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Abstract

We consider autonomous parabolic Dirichlet problems in a regular unbounded op@ncset
RV involving second-order operatok with (possibly) unbounded coefficients. We determine
new conditions on the coefficients @& yielding global gradient estimates for the bounded
classical solution.
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1. Introduction and notation

In this paper we consider the following Dirichlet parabolic problem:

u(t,x) — Au(t,x) =0, te€(0,7T), x €,
u(t, &) =0, te(0,T), &eoQ, (1.2)
u(0, x) = f(x), x € Q,
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wheref is continuous and bounded ®. Here Q is an unbounded smooth connected
open set inRY and A is a second-order elliptic operator, with (possibly) unbounded
regular coefficients, i.e.,

N N
A=Y qDij+ Y FDi—V=Tr(QD*+F-D-V. (1.2)
i,j=1 i,j=1

Our aim is to prove global gradient estimates for the bounded classical solution
1.9, i.e,

C
7

where|| f]l« is the sup norm of in Q. Estimate 1.3) is classical when the coefficients

of A are boundedon Q and @ is a bounded or unbounded open set with sufficiently
smooth boundary, see e[d2, Chapter 3] On the other hand in the recent literature the
interest towards elliptic operators with unbounded coefficients is growing up, see for
instance[4,6,5,13,21,2,16,18,14,23,24hd the references therein. The main motivation
comes from well-known connections with stochastic differential equations, see e.g.
[8,22].

As far as local gradient estimates fdt.]) are concerned, we mentid@1], which
establishes them in the Riemannian setting, gna0] for the case wheif2 is an open
subset of a Hilbert space amdis an Ornstein—Uhlenbeck operator. Recently[1i],
see alsd18], it was stressed the problem to establish global gradient estimates as a pre-
liminary step towards global Schauder estimates for Dirichlet elliptic problems involving
unbounded coefficients in unbounded domains. Surprisingly enough, a counterexample
in [24] shows that 1.3) fails in general even whef® is a half plane. Moreover if24],
see alsd11], connections between estimatds3 and some isoperimetric inequalities
are investigated. We also menti¢gh9] and [1], where gradient estimates are proved
for Neumann parabolic problems, under convexity assumptiong€.on

Let us explain our main assumptions to obtain3) in the particular whereA =
A+F-D andQ is an unbounded open set with uniformd-boundary. The dissipativity
condition onF, see (.5) below, is quite natural since a one-dimensional counterexample
to gradient estimates is constructed[1} when it fails. Observe also that, ¥ = D®,
then (L.5) is a concavity assumption o@. On the other hand, conditiorL.) seems
to be quite new and, roughly speaking, it means that the component of theFdrift
along the inner normal is bounded from above in a neighborhoatf2ofEven though
its connection with gradient estimates is not evident from an analytic point of view,
its necessity is clear if one considers the Markov process governed by the opferator
under Dirichlet boundary conditions. In fact the solutioft, x) to (1.1) corresponding
to f = 1 represents the probability that the process starting from(2 at timer =0
is not absorbed by the boundary up to timdf the (inner) normal component d¥
is unbounded from above in a neighborhoodd®?, one expects that(s,x) — 1 as
|x| — oo along the boundary. Since(z, &) = 0 for & € 012, it follows that u(z, -) is

[Du(t, oo < —= I flloo, 7 € (0, 1), 1.3)
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even not uniformly continuous, see Exampld where this heuristic argument is made
rigorous. Finally, we point out that the growth assumptiar8), even though not very
restrictive, seems to be a technical one in order to use our methods, see the proof of
Theorem1.3

We use mainly analytic tools and we do not need any convexity assumptida on
Moreover we stress that our operafomay contain a potential terivi which is difficult
to treat by probabilistic methods.

In Section 2, we prove existence and uniqueness of classical bounded solutions
to (1.1). To this purpose we use both classical Schauder estimates and a nonstandard
maximum principle for discontinuous solutions th.1), see TheoreniA.2. In Section
3, by means of the distance function from the boundarf2pfve prove some a priori
estimates forDu. This is done in two steps. First, by comparison with certain one-
dimensional operators one obtains boundary estimatd3d@nd then, using Bernstein’s
method, one shows that the same estimates hold in the wholéowever, the method
works (and gives 1.3) with the right dependence of all constants involved), if one
already knows thabu is bounded up to the boundary @ffor positivet, see Proposition
3.3 To circumvent this difficulty, we subtract to the operatoa potentialeW, where
W is big enough to dominate the growth &f and, following ideas in[3,4,14] we
show that the perturbed operatdr, = A — ¢W generates an analytic semigroup in
L?(2) and characterize its domain. Choosing a lapgend using Sobolev embedding,
it follows that the bounded classical solutiap of problem (.1) with A, instead ofA
and a smooth has a bounded gradient [0, T) x Q. Therefore Propositio8.3 applies
and gives {.3) for u, with a constanC independent of. An approximation argument
then completes the proof. This program is carried out in Sections 4 and 5. In Section
6 we present the announced counterexample.

