The functions R 	 u± 
→ k±(x, u±), R3 	 u 
→ k�(y, u) and R3 	 u 
→ m(y, u) are locally 
Lipschitz uniformly in y ∈ �, x ∈ �±.

(4) If d = 3, then k± are of the form k±(x, u±) = κ±(x, u±)�±(x). The functions κ± : �± ×
R → R are scalar, satisfy 2.2(3) and for all u± ∈ R, we have κ±(·, u±) ∈ C0(�±) with 
k ≤ κ±(·, u±). The functions �± : �± → R3×3

≥0 satisfy 2.2(1) and are uniformly continuous 
on �±.

Some examples of coefficients k, m that satisfy Assumption 2.2 are in Subsections 5.1 and 
1.1. Assumption 2.2(4) is used to guarantee that if d = 3, the non-autonomous operator Au(t)

that defines the system, does not change its domain of definition, see Lemma 3.2. Note that the 
condition �± ∈ C(�±)3×3 may be relaxed considerably, e.g. to hold only piecewise on layers. 
For a detailed discussion of necessary and sufficient conditions for this property, we refer to [11].

2.2. Bilinear form and elliptic operator

The dissipation in (1.1) – (1.3) across � is governed by the transmission coefficient matrix m
given by

m =
⎛
⎝ m+ + m� −m� −m+

−m� m− + m� −m−
−m+ −m− m+ + m−

⎞
⎠ .

With Assumption 2.2(2), m is positive semi-definite and for r = (r+, r−, r�) ∈ R3,

r · mr = 0 a.e., if and only if r+ = r− = r�. (2.7)

Let −∞ < l ≤ L < +∞. For fixed u ∈ CL
l , define the bilinear form

au : W1,2,2 × W1,2,2 →R

by

au(ψ,ϕ) := lu(ψ,ϕ) +mu(ψ,ϕ),

where

lu(ψ,ϕ) :=
∫

�+

∇ψ+ · k+(u+)∇ϕ+ dx +
∫

�−

∇ψ− · k−(u−)∇ϕ− dx

+
∫
�

∇�ψ� · k�(u)∇�ϕ� dHd−1,

=: lu,+(ψ+, ϕ+) + lu,−(ψ−, ϕ−) + lu,�(ψ�,ϕ�),

and
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mu(ψ,ϕ) =
∫
�

tr� ψ · mtr� ϕ dHd−1.

By (2.1), the form au is well-defined and continuous. Due to (2.7) and Assumption 2.2,

au(ϕ,ϕ) ≥ 0 and au(ϕ,ϕ) = 0 if and only if ϕ+ = ϕ− = ϕ� ≡ const. (2.8)

The form au induces an operator Au : W1,2,2 → W−1,2,2
0 by

Au(ψ)(ϕ) := au(ψ,ϕ), for all ψ,ϕ ∈ W 1,2,2.

For q, q� ∈ [2, ∞), let Aq,q�
u be the maximal restriction of Au to W−1,q,q�

0 with

dom(Aq,q�
u ) = {ψ ∈ W−1,q,q�

0 ∩ W1,2,2 : Auψ ∈ W−1,q,q�

0 },

and Aq,q�
u = Au|dom(Aq,q�

u )
. It will be shown in Lemma 3.2 below that dom(Aq,q�

u ) = W1,q,q� . 

Let Lq,q�
u be the divergence operator in W−1,q,q�

0 analogously induced by lu and let Lq,q�
u,+ , Lq,q�

u,−
and Lq,q�

u,� be the Neumann operators induced by lu,+, lu,− and lu,� on the domains �+, �− and 
�, respectively. We write Mq,q�

u for the bounded transmission operator given by

Mq,q�
u (ψ)(ϕ) := mu(ψ,ϕ), ψ ∈ dom(Lq,q�

u ), ϕ ∈ W1,q ′,q ′
�, (2.9)

so that

Aq,q�
u = Lq,q�

u +Mq,q�
u .

The external forces and inhomogeneous Neumann boundary conditions f, g, h in (1.1)–(1.3)
are realized as a W−1,q,q�

0 -functional F(u) with components F+(u) ∈ W
−1,q
0 (�+), F−(u) ∈

W
−1,q

0 (�−) and F�(u) ∈ W
−1,q�

0 given by

F+(u)(ϕ+) =
∫

�+

f+(u+)ϕ+ dx +
∫
�

g+(u)tr� ϕ+ dHd−1 +
∫

∂�+\�
h+(u+)tr∂�+\� ϕ+ dHd−1

F−(u)(ϕ−) =
∫

�−

f−(u−)ϕ− dx +
∫
�

g−(u)tr� ϕ− dHd−1 +
∫

∂�−\�
h−(u−)tr∂�−\� ϕ− dHd−1

F�(u)(ϕ�) =
∫
�

f�(u)ϕ� dHd−1 +
∫
∂�

h�(u�)tr∂� ϕ� dHd−2,

for all ϕ ∈ W1,q ′,q ′
� . Using trace and embedding results, it follows that F(u) is well-defined, if

f (u) ∈ Lp,p�, and g±(u),h±(u) ∈ Lρ(�),

where
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p >
d

d + 1 − d
q ′

,p� >
d − 1

d − d−1
q ′
�

and ρ >
d − 1

d − d
q ′

.

If d = 2, then p� > 1 is sufficient. If d = 3, then h�(u�) ∈ Lρ�(∂�) with ρ� > 1 is a suffi-
cient condition. With the assumptions in this section, the system (1.1), (1.2) and (1.3) can be 
considered as the quasilinear abstract Cauchy problem

u̇(t) +Au(t)u(t) = F(u(t)) ∈ W−1,q,q�

0 , u(0) = u0, (2.10)

for q, q� ≥ 2.

2.3. Maximal parabolic regularity and embedding theorems

In the proof of the main result, we use non-autonomous maximal parabolic regularity of Aq,q�

u(·)
in W−1,q,q�

0 . To make this more precise, this subsection contains some definitions and prelim-
inary results. For T > 0, let in the following JT = (0, T ). For two Banach spaces X, Y that 
form an interpolation couple, (X, Y)θ,p denotes the real interpolation spaces with parameters 
θ ∈ (0, 1), p ∈ [1, ∞].

Definition 2.3. Let 1 < r < ∞, let X be a Banach space and assume that B is a closed operator 
in X with dense domain dom(B) ⊂ X, equipped with the graph norm. We say that B satisfies 
maximal Lr(JT ; X)-regularity if for all u0 ∈ (dom(B), X)1− 1

r
,r

and f ∈ Lr(0, T ; X) there is a 
unique solution

u ∈ Lr(JT ;dom(B)) ∩ W 1,r (JT ;X)

of the abstract Cauchy problem

{
u̇ + Bu = f,

u(0) = u0,

posed in X, satisfying

‖u̇‖Lr(JT ;X) + ‖Bu‖Lr(JT ;X) ≤ C(‖u0‖(dom(B),X)
1− 1

r ,r
+ ‖f ‖Lr(JT ;X))

with a constant C > 0 independent of u0 and f (see e.g. [1, Ch. III.1]).

