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Abstract

Our aim in this paper is to prove the existence of solutions to the Cahn–Hilliard equation with a general 
nonlinear source term. An essential difficulty is to obtain a global in time solution. Indeed, due to the 
presence of the source term, one cannot exclude the possibility of blow up in finite time when considering 
regular nonlinear terms and when considering an approximated scheme. Considering instead logarithmic 
nonlinear terms, we give sufficient conditions on the source term which ensure the existence of a global in 
time weak solution. These conditions are satisfied by several important models and applications which can 
be found in the literature.
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1. Introduction

The Cahn–Hilliard equation was proposed in [6,7] in order to describe phase separation pro-
cesses in binary alloys. Since then, it has been thoroughly studied. It would simply be impossible 
to cite all papers related to the mathematical and numerical analysis of the equation and we 
instead refer the interested readers to the recent reviews [35,36].

What is also remarkable with the Cahn–Hilliard equation is that it (or some of its variants) 
has been used in many other applications, such as dealloying in corrosion processes (see [15]), 
population dynamics (see [13]), tumor growth (see [2,25]), bacterial films (see [26]), thin films 
(see [39]), chemistry (see [42]), image processing (see [4,8,14]) and even astronomy in the rings 
of Saturn (see [40]) and ecology (surprisingly, the clustering of mussels can be perfectly well 
described by the Cahn–Hilliard equation; see [29] and even Youtube for videos).

We consider in this article the following more general equation:

∂u

∂t
+ �2u − �f (u) + g(x,u) = 0. (1.1)

This equation appears in several important of the aforementioned applications (see also below for 
specific examples). In particular, when g ≡ 0, we recover the original Cahn–Hilliard equation.

Equation (1.1), endowed with Dirichlet type boundary conditions, was studied, for rather gen-
eral source terms g, in [16,17,32,33]. Now, for most applications of interest, Neumann boundary 
conditions are the relevant ones, as one wants to take advantage of separation and clustering ef-
fects. In that case, however, due to the fact that, contrary to the original Cahn–Hilliard equation, 
one no longer has the conservation of the spatial average of the order parameter u, the existence 
of global in time solutions becomes a challenging problem (see [5,9,11,17,34,35]). Even worse, 
it was observed in [11,17] (see also [35]) that one can have blow up in finite time when consid-
ering regular nonlinear terms f (typically, the usual cubic nonlinear term f (s) = s3 − s), which 
is problematic in view of applications. Nevertheless, it was proved in [31,34,35] that, in some 
particular cases, considering instead a logarithmic nonlinear term (which is relevant, as such a 
nonlinear term is the thermodynamically relevant one for the original Cahn–Hilliard equation), 
one can prove the existence of global in time solutions.

Our aim in this paper is to give sufficient conditions on the nonlinear source term g that ensure 
the existence of global in time weak solutions, when considering Neumann boundary conditions 
and logarithmic nonlinear terms f . One key step is to give proper approximations of the singular 
nonlinear term f which allow to derive the necessary a priori estimates to pass to the limit. In 
particular, these sufficient conditions are satisfied for most of the source terms g appearing in the 
literature.

This paper is organized as follows. In the first section, we set the problem and state the main 
result, namely, the existence of global in time weak solutions. Then, in Section 3, we prove our 
main result. Finally, in Section 4, we give and discuss several applications.

2. Setting of the problem and main result

We consider the following initial and boundary value problem, in a bounded and regular do-
main � ⊂Rn, n = 1, 2 or 3, with boundary �:

∂u + �2u − �f (u) + g(x,u) = 0, (2.1)

∂t
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∂u

∂ν
= ∂�u

∂ν
= 0 on �, (2.2)

u|t=0 = u0. (2.3)

First, concerning the (nonlinear) source term g : � ×R →R, we make the following assump-
tions:

g(., s) is measurable on �, ∀s ∈ R, (2.4)

g(x, .) is continuous on R, for a.a. x ∈ �, (2.5)

|g(x, s)| ≤ c(1 + |s|2p+2), for a.a. x ∈ �, ∀s ∈R, p ∈ N ∪ {0}, (2.6)

∃α, β ∈ R, α < β, and λ > 0 such that g(x, s) = λs + g̃(x, s), with (2.7)

λα ≤ −g̃(x, s) ≤ λβ, for a.a. x ∈ �, ∀s ∈ [α,β].

Remark 2.1. This significantly improves the assumptions made in [34], Remark 4.7, namely, 
g(x, s) = g(s) is of class C2, with g′′ bounded, and

g(s) = λs + g̃(s), λ > 0,
κ

λ
≤ 1,

where κ = maxs∈[−1,1] |g̃(s)| (here, α = −1, β = 1). These assumptions, as well as the proof 
given in [34], only allow to handle (some) at most quadratic source terms g(s).

Next, as far as the nonlinear term f is concerned, we take

f (s) = c0(
α + β

2
− s) + c1 ln(

s − α

β − s
), s ∈ (α,β), c1 <

1

4
c0(β − α),

where α and β are the constants in (2.7). Note that the condition c1 < 1
4c0(β − α) is made to 

ensure that the potential

F(s) =
s∫

α+β
2

f (ξ) dξ

= −c0

2
(
α + β

2
− s)2 + c1((s − α) ln(

2(s − α)

β − α
) + (β − s) ln(

2(β − s)

β − α
))

has a double-well structure and that phase separation processes can occur. These functions satisfy

f ′ ≥ −c0, F ≥ −c2, c2 ≥ 0, (2.8)

f (s)(s − m) ≥ c3(m)(|f (s)| + F(s)) − c4(m), (2.9)

s, m ∈ (α,β), c3(m) > 0, c4(m) ≥ 0,

where c3 and c4 depend continuously on m. This can be proved as in [35], after a proper rescaling.
Our aim in this paper is to prove the following.
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Theorem 2.2. We assume that u0 ∈ H 1(�), α < u0(x) < β a.e. and 〈u0〉 ∈ (α, β). Then, there 
exists at least one weak solution u to (2.1)-(2.3) such that, ∀T > 0,

u ∈ L∞(0, T ;H 1(�)) ∩ C([0, T ];H−1(�)) ∩ L2(0, T ;H 2(�)),

∂u

∂t
∈ L2(0, T ;H−1(�)),

α < u(x, t) < β a.e.

Remark 2.3. Uniqueness and further regularity are open problems for a general source term g
(see Remark 3.5 below).

2.1. Notation

We set, for v ∈ L1(�),

〈v〉 = 1

Vol(�)

∫

�

v(x)dx

and, for v ∈ H−1(�) = H 1(�)′,

〈v〉 = 1

Vol(�)
〈v,1〉H−1(�),H 1(�),

where 〈·, ·〉 denotes the duality product. Furthermore, we set, whenever it makes sense,

v = v − 〈v〉.

We denote by ((·, ·)) the usual L2-scalar product, with associated norm ‖ · ‖. We also set ‖ ·
‖−1 = ‖(−�)− 1

2 · ‖, where (−�)−1 denotes the inverse of the minus Laplace operator associated 
with Neumann boundary conditions and acting on functions with null spatial average; ‖ · ‖−1 is 
a norm on {v ∈ H−1(�), 〈v〉 = 0} which is equivalent to the usual H−1-norm. More generally, 
we denote by ‖ · ‖X the norm on the Banach space X.

We note that

v �→ (‖v‖2−1 + 〈v〉2)
1
2 , v �→ (‖v‖2 + 〈v〉2)

1
2 ,

v �→ (‖∇v‖2 + 〈v〉2)
1
2 and v �→ (‖�v‖2 + 〈v〉2)

1
2

are norms on H−1(�), L2(�), H 1(�) and H 2(�), respectively, which are equivalent to the 
usual norms on these spaces.