Let us collect our first hypotheses éhand the coefficients oA. We denote byBg
the euclidean ball with center at the origin and radius

Hypothesis 1.1()) Q is a connected open subset BfY with uniformly C2+*-
boundary for some & o < 1, see Appendix B.
(i) ¢ij, Fi,V e CcH*Qn Bg) for everyi, j=1,...,N and R > 0; moreoverV >0
in Q.
(i) gij = gji € CL(Q), and there exists > 0 such thathf’j=1 qij ()& E; = vIE?, for
everyx € Q and¢ e RV,
(iv) There exist a positive functiop € C?([0, T] x ) and Zo > 0 such that

lim ¢(t, x) = +oo, uniformly in [0, T], (D; — A+ Ag)¢p >0.

|x\—>+oo,x€§

The Lyapunovmap ¢ introduced in assumption (iv) will be used to prove maximum
principles, see Appendix A. Moreover condition (i) ensures thatdiseance function

r(x) =dist(x,0Q), xeQ (1.4)
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is a C2-function with bounded second-order derivatives@p, for somed > 0, where
we set

Qs={x¢e Q:dist(x,0Q) < ),

see[7, Lemma 14.16]and also Appendix B (note that (i) implies that the principal
curvatures ofdQ2, when dQ2 is considered as an hypersurface, are bounded). Our main
result will be proved assuming also the conditions listed below.

N
Y DiFi(0)&E < (V) +RIEP, xeQ EeRY, (1.5)
i,j=1

N N
> qijx)Dyjr(x) + Y Fi(x) Dir(x) <M, x € Qs (for somed >0),  (1.6)

ij=1 i=1
IDV(x)| <AL+ V(x), xeQ, (1.7)
|F(x)| <c1e?™!, x e Q, (1.8)

for some constants, M, ff,c1,c2 € R, s < 1/2.

Observe that, sincg;; Cl}(Q) and Q is uniformly €2, (1.6) is only a condition
on the component of along the inner normal té<2 in a neighborhood of(.

To specify the dependence of some constants we also introduce the quantity

N 1/2
h= sup(Z |Dql;,»<x>|2) (1.9)

xeQ l,]:l

which is finite, sinceg;; € CH(Q).

Remark 1.2. Observe that assumption (iv) of Hypothesi4 follows from the positivity
of V and the boundedness gf;, when condition 1.5 holds withs = 0. In fact (1.5
implies, by differentiating the function — F(tx) - x, that F(x) - x < F(0) - x + k|x|,
hence the functionp(x) = 1+ |x|? satisfies (iv), for a suitablép.

We will prove the following theorem.

Theorem 1.3. There exists a constant C depending only wik, s, h, N, M, 3,0, T
such that the bounded classical solution u(dfl) satisfies

C
[Du(t, oo < _t”f”oo’ 1€(0,7), [feCpQd.
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Notation We defineQ = (0,7) x Q, 0 = (0, T) x 9Q U {0} x @ and §,, Q0 =
{0} x 09Q.

We denote byD,u, D;u the partial derivatives with respect to the variabteand
x;, respectively, of a functiom depending ornz, x) € R x RY. Similarly, D;;u stands
for Dy,x;u. The space gradient af and its Hessian matrix with respect to the space
variables are simply denoted tyu, D?u.

For 0 < o < 1 andk € N, C¥™*(Q) denotes the usual Hélder space lefimes
continuously differentiable functions such that all the derivatives up to okdare
bounded and those of ord&rare a-Hélder continuous i (or equivalently inQ). If
a < b, CHY22t%((4 b) x Q) is the classical parabolic Hélder space, i.e. the space
of functionsu = u(z, x) which are continuous and bounded {n, b) x 2 together
with their first-order time derivatives and first and second-order space derivatives and
such thatD;u and D;;ju are o-Holder continuous in(a, b) x Q (or equivalently in
[a, b] x Q) with respect to the parabolic distandé(r, x), (s, y)) = |t — 5|2+ |x — y|.