Note that the notion of maximal Lr(JT ; X)-regularity is independent of 1 < r < ∞ and T >

0, cf. [14]. In the following, for q, q� ≥ 2, 1 < r < ∞ and given u ∈ C0,0, we consider maximal 
regularity of Aq,q�

u . Thus,

MRr
q,q�

:= Lr(JT ;dom(Aq,q�
u )) ∩ W 1,r (JT ;W−1,q,q�

0 )

is the corresponding solution space and

Xr
q,q := (dom(Aq,q�

u ),W−1,q,q�) 1

� 0 1−

r
,r
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is the corresponding time trace space.
In Lemma 3.2 below, it is shown that there are q > d , q� > d − 1, such that dom(Aq,q�

u ) =
W1,q,q� . The following lemma summarizes useful embeddings for the corresponding function 
spaces.

Lemma 2.4. If dom(Aq,q�
u ) = W1,q,q� , then

(1) for α ≤ 1 − d
q

and α� ≤ 1 − d−1
q�

,

dom(Aq,q�
u ) ↪→ Cα,α�, (2.11)

(2) for any 1 < r < ∞,

MRr
q,q�

↪→ C0(JT ;Xr
q,q�

). (2.12)

If q > d , q� > d − 1, and r > max(
2q

q−d
, 2q�

q�−d+1 ), then

Xr
q,q�

↪→ Cβ,β�, (2.13)

where 0 < β ≤ 1 − d
q

− 2
r

and 0 < β� ≤ 1 − d−1
q�

− 2
r
.

(3) for q > d , q� > d − 1, let 0 < δ < min(
q−d
2q

, q�−d+1
2q�

) and r > max(
2q

q−2δq−d
, 2q�

q�−2δq�−d+1 ), 
then

MRr
q,q�

↪→ Cδ(JT ;Cγ,γ�) (2.14)

with 0 < γ ≤ 1 − d
q

− 2
r

− 2δ and 0 < γ� ≤ 1 − d−1
q�

− 2
r

− 2δ. In particular, the embedding

MRr
q,q�

↪→ C0(JT ;C0,0) (2.15)

is compact.

Proof. Note that �+, �− and � are sufficiently regular for embedding and interpolation results 
to work “as usual”. The first embedding (2.11) is standard, cf. e.g. [39, 2.8.1(c)]. For embedding 
(2.12), cf. [1, Section III.4.10]. Embedding (2.13) follows by definition of Xr

q,q�
, combining 

e.g. the interpolation result [39, p. 186, (14)] and the embedding [39, 2.8.1]. From [13, Lemma 
3.4(b)], it follows that

MRr
q,q�

↪→ Cδ(JT ; (W−1,q,q�

0 ,W1,q,q�)θ,1)

with 0 < θ ≤ 1 − 1
r

− δ. Embedding (2.14) then follows again by combining [39, p. 186, (14)]
and [39, 2.8.1]. �

For uniqueness, an assumption on the dependence of F of u is needed. By embedding, the 
assumption is satisfied, e.g. if the dependence of F of u in an Lp-norm is locally Lipschitz 
(for example, it is straightforward to see that semilinear terms of reaction-diffusion type with 
arbitrary powers are included [9]).
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Assumption 2.5. Given 1 < r < ∞ and q, q� > 2, the function F : Xr
q,q�

→ W−1,q,q�

0 is bound-

edly Lipschitz in the sense that for all L̃ > 0, there exists a constant C
L̃

> 0 such that for all 
u1, u2 ∈ Xr

q,q�
with ‖u1‖Xr

q,q�
, ‖u2‖Xr

q,q�
≤ L̃,

‖F(u1) −F(u2)‖W
−1,q,q�
0

≤ C
L̃
‖u1 − u2‖Xr

q,q�
.

3. Global existence and uniqueness

The main result of the paper is global existence and uniqueness of solutions of (2.10). For local 
well-posedness, it is sufficient that F satisfies Assumption 2.5. For global existence, it is required 
that F preserves the L∞-bounds for (2.10). This requirement on F is defined more precisely in 
Step (3) in the proof of Theorem 3.1. Examples of F that satisfy these assumptions are given in 
Corollary 3.6 and it is shown that this includes coupled volume-surface reaction-diffusion in [9]
(the case F = 0 corresponds to the original gradient structure).

Theorem 3.1. There exist q > d , q� > d −1 such that for all r > max(
2q

q−d
, 2q�

q�−d+1 ), u0 ∈ Xr
q,q�

, 
T > 0 and F satisfying Assumption 2.5 and preserving L∞-bounds, there is a unique global 
solution

u ∈ W 1,r (JT ;W−1,q,q�

0 ) ∩ Lr(JT ;W1,q,q�)

of (2.10). In particular, the solution is Hölder continuous in time and space,

u ∈ Cδ(JT ;Cγ,γ�),

with δ, γ, γ� as in Lemma 2.4 and (2.10) is well-posed.

The proof of Theorem 3.1 is divided into four steps:

(1) provisional reduction to bounded coefficients,
(2) preliminary results on the linearized non-autonomous problem,
(3) a priori L∞-bounds,
(4) Schaefer argument and proof of the theorem.

(1) Provisional reduction to bounded coefficients By Lemma 2.4, u0 ∈ Cβ,β� ⊂ C0,0. Let 
−∞ < l0 ≤ L0 < +∞ be such that u0 ∈ CL0

l0
. Define

[f ]Ll (x) :=

⎧⎪⎨
⎪⎩

L, f (x) ≥ L,

l, f (x) ≤ l,

f (x), otherwise,

and let L := L0 + 1, l = l0/2. Instead of the coefficient functions k and m, consider

kL(·, u(·)) = k(·, [u]L(·)) and mL(·, u(·)) = m(·, [u]L(·)) (3.1)
l l l l
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in the following. In Step (4) below, it is shown that kL
l = k and mL

l = m along the orbits of u0. 
Since the solution is unique and regular and the dependence of k, m of the solution is Lipschitz, 
this is sufficient to prove the theorem. Clearly, if k, m satisfy Assumption 2.2, then also kL

l , mL
l

satisfy Assumption 2.2 and the bounds in 2.2(1) and 2.2(2) hold uniformly in u ∈ C0,0 for kL
l , 

mL
l .