Throughout this paper, the same letters c and c′ denote (nonnegative or positive) constants 
which may vary from line to line, or even in a same line.
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3. Proof of Theorem 2.2

3.1. First step: approximated problems

We set

F(s) = −c0

2
(
α + β

2
− s)2 + F1(s).

Following [19], we introduce the functions F1,N of class C4p+4 defined on the whole real line 
by, for N ∈N:

F
(4p+4)
1,N (s) =

⎧⎪⎪⎨
⎪⎪⎩

F
(4p+4)

1 (β − 1
N

), s > β − 1
N

,

F
(4p+4)
1 (s), s ∈ [α + 1

N
,β − 1

N
],

F
(4p+4)
1 (α + 1

N
), s < α + 1

N
,

F
(k)
1,N (

α + β

2
) = F

(k)
1 (

α + β

2
), k = 0, · · ·, 4p + 3,

yielding

F1,N (s) =

⎧⎪⎪⎨
⎪⎪⎩

∑4p+4
k=0

1
k!F

(k)
1 (β − 1

N
)(s − β + 1

N
)k, s > β − 1

N
,

F1(s), s ∈ [α + 1
N

,β − 1
N

],∑4p+4
k=0

1
k!F

(k)
1 (α + 1

N
)(s − α − 1

N
)k, s < α + 1

N
.

Here, for k ∈ N∪{0}, F (k) denotes the kth order derivative of F , being understood that F (0) = F

(also recall that p is defined in (2.6)). We then set FN(s) = − c0
2 (

α+β
2 − s)2 + F1,N (s), f1,N =

F ′
1,N and fN = F ′

N .
The following hold, for N large enough (see [19]):

f ′
N ≥ −c0, (3.1)

FN(s) ≥ c5s
4p+4 − c6, s ∈R, c5 > 0, c6 ≥ 0, (3.2)

where the constants c5 and c6 are independent of N .
Furthermore, we have the following.

Proposition 3.1. The following holds, for N large enough:

fN(s)(s − m) ≥ c7(m)(|fN(s)| + FN(s)) − c8(m), (3.3)

s ∈R, m ∈ (α,β), c7(m) > 0, c8(m) ≥ 0,

where the constants c7 and c8 depend continuously on m and are independent of N .
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Proof. First, note that, for symmetry reasons, it suffices to take s ≥ α+β
2 . Furthermore, for s ∈

[α+β
2 , β − 1

N
], then (3.3) follows from (2.9). Here, N is taken large enough so that β − 1

N
≥ α+β

2 .
We assume from now on that s ≥ β − 1

N
and fix m ∈ (α, β).

Note that

fN(s) = c0(
α + β

2
− s) + f1,N (s)

= c0(
α + β

2
− s) +

4p+3∑
k=0

1

k!f
(k)
1 (β − 1

N
)(s − β + 1

N
)k,

where f1 = F ′
1. Furthermore, we can take N large enough so that f (k)

1 (β − 1
N

) ≥ 0, k = 0, · · ·, 
4p + 3, since lims→β− f

(k)
1 (s) = +∞, k = 0, · · ·, 4p + 3. This yields that

fN(s) ≥ c0(
α + β

2
− s) + f1(β − 1

N
) + f ′

1(β − 1

N
)(s − β + 1

N
)

= (f ′
1(β − 1

N
) − c0)(s − β + 1

N
) + f1(β − 1

N
) + c0(

α + β

2
− β + 1

N
)

≥ (f ′
1(β − 1

N
) − c0)(s − β + 1

N
) + f1(β − 1

N
) + c0

α − β

2
.

Choosing N large enough so that f ′
1(β − 1

N
) ≥ c0 and f1(β − 1

N
) ≥ c0

β−α
2 , we see that fN ≥ 0. 

We can also take N large enough so that s − m ≥ 0.
Next, note that, since m < β and s ≥ β − 1

N
, we can choose, for N large enough, a constant 

cm such that s − m − cm ≥ 0. Indeed, we can see that s − m − cm ≥ β − m − cm − 1
N

.
Writing

fN(s)(s − m) − cmfN(s) = fN(s)(s − m − cm) ≥ 0,

it follows that

fN(s)(s − m) ≥ cmfN(s) = cm|fN(s)|.

Finally, we note that, similarly,

(fN(s)(s − m) − FN(s))′ = f ′
N(s)(s − m) ≥ 0,

for N large enough, which yields

fN(s)(s − m) ≥ FN(s) + f (β − 1

N
)(β − 1

N
− m) − F(β − 1

N
) ≥ FN(s) − F(β − 1

N
),

and we conclude, noting that F is bounded on (α, β). �
We finally have the following coercivity property on fN .
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Proposition 3.2. The following holds, for N large enough:

(fN(s) − fN(m))(s − m) ≥ c9(s − m)4p+4 − c10, (3.4)

s, m ∈ R, c9 > 0, c10 ≥ 0,

where the constants c9 and c10 are independent of s, m and N .

Proof. Set

ϕN(s) = (fN(s) − fN(m))(s − m),

so that

ϕN(s) = (s − m)

s∫

m

f ′
N(ξ) dξ. (3.5)

Proceeding exactly as in the proof of (3.2) in [19], we can see that, taking N large enough,

f ′
N(s) ≥ cs4p+2 − c′, s ∈ R, c > 0, c′ ≥ 0, (3.6)

where the constants c and c′ are independent of N .
Let us assume that s ≥ m (the case s ≤ m can be treated in a similar way). Then, it follows 

from (3.5)-(3.6) that

s∫

m

f ′
N(ξ) dξ ≥ c

4p + 3
(s4p+3 − m4p+3) − c′(s − m)

and

ϕN(s) ≥ c

4p + 3
(s4p+3 − m4p+3)(s − m) − c′(s − m)2.

Noting finally that (see, e.g., [11], Remark 2.11)

(s4p+3 − m4p+3)(s − m) ≥ c(s − m)4p+4, s, m ∈ R, c > 0,

we deduce that

ϕN(s) ≥ c(s − m)4p+4 − c′(s − m)2

and (3.4) follows, employing Young’s inequality. �
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Having this, we introduce the following approximated problems, for N ∈N:

∂uN

∂t
+ �2uN − �fN(uN) + g(x,uN) = 0, (3.7)

∂uN

∂ν
= ∂�uN

∂ν
= 0 on �, (3.8)

uN |t=0 = u0. (3.9)

Actually, we consider the following equivalent weaker formulation:

(−�)−1 ∂uN

∂t
− �uN + fN(uN) + (−�)−1g(x,uN) = 0, (3.10)

d〈uN 〉
dt

+ 〈g(x,uN)〉 = 0, (3.11)

∂uN

∂ν
= 0 on �, (3.12)

uN |t=0 = u0, 〈uN 〉|t=0 = 〈u0〉, (3.13)

recalling that uN = uN + 〈uN 〉.
The existence of a local in time solution to (3.10)-(3.13) is based on a standard Galerkin 

scheme and the a priori estimates below.
More precisely, one can associate with (3.10)-(3.13) the following variational formulation, for 

T > 0 given:
Find (uN, 〈uN 〉) : [0, T ] → V ×R, V = {v ∈ H 1(�), 〈v〉 = 0}, such that

d

dt
(((−�)−1uN,v)) + ((∇uN,∇v)) + ((fN(uN), v)) + (((−�)−1g(x,uN), v)) (3.14)

= 0 in D′(0, T ), ∀v ∈ V,

d〈uN 〉
dt

+ 〈g(x,uN)〉 = 0 in D′(0, T ), (3.15)

uN |t=0 = u0 ∈ V, 〈uN 〉|t=0 = 〈u0〉 ∈ R, (3.16)

where uN = uN + 〈uN 〉 and D′ denotes the space of distributions. Let then 0 < λ1 ≤ λ2 ≤ · · · be 
the eigenvectors of the minus Laplace operator associated with Neumann boundary conditions 
and acting on functions with vanishing spatial average and v1, v2, · · · be associated eigenvectors 
such that the vj ’s form an orthonormal in {v ∈ L2(�), 〈v〉 = 0} and orthogonal in V basis (see, 
e.g., [35] for details). We set

Vm = Span(v1, · · ·, vm), m ∈N.