By C12((a, b) x Q) we mean the space of functionss, x) which are continuous in
(a, b) x Q with their indicated derivatives (not necessarily bounded). FinaI[&(Q)
indicates the Banach space of &ltimes continuously differentiable functions i@,
bounded together with their derivatives up to the orkleWhenk = 0 we simply write
Cp(Q). CF (L) is the space oC*°-functions with compact support i2. The symbols
l-lp Il - lo denote theL”-norm and the sup-norm, respectively. The support of a
function ¢ is denoted by supgp.

A function u is called abounded classical solutioof (1.1) if ¥ € C12(Q), u is
continuous inQ \ d;; Q, bounded inQ and solves 1.1).

2. Existence and uniqueness

As a preliminary step, let us show thdt.p) has a unique bounded classical solution.

Proposition 2.1. Assume Hypothesit.1. If f € C2t%(Q) has compact support i,
then problen(1.1) has a unique bounded solution u which belonggt6*/22+%((0, T)

x (2N Bg)) for every R > 0. Moreover |lulloo <l flleo @and u >0 if f > 0. Finally,
Du belongs toC1t%/22+%((¢ T) x Q')) for everye > 0 and Q' open bounded set with
dist (2 ,RN \ Q) > 0. In particular, Du € C12(Q).

Proof. Uniqueness is immediate consequence of a classical maximum principle, see
PropositionA.1.

To prove the existence part, we consider a sequence of uniformly elliptic operators
with coefficients inC*(£2),

N N
A" = Z q:’jDij + Z FinDl' — V"u,
ij=1 i=1

such thatF" = F;, V' =V in QN B,, V">0 and letu, € C1**/22+%(Q) be the
solution of (.1), with A" instead ofA (see e.g[10, Theorem IV.5.2] The classical



334 S. Fornaro et al. / J. Differential Equations 205 (2004) 329-353

maximum principle yields||u, |loo < || fllco- Let us fix R > 0 and observe that, since
2 is unbounded and connecteadl,st (2 \ Bgr+1, 2N Bg) > 0. SinceA” = A™ = A in
QN Bgry1 for n,m > R + 1, by the local Schauder estimatg®, Theorem [V.10.1]
there exists a constaf@ such that

ln — wsm ||Cl+a/2,2+a((0,r)X(QQBR)) < Cllu, — Mm||C((O,T)><(QﬂBR+1)) <20\ fllco-

Therefore (u,) is relatively compact inC12([0, T'] x (Q N Bg)). Considering an in-
creasing sequence of balls and using a diagonal procedure we can extract a subsequence
(un,) convergent to a function e C*+*/22+%((0, T) x (2N Bg)) for every R > 0 which
solves (.1) and satisfied|ulloo < |l fllco- BY the maximum principlex > 0, whenever
f>0.

In order to prove the last part of the statement it is sufficient to affplyrheorem
8.12.1]directly to the operatoD; — A. [

We now introduce linear operato($;); > o via the formula(p; f)(x) = u(z, x) for
f e C?*%(Q), with compact support 2, whereu is the solution of {.1) given by
the above proposition. Each operat®ris positive and contractive with respect to the
sup-norm, by the above proposition.

Now we consider the case whefrés only continuous and bounded {& and extend
the above maps$P;); > to a semigroup inCy(£2).

Proposition 2.2. Assume Hypothesik 1. If f belongs toC, (), then problem(1.1) has
a unique bounded classical solution Moreovert u(t, x) — f(x) ast — 0, uniformly
on compact sets of.

Proof. Uniqueness is an immediate consequence of a nonstandard maximum principle,
see TheorerA.2. To show existence, we consider a sequefy;g¢ € C3°(£2) convergent

to f uniformly on compact subsets d® and such that]| f,llco <l flloo- L€t u, €
cH/22+2((0, T) x (2 N Bg)), for every R > 0, be the solution of 1.1) with f,
instead off, given by the previous proposition. Let us fix> 0. By the Schauder
estimateq10, Theorem 1V.10.1]as in the proof of Propositio@.1, we get a constant

C such that

lup — um ”C1+1/2-2+1((57T)><(QQBR)) <Clluy, — “m”C((O,T)x(QmBRH)) <20 flloo

and then, by a compactness argument, we can extract a subsequgyceonvergent
to a functionu € C1%/22+%((¢, T) x (Q N Bg)) for everye, R > 0 which solves the
equationu; — Au = 0 in Q and such thau(z,x) =0 for t € (0, T),x € 02Q2. In the
following, we write u = P, f, for f € Cp(£2).

It remains to show that (¢, x) — f(x) ast — 0, uniformly on compact sets da®.

