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Abstract

The solution of a multi-frequency 1d inverse medium problem consists of recovering the refractive index 
of a medium from measurements of the scattered waves for multiple frequencies. In this paper, rigorous 
stability estimates are derived when the frequency takes value in a bounded interval. It is showed that the 
ill-posedness of the inverse medium problem decreases as the width of the frequency interval becomes 
larger. More precisely, under certain regularity assumptions on the refractive index, the estimates indicate 
that the power in Hölder stability is an increasing function of the largest value in the frequency band. Finally, 
a Lipschitz stability estimate is obtained for the observable part of the medium function defined through a 
truncated trace formula.
© 2020 Elsevier Inc. All rights reserved.
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1. Introduction

This paper is concerned with the stability for determining the refractive index of an one-
dimensional (1d) medium from boundary measurements. For a fixed frequency, it is known that 
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this inverse problem is severely ill-posed and suffers from the lack of uniqueness. Several numer-
ical results show that in the case of multiple frequencies, in contrast with the single frequency 
case, the ill-posedness decreases dramatically when the frequency band increases and covers the 
resonance region of the medium ([14], [11], [6], [5] and references therein). However, little is 
known about the stability for the inverse problem or the convergence issues for the numerical 
methods. Our goal of the present paper is to prove stability results for the multifrequency inverse 
medium scattering problem. Such results would be essential for a rigorous justification of the 
numerical observations.

Consider the 1d scalar Helmholtz equation

φ′′(x, k) + k2(1 + q(x))φ(x, k) = 0, (1)

where the real-valued (1 + q(x)) is the refractive index of the medium. For any real number k, 
we look for a solution of the form

φ±(x, k) = ψ±(x, k) + e±ikx,

where the scattered wave ψ+, ψ− corresponding to the left excitation eikx , and the right excita-
tion e−ikx , respectively, satisfy the outgoing radiation conditions

ψ ′(x, k) − ikψ(x, k) = 0 for x ≥ 1,

ψ ′(x, k) + ikψ(x, k) = 0 for x ≤ 0.

The sum of the incident wave and its corresponding scattered wave, φ(x, k), is called the total 
wave. Throughout, it is assumed that the medium function q(x) has the regularity Cm+1

0 ([0,1])
with m ≥ 4, and satisfies

1 + q(x) ≥ n0, for x ∈R, (2)

with n0 ∈ (0, 1) a fixed constant. The scattered wave ψ(x, k) satisfies the Helmholtz equation

ψ ′′±(x, k) + k2(1 + q(x))ψ±(x, k) = −k2q(x)e±ikx, (3)

for all x ∈ (0, 1).
Since q(x) vanishes outside (0, 1), it is easy to see that for k ∈R, there exist complex numbers 

μ± known as the reflection coefficients, such that

ψ+(x, k) = μ+(k)e−ikx for x ≤ 0,

ψ−(x, k) = μ−(k)eikx for x ≥ 1.
(4)

The existence and uniqueness of the solutions ψ± ∈ C([0, 1]) are well known for any real k [8].
Therefore, the function k → μ±(k) are well defined on R. The outgoing radiation conditions 

imply

φ+(x, k) = φ+(1, k)eikx for x ≥ 1,

φ (x, k) = φ (0, k)e−ikx for x ≤ 0.
− −
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Furthermore, the constants φ+(1, k) and φ−(0, k) are nonzero. If they are zero then Cauchy 
theorem implies that φ±(x, k) = 0 for all x ∈ R, which means that ψ± = −e∓ikx on the whole 
space. This is in contradiction with the outgoing radiation conditions. In fact, φ±(x, k) 	= 0 holds 
for all x ∈R and for all k ∈C, satisfying Im(k) ≥ 0 (Corollary 4.1 [14]).

The multifrequency inverse medium problem may be stated as follows:

Given one of the reflection coefficients μ+(k) and μ−(k) for k ∈ (0, k0), to reconstruct the 
refractive index 1 + q(x) for x ∈ [0, 1].

Define the impedance functions p±(x, k) associated with ψ±(x, k), respectively, by

p±(x, k) = ± φ′±(x, k)

ikφ±(x, k)
. (5)

It is shown in [14] that these functions are well defined and verify in addition the nonlinear Ricatti 
equation

p′±(x, k) ± ikp2±(x, k) = ∓ik(1 + q(x)), (6)

subject to the boundary conditions

p−(0, k) = 1; p−(1, k) = d−(k),

p+(0, k) = d+(k); p+(1, k) = 1,
(7)

for all x ∈ (0, 1), k ∈R, where

d±(k) = 1 − μ±(k)

1 + μ±(k)
. (8)

The inverse problem may be restated as:

Given the data d−(k), k ∈ (0, k0) or d+(k), k ∈ (0, k0), to reconstruct the medium function 
q(x) for x ∈ [0, 1].

It is well known that in the case where the data is given for all frequencies, this inverse prob-
lem has a unique solution, and a number of algorithms have been proposed for its numerical 
treatment [28]. However, in applications, the reflection coefficients μ±(k) are usually measured 
with finite-accuracy at a finite number of the frequencies k. Hence, the well-posedness of the 
inverse problem when the measurements are taken over a finite interval is of critical importance. 
It is well known that the ill-posedness of the inverse scattering problem decreases as the fre-
quency increases [3]. However, at high frequencies, the nonlinear equation becomes extremely 
oscillatory and possesses many more local minima. A challenge for solving this problem is to 
develop a solution method that takes advantages of the regularity of the problem for high fre-
quencies without being undermined by local minima. To overcome the difficulties, a recursive 
linearization method was proposed in [14,15,13] for solving the inverse problem of the two-
dimensional Helmholtz equation. Based on the Riccati equations for the scattering matrices, the 
method requires full aperture data and needs to solve a sensitivity matrix equation at each iter-
ation. The numerical results were very successful to address the ill-posedness computationally. 
However, there are two serious issues remain to be resolved. Due to the high computational cost, 
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it is numerically difficult to extend the method to the three-dimensional problems. Recently, new 
and more efficient recursive linearization methods have been developed for solving the two-
dimensional Helmholtz equation and the three dimensional Maxwell equations for both full and 
limited aperture data by directly using the differential equation formulation [11], [6], [5], [7]. 
Theoretically, little is known about the stability for the inverse problem with multiple frequency 
data. Our main objective of this work is to establish stability estimates for the inverse problem 
with multiple frequency data.