Noting that H 1(�) = R ⊕ V , we also set λ0 = 0 and v0 = 1

Vol(�)
1
2

to obtain an orthonormal in 

L2(�) and orthogonal in H 1(�) basis. Having this, we introduce the following approximated 
problems, for m ∈N:

Find (uN,m, 〈uN,m〉) : [0, T ] → Vm × R, uN,m(x, t) = ∑m
j=1 dN,j,m(t)vj (x), 〈uN,m〉 =

1
1 dN,0,m, such that
Vol(�) 2
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d

dt
(((−�)−1uN,m, v)) + ((∇uN,m,∇v)) + ((fN(uN,m), v)) (3.17)

+ (((−�)−1g(x,uN,m), v)) = 0 in D′(0, T ), ∀v ∈ Vm,

d〈uN,m〉
dt

+ 〈g(x,uN,m)〉 = 0 in D′(0, T ), (3.18)

uN,m|t=0 = Pm(u0), 〈uN,m〉|t=0 = 〈u0〉, (3.19)

where uN,m = ∑m
j=0 dN,j,mvj and Pm denotes the orthogonal projector onto Vm, with respect to 

the L2(�)-scalar product.
Proving the local in time existence of a solution to (3.17)-(3.19) easily follows from the 

Cauchy–Caratheodory theorem. However, what is important is to prove that this local in time 
solution is defined on a time interval which is independent of N (and m), which necessi-
tates uniform a priori estimates. We will derive these estimates based on the original problem 
(3.10)-(3.13). These can be justified within the approximated problems (3.17)-(3.19), passing to 
the weak lower limit m → +∞ at the end of the procedure.

3.2. Second step: uniform a priori estimates

In what follows, all constants are independent of the approximating parameter N .

First a priori estimate:

Let us multiply (3.10) by −�uN to obtain, integrating over � and by parts,

1

2

d

dt
‖uN‖2 + ‖�uN‖2 − ((fN(uN),�uN)) + ((g(x,uN),uN)) = 0. (3.20)

Remark 3.3. This estimate is formal. Actually, we should work at the approximated level and 
write it for uN,m, by taking v = vj in (3.17), multiplying the resulting equation by λjdN,j,m

and summing over j = 1, · · ·, m. We can note that all constants below are also independent 
of m at the approximated level. All the other estimates can be justified in a similar way (see 
also Remark 3.4 below). Finally, as already mentioned, we would pass to the weak lower limit 
m → +∞ at the end of the procedure, in particular, after employing Gronwall’s lemma, to obtain 
the desired regularity and uniform estimates on uN . That said, we continue to work formally, for 
simplicity.

Note that, owing to (3.1) and a proper interpolation inequality and taking N large enough,

−((fN(uN),�uN)) = ((f ′
N(uN)∇uN,∇uN)) ≥ −c0‖∇uN‖2

≥ −c‖uN‖‖�uN‖ ≥ −1

2
‖�uN‖2 − c‖uN‖2, (3.21)

owing also to standard elliptic regularity results. Furthermore, it follows from (2.6) and Young’s 
inequality that

‖g(x,uN)‖2 ≤ c(‖uN‖4p+4
4p+4 + 1), (3.22)
L (�)
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which yields

|((g(x,uN),uN))| ≤ cε‖uN‖2 + ε(‖uN‖4p+4
L4p+4(�)

+ 1), ∀ε > 0. (3.23)

It follows from (3.20)-(3.23) that

d

dt
‖uN‖2 + ‖�uN‖2 ≤ cε(‖uN‖2 + 〈uN 〉2) + ε(‖uN‖4p+4

L4p+4(�)
+ 1), ∀ε > 0. (3.24)

Next, we multiply (3.11) by 〈uN 〉 to find

1

2

d

dt
〈uN 〉2 ≤ |〈g(x,uN)〉||〈uN 〉| ≤ c‖g(x,uN)‖L1(�)|〈uN 〉|,

which yields, proceeding as above and employing Young’s inequality,

d

dt
〈uN 〉2 ≤ cε(‖uN‖2 + 〈uN 〉2) + ε(‖uN‖4p+4

L4p+4(�)
+ 1), ∀ε > 0. (3.25)

Summing (3.24) and (3.25), we have

d

dt
(‖uN‖ + 〈uN 〉2) + ‖�uN‖2 (3.26)

≤ cε(‖uN‖2 + 〈uN 〉2) + ε(‖uN‖4p+4
L4p+4(�)

+ 1), ∀ε > 0.

We now multiply (3.10) by uN and obtain

1

2

d

dt
‖uN‖2−1 + ‖∇uN‖2 + ((fN(uN),uN)) + (((−�)−1g(x,uN),uN)) = 0. (3.27)

Note that, owing to (3.4) (with s = uN and m = 〈uN 〉) and taking N large enough,

((fN(uN),uN)) = ((fN(uN) − fN(〈uN 〉), uN)) (3.28)

≥ c‖uN‖4p+4
L4p+4(�)

− c′ ≥ c‖uN‖4p+4
L4p+4(�)

− c′(〈uN 〉4p+4 + 1),

where we have also employed Young’s inequality. Furthermore,

|(((−�)−1g(x,uN),uN))| ≤ c‖g(x,uN)‖‖uN‖ (3.29)

≤ cε(‖uN‖2 + 〈uN 〉2) + ε(‖uN‖4p+4
L4p+4(�)

+ 1), ∀ε > 0.

It thus follows from (3.27)-(3.29) that

d

dt
‖uN‖2−1 + c(‖∇uN‖2 + ‖uN‖4p+4

L4p+4(�)
) (3.30)

≤ cε(‖uN‖2 + 〈uN 〉2)2p+2 + ε(‖uN‖4p+4
4p+4 + 1), c > 0, ∀ε > 0.
L (�)
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Summing (3.26) and (3.30), we find, choosing ε small enough,

d

dt
(‖uN‖2−1 + ‖uN‖2 + 〈uN 〉2) (3.31)

+ c(‖uN‖2
H 2(�)

+ ‖uN‖4p+4
L4p+4(�)

) ≤ c′((‖uN‖2 + 〈uN 〉2)2p+2 + 1), c > 0.

In particular, it follows from (3.31) that we have a differential inequality of the form

y′ ≤ c(y2p+2 + 1), y = ‖uN‖2−1 + ‖uN‖2 + 〈uN 〉2.

Considering the ODE

z′ = c(z2p+2 + 1), z(0) = y(0),

we deduce from the comparison principle that there exists T0 = T0(‖u0‖) > 0 such that

‖uN‖ ≤ c, t ∈ [0, T0].

This, together with (3.31), yields uniform (with respect to N ) estimates on uN in L∞(0, T0;
L2(�)), L2(0, T0; H 2(�)) and L4p+4(0, T0; L4p+4(�)).