(2) Preliminary results on the linearized non-autonomous problem In this step of the proof and 
in Step (3), using Step (1), assume additionally that all coefficient functions are such that the 
bounds in 2.2(1) and 2.2(2) hold uniformly in u ∈ C0,0.

Lemma 3.2. There exist q > d and q� > d −1 such that for any u ∈ C0(JT ; C0,0), for all t ∈ JT , 
for any λ > 0, the operator Aq,q�

u(t) + λ is an isomorphism

Aq,q�

u(t)
+ λ : W1,q,q� → W−1,q,q�

0 . (3.2)

Proof. First note that Aq,q�

u(t) : dom(Aq,q�

u(t) ) → W−1,q,q�

0 is well-defined for all t ∈ JT . In the case 
d = 2, by the Lax-Milgram theorem, the claim holds for q = q� = 2. By Sneiberg’s theorem [37], 
the isomorphism property extrapolates to a neighbourhood of W1,2,2 in the complex interpolation 
scale [W1,p,p�, W1,p′,p′

� ]1/p = W1,2,2�, 1 < p, p� < ∞, see [24].
If d = 3, then Assumption 2.2(4) holds. If κ± ≡ 1, then k± = �± is independent of u and then 

by [15, Theorem 1.1], [25, Lemma 6.5], there is a q > 3 such that the isomorphism property 
Lu(t),± + λ : W 1,q (�±) → W

−1,q

0 (�±) holds true. Using the same extrapolation argument as 

in the case d = 2, there exists a q� > 2 such that Lu(t),� + λ : W 1,q�(�) → W
−1,q�

0 (�) is an 
isomorphism. In [11, Theorem 6.3] it was shown that the domains of Lu(t),±, Lu(t),� remain 
unchanged by a scalar multiplicative perturbation κ± ∈ C0(�±) that is positively bounded from 
below. This proves the result for the operators Lu(t), t ∈ JT . By relative boundedness of Mu(t), 
[10, Lemma 3.4], the domains of Lu(t) + λ and Au(t) + λ coincide. This proves the claim. �
Lemma 3.3. Let 2 ≤ q, q� < ∞, 1 < r < ∞ and let u ∈ C0(JT ; C0,0). Then for all t ∈ JT , Aq,q�

u(t)

has maximal Lr(JT ; W−1,q,q�

0 )-regularity.

Proof. The result was shown in [10] if � is flat. It remains to check the maximal regularity of 
the Neumann operator Lu(t),� on C1-boundaries. This follows from maximal regularity for flat 
domains [24], using the usual localization methods, i.e. exploiting that the property of maximal 
regularity is preserved under perturbations that occur when locally flattening the domain and 
straightening the boundary with respect to a sufficiently fine covering and a corresponding parti-
tion of unity, see [7] for the general strategy and [8] for this argument in a similar context. �
Lemma 3.4. Let w ∈ C0(JT ; C0,0), q, q� be as in Lemma 3.2. Then for every r and u0 ∈ Xr

q,q�
as 

in Theorem 3.1, for all f ∈ Lr(JT ; W−1,q,q�

0 ), there exists a unique global solution v ∈ MRr
q,q�

of

v̇(t) +Aq,q�

w(t) v(t) = f (t), in W−1,q,q�

0 , (3.3)

v(0) = u0.
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The solution operator

(∂t +Aq,q�

w(·) )
−1 : f ∈ Lr(JT ;W−1,q,q�

0 ) 
→ v ∈ MRr
q,q�

(3.4)

is bounded.

Proof. For two Banach spaces X, Y , let B(X, Y) denote the space of bounded linear operators 
B : X → Y . By continuity of w, kL

l and mL
l and by Lemma 3.2, the map JT 	 t 
→ Aq,q�

w (t) ∈
B(W1,q,q� , W−1,q,q�

0 ) is uniformly continuous. By Lemma 3.4, for all t ∈ JT , Aq,q�
w (t) has max-

imal Lr(JT ; W−1,q,q�

0 )-regularity, so existence and boundedness of the solution operator follow 
from [34, Theorem 2.5]. �
(3) L∞-bounds on u If F = 0, uniform L∞,∞-bounds on u can be proved by a bulk-interface 
comparison principle. With respect to results for the bulk problem, the point is to show that the 
nonlinear bulk-interface interaction terms derived from a generalized gradient structure preserve 
this property.

Lemma 3.5. Let r, q, q� as in Theorem 3.1, F = 0 and u0 ∈ Xr
q,q�

with u0 ∈ CL
l for some −∞ <

l ≤ L < +∞. Assume that u ∈ MRr
q,q�

is a solution of (2.10). Then for all t ∈ JT , u(t) ∈ CL
l .

Proof. Define ζl(t) = [(u(t) − l)−] and ζL(t) = [(L − u(t))−], where

[f −](x) :=
{

0, f (x) ≥ 0,

−f (x), f (x) < 0.

Since [·−] is Lipschitz and r, q, q� ≥ 2, we have ζl, ζL ∈ Lr(JT ; W1,q,q�) ↪→ Lr ′
(JT ; W1,q ′,q ′

�)

with

∇ζL(t, x) =
{

0, u(t, x) ≤ L,

∇u(t, x), u(t, x) > L,

and ζl(0) = ζL(0) ≡ 0. Thus, for all s ∈ JT , testing (2.10) with ζL in space and time gives ζL ≡ 0
as

s∫
0

u̇(t)(ζL(t))dt = 1

2
‖ζL(s)‖2

L2,2 ≥ 0

and

s∫
0

Aq,q�

u(t) u(t)(ζL(t))dt =
s∫

0

lu(t)(u(t), ζL(t)) +mu(t)(u(t), ζL(t))dt ≥ 0. (3.5)

To show the estimate from below in (3.5), note that
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s∫
0

lu(t)(u(t), ζL(t))dt =
s∫

0

lu(t)(ζ
L(t), ζL(t))dt ≥ 0

as k is bounded below by k and that

s∫
0

mu(t)(u(t), ζL(t))dt =
s∫

0

∫
�

m+(u)(u+ − u�)(ζL+ − ζL
� )(t) (3.6)

+ m−(u)(u− − u�)(ζL− − ζL
� )(t)

+ m�(u)(u+ − u−)(ζL+ − ζL−)(t)dHd−1 dt,

where m is bounded below by m and where

∫
�

(u+ − u�)(ζL+ − ζL
� )(t)dHd−1 =

∫
{x∈� : u+(x)>L>u�(x)}

(u+ − u�)(u+ − L)(t)dHd−1

+
∫

{x∈� : u+(x)<L<u�(x)}
(u+ − u�)(L − u�)(t)dHd−1

+
∫

{x∈� : u+(x),u�(x)>L}
(u+ − u�)(u+ − u�)(t)dHd−1 ≥ 0,

and non-negativity of the remaining terms on the right-hand-side of (3.6) follows analogously.
The proof of the lower bound, i.e. ζ l ≡ 0 follows analogously by testing (2.10) with ζ l . �
If F �= 0, the proof of Theorem 3.1 still requires that F preserves L∞-bounds in a suitable 

sense. More precisely, it is straightforward to see that the proof of Lemma 3.5 still works if F is 
such that for given u0 ∈ CL

l , there are constants lF < LF ∈ R such that for all u ∈ MRr
q,q�

such 
that u(0) = u0, for all s ∈ JT ,

s∫
0

F(u(t))(ζLf (t))dt ≤ 0 and

s∫
0

F(u(t))(ζlf (t))dt ≥ 0.