We state here our first main result associated to the inversion with boundary measurements 
on a band of frequencies. For m ≥ 4, M > 0, and q0 ∈ Cm+1

0 ([0, 1]) satisfying (2), we further 
denote the set Q =Q(n0, m, M), by

Q := {q ∈ Cm+1
0 ([0,1]) : ‖q − q0‖Cm+1([0,1]) ≤ M, n0 ≤ 1 + q}. (9)

We next give our first main stability estimate for the multifrequency inverse medium problem. In 
what follows cQ and kQ denote generic strictly positives constants depending only on Q.

Theorem 1.1. Assume that q, ̃q be two medium functions in Q. Let d = d± and d̃ = d̃± be the 
boundary measurements associated respectively to q and q̃ as defined in (7), satisfying ‖d −
d̃‖L∞(0,+∞) < 1. Let k� ∈R+ be the smallest value satisfying

|d(k�) − d̃(k�)| = ‖d − d̃‖L∞(0,+∞).

Then, there exist constants cQ > 0, and nQ ∈N∗, such that the following estimate holds

‖q − q̃‖L∞(R) ≤ cQ‖d − d̃‖
m

m+1 w0(k
�,k0)

L∞(0,k0)
, (10)

for all k0 > 0, where the function w0(k
�, k0) is continuous on (R∗+)2, and verifies

2

π
arctan(

(ek0 − 1)nQ√
(ek� − 1)2nQ − (ek0 − 1)2nQ

)

≤ w0(k
�, k0) ≤ 2

π
arctan

⎛
⎜⎝inf{ k0√

(k�)2 − k2
0

,
ek0nQ√

e2k�nQ − e2k0nQ
}
⎞
⎟⎠ ,

for all k0 ∈ (0, k�].

Remark 1.1. The Hölder exponent m
m+1w0(k

�, k0) in the estimate (1.1) is an increasing function 
of k0. It tends to zero when k0 goes to zero which shows as expected that the ill-posedness of 
the inversion increases when the band of frequency shrinks. On the other hand, the function 
w0(k

�, k0) approaches to its upper bound m
m+1 when k0 tends to k�, which is the global Hölder 

stability estimate obtained in Corollary 3.1.
The value k� represents the frequency at which the noise is the most important. We observe 

that the Hölder exponent m
m+1w0(k

�, k0) is a decreasing function of k�, and tends to zero when 
k� approaches +∞.
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By considering the stability estimate (1.1), we conclude that the reconstruction of the medium 
function is accurate when the frequency band is large enough and contains the noise frequency 
(k� ∈ (0, k0]), while it deteriorates when the frequency band shrinks toward zero. These theoret-
ical results confirm the numerical observations and the physical expectations for the increasing 
stability phenomena by taking multifrequency data.

Theorem 1.2. Assume that q, ̃q be two medium functions in Q. Let d = d± and d̃ = d̃± be the 
boundary measurements associated respectively to q and q̃ as defined in (7), satisfying ε :=
‖d − d̃‖L∞(0,+∞) < 1.

Then, there exist constants cQ > 0, kQ > 0 and nQ ∈ N∗, such that the following estimates 
hold

‖q − q̃‖L∞(R) ≤ cQε
m

m+1 , if k0 ≥ kQ

ε
1
m

, (11)

‖q − q̃‖L∞(R) ≤ cQ

|ln (η(k0)| ln(ε)|)| m2
m+1

if k0 <
kQ

ε
1
m

, (12)

where the function η is given by

η(k0) = (ek0 − 1)nQ

1 + 2
√

1 + (ek0 − 1)2nQ
.

Remark 1.2. The estimates (1.2) and (1.2) show that the stability is Hölder when the largest 
value in the frequency band k0 is larger than a critical limit, and is of logarithmic type when 
k0 becomes small. Hence for a limited band of frequencies one can improve the stability of the 
inverse problem by increasing the largest frequency. The critical limit only depends on the noise 
in the measurement and the set of medium functions Q. When k0 tends to zero the function 
η(k0) approaches zero, and right-hand side term blows up. This behavior demonstrate again that 
the inverse problem is severely ill-posed when k0 is close to zero, and confirms the observations 
made in Remark 1.1.

Based on the high frequency asymptotic expansions of the fields φ±, Chen and Rokhlin [14]
introduced the observable part of the medium q(x) on the band of frequency (0, k0), as the 
function qk0(x) unique solution to the truncated version of the trace formula (3.1), that is

p′
k0,±(x, k) ± ikp2

k0,±(x, k) ± ik(1 + q(x)) = 0, (13)

q ′(x) − 2

π
(1 + q(x))

k0∫
−k0

(pk0,+(x, k) − pk0,−(x, k))dk = 0, (14)

for all x ∈ (0, 1), subject to the boundary conditions

pk0,+(0, k) = d+(k); pk0,−(0, k) = 1; qk0(0) = 0, (15)

for all k ∈ C+. They also have derived error estimates of the approximation of the medium 
function q(x) by its observable part qk (x) on the frequency band (0, k0) [14].
0
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Our third main result is to characterize qk0(x) in terms of the frequency band (0, k0), and 
to show that the recovery of qk0(x) is not sensitive to errors in the measurements if k0 is large 
enough.

Theorem 1.3. Assume that q, ̃q be two medium functions in Q. Let d = d± and d̃ = d̃± be the 
boundary measurements associated respectively to q and ̃q as defined in (7). Let qk0 and ̃qk0 be 
the observable parts of respectively q and q̃ on (0, k0) solutions to the system (13)-(14)-(15). 
Then there exist constants ρQ > 0 and kQ > 0 such that

∥∥qk0 − q̃k0

∥∥
L∞(R)

≤ ρQ‖d(k) − d̃(k)‖L1(0,k0)
,

is satisfied for all k0 ≥ kQ.