Second a priori estimate:

We assume that t ∈ [0, T0].
It follows from (3.11), (3.22) and the continuous embedding L2(�) ⊂ L1(�) that

|d〈uN 〉
dt

| ≤ c‖g(x,uN)‖ ≤ c(‖uN‖4p+4
L4p+4(�)

+ 1)
1
2 ,

so that

〈u0〉 − c

t∫

0

(‖uN‖4p+4
L4p+4(�)

+ 1)
1
2 ds ≤ 〈uN(t)〉 (3.32)

≤ 〈u0〉 + c

t∫

0

(‖uN‖4p+4
L4p+4(�)

+ 1)
1
2 ds.

Note that, employing Cauchy–Schwarz’s inequality,

t∫

0

(‖uN‖4p+4
L4p+4(�)

+ 1)
1
2 ds ≤ √

t(

t∫

0

(‖uN‖4p+4
L4p+4(�)

+ 1) ds)
1
2 ,

so that, owing to (3.31),
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t∫

0

(‖uN‖4p+4
L4p+4(�)

+ 1)
1
2 ds ≤ ct + c′√t‖u0‖. (3.33)

It thus follows from (3.32)-(3.33) that

〈u0〉 − ct − c′√t‖u0‖ ≤ 〈uN(t)〉 ≤ 〈u0〉 + ct + c′√t‖u0‖. (3.34)

Let us now fix δ > 0 such that

α + 2δ ≤ 〈u0〉 ≤ β − 2δ. (3.35)

It follows from (3.34)-(3.35) that there exists T1 = T1(α, β, δ) > 0, T1 ≤ T0, such that

α + δ ≤ 〈uN(t)〉 ≤ β − δ, t ∈ [0, T1]. (3.36)

We assume from now on that t ∈ [0, T1].
Third a priori estimate:

We again multiply (3.10) by uN and now note that, owing to (3.3) (with s = uN and m = 〈uN 〉) 
and (3.36) and taking N large enough,

((fN(uN),uN)) ≥ c(‖fN(uN)‖L1(�) +
∫

�

FN(uN)dx) − c′, (3.37)

where the constants c and c′ depend on δ. Then, note that it follows from (2.6), (3.2) and (3.22)
that, taking N large enough,

‖g(x,uN)‖2 ≤ c(

∫

�

FN(uN)dx + c′), (3.38)

where c′ is such that
∫

�

FN(uN)dx + c′ ≥ 0.

Thus, proceeding as in the First a priori estimate, we obtain the differential inequality

d

dt
(‖uN‖2−1 + ‖uN‖2 + 〈uN 〉2) (3.39)

+ c(‖uN‖2
H 2(�)

+ ‖fN(uN)‖L1(�) +
∫

�

FN(uN)dx) ≤ c′(‖uN‖2 + 〈uN 〉2 + 1), c > 0.

In particular, it follows from (3.39) that we have a uniform estimate on fN(uN) in 
L1(0, T1; L1(�)).
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Fourth a priori estimate:

Let us multiply (3.10) by ∂uN

∂t
to find

1

2

d

dt
(‖∇uN‖2 + 2

∫

�

FN(uN)dx) + ‖∂uN

∂t
‖2−1 (3.40)

− ((fN(uN), 〈∂uN

∂t
〉)) + (((−�)−1g(x,uN),

∂uN

∂t
)) = 0.

Note that, owing to (3.38) and taking N large enough,

|((fN(uN), 〈∂uN

∂t
〉))| = |((fN(uN), 〈g(x,uN)〉))| (3.41)

≤ c‖fN(uN)‖L1(�)‖g(x,uN)‖L1(�) ≤ c‖fN(uN)‖L1(�)‖g(x,uN)‖

≤ c‖fN(uN)‖L1(�)(

∫

�

FN(uN)dx + c′).

Furthermore,

|(((−�)−1g(x,uN),
∂uN

∂t
))| = |((g(x,uN), (−�)−1 ∂uN

∂t
))| (3.42)

≤ c‖g(x,uN)‖‖∂uN

∂t
‖−1 ≤ c(

∫

�

FN(uN)dx + c′) + 1

2
‖∂uN

∂t
‖2−1.

It thus follows from (3.40)-(3.42) that

d

dt
(‖∇uN‖2 + 2

∫

�

FN(uN)dx) + ‖∂uN

∂t
‖2−1 (3.43)

≤ c(‖fN(uN)‖L1(�) + 1)(‖∇uN‖2 + 2
∫

�

FN(uN)dx + c′).

Recall that it follows from the previous a priori estimates that ‖fN(uN)‖L1(�) belongs to 
L1(0, T1). We thus deduce, employing Gronwall’s lemma and in view of the properties of FN , 
that uN is uniformly bounded in L∞(0, T1; H 1(�)) and L∞(0, T1; L4p+4(�)) and that ∂uN

∂t
is 

uniformly bounded in L2(0, T1; H−1(�)) (recall also that |〈 ∂uN

∂t
〉| ≤ c‖g(x, uN)‖ and can be 

estimated).

Fifth a priori estimate:

It follows from (3.10) and (3.38) and taking N large enough that

‖fN(uN)‖2 ≤ c(‖uN‖2
H 2(�)

+ ‖∂uN

∂t
‖2−1 + ‖g(x,uN)‖2)

and
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‖fN(uN)‖2 ≤ c(‖uN‖2
H 2(�)

+ ‖∂uN

∂t
‖2−1 +

∫

�

FN(uN)dx + c′). (3.44)

Remark 3.4. Note that, owing to the third and fourth a priori estimates, we have enough reg-
ularity to pass to the limit in the Galerkin approximations (3.17)-(3.19), employing standard 
Aubin–Lions compactness results. Therefore, (3.10) holds a.e., so that the above estimates can 
be derived directly from (3.10) and we do not need to work on the Galerkin approximations.

Next, employing once more (3.3), with s = uN and m = 〈uN 〉, we see that, for N large enough,

|〈fN(uN)〉| ≤ c|((fN(uN),uN))| + c′ = c|((fN(uN),uN))| + c′

≤ c‖fN(uN)‖‖uN‖ + c′,

owing to (3.36), so that

|〈fN(uN)〉| ≤ c(‖fN(uN)‖ + 1). (3.45)

We finally deduce from (3.44)-(3.45) and the previous a priori estimates that fN(uN) is uni-
formly bounded in L2(0, T1; L2(�)).

3.3. Third step: passage to the limit and local in time existence

It follows from the a priori estimates and standard Aubin–Lions compactness results that there 
exists a function u such that, at least for a subsequence that we do not relabel,

uN → u in L∞(0, T1;H 1(�)) weak star and in L2(0, T1;H 2(�)) weakly,

uN → u in L2(0, T1;L2(�)) and a.e.,

∂uN

∂t
→ ∂u

∂t
in L2(0, T1;H−1(�)) weakly,

as N → +∞.
The passage to the limit in the linear terms, having in mind the variational formulation 

(3.14)-(3.16), is straightforward.
Next, since fN(uN) is uniformly bounded in L1(0, T1; L1(�)), we can prove in a standard 

way (i.e., exactly as in the case of the usual Cahn–Hilliard equation; see [35] for details) that 
α < u(x, t) < β a.e. This, in turn, allows to prove that fN(uN) converges to f (u) a.e., owing to 
the explicit expression of fN . Finally, since fN(uN) is uniformly bounded in L2(0, T1, L2(�)), 
it follows that fN(uN) converges to f (u) in L2(0, T1; L2(�)) weakly, which is sufficient to pass 
to the limit in the nonlinear term fN(uN).