It is shown in [9] how chemical reaction rates of type (1.6) fit into the framework of Theorem 3.1. 
Another general example is given by terms of Allen-Cahn-type, treated in the following corollary. 
A concrete example is

f+(u+) = −u3+, g+(u+) = (1 − u+)3, f�(u�) = −u5
�. (3.7)

Corollary 3.6. Let F satisfy Assumption 2.5 and let all the components ϕ of F , e.g. ϕ =
f+, g−, . . . in (1.1)–(1.3) be independent of x ∈ �+, �−, y ∈ �, respectively. Assume that ϕ
are continuously differentiable in u and that g± depend only on u±, respectively, whereas f�

depends only on u�. Assume that all ϕ satisfy the dissipativity condition
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lim inf|v|→∞ −ϕ′(v) > 0. (3.8)

Then, under the assumptions of Lemma 3.5, given a solution u ∈ MRr
q,q�

of (2.10), there are 

constants −∞ < lf ≤ Lf < +∞, such that for all t ∈ JT , u(t) ∈ C
Lf

lf
.

Proof. Condition (3.8) guarantees that for every component ϕ, there exist constants −∞ < lϕ ≤
Lϕ < +∞ such that ϕ(v) > 0 for all v < lϕ and ϕ(v) < 0 for all v > Lϕ . Let lf := minϕ(lϕ) and 
Lf := maxϕ(Lϕ). In the choice of test functions ζl, ζL in the proof of Lemma 3.5, replace l, L
by lf , Lf . It is then straightforward to check that for all s ∈ JT , 

∫ s

0 F(u(t))(ζLf (t)) dt ≤ 0 and 
that 

∫ s

0 F(u(t))(ζlf (t)) dt ≥ 0. Combined with the calculations in the proof of Lemma 3.5, this 
proves the claim. �
(4) Schaefer argument and proof of Theorem 3.1 Let q, q� be given by Lemma 3.2 and let r
and u0 ∈ Xr

q,q�
be given as in Theorem 3.1. By embedding (2.13), u0 ∈ CL

l for some −∞ < l ≤
L < +∞. In the following, let

C0
u0(JT ;C0,0) := {u ∈ C0(JT ;C0,0) : u(0) = u0}. (3.9)

Define

T : C0
u0(JT ;C0,0) → C0

u0(JT ;C0,0)

by T w = v ∈ MRr
q,q�

the solution of (3.3) with v(0) = u0 given by Lemma 3.4. By embedding 
(2.15), Lemma 3.4 and Assumption 2.5,

T w = IdMRr
q,q�

→C0
u0 (JT ;C0,0)(∂t +Aq,q�

w(·) )
−1(F(w))

is well-defined and compact. A fixed point of T would solve (2.10). To obtain existence of a 
fixed point by Schaefer’s Theorem [16, Theorem 9.2.4], it suffices to show that

(1) T is continuous, and that
(2) the Schaefer set

S := {u ∈ C0
u0(JT ;C0,0) : u = λT (u) for some 0 ≤ λ ≤ 1}

is bounded.

To show continuity of T , we show continuity of the map

C0
u0(JT ;C0,0) 	 w 
→ (∂t +Aq,q�

w(·) )
−1 ∈ B(Lr(JT ;W−1,q,q�

0 );MRr
q,q�

) =: Br
q,q�

.

This follows from bounded Lipschitzianity of the map w 
→ Aq,q�

w(·) and continuity of the in-

version. A detailed proof is the following: for given w ∈ C0
u0(JT ; C0,0), there are constants 

−∞ < l0 < L0 < +∞ (possibly dependent on T ), such that w ∈ C0
0(JT ; CL0). Define
u l0
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Cw := ‖(∂t +Aq,q�

w(·) )
−1‖Br

q,q�

(Lemma 3.4) and let Cδ be a Lipschitz constant for k and m on (RL0+δ
l0−δ )3 with δ > 0 (δ possibly 

small such that Assumption 2.2(3) applies). Let wn → w in C0
u0(JT ; C0,0) and let n be so large 

that wn ∈ C0
u0(JT ; CL0+δ

l0−δ ) and ‖wn − w‖C0
u0 (JT ;C0,0) ≤ 1

2CwCδT 1/r . Then by Assumption 2.2(3)

and the definition of Aq,q�
w ,

‖Aq,q�

w(·) −Aq,q�

wn(·)‖Lr(JT ;B(W1,q,q� ,W
−1,q,q�
0 )

≤ CδT
1/r‖w − wn‖C0

u0 (JT ;C0,0), (3.10)

and thus

‖(∂t +Aq,q�

w(·) )
−1 − (∂t +Aq,q�

wn(·))
−1‖Br

q,q�

= ‖(∂t +Aq,q�

w(·) )
−1(∂t +Aq,q�

wn(·) − ∂t +Aq,q�

w(·) )(∂t +Aq,q�

wn(·))
−1‖Br

q,q�

≤ ‖(∂t +Aq,q�

w(·) )
−1(Aq,q�

wn(·) −Aq,q�

w(·) )‖B(MRr
q,q�

;MRr
q,q�

)·
· ‖(∂t +Aq,q�

w(·) )
−1 + (∂t +Aq,q�

wn(·))
−1 − (∂t +Aq,q�

w(·) )
−1‖Br

q,q�

≤ C2
wCδT

1/r‖wn − w‖C0
u0 (JT ;C0,0) + 1

2
‖(∂t +Aq,q�

w(·) )
−1 − (∂t +Aq,q�

wn(·))
−1‖Br

q,q�
,

so T is continuous.
To show (2), note that if uλ = λT (uλ) for some 0 < λ ≤ 1, then by definition of T , uλ ∈

MRr
q,q�

and uλ satisfies (2.10) with initial value uλ(0) = λu0 and right-hand-side λF(uλ). Thus, 
if F ≡ 0 or if F is as in Corollary 3.6, then S is bounded.