For higher dimension, to the best of our knowledge, this inverse problem is still open. This is 
due to the difficulties in the analysis of the scattering data as a function of the frequency, which 
are related to the strong nonlinearity for high frequencies and the existence of trapped rays. From 
a physical point of view, the situation is better understood. According to Uncertainty Principle 
there exists a resolution limit to the sharpness of details of the medium that can be observed 
from measurements in the far field region. This limit known as the diffraction limit is about one 
half of the wavelength. Consequently the reconstruction of the medium can be then reduced by 
increasing the magnitude of the frequency [12]. Mathematically, the inverse medium problem 
with full measurements at a fixed frequency is notoriously ill-posed [27,35]. In fact, Alessan-
drini proved that the stability estimates in 3d is of logarithmic type [2], and Mandache showed 
later the optimality of such estimates [29]. Recent studies have been conducted on the behav-
ior of the constant in the logarithmic stability in terms of the fixed frequency [3,23,31]. Several 
other results in inverse scattering problems that are related to the increasing stability phenomena 
by increasing the frequency were obtained in different settings [1,4,23,33]. All of these results 
demonstrate the increasing stability phenomena when the frequency becomes larger. For the 
case of the inverse source problem for Helmholtz equation and an homogeneous background 
it was shown in [8–10,16,25,26] that the ill-posedness of the inverse problem decreases as the 
frequency increases. Convergence results for iterative algorithms solving the multi-frequency in-
verse medium problem are obtained in [12,22]. Finally, we refer the reader to the topical review 
on inverse scattering problems [7] with multifrequencies on other related topics.

The rest of the paper is structured as follows. Auxiliary results related to the behavior of 
the impedance functions as functions of the frequency are provided in Section 2. The stability 
estimate for the observable part of the medium is given in Section 3. Finally, the proof of the 
main stability estimates for the multifrequency inverse medium problem is provided in Sections 4
and 5.

2. Properties of the impedance functions

A major difficulty in studying the multifrequency inverse medium problem is the fact that 
the partial differential equation describing the scattering phenomena involves a product of the 
frequency and the refractive index. In the 1d case, Gel’fand-Levitan techniques can be employed 
when the medium function is smooth to convert the Helmholtz equation into a Schrödinger equa-
tion. In the obtained Schrödinger equation, the frequency and the refractive index are separated, 
which allows a better understanding of the behavior of the solutions as functions of the frequency. 
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This approach was used to study the 1d inverse spectral problem [36]. It also led the authors 
in [14] to derive high-frequency asymptotic expansions of the impedance functions. Here, we 
first present some of these useful asymptotic results and our further analysis. In addition, we also 
study the meromorphic extensions of the impedance functions to the lower half complex plane.

For convenience, we complexify k. Denote C± the upper half and lower half of the complex 
plane, that is

C+ = {k ∈C : Im(k) ≥ 0}; C− = {k ∈ C : Im(k) < 0}.

It is easy to check from the uniqueness of the equations (6) with the boundary conditions (7), 
that

p±(x, k) = p±(x,−k), (16)

for all x ∈R and k ∈ C+.

Low frequency behavior

We next present the behavior of the impedances functions when the frequency k is close to 0. 
In Lemma 4.1 and 4.2 of [13], the author derived the first term in the asymptotic expansion p±
when k approaches 0. Here we provide explicit bounds in a given frequency neighborhood of 0.

Proposition 2.1. The following estimate

|d±(k)| ≤ 2,

holds for all k ∈ C satisfying |k| ≤ 1/M1, with

M1 = 2(‖q0‖L∞(0,1) + M). (17)

Proof. Since the proofs of the estimates for d+ and d− are identical, we only provide the proof 
for d+.

Let

g0(x, y) = e−ik|x−y|

−2ik
,

be the Green function of the one dimension Helmholtz equation with the same radiation condi-
tions as ψ+. Multiplying the equation (3) by g0(x, y) and integrating by parts yield the following 
Lippmann-Schwinger integral equation

(Id − Kq)[ψ+] = Kq [e−ik·], (18)

where Id is the identity operator from L∞(0, 1) to itself, and Kq is a linear integral operator on 
L∞(0, 1), defined by
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Kq [ψ](x) = −k2

1∫
0

g0(x, y)q(y)ψ(y),

for all ψ ∈ L∞(0, 1). Therefore for 2|k|(‖q0‖L∞(0,1) + M) ≤ 1, the operator Kq becomes a 
contraction, and we deduce from the convergence of the Neumann series

|μ+(k)| ≤ ‖ψ+‖L∞(0,1) ≤ 1/3.

Hence |d+(k)| ≤ 2 for |k| ≤ 1/M1, which finishes the proof. �
Remark 2.1. (Born approximation) Using the Neumann series and after a forward calculation, 
we obtain

μ+(k) = − k

2i
F(q)(−2k) +

∞∑
p=2

(
ik

2

)p ∫
(0,1)p

eikκp(ξ)Qp(ξ)dξ,

for all k ∈ (0, k0), where k0 < 1/M1, κp(ξ) = ξ1 + ∑p−1
l=1 |ξl+1 − ξl | + ξp for all ξ ∈ Rp , and 

Qp(ξ) = ∏p
j=1 q(ξj ). Since the first term in the low frequency expansion is the Fourier transform 

F(q)(2k), k ∈ (−k0, k0), it seems natural to try to reconstruct the medium function from this 
term by considering the rest as a small perturbation (O(k2

0)), and by using the same techniques 
as in [8]. It turns out that this approach fails to give any approximation of the medium function. 
The Born approximation error O(k2

0) is a higher order differential operator that is exponentially 
amplified in the inversion of the first term, and the final term does not vanish when k0 tends to 
zero.

High frequency behavior

The following result was obtained in [14].