We can pass to the limit in the nonlinear source term g(x, uN) in a similar way, owing to (2.5)
and noting that it follows from (3.22) and the above a priori estimates that g(x, uN) is uniformly 
bounded in L∞(0, T1; L2(�)) ⊂ L2(0, T1; L2(�)).

We thus conclude on the existence of a local in time weak solution to the problem.
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3.4. Fourth step: global in time existence

Let T � be the maximal existence time of a local in time solution and assume that T � < +∞.
Then, one has, immediately,

‖u(t)‖ ≤ ‖max(|α|, |β|)‖ = Vol(�)
1
2 max(|α|, |β|), t ∈ [0, T �), (3.46)

since u ∈ (α, β) a.e., meaning that the upper bound on ‖u‖ is independent of T �.
However, in order to extend the solution, we need to make sure that

〈u(t)〉 ∈ [α + δ,β − δ], t ∈ [0, T �),

for some δ ∈ (α, β) (having this, we can repeat all estimates above, for the limit solution, and see 
that they hold for t ∈ [0, T �)).

To do so, note that

d〈u〉
dt

+ 〈g(x,u)〉 = 0,

which yields

d〈u〉
dt

+ λ〈u〉 = −〈g̃(x, u)〉,

so that, employing Gronwall’s lemma,

〈u(t)〉 = 〈u0〉e−λt − e−λt

t∫

0

eλs〈g̃(x, u)〉ds.

We thus deduce from (2.7) that

〈u0〉e−λt + α(1 − e−λt ) ≤ 〈u(t)〉 ≤ 〈u0〉e−λt + β(1 − e−λt ), t ∈ [0, T �). (3.47)

It immediately follows from (3.47) that

〈u(t)〉 ∈ [α + δ,β − δ], t ∈ [0, T �), δ > 0. (3.48)

Indeed, setting

ϕ(s) = 〈u0〉e−λs + α(1 − e−λs),

it is easy to see that ϕ takes values in such an interval, noting that ϕ is monotone decreasing. We 
proceed in a similar way for the right-hand side.

Having this, we can extend the solution by continuity, taking u(T �) as initial datum, leading 
to a contradiction.
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Remark 3.5. Let us assume that g(x, s) = g(s) is of class C1 and monotone increasing, with g′
bounded and g(s)f (s) ≥ −c, c ≥ 0 (see [31] for a nontrivial example; see also below). Then, we 
can prove that

∂u

∂t
∈ L∞(r, T ;H−1(�)) ∩ L2(r, T ;H 1(�)),

∀r < T , r > 0 and T > 0 given. Indeed, following [22], rewrite the problem in the equivalent 
form

∂u

∂t
+ g(u) = �μ, (3.49)

μ = −�u + f (u), (3.50)

∂u

∂ν
= ∂μ

∂ν
= 0 on �. (3.51)

The estimates below are formal, but they can be justified within a Galerkin scheme and by con-
sidering approximated problems/solutions as above. First, note that it follows from (3.50) that

〈μ〉 = 〈f (u)〉,
so that, owing to the regularity obtained above, μ ∈ L2(0, T ; H 1(�)), since

μ = −(−�)−1 ∂u

∂t
− (−�)−1g(u). (3.52)

Next, let us multiply (3.49) by ∂μ
∂t

to have

((
∂u

∂t
,
∂μ

∂t
)) = −1

2

d

dt
‖∇μ‖2 − ((g(u),

∂μ

∂t
)). (3.53)

Let us then differentiate (3.50) with respect to time to obtain

∂μ

∂t
= −�

∂u

∂t
+ f ′(u)

∂u

∂t
. (3.54)

Multiply (3.54) by ∂u
∂t

to find

((
∂u

∂t
,
∂μ

∂t
)) = ‖∇ ∂u

∂t
‖2 + ((f ′(u)

∂u

∂t
,
∂u

∂t
)) ≥ ‖∇ ∂u

∂t
‖2 − c0‖∂u

∂t
‖2, (3.55)

owing to (2.8). Combine (3.53) and (3.55) to have

1

2

d

dt
‖∇μ‖2 + ‖∇ ∂u

∂t
‖2 + ((g(u),

∂μ

∂t
)) ≤ c0‖∂u

∂t
‖2 (3.56)

≤ 1

2
‖∇ ∂u

∂t
‖2 + c(‖∂u

∂t
‖2−1 + 〈∂u

∂t
〉2),

owing to a proper interpolation inequality. Now, note that
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((g(u),
∂μ

∂t
)) = d

dt
((g(u),μ)) − ((g′(u)

∂u

∂t
,μ)). (3.57)

Let us then combine (3.56)-(3.57) to obtain

d

dt
(
1

2
‖∇μ‖2 + ((g(u),μ))) + ‖∇ ∂u

∂t
‖2 ≤ c‖∂u

∂t
‖2
H−1(�)

+ c′‖∂u

∂t
‖‖μ‖

≤ 1

2
‖∇ ∂u

∂t
‖2 + c(‖∂u

∂t
‖2
H−1(�)

+ ‖μ‖2),

recalling that g′ is bounded, so that

d

dt
(
1

2
‖∇μ‖2 + ((g(u),μ))) + 1

2
‖∇ ∂u

∂t
‖2 ≤ c(‖∂u

∂t
‖2
H−1(�)

+ ‖μ‖2). (3.58)

Set finally

� = 1

2
‖∇μ‖2 + ((g(u),μ)).

Note that, since g′ ≥ 0,

((g(u),μ)) = ((g(u),−�u + f (u))) = ((g′(u)∇u,∇u)) + ((g(u), f (u))

≥ ((g(u), f (u))).

Therefore,

� ≥ 1

2
‖∇μ‖2 − c, c ≥ 0,

and an application of the uniform Gronwall’s lemma yields that

μ ∈ L∞(r, T1;H 1(�)),

for some T1 > 0 (as in the Second a priori estimate above), r ∈ (0, T1) given. Actually, if we 
look carefully at the a priori estimates derived above, we can see that the final time T1 and 
constants only depend on α, β and δ > 0 as in (3.35). But then, it follows from the Fourth step 
that we can, without loss of generality, consider δ depending only on α, β and the final time T ; 
we also assume, without loss of generality, that 2δ and δ in (3.35) and (3.48), respectively, are 
the same, making a further iteration if needed. Therefore, taking u(T1) as initial datum, 〈u(T1)〉
satisfies (3.35) for the same δ > 0 as the one taken for u0 and we can extend the solution to 
[r, 2T1], repeating all the above estimates on [T1, 2T1] and now employing Gronwall’s lemma. 
Note however that ∇μ does not a priori satisfy any continuity property (the same holds for �). 
Nevertheless, we can still, without loss of generality, keep the same interval, reducing it a bit if 
necessary. Indeed, we can write, e.g.,
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T1∫

3T1
4

‖∇μ‖2 dt ≤ T1

4
‖∇μ‖2

L∞(
3T1

4 ,T1;L2(�)n)
,

which yields that there exists t� ∈ ( 3T1
4 , T1) such that

‖∇μ(t�)‖2 ≤ ‖∇μ‖2
L∞(

3T1
4 ,T1;L2(�)n)

≤ ‖∇μ‖L∞(r,T1;L2(�)n)

(we thus assume, without loss of generality, that t� = T1). Proceeding recursively, we extend the 
solution and the estimates to [r, T ]. The result finally follows from (3.52). Having this, we can 
obtain further regularity results and prove stronger separation properties of u from the singular 
points α and β in one and two space dimensions, yielding also some uniqueness results (see [22,
31,35] for more details). Note however that the assumptions made on g here are very restrictive, 
although the assumption g′ ≥ 0 can be relaxed to g′ ≥ −c, c ≥ 0, by combining (3.58) with 
(3.43) (written for u).