In addition, the L∞-bounds are such that kL
l = k and mL

l = m along orbits of u0, justifying 
step (1) a posteriori with possible adjustments to the choice of l and L by Corollary 3.6. This 
concludes the proof of existence in Theorem 3.1.

Local well-posedness and hence also uniqueness follow from the Lipschitz dependence (3.10)
that provides a contraction for small T > 0, see [33, Theorem 3.1] for the abstract result in the 
theory of maximal parabolic regularity for quasilinear abstract Cauchy problems and see [10] for 
a proof in a very similar setting. Global stability in L2,2 is shown in the next section.

4. Exponential decay to equilibrium and stability

We prove that under Assumption 2.2(2), the interaction on and across the interface � is suffi-
ciently strong to force the system into the uniform equilibrium given by

u∞ = 1

V

⎛
⎜⎝∫

�+

u0+(x)dx +
∫

�−

u0−(x)dx +
∫
�

u0
�(y)dHd−1

⎞
⎟⎠

associated to u0, where

V = |�+| + |�−| + |�|H .

d−1
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The quasilinear gradient structure combined with the L∞-bounds provide an exponential rate in 
L2,2. Here, by a slight abuse of notation, u∞ also denotes the constant vector function u∞ =
u∞(1, 1, 1)T ∈ C0,0.

Theorem 4.1. Under the assumptions of Theorem 3.1 with F ≡ 0, given u0 ∈ Xr
q,q�

, the solution 
u converges to u∞ at an exponential rate, in the sense that there is a δ > 0 depending only on 
u0, k, m, � and �, such that for all s ≥ 0,

‖u(s) − u∞‖L2,2 ≤ e−δs‖u0 − u∞‖L2,2 . (4.1)

Proof. Since for every solution u ∈ MRr
q,q�

and T > 0, au(s)(u(s), u∞) = 0, applying (2.10) to 
u − u∞ shows the energy balance

‖u(s) − u∞‖2
L2,2 +

s∫
0

au(t)(u(t), u(t))dt = ‖u0 − u∞‖2
L2,2, (4.2)

for all s > 0. By Lemma 3.5 and Assumption 2.2,

lu(t)(u(t), u(t)) ≥ C‖∇u(t)‖2
L2,2, and

mu(t)(u(t), u(t)) ≥ m

⎛
⎝∫

�

(u+ − u�)2(t) + (u− − u�)2(t) + (u+ − u−)2(t)dHd−1)

⎞
⎠ .

Hence, with the following Poincaré-type inequality, the claim follows directly from Gronwall’s 
inequality. �
Lemma 4.2. (Bulk-Interface Poincaré Inequality) Let u ∈ W1,2,2 and u∞ the equilibrium asso-
ciated to u. Then there is a constant C > 0, independent of u, such that

‖u − u∞‖2
L2,2 ≤ C(‖∇u‖2

L2,2 + ‖u+ − u�‖2
L2(�)

+ ‖u− − u�‖2
L2(�)

+ ‖u+ − u−‖2
L2(�)

). (4.3)

Proof. For any u ∈ L1,1, let in the following ū+ := 1
|�+|

∫
�+ u+, ū− := 1

|�−|
∫
�− u− and ū� :=

1
|�|

∫
�

u� and let ū = (ū+, ū−, ū�) ∈ R3. To prove (4.3), we use the two (standard) versions of 

Poincaré’s inequality, see e.g. [5, Theorem 1 and Corollary 3]. For all u+ ∈ W 1,p(�+),

(1) there is a constant C̄+ > 0, such that

‖u+ − ū+‖2
L2(�+)

≤ C̄+‖∇u+‖2
L2(�+)

, and, (4.4)

(2) there is a constant C�+ > 0, such that

‖u+‖2
L2(�+)

≤ C�+(‖∇u+‖2
L2(�+)

+ 1

|�| |
∫

u+|2). (4.5)
�
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Clearly, analogous statements hold for �− with constants C̄− > 0 and C�− > 0 and (4.4) holds 
for u� on the manifold � with constant C̄� > 0. An elementary calculation shows that

‖u − u∞‖2
L2,2 = ‖u − ū‖2

L2,2 − V (u∞)2 + |�+|ū2+ + |�−|ū2− + |�|ū2
�.

Inserting V u∞ = |�+|ū+ + |�−|ū− + |�|ū� gives

‖u−u∞‖2
L2,2 = ‖u− ū‖2

L2,2 + |�+||�−|
V

(ū+− ū−)2 + |�+||�|
V

(ū+− ū�)2 + |�−||�|
V

(ū−− ū�)2.

(4.6)
By (4.4), ‖u − ū‖2

L2,2 ≤ (C̄+ + C̄− + C̄�)‖∇u‖2
L2,2 , so it remains to estimate the last three terms 

in (4.6) by the right-hand-side in (4.3). By Hölder’s inequality and by (4.5),

(ū+ − ū�)2 = 1

|�+|2 (

∫
�+

u+ − ū�)2 ≤ 1

|�+|‖u+ − ū�‖2
L2(�+)

≤ C�+
|�+| (‖∇u+‖2

L2(�+)
+ 1

|�| |
∫
�

u+ − ū�|2)

≤ C�+
|�+| (‖∇u+‖2

L2(�+)
+ ‖u+ − u�‖2

L2(�)
).

The term (ū− − ū�)2 can be estimated analogously. In order to estimate the last term (ū+ − ū−)2, 
insert −ū� + ū� and use the previous estimates. With this strategy, it is clear that for (4.3) to hold, 
it is sufficient that two of the three coefficient functions m+, m−, m� are positive, so not every 
pair of unknowns needs to interact across �. It is also sufficient for two of the coefficients to 
be positive to guarantee the structure of the kernel of au in (2.8). This concludes the proof of 
Lemma 4.2 and thus of Theorem 4.1. �

In addition to exponential stability of u∞ within the sets of initial data with equal mass, 
Theorem 4.1 immediately implies stability of u∞ in Xr

q,q�
:

Corollary 4.3. For every v∞ ∈ R+, ε > 0, if u0 ∈ Xr
q,q�

with ‖u0 − v∞‖L1,1 < εV , then |u∞ −
v∞| < ε.