Proposition 2.2. Assume that q ∈ Q. The impedances p±(x, k) are continuous functions of 
(x, k) ∈ [0, 1] ×C+, and analytic functions of k ∈ C+. Moreover there exists a constant cQ > 0
such that the following estimates

∥∥∥∥p±(x, k) − √
1 + q(x) ± q ′(x)

4i(1 + q(x))

1

k

∥∥∥∥
L∞

≤ cQ
|k|2 , (19)

∥∥∥p+(x, k) − p−(x, k)

∥∥∥
L∞ ≤ cQ

|k|m , (20)

hold for all k ∈C∗+.

We remark that the estimate (2.2) provides the two first terms in WKB expansions of the 
functions p±. For large real k, the difference between p+ and p− is extremely small, which 
decays as 1/km where m is the smoothness of the medium q(x).
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Meromorphic extension

It is known that the impedance functions p±(x, k) and in particular the reflexion coefficients 
μ±(k) are holomorphic in C+, and have meromorphic extensions in C−. The poles of μ± are 
called the scattering resonances of the medium. Here, we establish the existence of a scattering 
resonances-free strip in the complex plane. The proof is based on a similar result for the 1d 
Schrödinger equation derived in [21].

From (1) it follows that the poles can be characterized in the following way: k ∈ C− is a 
scattering pole if and only if there exists a nontrivial function φ, such that

φ′′(x, k) + k2(1 + q(x))φ(x, k) = 0, x ∈ (0,1), (21)

with

φ′(0, k) = −ikφ(0, k), φ′(1) = ikφ(1, k), (22)

We now present a connection between the solution of the Helmholtz equation (21) and the one 
of an equivalent Schrödinger equation. This will allow us to relate our scattering resonances to 
the well studied poles of the resolvent of the Schrödinger operator. This approach has been also 
used to derive the high frequency asymptotic expansions in Theorem 2.2.

Define further the functions n, x, N, r, ξ :R → R by the following expressions:

n(x) = √
1 + q(x), t (x) =

x∫
0

n(s)ds, N(t) = n(x(t))−1/4, (23)

r(t) = N ′′(t)
N(t)

− n′(x)

2(n(x))2 = 1

4
n−2(x)

(
q ′′(x) − nq ′(x) − 5

4
n−1(q ′(x))2

)
. (24)

Then ξ(t, k) defined by the Liouville transformation

ξ(t, k) := N−1(t)φ(x(t), k),

satisfies the Schrödinger equation:

ξ ′′(t, k) + (r(t) + k2)ξ(t, k) = 0, t ∈ (0, T ), (25)

with

ξ(0, k) = 1 + μ+(k), (26)

where T = t (1) = ∫ 1
0 n(s)ds is the travel time needed for the wave with speed 1

n
to propagate 

from one end to another. We remark that r(t) has a compact support in (0, T ). Consequently k is 
a scattering resonance of (21)-(22) iff it is a resonance of the system (25)-(26).

The pole distribution of the resolvent for the Schrödinger operator has been the subject of 
extensive investigations due to the continuous advance of quantum mechanics. Many studies 
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have focused on the problem of locating poles in the complex plane for different classes of po-
tentials [18,20,37,17]. For the one dimensional Schrödinger operator with super-exponentially 
decaying potentials, more precise results are possible. Particularly, using the representation of 
the scattering matrix given by Melin [30], Hitrik [21] derived an explicit pole-free strip for the 
Schrödinger operator in the case of compactly supported potentials. The following result is a 
direct consequence of Hitrik’s result and the observation that scattering resonances of the sys-
tem (21)-(22) are also the poles of the Schrödinger operator (25)-(26).

Proposition 2.3. Let r : R → R be defined by (24), and h(r) := 1
4T

e
−2T ‖r‖

L1(0,T ) . Then the strip

Sq = {k ∈C; −h(r) ≤ Im(k) ≤ 0,Re(k) 	= 0} , (27)

is free from scattering resonances of the system (21)-(22).

Corollary 2.1. Let cQ,1 = maxq∈Q ‖n(x)‖L∞ , and cQ,2 = maxq∈Q ‖r(t)‖L∞ . Then it follows 

from Proposition 2.3 that the strip of width hQ,1 = 1
4cQ,1

e
−2c2

Q,1cQ,2 , defined by

S∗
Q = {

k ∈C; −hQ,1 ≤ Im(k) ≤ 0,Re(k) 	= 0
}
, (28)

is free from scattering resonances of (21)-(22) for all q ∈Q.

We also deduce from Proposition 2.3 and Proposition 2.1 that the coefficients d±(k) have 
holomorphic extensions in the strip SQ defined by

SQ := {
k ∈ C; |Im(k)| < hQ

}
, (29)

where

hQ = min{hQ,1,
1

M1
}.

We next obtain global bounds of these functions in the strip.

Proposition 2.4. There exist constants kQ > 0, cQ > 0, dQ > 0 that only depend on Q, such that 
the following inequality hold

|d±(k) − 1| ≤ cQ
|Re(k)|2 , ∀k ∈ SQ, Re(k) ≥ kQ, (30)

|d±(k)| ≤ dQ, ∀k ∈ SQ. (31)

Proof. Since the proofs of the bounds for μ+(k) and μ−(k) are identical we only provide the 
proof for the second scattering coefficient. The proof may be given by combining the general 
idea in the proof of Lemma 4.12 in [15] and the meromorphic extension result above.

Applying the Liouville transformation to (1), we find that ξ−(t, k) := N−1(t)φ−(x(t), k) sat-
isfies the Schrödinger equation:

ξ ′′(t, k) + (r(t) + k2)ξ(t, k) = 0, t ∈ (0, T ), (32)
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with

ξ(t, k) = eikt , t ≤ 0. (33)

The impedance function p−(x, k) is then given by

p−(x, k) = −n(x)
ξ ′−(t, k)

ikξ−(t, k)
+ n′(x)

2ikn(x)
.

Introducing now the auxiliary functions m(t, k) = eikt ξ−(t, k) and n(t, k) = − 1
ik

eikt ξ ′−(t, k).
A forward calculation yields

p−(x, k) = m(t, k)

n(t, k)
.