4. Applications

In the examples below, assumptions (2.4)-(2.6) are clearly satisfied and there remains to check 
(2.7).

4.1. The Cahn–Hilliard–Oono equation

This corresponds to the simplest situation, namely, g is linear (see [38]),

g(x, s) = g(s) = γ s, γ > 0, α = −1, β = 1.

In that case, g̃ = 0, so that we have the existence of global in time solutions. Actually, here, 
one can recover all results known for the original Cahn–Hilliard equation (corresponding to 
γ = 0), namely, uniqueness, additional regularity, (strict) separation from the pure states, etc. 
In particular, note that the condition g(s)f (s) ≥ −c, c ≥ 0, follows from (2.9). We refer the 
interested reader to [22,35] for more details.

Remark 4.1. We can more generally take

g(x, s) = g(s) = γ (s − c), c ∈ (−1,1), γ > 0.

Moreover, the case c = 〈u0〉 corresponds to the Ohta–Kawasaki equation which appears in 
separation processes for block copolymers (see [37]). In that particular case, we recover the 
conservation of mass, 〈u(t)〉 = 〈u0〉, t ≥ 0. Writing then the Ohta–Kawasaki equation in the 
equivalent form

∂u

∂t
+ �2u − �f (u) + γ u = 0, (4.1)

we obtain, multiplying (4.1) by ∂u (note that 〈 ∂u 〉 = 0),

∂t ∂t

105



A. Miranville Journal of Differential Equations 294 (2021) 88–117
d

dt
(‖∇u‖2 + γ ‖u‖2−1 + 2

∫

�

F(u)dx) + ‖∂u

∂t
‖2−1 = 0. (4.2)

This corresponds to the energy dissipation and the Ohta–Kawasaki model actually has a varia-
tional structure. More precisely, it is an H−1(�)-gradient flow for the nonlocal total free energy

�OK =
∫

�

(
1

2
|∇u|2 + γ

2
|(−�)−

1
2 (u − 〈u0〉)|2 + F(u)) dx (4.3)

(by comparison, the total free energy associated with the original Cahn–Hilliard equation, known 
as the Ginzburg–Landau free energy, reads �GL = ∫

�
( 1

2 |∇u|2 +F(u)) dx). Here, besides the ab-
solute value, | · | also denotes the usual Euclidean norm, with associated scalar product ·. This 
energy dissipation, together with the conservation of mass, significantly simplifies the mathe-
matical analysis of the problem, also when compared to the Cahn–Hilliard–Oono equation. In 
particular, this allows to directly prove the existence and uniqueness of global in time solutions, 
proceeding as in the case of the Cahn–Hilliard equation. We can also prove, proceeding again 
as in the case of the Cahn–Hilliard equation, further regularity and the strict separation from 
the pure states ±1 in one and two space dimensions. We refer the interested reader to [35] for 
the mathematical analysis of the Cahn–Hilliard equation; the changes, for the Ohta–Kawasaki 
model, are minor.

Remark 4.2. The Cahn–Hilliard–Oono equation also has a variational structure. Indeed, set

�CHO =
∫

�

(
1

2
|∇u|2 + F(u) +

∫

�

u(y)k(x, y)u(x) dy)dx, (4.4)

where, in three space dimensions, one takes

k(x, y) = γ

4π |x − y| . (4.5)

Writing then, as in the derivation of the classical Cahn–Hilliard equation,

∂u

∂t
= �∂u�CHO, (4.6)

where ∂u denotes a variational derivative, we find the Cahn–Hilliard–Oono equation, noting that 
− 1

4π |x−y| is the Green function associated with the Laplace operator. Indeed, considering a small 
variation, we have

δ�CHO =
∫

�

(−∇u · ∇δu + f (u)δu +
∫

�

k(x, y)u(y)δu(x) dy)dx

=
∫

�

(−�u + f (u) +
∫

�

k(x, y)u(y) dy)δu(x) dx

so that
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∂u�CHO = −�u + f (u) +
∫

�

k(x, y)u(y) dy.

Noting that the Laplacian corresponds to the x-variable, we see that

�∂u�CHO = −�2u + �f (u) +
∫

�

�k(x, y)u(y) dy.

Finally, by definition of Green’s function and denoting by di the Dirac mass at 0 (this is of course 
formal, since the Dirac mass is not a function),

∫

�

�(−k(x, y))u(y) dy = γ

∫

�

di(x − y)u(y) dy = γ u(x),

which yields

�∂u�CHO = −�2u + �f (u) − γ u,

from which the Cahn–Hilliard–Oono equation follows. We can note that such a nonlocal free en-
ergy (without the term 1

2 |∇u|2) is considered in the literature related with nonlocal Cahn–Hilliard 
models (see, e.g., [3,20,21] and references therein) and are delicate to study from a mathematical 
point of view. In particular, this variational structure would not simplify the mathematical anal-
ysis of the Cahn–Hilliard–Oono equation. Indeed, we again stress that the above considerations 
and computations are formal. Furthermore, the Laplace operator considered in (4.6) is not asso-
ciated with Neumann boundary conditions and (4.6) does not yield the conservation of mass, as 
expected here.

4.2. The Cahn–Hilliard equation in binary image inpainting

We consider the following equation, proposed in [4] in view of applications to binary (i.e., 
black and white) image inpainting:

∂u

∂t
+ ε�2u − 1

ε
�f (u) + λ0χ�\D(x)(s − h(x)) = 0, λ0, ε > 0.

Here, h is a given (damaged) image, h(x) ∈ [0, 1] a.e., χ is the indicator function and D ⊂ � is 
the inpainting (i.e., damaged/missing) region. Furthermore, ε is related to the interface thickness. 
In this context, the additional term

g(x, s) = λ0χ�\D(x)(s − h(x))

is known as fidelity term and is added in order to keep the solution u close to the image outside 
the inpainting region. The idea in this model is to solve the equation up to steady state to obtain 
an inpainted (i.e., restored) version u(x) of h(x).

Well-posedness results, in the case of a cubic nonlinear term f , were obtained in [5,9].
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Then, it was noted in [10] that logarithmic nonlinear terms f are also relevant from a numer-
ical point of view, as they allow to have better inpainting results, as well as better convergence 
times.

Let us thus take α = 0, β = 1 and

f (s) = −c0(s − 1

2
) + c1 ln

s

1 − s
, c0, c1 > 0, c1 <

c0

4
, s ∈ (0,1).

Then, write

g(x, s) = λ0s − λ0χD(x)s − λ0χ�\D(x)h(x),

so that

g̃(x, s) = −λ0χD(x)s − λ0χ�\D(x)h(x).

Noting that g̃(x, s) = −λ0s when x ∈ D and g̃(x, s) = −λ0h(x) when x ∈ �\D, we see that 
−g̃(x, s) ∈ [0, λ0], for a.a. x, ∀s ∈ [0, 1]. We thus deduce the existence of global in time weak 
solutions. Note that this improves the results in [10,35], where the condition 

∫
�\D h(x) dx = 0

is assumed.

Remark 4.3. Proceeding as in Remark 4.2, we can see that the inpainting model has a variational 
structure, considering the total free energy (for simplicity, we take h ≡ 0)

�CHI =
∫

�

(
1

2
|∇u|2 + F(u) +

∫

�\D
u(y)k(x, y)u(x) dy)dx, (4.7)

where, in three space dimensions,

k(x, y) = λ0

4π |x − y| , (4.8)

while, in two space dimensions,

k(x, y) = − λ0

2π
ln |x − y|. (4.9)

Again, having this variational structure does not simplify the mathematical analysis of the 
problem. Furthermore, obtaining a similar variational structure for more general, in particular, 
nonlinear, functions g would be more delicate.