Proof. A direct calculation shows that

|u∞ − v∞| = 1

V

∣∣∣∣∣∣∣
∫

�+

u0+(x) − v∞ dx +
∫

�−

u0−(x) − v∞ dx +
∫
�

u0
�(y) − v∞ dy

∣∣∣∣∣∣∣
≤ 1 ‖u0 − v∞‖L1,1 . �
V
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5. Onsager modelling, extensions and concluding remarks

5.1. Entropic gradient structure for heat transfer (Onsager model)

The system in (1.1)–(1.3)was motivated by non-equilibrium thermodynamical modelling of 
heat transfer and diffusion processes across interfaces, [29], [32], and based on the results in [22]
and [31]. For example, in [31], it is shown that for flat interfaces �, the heat transfer Onsager or 
gradient system associated to

θ̇ = K(θ)DS(θ) (5.1)

is represented by the set of equations

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

θ̇± + 1
c± div(K±(θ±)∇ 1

θ± ) = 0, in (0, T ) × �±,

(
K±(θ±)

c± ∇ 1
θ± )ν± + M±(θ)( 1

θ± − 1
θ�

) + M�(θ)( 1
θ± − 1

θm+
) = 0, on (0, T ) × �,

(K±(θ±)∇ 1
θ± )ν± = 0,

on (0, T ) × {∂�±\�},
(5.2)

on the bulk parts, and

{
θ̇� + 1

c�
div(K�(θ)∇ 1

θ�
) − M+(θ)( 1

θ+ − 1
θ�

) − M−(θ)( 1
θ− − 1

θ�
) = 0, in (0, T ) × �,

(K�(θ)∇ 1
θ�

)ν� = 0, on (0, T ) × ∂�,

(5.3)
on the flat interface �, where c±, c� > 0 are the specific heats of bulk and interface materials, 
respectively, and the coefficients K, M specify thermal conductivity within materials and across 
� in an entropic modelling. In (5.1), S is the total entropy functional

S(θ) =
∫

�+

c+ log θ+ dx +
∫

�−

c− log θ− dx +
∫
�

c� log θ� dy,

and K is the Onsager operator corresponding to the dual dissipation potential

2�∗(θ,φ) = 2�∗+(θ+, φ+) + 2�∗−(θ−, φ−) + 2�∗
�(tr� θ, tr� φ)

=
∫

�+

∇ φ+
c+

· K+(θ+)∇ φ+
c+

dx +
∫

�−

∇ φ−
c−

· K−(θ−)∇ φ−
c−

dx

+
∫
�

∇�

φ�

c�

· K�(tr� θ)∇ φ�

c�

dy +
∫
�

M�(tr� θ)(
tr� φ+
tr� c+

− tr� φ−
tr� c−

)2 dy

+
∫
�

M+(tr� θ)(
tr� φ+
tr� c+

− tr� φ�

tr� c�

)2 + M−(tr� θ)(
tr� φ−
tr� c−

− tr� φ�

tr� c�

)2 dy. (5.4)

Equations (5.2) and (5.3) are equivalent to (1.1)–(1.3) by differentiating ∇ 1
θ

to − 1
θ2 ∇θ and 

writing 1 (θ+ − θ�) instead of ( 1 − 1 ), for every term of this kind. The coefficients K

θ�θ+ θ� θ+
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and k and M and m are then related via m±(tr� θ) = M±(tr� θ)
θ�tr� θ± , m�(tr� θ) = M�(tr� θ)

tr� θ+tr� θ− , k±(θ±) =
K±(θ±)

θ2±
and k�(tr� θ) = K�(tr� θ)

θ2
�

.

We check the applicability and the implications of Theorem 3.1: It is straightforward to see 
that K, M satisfy Assumption 2.2 if and only if k, m satisfy Assumption 2.2. So if Assump-
tion 2.2 on K, M is respected in an entropic modelling, well-posedness and exponential stability 
are obtained. In particular, the positivity of two components of M guarantees entropy produc-
tion of the bulk-interface interaction and information on the Onsager system given by S and 
�∗ is retrieved: Starting from positive initial values, l > 0, the regularity in Theorem 3.1 and 
the maximum principle justify rigorously the equivalence of (5.2), (5.3) and (1.1)–(1.3) and the 
solution provides the gradient flow of S with respect to the dual dissipation metric �∗. The en-
tropy S(θ(t)) is well-defined along orbits and −S provides a strict Lyapunov functional by the 
energy balance − d

dt
S(θ(t)) + 2�∗(θ(t), c

θ(t)

) = 0 and the fact that 2�∗(θ(t), c
θ(t)

) = 0 implies 
aθ(t)(θ(t), θ(t)) = 0 along the positive orbits of θ . By Theorem 4.1, exponential stability holds 
in the sense that ‖cθ(t) − cθ∞‖L2,2 ≤ e−δt‖cθ0 − cθ∞‖L2,2 for some δ > 0.

5.2. Small extensions and further remarks

The next remarks concern extensions of Theorem 3.1, mostly based on perturbation theory 
for maximal parabolic regularity.

Remark 5.1. Clearly, the analysis above includes the simpler case of bulk-surface interaction 
with �− = ∅, without the variable u− and with m− = m� = 0.

Remark 5.2. If the Lipschitz dependence of k, m and F on u in Assumptions 2.2(3) and 2.5 is 
improved to Cn, n ∈ N ∪ {∞, ω}, then the solution u in Theorem 3.1 gains time regularity by 
[33, Theorem 5.1], i.e. it follows that

u ∈ Cn(JT ;Xr,q,q�) ∩ Cn+1−1/r (JT ;W−1,q,q�

0 ) ∩ Cn−1/r (JT ;W1,q,q�)

and that u ∈ C∞(JT ; W1,q,q�) if n = ∞ and u is real analytic on JT if n = ω.

Remark 5.3. The coefficient functions k, m and external forces and inhomogeneous bound-
ary conditions f, g, h may additionally depend on time. For example, Theorems 3.1 and 4.1
continue to hold if Assumption 2.2 holds uniformly in t ∈ (0, ∞) for k, m and t 
→ Au(t) ∈
L(W1,q,q� , W−1,q,q�

0 ) is continuous for all u ∈ Xr
q,q�

and if Assumption 2.5 holds where 

t 
→ F(t, u) is in Lr(JT ; W−1,q,q�

0 ), cf. [33, Section 3].

Remark 5.4. The results in Theorem 3.1 extend to perturbations of Aq by lower-order terms 
like transport terms b · ∇u±, b ∈ Rd . In particular, with suitable regularity assumptions, the 
coefficients c± : �± →R+\{0} and c� : � → R+\{0} in Subsection 5.1 can be chosen to depend 
on the spatial variables.

Remark 5.5. An exponential convergence rate as in (4.6) also holds in Lp,p for p > 2 due to 
interpolation of the p-norms since

‖u(s) − u∞‖L∞,∞ ≤ 3 max(|l − u∞|, |L − u∞|) =: C∞
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is bounded uniformly in time. For all s ≥ 0, with θ = 1 − 2
p

, we get

‖u(s) − u∞‖Lp,p ≤ Cθ∞‖u(s) − u∞‖1−θ

L2,2

≤ Cθ∞e
− 2δ

p
s‖u0 − u∞‖

2
p

L2,2

≤ e
− 2δ

p
s‖u0 − u∞‖Lp,p .