We deduce from the system (32)-(33), that m(t, k) satisfies

m′′(t, k) − 2ikm′(t, k) = −r(t)m(t, k), t ∈ (0, T ), (34)

with the initial conditions

m(0, k) = 1 m′(0, k) = 0. (35)

Multiplying (34) by e−2ikt and integrating, we get

m′(t, k) = −
t∫

0

r(s)e2ik(t−s)m(s, k)ds (36)

Integrating the equation (36), we obtain

m = 1

2ik

t∫
0

r(s)(1 − e2ik(t−s))m(s, k)ds + 1, (37)

= Mk[m] + 1, (38)

where Mk : C(0, T ) → C(0, T ) is a compact operator defined by

Mk[f ](t) = 1

2ik

t∫
0

r(s)(1 − e2ik(t−s))f (s)ds. (39)

Since q belongs to Q there exist constants kQ > 0, and cQ > 0 such that

‖Mk‖ ≤ cQ
, ∀k ∈ SQ, |Re(k)| ≥ kQ.
|Re(k)|
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Then, the Fredholm equation (37) has a unique solution satisfying

|m(t, k) − 1| ≤ 2 cQ
|Re(k)| , ∀t ∈ (0, T ), ∀k ∈ SQ, |Re(k)| ≥ kQ.

It can be approximated by the Neumann’s series truncated at the second term

m(t, k) = 1 + 1

2ik

t∫
0

r(s)ds + O(
1

|Re(k)|2 ), ∀k ∈ SQ, |Re(k)| ≥ kQ,

uniformly in t ∈ (0, T ).
Similarly, following the same approach, we have

n(t, k) = 1 + 1

2ik

t∫
0

r(s)ds + O(
1

|Re(k)|2 ), ∀k ∈ SQ, |Re(k)| ≥ kQ,

uniformly in t ∈ (0, T ).
Consequently∣∣∣∣m(T , k)

n(T , k)
− 1

∣∣∣∣ = |p−(1, k) − 1| = O(
1

|Re(k)|2 ), ∀k ∈ SQ, |Re(k)| ≥ kQ, (40)

Combining (40) with Proposition 2.1, and the fact that d−(k) = p−(1, k) is holomorphic in SQ, 
we deduce the bound (2.4) for d−. �
3. Observable part of the medium

Recall from (13)-(15) that the observable part of the medium qk0(x) for k ∈ (0, k0). In this 
section using the truncated trace formula introduced in [14], we characterize qk0(x) in terms of 
the frequency band (0, k0), and study how its determination is sensitive to errors in the measure-
ments.

The following trace formula is on the asymptotic behavior in Proposition 2.2.

Lemma 3.1. (Trace formula, [14])Let q ∈ Q. Then the following trace formula holds

q ′(x) = 2

π
(1 + q(x))

∞∫
−∞

(p+(x, k) − p−(x, k))dk. (41)

More precisely, there exists a constant cQ > 0 such that the estimate∥∥∥∥∥∥∥q ′(x) − 2

π
(1 + q(x))

k0∫
−k0

(p+(x, k) − p−(x, k))dk

∥∥∥∥∥∥∥
L∞(R)

≤ cQ
km

0
, (42)

holds for all k0 ∈C∗.
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The truncated version of the trace formula (3.1) means that the function

2

π

k0∫
−k0

(p+(x, k) − p−(x, k))dk,

provides a good approximation of log(1 + q(x))′ as long as k0 is large and the medium q(x) is 
smooth.

Lemma 3.2. Let q ∈ Q. Then, there exist constants cQ > 0 and kQ > 0 such that truncated trace 
formula system (13)-(14)-(15) has a unique solution qk0 . In addition the following estimates hold

∥∥p± − pk0,±
∥∥

C([0,1]×[−k0,k0]) ,
∥∥q − qk0

∥∥
L∞(R)

≤ cQ
km

0
,

for all k0 ≥ kQ.

Our second main result of this paper is to characterize qk0(x) in terms of the frequency band 
(0, k0), and to show that the recovery of qk0(x) is not sensitive to errors in the measurements.

We are now ready to give the proof of Theorem 1.3.

Proof. Let pk0,±(x, k) and p̃k0,±(x, k) be the impedance functions solutions to the sys-
tem (13)-(14)-(15) related respectively to the observable mediums qk0 and q̃k0 . To simplify the 
notation we introduce the impedance perturbations u±(x, k) = pk0,±(x, k) − p̃k0,±(x, k) due to 
the measurements difference on the boundary ε(k) = d+(k) − d̃+(k).

Then u±(x, k), qk0 and ̃qk0 verify

u′+ + ik(pk0,+ + p̃k0,+)u+ − ik(qk0 − q̃k0) = 0, (43)

u′− − ik(pk0,− + p̃k0,−)u− + ik(qk0 − q̃k0) = 0, (44)

(
log

∣∣∣∣1 + qk0

1 + q̃k0

∣∣∣∣
)′

− 2

π

k0∫
−k0

(u+(x, k) − u−(x, k))dk = 0, (45)

subject to the boundary conditions

u+(0, k) = ε(k); u−(0, k) = 0; qk0(0) = q̃k0 = 0, (46)

for all x ∈ (0, 1), k ∈C+.
Integrating the equation (42) over (0, x), we obtain

log

∣∣∣∣1 + qk0

1 + q̃k0

∣∣∣∣ = 2

π

x∫
0

k0∫
−k0

(u+(t, k) − u−(t, k))dkdt. (47)

Solving the equations (42) and (42) gives
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u−(x, k) = −ik

x∫
0

q̂(t)eik
∫ x
t (pk0,−(τ,k)+p̃k0,−(τ,k))dτ dt

u+(x, k) = ε(k)e−ik
∫ x

0 (pk0,+(t,k)+p̃k0,+(t,k))dt + ik

x∫
0

q̂(t)e−ik
∫ x
t (pk0,+(τ,k)+p̃k0,+(τ,k))dτ dt,

where ̂q(t) = qk0(t) − q̃k0(t).
Substituting the new expressions of u±(x, k) into the equality (42), we find

log

∣∣∣∣1 + qk0

1 + q̃k0

∣∣∣∣ = (48)