4.3. The Cahn–Hilliard equation with a proliferation term

We take

g(x, s) = g(s) = s2 + as, a ∈R.
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In that case, one models (actually, after a proper rescaling) wound healing and the clustering 
of malignant brain tumor cells (for a = −1; see [25]) or the literal attractive interactions between 
adsorbed molecules which may induce a transition in the chemisorbed overlayer (see [42]).

The corresponding equation, for a cubic nonlinear term f , was studied in [11,16] (see also 
[35]). In particular, it was proved that one can have blow up in finite time, with an order parameter 
going to −∞, which is not satisfactory, in view of applications.

The case of a logarithmic nonlinear term, for a = −1, was investigated in [34,35] and global 
in time existence was proved.

More generally, when a < 0, we can take α = 0 and β = λ = −a. Writing g(s) = −as + g̃(s), 
we have −g̃(s) = −s2 − 2as and it is easy to see that (2.7) is satisfied. Similarly, when α = 0, 
we can take α = 0 and β = λ = 1 and, when a > 0, we can tale α = 0, β = a and λ = 2a (note 
that these choices are not optimal).

4.4. An application to tumor growth

We take (see [2])

g(x, s) = λd

2
(1 + s) − λg(1 + s)2(1 − s)2 − h(x), h ∈ L∞(�), h ≥ 0, α = −1, β = 1.

Here, the positive constants λd and λg are the death and growth rates, respectively, and h can be 
related to some nutrient.

We then take

f (s) = −c0s + c1 ln
1 + s

1 − s
, c0, c1 > 0, c1 <

c0

2
, s ∈ (−1,1),

and assume that h(x) ∈ [0, h�] a.e. Writing

g(x, s) = λd

2
s + g̃(x, s), g̃(x, s) = λd

2
− λg(1 + s)2(1 − s)2 − h(x),

it is easy to show that −g̃(x, s) ∈ [−λd

2 , λg − λd

2 + h�] for a.a. x, ∀s ∈ [−1, 1]. Therefore, one 
has the existence of global in time weak solutions when

λg + h�

λd

≤ 1.

Remark 4.4. Let us take h ≡ 0 and write g(x, s) = g(s) = λs + g̃(s), λ > 0 given, and set 
ϕ(s) = −g̃(s) = (λ − λd

2 )s − λd

2 + λg(1 + s)2(1 − s)2. Then, ϕ(1) = λ − λd , which yields that, 
necessarily, λ ≥ λd

2 . Furthermore, noting that ϕ(s) ≤ λ − λd + λg , s ∈ [−1, 1], we see that the 
above sufficient condition on the existence of global in time solutions is reasonable. Of course, 
this upper bound is not optimal, meaning that this condition can be improved, but not so much.

Remark 4.5. In the case of a regular nonlinear term f , say, f (s) = s3 − s, we can prove the 
existence of a local in time (strong) solution. Let us indeed consider the initial and boundary 
value problem
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(−�)−1 ∂u

∂t
− �u + f (u) + (−�)−1g(x,u) = 0, (4.10)

d〈u〉
dt

+ 〈g(x,u)〉 = 0, (4.11)

∂u

∂ν
= 0 on �, (4.12)

u|t=0 = u0, 〈u〉|t=0 = 〈u0〉. (4.13)

Multiplying (4.10) by −�u, we have (see the First a priori estimate)

d

dt
‖u‖2 + ‖�u‖2 ≤ c‖u‖2 − 2((g(x,u), u)).

Writing, owing to the continuous embedding H 1(�) ⊂ L5(�) and employing Young’s inequal-
ity,

|((g(x,u), u))| ≤ c(1 + ‖u‖)(1 + ‖u‖5
L5(�)

)

≤ c(1 + ‖u‖6
H 1(�)

),

it follows that

d

dt
‖u‖2 + ‖�u‖2 ≤ c(1 + ‖u‖6

H 1(�)
). (4.14)

Multiplying (4.11) by 〈u〉, we obtain, proceeding in a similar way,

d

dt
〈u〉2 + 〈u〉2 ≤ c(1 + ‖u‖5

H 1(�)
). (4.15)

Multiplying now (4.10) by ∂u
∂t

, we find

1

2

d

dt
(‖∇u‖2 + 2

∫

�

F(u)dx) + ‖∂u

∂t
‖2−1

− ((f (u), 〈∂u

∂t
〉)) + (((−�)−1g(x,u),

∂u

∂t
)) = 0.

Writing, employing Hölder’s and Young’s inequalities,

|(((−�)−1g(x,u),
∂u

∂t
))| = |((g(x,u), (−�)−1 ∂u

∂t
))|

≤ c

∫

�

(1 + |u|4)|(−�)−1 ∂u

∂t
|dx ≤ c(1 + ‖u‖4

L5(�)
)‖(−�)−1 ∂u

∂t
‖L5(�)

≤ c(1 + ‖u‖4
H 1(�)

)‖∂u‖−1 ≤ 1‖∂u‖2−1 + c(1 + ‖u‖8
1 )
∂t 2 ∂t H (�)
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and

|((f (u), 〈∂u

∂t
〉))| ≤ c‖f (u)‖L1(�)‖g(x,u)‖L1(�)

≤ c(

∫

�

F(u)dx + c′)2,

where F(s) = 1
4 s4 − 1

2 s2, we end up with the differential inequality

d

dt
(‖∇u‖2 + 2

∫

�

F(u)dx) + ‖∂u

∂t
‖2−1 ≤ c(‖u‖2

H 1(�)
+ 2

∫

�

F(u)dx + c′)4. (4.16)

We finally multiply (4.10) by −�3u and have

1

2

d

dt
‖�u‖2 + ‖�2u‖2 + ((�f (u),�2u)) + ((g(x,u),�2u)) = 0.

Note that (see [35])

|((�f (u),�2u))| ≤ 1

4
‖�2u‖2 + c(1 + ‖u‖14

H 1(�)
).

Furthermore,

|((g(x,u),�2u))| ≤ c

∫

�

(1 + |u|4)|�2u|dx

≤ c(1 + ‖u‖2
L∞(�))(1 + ‖u‖2

L4(�)
)‖�2u‖.

Employing the Agmon inequality

‖u‖L∞(�) ≤ c‖u‖
1
2
H 1(�)

‖u‖
1
2
H 2(�)

and the interpolation inequality

‖u‖H 2(�) ≤ c‖u‖
2
3
H 1(�)

‖u‖
1
3
H 4(�)

,

we obtain

|((g(x,u),�2u))| ≤ c(1 + ‖u‖
5
3
H 1(�)

‖u‖
1
3
H 4(�)

)(1 + ‖u‖2
H 1(�)

)‖u‖H 4(�)

≤ c(1 + ‖u‖2
H 1(�)

)(1 + (1 + ‖u‖
5
3
H 1(�)

)‖u‖
4
3
H 4(�)

)

≤ 1‖�2u‖2 + c(1 + ‖u‖11
1 ).
4 H (�)
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We deduce from the above the differential inequality

d

dt
‖�u‖2 + ‖�2u‖2 ≤ c(1 + ‖u‖11

H 1(�)
). (4.17)

Combining (4.14)-(4.17), we find a differential inequality of the form

dE

dt
+ c(‖u‖2

H 4(�)
+ ‖∂u

∂t
‖2
H−1(�)

) ≤ c′E7, c > 0, (4.18)

where

E = ‖u‖2 + 〈u〉2 + ‖∇u‖2 + 2
∫

�

F(u)dx + ‖�u‖2 + c

satisfies

E ≥ c‖u‖2
H 2(�)

, c > 0.