Additional rates that exploit the gradient structure of system (1.1) – (1.3) depend on the choice of 
k, m or of the energy and dissipation functionals S and �, see e.g. [17] for exponential L1-rates 
for volume-surface reaction-diffusion based on entropy production.

Acknowledgments

K.D. was supported by the European Research Council via “ERC-2010-AdG no. 267802 
(Analysis of Multiscale Systems Driven by Functionals)”.

References

[1] H. Amann, Linear and Quasilinear Parabolic Problems. Vol. I, Monographs in Mathematics, vol. 89, Birkhäuser, 
Boston, 1995.

[2] H. Berestycki, J.-M. Roquejoffre, L. Rossi, The influence of a line with fast diffusion on Fisher-KPP propagation, 
J. Math. Biol. 66 (4–5) (2013) 743–766.

[3] D. Bothe, On the multi-physics of mass-transfer across fluid interfaces, arXiv :1501 .05610.
[4] D. Bothe, M. Köhne, S. Maier, J. Saal, Global strong solutions for a class of heterogeneous catalysis models, J. Math. 

Anal. Appl. 445 (1) (2017) 677–709.
[5] A. Boulkhemair, A. Chakib, On the uniform Poincaré inequality, Commun. Partial Differ. Equ. 32 (7–9) (2007) 

1439–1447.
[6] P. Colli, J. Sprekels, Optimal control of an Allen-Cahn equation with singular potentials and dynamic boundary 

condition, SIAM J. Control Optim. 53 (2012) 213–234.
[7] R. Denk, M. Hieber, J. Prüss, R-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. 

Am. Math. Soc. 166 (788) (2003), viii+114.
[8] R. Denk, J. Prüss, R. Zacher, Maximal Lp-regularity of parabolic problems with boundary dynamics of relaxation 

type, J. Funct. Anal. 255 (11) (2008) 3149–3187.
[9] K. Disser, Global existence and uniqueness for a volume-surface reaction-nonlinear-diffusion system, Discrete Con-

tin. Dyn. Syst., Ser. S (2019), in press, arXiv :1904 .01996.
[10] K. Disser, Well-posedness for coupled bulk-interface diffusion with mixed boundary conditions, Analysis 35 (4) 

(2015) 309–317.
[11] K. Disser, H.-C. Kaiser, J. Rehberg, Optimal Sobolev regularity for linear second-order divergence elliptic operators 

occurring in real-world problems, SIAM J. Math. Anal. 47 (3) (2015) 1719–1746.
[12] K. Disser, J. Rehberg, The 3D transient semiconductor equations with gradient-dependent and interfacial 

recombination, Math. Models Methods Appl. Sci. (M3AS) 29 (2019) 1819–1851, https://doi .org /10 .1142 /
S0218202519500350, arXiv :1805 .01348.

[13] K. Disser, J. Rehberg, A. ter Elst, Hölder estimates for parabolic operators on domains with rough boundary, Ann. 
Sc. Norm. Super. Pisa XVII (1) (2017) 65–79.

[14] G. Dore, Maximal regularity in Lp spaces for an abstract Cauchy problem, Adv. Differ. Equ. 5 (2000) 293–322.
[15] J. Elschner, J. Rehberg, G. Schmidt, Optimal regularity for elliptic transmission problems including C1 interfaces, 

Interfaces Free Bound. 9 (2) (2007) 233–252.
[16] L.C. Evans, Partial Differential Equations, second edition, Graduate Studies in Mathematics, vol. 19, American 

Mathematical Society, Providence, RI, 2010.
[17] K. Fellner, E. Latos, B.Q. Tang, Well-posedness and exponential equilibration of a volume-surface reaction-

diffusion system with nonlinear boundary coupling, Ann. Inst. Henri Poincaré, Anal. Non Linéaire 35 (3) (2018) 
643–673.

http://refhub.elsevier.com/S0022-0396(20)30135-2/bibB2C635339137745173E9E17755B96FDFs1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibB2C635339137745173E9E17755B96FDFs1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib162EC15859C95C28C914177DE63036D2s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib162EC15859C95C28C914177DE63036D2s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib3B528B90E66777A94A846F381560F53Bs1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibE6B218A0A212A818FB585F5330B0A173s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibE6B218A0A212A818FB585F5330B0A173s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib8E70A333575BCAED6616247C93241BEAs1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib8E70A333575BCAED6616247C93241BEAs1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib66B7B2EDBE120526A75C8385CE11FB4Bs1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib66B7B2EDBE120526A75C8385CE11FB4Bs1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib354F5D04AD10932C66223EF23A322352s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib354F5D04AD10932C66223EF23A322352s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibFB81A3304A850AC87B24C600B8487FB5s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibFB81A3304A850AC87B24C600B8487FB5s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibF54396C485BB2ED6BC3E8FE2C6F6F60As1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibF54396C485BB2ED6BC3E8FE2C6F6F60As1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibB2F22EDD0332AAD2FD478B896B0ED96Es1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibB2F22EDD0332AAD2FD478B896B0ED96Es1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib83F84D9CC12F25E5813614396DCCC03Cs1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib83F84D9CC12F25E5813614396DCCC03Cs1
https://doi.org/10.1142/S0218202519500350
https://doi.org/10.1142/S0218202519500350
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib7D0DBD576A925E9A855382E7EDF0DC03s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib7D0DBD576A925E9A855382E7EDF0DC03s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib7BE9ABD3E623EFA5644C3E66B3F35208s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibC67FD61E3B7D35F07E3CA92C8A84A5ABs1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibC67FD61E3B7D35F07E3CA92C8A84A5ABs1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibC9558B5A383D3974B49FDC83E83EF861s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibC9558B5A383D3974B49FDC83E83EF861s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibE970188B89C14E5C4C9C01DB1257BEBAs1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibE970188B89C14E5C4C9C01DB1257BEBAs1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibE970188B89C14E5C4C9C01DB1257BEBAs1


4044 K. Disser / J. Differential Equations 269 (2020) 4023–4044
[18] K. Fellner, S. Rosenberger, B.Q. Tang, Quasi-steady-state approximation and numerical simulation for a volume-
surface reaction-diffusion system, Commun. Math. Sci. 14 (6) (2016) 1553–1580.

[19] J.R. Fernández, P. Kalita, S. Migórski, M.C. Muñiz, C. Núñez, Existence and uniqueness results for a kinetic model 
in bulk-surface surfactant dynamics, SIAM J. Math. Anal. 48 (5) (2016) 3065–3089.

[20] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, 
Springer-Verlag, Berlin, Heidelberg, 2001.