2

π

k0∫
−k0

ε(k)e−ik
∫ x

0 (pk0,+(t,k)+p̃k0,+(t,k))dt dk + 2i

π

x∫
0

r∫
0

q̂(t)K(r, t, k0)dtdr,

where

K(r, t, k0) =
k0∫

−k0

k
(
e−ik

∫ r
t (pk0,+(τ,k)+p̃k0,+(τ,k))dτ + eik

∫ r
t (pk0,−(τ,k)+p̃k0,−(τ,k))dτ

)
dk,

for r, t ∈ (0, 1). �
Lemma 3.3. Under the same conditions as in Theorem 1.3, there exist constants cQ > 0 and 
kQ > 0 such that

|K(r, t, k0)| ≤ cQ,

for all r, t ∈ (0, 1) and k0 ≥ kQ.

Proof. (Lemma 3.3) First we remark from the uniqueness of solution to the system (13)-(14)-(15)
that pk0,+ like the impedance function p+(x, k), satisfies

pk0,+(x, k) = pk0,+(x,−k),

for all x ∈ (0, 1). Then, by a change of variables (k → −k), we obtain

k0∫
−k0

ke−ik
∫ r
t (pk0,+(τ,k)+p̃k0,+(τ,k))dτ dk = −

k0∫
−k0

keik
∫ r
t (pk0,+(τ,k)+p̃k0,+(τ,k))dτ dk

Hence, K can be rewritten as
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K(r, t, k0) = −
k0∫

−k0

k
(
eik

∫ r
t (pk0,+(τ,k)+p̃k0,+(τ,k))dτ − eik

∫ r
t (pk0,−(τ,k)+p̃k0,−(τ,k))dτ

)
dk,

Now, let K̃ be defined as follows

K(r, t, k0) = −
k0∫

−k0

k
(
eik

∫ r
t (p+(τ,k)+p̃+(τ,k))dτ − eik

∫ r
t (p−(τ,k)+p̃−(τ,k))dτ

)
dk,

According to Lemma 3.2, there the integrand of K(r, t, k0) − K̃(r, t, k0) decays like 1
km−1

0
uni-

formly with respect to r, t ∈ [0, 1]. Therefore there exist constants cQ > 0 and kQ > 0 such that

∣∣K(r, t, k0) − K̃(r, t, k0)
∣∣ ≤ cQ,

for all k ≥ kQ.
The asymptotic expansions (2.2) and (2.2) in Theorem 2.2 imply that∣∣∣eik

∫ r
t p±(τ,k)dτ

∣∣∣ , ∣∣∣eik
∫ r
t p±(τ,k)dτ

∣∣∣ ≤ cQ

for all t, r ∈ [0, 1] and k ∈C+. Furthermore∣∣∣eik
∫ r
t p±(τ,k)dτ − eik

∫ r
t p±(τ,k)dτ

∣∣∣ ≤ cQ
km

0

all t, r ∈ [0, 1] and k0 ≥ kQ. Combining the previous inequalities we finally obtain that 
K̃(r, t, k0) is uniformly bounded over [0, 1]2 for all k0 ≥ kQ, which finishes the proof of the 
lemma. �

Back to the equation (42), by combining the integral equation with the estimates of Lemma 3.3
and the bounds over the functions pk0,+ and pk0,+, we obtain

∣∣∣∣log

∣∣∣∣1 + qk0

1 + q̃k0

∣∣∣∣
∣∣∣∣ ≤ cQ

⎛
⎝‖ε(k)‖L1(−k0,k0)

+
x∫

0

r∫
0

|̂q(t)|dtdr

⎞
⎠ ,

≤ cQ

⎛
⎝‖ε(k)‖L1(−k0,k0)

+
x∫

0

|̂q(t)|dt

⎞
⎠ , (49)

for all x ∈ (0, 1).
Observing that the fact that qk0 → q and ̃qk0 → q̃ in L∞(0, 1) combined with inequalities (2)

imply that the functions 1 + qk0 and 1 + q̃k0 are lower ad upper bounded for large k0, that is, 
there exist a constant kQ > 0 such that

n0 ≤ 1 + qk0(x), 1 + q̃k0 ≤ 2n0

2
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for all x ∈ [0, 1] and k0 ≥ kQ. Therefore

q̂(x) ≤ 1

2n0

∣∣∣∣log

∣∣∣∣1 + qk0

1 + q̃k0

∣∣∣∣
∣∣∣∣ ,

for all x ∈ [0, 1]. Combining the last inequality with (49) gives

|̂q(x)| ≤ cQ

⎛
⎝‖ε(k)‖L1(0,k0)

+
x∫

0

|̂q(t)|dt

⎞
⎠ , (50)

for all x ∈ (0, 1) and k0 ≥ kQ.
Applying Gronwall’s inequality (Lemma 6.1) on (50), with the choice of ρQ = cQ + c2

QecQ , 
we find

|̂q(x)| ≤ ρQ‖ε(k)‖L1(0,k0)

for all x ∈ R and k0 ≥ kQ, which finishes the proof of the Theorem 1.3. �
Remark 3.1. The estimate of Theorem 1.3 provides a basis for excellent numerical results to 
reconstruct the observable part of the medium. In addition, it is an integral part of the proof of 
Theorem 1.1.

Now, we go back to the proof of the main theorems. Lemma 3.2 implies that if k0 is large 
enough we have the existence of qk0 and q̃k0 . By splitting the difference q − q̃ into three parts 
we have

‖q − q̃‖L∞(0,1) ≤ ‖q − qk0‖L∞(0,1) + ‖qk0 − q̃k0‖L∞(0,1) + ‖q̃ − q̃k0‖L∞(0,1).