We indeed deduce from (4.18) the existence of a local in time strong solution. However, one does 
not know whether this solution is global in time or whether it blows up in finite time, though 
numerical simulations suggest that one should have global in time solutions (see [2,35]). The 
global in time existence result obtained in this paper is thus the first one for this tumor growth 
model.

4.5. An application to metabolites concentrations in the brain

We consider the following equation, proposed in [31] to model metabolites concentrations 
(e.g., lactate) in the brain:

∂u

∂t
+ �2u − �f (u) + ku

k′ + u
= J, J, k, k′ > 0, u ∈ (0,1),

where

f (s) = −c0(s − 1

2
) + c1 ln

s

1 − s
, c0, c1 > 0, c1 <

c0

4
, s ∈ (0,1).

We assume for simplicity that J is a constant. Actually, in order to prove the existence of solu-
tions, one considers the slightly modified equation

∂u

∂t
+ �2u − �f (u) + ku

k′ + |u| = J,

so to avoid the nonlinear term ku
k′+u

to become singular when considering approximated problems 
(see [31]). However, since u ≥ 0 a.e., we recover a solution to the original equation. Note that, 
for a regular (cubic) nonlinear term f , we cannot prove that the solution u remains nonnegative 
and deduce the existence of a (local in time) solution to the original problem. Indeed, we can 
construct counterexamples in which the solution instantaneously becomes negative (see [31]).
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We take

g(x, s) = g(s) = ks

k′ + s
− J, α = 0, β = 1.

Let us write

g(s) = λs + g̃(s), λ ≥ k

k′ .

Then, the function

ϕ(s) = −g̃(s) = λs − ks

k′ + s
+ J

is monotone increasing, with ϕ(0) = J ≥ 0 and ϕ(1) = λ − k
k′+1 +J . Therefore, one has a global 

in time weak solution when J ≤ k
k′+1 , which corresponds to the assumption made in [31].

Let us now consider the ODE

y′ + ky

k′ + y
= J, y(0) ∈ (0,1),

corresponding to spatially homogeneous solutions to our problem. Here, one easily proves the 
existence of global in time positive solutions. Furthermore, one has

(k′ + y)y′ = k′J + (J − k)y.

Therefore, when J = k, it follows that

k′y + y2

2
= k′J t + c,

whereas, when J > k, then

y

J − k
+ 1

J − k
(k′ − k′J

J − k
) ln(k′J + (J − k)y) = t + c,

where c depends on the initial condition. Thus, in both cases, we cannot have a global in time 
solution to our initial problem, since, otherwise y(t) would tend to +∞ as time goes to +∞ and 
the logarithmic nonlinear term would not make sense.

Also note that, when J < k, then

y

J − k
+ 1

J − k
(k′ − k′J

J − k
) ln |k′J + (J − k)y| = t + c,

so that y converges to the equilibrium ye = k′J
k−J

. Noting that ye ≤ 1 if and only if J ≤ k
k′+1 , this 

shows that the above condition is sharp.
From a biological point of view, this suggests that one has global in time solutions only when 

one remains in the viability domain of the cells. If we think, e.g., of the lactate concentration in 
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glial cells, then, when J > k
k′+1 , the cells are not able to manage the lactate surplus, leading to 

necrosis.
Let us further assume that J < k

k′+1 . Then, we have

g(s) = k − J

k′ + s
(s − Jk′

k − J
).

Noting that the condition J < k
k′+1 implies k > J and Jk′

k−J
∈ (0, 1), it follows from (2.8)-(2.9)

that

g(s)f (s) ≥ c
k − J

k′ + s
F (s) − c′ k − J

k′ + s

≥ −c
k − J

k′ + s
≥ −c′, c′ ≥ 0, s ∈ (0,1),

and we can derive additional regularity, noting that g is monotone increasing, with g′ bounded. 
Note that the formal calculations given in Remark 3.5 can be justified within a Galerkin scheme 
for the approximated problems and that, in that case, we would take g(s) = ks

k′+|s| − J (this 
function g is still monotone increasing, with g′ bounded). Therefore, when s ≥ 0, we can prove 
as above that

g(s)fN(s) ≥ −c, c ≥ 0,

owing to (3.3), whereas, when s < 0, we can choose N large enough so that fN ≤ 0 and thus see 
that

g(s)fN(s) ≥ 0.

Here, fN is as defined in the previous section. This corrects several imprecisions and omissions 
in the proof given in [31].

4.6. A counterexample: a Cahn–Hilliard model in image segmentation

We consider the following equation, proposed in [43] in view of applications to image seg-
mentation:

∂u

∂t
+ ε1�

2u − 1

ε1
�f (u) + ε2h(x)

ε2
2 + (u − 1

2 )2
= 0,

where

h(x) = 1

π
(λ1(i(x) − c1)

2 − λ2(i(x) − c2)
2).

Here, ε1, ε2, λ1 and λ2 are positive constants and i is a given image taking values in [0, 1].
The global in time well-posedness, for a cubic nonlinear term, was studied in [30].
Let us now take h constant, h �= 0, and assume that f is a logarithmic nonlinear term as in the 

previous example. Then, set
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g(x, s) = g(s) = ε2h

ε2
2 + (u − 1

2 )2
, α = 0, β = 1

and take λ > 0. Writing g(s) = λs + g̃(s), we see that −g̃(0) = − ε2h

ε2
2+ 1

4
< 0 if h > 0, whereas 

−g̃(1) = λ − ε2h

ε2
2+ 1

4
> λ if h < 0. This shows that −g̃ cannot belong to [0, λ] and that we cannot 

expect to have a global in time existence result in general when considering logarithmic nonlinear 
terms and our approach. Actually, here, we should only expect a local existence result in general. 
Note that this is consistent with the fact that, when h is a nonvanishing constant, then the spatially 
homogeneous solutions go to infinity as time goes to +∞; actually, numerical simulations show 
that the same can hold when h is not a constant and changes sign (see [30]).

4.7. Concluding remarks

Remark 4.6. The study of stationary solutions for the above models is also of interest. For in-
stance, this is important for the inpainting model, since the restored image is expected to be 
an equilibrium of the problem. This is studied in [5,18]. We can note that an open problem is 
to prove that single trajectories converge to an equilibrium, which is expected in the inpainting 
model. We also mention that the authors in [18] consider more general source terms g, in partic-
ular, for biological applications. The study of stationary solutions for the Ohta–Kawasaki model 
can be found in, e.g., [28,41] and references therein. Note that all results mentioned above are 
for regular nonlinear terms f . It would thus be interesting to also address the case of logarithmic 
nonlinear terms f .

Remark 4.7. Actually, the models considered here are all diffuse interface models, meaning that 
one should actually consider the equation

∂u

∂t
+ ε2�2u − �f (u) + g(x,u) = 0, ε > 0, (4.19)

where ε is related with the (thin) interface thickness. In particular, it would be interesting to see 
how an interface evolves when ε is small and to study the sharp interface limit ε → 0+. In the 
case of the Cahn–Hilliard equation, g ≡ 0, it is known that an interface is driven by the mean 
curvature and tends to a sphere (see, e.g., [1,27] and references therein). The case of nonvanishing 
source terms g will be addressed elsewhere; see also [12,23,24] for the Ohta–Kawasaki model.
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