[21] A. Glitzky, An electronic model for solar cells including active interfaces and energy resolved defect densities, 
SIAM J. Math. Anal. 44 (6) (2012) 3874–3900.

[22] A. Glitzky, A. Mielke, A gradient structure for systems coupling reaction-diffusion effects in bulk and interfaces, 
Z. Angew. Math. Phys. 64 (1) (2013) 29–52.

[23] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, vol. 24, Pitman 
(Advanced Publishing Program), Boston, MA, 1985.

[24] K. Gröger, A W1,p-estimate for solutions to mixed boundary value problems for second order elliptic differential 
equations, Math. Ann. 283 (4) (1989) 679–687.

[25] R. Haller-Dintelmann, J. Rehberg, Maximal parabolic regularity for divergence operators including mixed boundary 
conditions, J. Differ. Equ. 247 (5) (2009) 1354–1396.

[26] S. Hausberg, M. Röger, Well-posedness and fast-diffusion limit for a bulk-surface reaction-diffusion system, Non-
linear Differ. Equ. Appl. 25 (3) (2018) 17.

[27] A. Jüngel, The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity 28 (6) (2015) 1963–2001.
[28] F. Keil, Complexities in modeling of heterogeneous catalytic reactions, Comput. Math. Appl. 65 (2013) 

16741–71697.
[29] S. Kjelstrup, D. Bedeaux, Non-equilibrium Thermodynamics of Heterogeneous Systems, Series on Advances in 

Statistical Mechanics, vol. 16, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.
[30] A. Madzvamuse, A.H.W. Chung, C. Venkataraman, Stability analysis and simulations of coupled bulk-surface 

reaction-diffusion systems, Proc. R. Soc. A, Math. Phys. Eng. Sci. 471 (2175) (2015) 20140546.
[31] A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions, 

Discrete Contin. Dyn. Syst., Ser. S 6 (2) (2013) 479–499.
[32] H. Öttinger, Beyond Equilibrium Thermodynamics, John Wiley, New Jersey, 2005.
[33] J. Prüss, Maximal regularity for evolution equations in Lp -spaces, Conf. Semin. Mat. Univ. Bari (285) (2003) 1–39, 

2002.
[34] J. Prüss, R. Schnaubelt, Solvability and maximal regularity of parabolic evolution equations with coefficients con-

tinuous in time, J. Math. Anal. Appl. 256 (2) (2001) 405–430.
[35] J. Prüss, G. Simonett, Moving Interfaces and Quasilinear Parabolic Evolution Equations, Monographs in Mathe-

matics, vol. 105, Birkhäuser, Basel, 2016.
[36] V. Sharma, J. Morgan, Uniform bounds for solutions to volume-surface reaction diffusion systems, Differ. Integral 

Equ. 30 (5–6) (2017) 423–442.
[37] I.J. Šneı̆berg, Spectral properties of linear operators in interpolation families of Banach spaces, Mat. Issled. 9 (2(32)) 

(1974) 214–229, 254–255.
[38] Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemens, Thermophysical Properties of Matter - the TPRC Data 

Series. Volume 1. Thermal Conductivity – Metallic Elements and Alloys, 1970.
[39] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, Johann Ambrosius Barth, Heidelberg, 

1995.

http://refhub.elsevier.com/S0022-0396(20)30135-2/bib25B42B0ED4D32288E7645931F798FE3Es1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib25B42B0ED4D32288E7645931F798FE3Es1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib1675D300FCDF434B909DF518564A9BA6s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib1675D300FCDF434B909DF518564A9BA6s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib451B190526D3F2AAD46007E8D82046B9s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib451B190526D3F2AAD46007E8D82046B9s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib572FD13D7BCC285C97452135646CEC2Es1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib572FD13D7BCC285C97452135646CEC2Es1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibD8D90D87527875C02A0D41FC1D628582s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibD8D90D87527875C02A0D41FC1D628582s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibF6B3582DBF505E6D2977707BEEB16E00s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibF6B3582DBF505E6D2977707BEEB16E00s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib22772D1AA0CED7436652111BA6BE3F77s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib22772D1AA0CED7436652111BA6BE3F77s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib3BBC79372DA544C95E1BCB6E3212F7B2s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib3BBC79372DA544C95E1BCB6E3212F7B2s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib2BCB2D410F91B71013D16BAAB3D9F17Es1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib2BCB2D410F91B71013D16BAAB3D9F17Es1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibBE4607A6016331A8FC06EC50E44F505Es1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibB0638434AAB29094CEC4266812583C67s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibB0638434AAB29094CEC4266812583C67s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib081FE2D03A257A9D3C0D3691113CB731s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib081FE2D03A257A9D3C0D3691113CB731s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibDFB7035F8960EA8E1BB4B79D71BDA2B2s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibDFB7035F8960EA8E1BB4B79D71BDA2B2s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib92916C56E0B9074D47CEE4915F2539CDs1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib92916C56E0B9074D47CEE4915F2539CDs1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib8BE2CBEF79CA9BD529AE68B7C8413380s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibFE2C6AD84E29F427F9207E6F8A592FEEs1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibFE2C6AD84E29F427F9207E6F8A592FEEs1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib212A7B9D2F44E70F96C90614DA23CD29s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib212A7B9D2F44E70F96C90614DA23CD29s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibFECBC4F942A330CD5088E9EEC245CCA0s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibFECBC4F942A330CD5088E9EEC245CCA0s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibE4AFD15F1BAC9CFB5B9B8CBAF36DBC93s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibE4AFD15F1BAC9CFB5B9B8CBAF36DBC93s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibCC3B78BB0BC12807740B7613FE40413Fs1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bibCC3B78BB0BC12807740B7613FE40413Fs1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib2428CDE43F3C0E341454CF5816217D94s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib2428CDE43F3C0E341454CF5816217D94s1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib4586B3B73B9860338C4870EEF8E5FF6Cs1
http://refhub.elsevier.com/S0022-0396(20)30135-2/bib4586B3B73B9860338C4870EEF8E5FF6Cs1

	Global existence, uniqueness and stability for nonlinear dissipative bulk-interface interaction systems
	1 Introduction
	1.1 Model equations
	1.2 Applications
	1.3 Functional analytic setting

	2 Basic assumptions and functional analytic framework
	2.1 Assumptions on geometry and coefficients
	2.2 Bilinear form and elliptic operator
	2.3 Maximal parabolic regularity and embedding theorems

	3 Global existence and uniqueness
	4 Exponential decay to equilibrium and stability
	5 Onsager modelling, extensions and concluding remarks
	5.1 Entropic gradient structure for heat transfer (Onsager model)
	5.2 Small extensions and further remarks

	Acknowledgments
	References