Using now the results of Lemma 3.2 and Theorem 1.3 to estimate each part of the right hand side 
we finish the proof of Theorem 1.1. �
Theorem 3.1. Assume that q, ̃q be two medium functions in Q. Let d+(k) and d̃+(k) be the 
boundary measurements associated respectively to q and q̃ as defined in (7). Then, there exist 
constants cQ > 0 and kQ such that

‖q − q̃‖L∞(R) ≤ cQ

(
‖d± − d̃±‖L1(0,k0)

+ 1

km
0

)
, (51)

for all k0 ≥ kQ.

Obviously this result implies the uniqueness of the multi-frequency inverse medium, and a 
conditional Lipschitz stability estimate when the band of frequency is large enough.

Corollary 3.1. Assume that q, ̃q be two medium functions in Q. Let d+(k) and d̃+(k) be the 
boundary measurements associated respectively to q and q̃ as defined in (7), satisfying ‖d± −
d̃±‖L∞(0,+∞) < 1. Then, there exists a constant cQ > 0 such that the following Lipschitz stability
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‖q − q̃‖L∞(R) ≤ cQ‖d+(k) − d̃+(k)‖
m

m+1
L∞(0,+∞)

,

holds.

Proof. Under the same assumptions of Theorem 3.1, we have

‖q − q̃‖L∞(R) ≤ cQ

(
k0‖d+ − d̃+‖L∞(0,k0) + 1

km
0

)
, (52)

for all k0 = skQ with s > 1. By taking s = ‖d+ − d̃+‖− 1
m+1

L∞(0,k0)
, we get the wanted estimate. �

Remark 3.2. The estimate (3.1) has two parts: the first is Lipschitz in terms of the errors in 
measurements, and the second decays as the size of the frequency interval takes larger values. 
Clearly, this shows that as the frequency increases a conditional Hölder stability in L∞ norm can 
be reached as illustrated in Corollary 3.1.

4. Proof of Theorem 1.1

In this section we prove the stability estimate (1.1). We first provide the following conditional 
stability estimate for the unique continuation of d± on a line.

Theorem 4.1. Let k0 > 0, d± and d̃± be the impedance coefficients given in (7) for respectively 
q and ̃q in Q.. Then the following estimate hold

|d± − d̃±|(k) ≤ 2dQ‖d± − d̃±‖w0(k,k0)
L∞(0,k0)

, (53)

for all k ≥ k0, where d� is the constant appearing in Proposition 2.4.

Proof. We deduce from Proposition 2.4 that

|d−(k) − d̃−(k)| ≤ 2dQ, (54)

for all k ∈ SQ.
Without loss of generality we can assume that hQ = π

2nQ
, where nQ ∈ N∗. Let ShQ = {k ∈

C; Re(k) > 0, |Im(k)| < hQ}, be half a strip, and et w0(k; k0) be the harmonic measure of the 
complex open domain ShQ \ [0, k0] × {0}. It is the unique solution to the system:


w(k; k0) = 0 k ∈ ShQ \ [0, k0] × {0},
w(k; k0) = 0 k ∈ ∂ShQ ,

w(k; k0) = 1 k ∈ (0, k0] × {0}.

The holomorphic unique continuation of the functions d±− d̃± using the Two constants Theorem 
[24,32], gives

‖d± − d̃±‖L∞(0,k) ≤ (2dQ)1−w0(k,k0)‖d± − d̃±‖w0(k,k0)∞ , ∀k ≥ k0.
L (0,k0)
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Finally, the bounds satisfied by w(k; k0) are obtained from Lemma 6.2. �
We deduce again from Proposition 2.4 the existence of k� ∈ R+ satisfying

‖d± − d̃±‖L∞(0,+∞) = |d−(k�) − d̃−(k�)|.

We then deduce from Theorem 4.1 the following estimate

‖d± − d̃±‖L∞(0,+∞) = |d−(k�) − d̃−(k�)| ≤ 2dQ‖d± − d̃±‖w0(k
�,k0)

L∞(0,k0)
.

Considering the global stability estimate in Corollary 3.1, we obtain

‖q − q̃‖L∞(R) ≤ cQ‖d+ − d̃+‖
m

m+1
L∞(0,+∞)

≤ 2 cQdQ‖d± − d̃±‖
m

m+1 w0(k
�,k0)

L∞(0,k0)
,

which finishes the proof of the theorem. �
5. Proof of Theorem 1.2

In this section we prove the stability estimates (1.2)-(1.2). We start by deriving a lower bound 
to the harmonic measure w0 on R+.

Proposition 5.1. The harmonic measure w0(k, k0) satisfies

w0(k, k0) ≥ 6

π
η(k0)e

−nQk,

Proof. It is known in the literature that the following inequality [34]

arctan(x) ≥ 3η̂(x),

holds for all x > 0, where

η̂(x) = x

1 + 2
√

1 + x2
.

Hence

2

π
arctan(

(ek0 − 1)nQ√
(ek − 1)2nQ − (ek0 − 1)2nQ

) ≥ 2

π
arctan

(
(ek0 − 1)nQe−nQk

)
≥ 6

π
η(k0)e

−nQk,

where η(k0) = η̂((ek0 − 1)nQ). �
We deduce from Proposition 2.2 that

|d+(k) − d̃+(k)| ≤ |d+(k) − 1| + |d̃+(k) − 1| ≤ cQ
km

, (55)

for all k ∈ R∗ , with cQ ≥ 2dQ.
+
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Theorem 4.1 and the last inequality lead to

|d+(k) − d̃+(k)| ≤ min{2dQεw0(k,k0); cQ
km

},

for all k ∈R∗+.
Now we consider the two following cases.

Case 1: assume that cQ,1
km

0
≤ ε holds.

Hence ‖d± − d̃±‖L∞(0,+∞) ≤ ε is satisfied, and we immediately get the first stability estimate 
(1.2).

Case 2: assume that cQ
km

0
> ε holds. Due to the monotonicity of the functions w0(k1, k0) and 

1
km , there exists a unique k1 ∈ (k0, +∞) satisfying

cQ
km

1
= 2dQεw0(k1,k0), (56)

and

‖d+ − d̃+‖L∞(0,+∞) ≤ cQ
km

1
. (57)

Since 0 < ε < 1, and cQ ≥ 2dQ, we have k1 > 1.

On the other hand combining (56), and Proposition 5.1, gives

cQ
km

1
≤ ε

6
π

η(k0)e
−nQk

,

which in turn leads to

enQk1
(
ln(2dQ) − ln(cQ) + m ln(k1)

) ≥ 6

π
η(k0)| ln(ε)|.

Since cQ ≥ 2dQ, and k1 > 1, we deduce from the last inequality the existence of cQ > 0 such 
that

ecQk1 ≥ η(k0)| ln(ε)|,
holds. Hence

k1cQ ≥ ln (η(k0)| ln(ε)|) .

Combining now the last inequality and estimate (57), we find

‖d+ − d̃+‖L∞(0,+∞) ≤ cQ
(ln (η(k0)| ln(ε)|))m .

By Corollary 3.1, and the last inequality, we obtain the desired stability estimate (1.2), with 

kQ = c
m

m+1 . �
Q
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6. Appendix

We first recall the Gornwall’s inequality.

Lemma 6.1. Assume that u, v and w : [0, 1] → R+ are continuous functions satisfying the in-
equality

u(x) ≤ v(x) +
x∫

0

u(t)w(t)dt,

for all x ∈ [0, 1]. Then

u(x) ≤ v(x) +
x∫

0

v(t)w(t)e
∫ x
t w(τ)dτ dt.

We next give upper and lower estimates of a harmonic measure in a complex strip containing 
a slit.

Lemma 6.2. Fix n� ∈ N∗, and let h� = π
2n� , k0 > 0 be two fixed real constants, Sh� = {k ∈

C; Re(k) > 0, |Im(k)| < h�} be half a strip. Denote w0(k, k0) the harmonic measure of Sh� \
(0, k0] × {0}, Then

2

π
arctan(

(ek0 − 1)n
�√

(ek − 1)2n� − (ek0 − 1)2n�
)

≤ w0(k, k0) ≤ 2

π
arctan

⎛
⎜⎝inf{ k0√

k2 − k2
0

,
ek0n

�

√
e2kn� − e2k0n

�
}
⎞
⎟⎠ ,

for all k ≥ k0.

Proof. For n ∈ N∗, denote by wn(k, k0) the harmonic measure of [0, k0] × {0} in the sector 
S π

2n
= {k ∈C; | arg(k)| < π

2n
)}.

Let �n(k, k0) =
√

k2n − k2n
0 be the conformal mapping of the domain S π

2n
\ [0, k0] ×{0} onto 

the right half-plane S π
2

. Here 
√

k is the principal branch of square root function on C \ (−∞, 0)

satisfying 
√

1 = 1. The parts of the boundary [0, k0] × {0}|± are then mapped onto [−ikn
0 , ikn

0 ].
Now define w�(z, kn

0 ) to be the harmonic measure of the right half-plane S π
2

\ [−ikn
0 , ikn

0 ]. 
The explicit expression of w∗ is well known [19]

w∗(z, kn
0 ) = 2

π
arctan(

kn
0

z
), for z ∈ (0,+∞).

Since wn(k, k0) = w∗(�n(k, k0), kn) for k ∈ S π \ [0, k0] × {0}, we also obtain
0 2n
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wn(k, k0) = 2

π
arctan(

kn
0√

k2n − k2n
0

), for k ∈ (k0,+∞). (58)

Let �−1(k) = ek , be the conformal mapping of the domain S π
2n�

\[0, k0] ×{0} onto the domain 

S π
2n�

\ B1(0) ∪ ([1, ek0] × {0}).

Since w0(k, k0) ≤ wn�(�−1(k), �−1(k0)) on ∂
(
S π

2n�
\ B1(0) ∪ ([1, ek0] × {0})), we deduce 

from the maximum principle

w0(k, k0) ≤ 2

π
arctan(

ek0n
�

√
e2kn� − e2k0n

�
), (59)

for all k ≥ k0. By construction we have S π
2n�

⊂ S π
2

, and consequently 0 = w0(k, k0) ≤ w2(k, k0)

on {|Im(k)| = π
2n� }. Then again by the maximum principle we obtain

w0(k, k0) ≤ w1(k, k0) = 2

π
arctan(

k0√
k2 − k2

0

), (60)

for all k ≥ k0.
Combining inequalities (59) and (60), we finally find

w0(k, k0) ≤ 2

π
arctan

⎛
⎜⎝inf{ k0√

k2 − k2
0

,
ek0n

�

√
e2kn� − e2k0n

�
}
⎞
⎟⎠ , (61)

which gives the right-hand side inequality.
Let �−2(k) = ek − 1, be the conformal mapping of the domain S π

n
\ [0, k0] × {0} onto the 

domain Dn� \ [0, ek0 − 1] × {0}, where Dn� = {z ∈ C; z + 1 ∈ S π
2n�

, Re(z) + 1 > 0}. Then 

w0(�
−1
−2(k), k0) is the harmonic measure of [0, ek0 − 1] × {0} in the domain Dn� . Now since 

[0, ek0 − 1] × {0} ⊂ S π
2n�

⊂ Dn� , we have 0 = wn�(k, k0) ≤ w0(�
−1
−2(k), k0) on ∂S π

2n�
.

The maximum principle implies that wn�(k, ek0 − 1) ≤ w0(�
−1
−2(k), k0) holds on S π

2n�
, and 

particularly, we have

2

π
arctan(

(ek0 − 1)n
�√

k2n� − (ek0 − 1)2n�
) ≤ w0(�

−1
−2(k), k0), for all k ∈ (ek0 − 1,+∞),

or equivalently

2

π
arctan(

(ek0 − 1)n
�√

(ek − 1)2n� − (ek0 − 1)2n�
) ≤ w0(k, k0), for all k ∈ (k0,+∞), (62)

which provides the desired left-hand inequality. �
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