Assume first thatf € Cp(Q), i.e. f vanishes ondQ and at infinity. Then we can
choose(f,) as above in such a way thdtf, — fllco — 0. The maximum principle
implies that(u,) is a Cauchy sequence ([0, 7] x Q), henceu, — u uniformly in
0 andu(0, x) = f(x) for everyx € Q.
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Let K C 2 be a compact set angl e Co(Q2), 0<#n <1, be such thay =1 in K.
Then Pip — n ast — 0, uniformly in Q, henceP;,n — 1 uniformly in K and, since
0< P(1—n) <1— Py, we getP;(1—n) — 0 uniformly in K. For f € C,(£2), writing
P f = P(nf)+ P.((1—n)f) and observing that;(nf) — nf uniformly in Q and
that P,((1 —n) f) — O uniformly in K we obtain thatP, f — f, uniformly in K. [J

Corollary 2.3. The family(P);>0 is a semigroup inC,(£).

Proof. The semigroup lawP; . = P, P; is immediate consequence of the uniqueness
statement in Propositio.2 [
Observe that the semigrou@®;); > ¢ is not strongly continuous. In fad® f — f as
t — 0, only uniformly on compact subsets &. However, P, f — f uniformly in
for every f € Co(9Q).

3. Some a priori estimates

In the following proposition we prove a preliminary boundary gradient estimate for
bounded solutions of problem.@). We need the following lemma on gradient estimates
for certain one-dimensional operators.

Lemma 3.1.Let 6 > 0 and g : [0, +00) x [0, 4] — R be the solution to

gf(t7r)=Vgrr(t’r)+Mgl'(tar)7 t>0» r€(075)9
2(t,00=0, g(t,0) =1, t>0, (3.1)
g0, r) =1, r € (0,0).

Theng, >0, g, <0 and for anyT > 0 there existsr > 0 such that

cr
r’

NG

0< g, r)< 0<t<T, re(0,9).

Proof. We define the operataiB, D(B)) in C([0, ]) by
Bu=vu"+Mu  D(B)={uec C*0,0]) : u(0) =0, (Bu)(d) = 0}.

Let us show thatB, D(B)) generates an analytic semigroSpof positive contractions
in C([0, d]) (note thats; is not strongly continuous since the domdiiB) is not dense
in C([0, 8]).

Let D = {u € C%([0,4]) : u(0) = u(d) = 0}. Then (B, D) generates an analytic
semigroup(7;); >0 in C([0, ]). Sety(r) = a [y e=™*/"ds. Then By = 0, (0) = 0
andy(6) = 1, if aiis suitably chosen. It is easily seen ti$ayf = T, (f — f (O))+ f (O
is the analytic semigroup generated b§, D(B)) in C([0, d]). Since the regularity
properties ofS; f coincide with those off; f, it follows thatu(z,r) = S; f(r) is aC*®
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function for ¢+ > 0, continuous at the point€), »), with 0 < r < 4. The maximum
principle, see TheorerA.2, now yields positivity and contractivity of;.

We can prove the stated propertiesgofSinceg = S;1 we have < g < 1. Moreover
gt+s,)=84+1=58,1<8,1=g(¢,-), henceg is decreasing with respect tcand
g: <0. To prove thatg, >0 we write

M ) M,
g =V|gr+—g|=ve v ——|ev g | <O,
v dr

r € (0,0). Then e%g, is decreasing. Sincg(t,d9) = 1 and 0<g<1, we have
gr(t,0) >0, henceg, > 0. Now the identityg, = vg,, + Mg, yields g, <O0.
Since (S;), >0 is analytic, for 0 < +<T we have |D%g(z, )| <crt™%, hence
IDg(t, )| < ert~Y? and the inequalitye (s, r) < crt~Y?r follows, sinceg(z,0) = 0.
O

Proposition 3.2. Assume Hypothesik.1 and (1.6). Then there existg = y(v, M, d, T)
such that every bounded classical solution u(bfl), differentiable with respect to the
space variables on0, T[x (2, satisfies the estimate

7
NG

[Du(t, )| < —=I1flloos 1€(0,T), €. (3.2)

Proof. For eachx € Q5 let £(x) be the unique point IPQ satisfying |x — &| = r(x).
Note that

x = C(x) +v(E))r(x),

wherev(&) is the unit inner normal t@Q at & € 0Q. Recall also thaDr(x) = v(&(x)),
x € Q5. See Appendix B for these properties of the distance funatiofio proceed
we remark that, sinca = 0 on 0%,

Du(t, &) = oyu(t, &), &e€0Q, t>0.

In order to prove the claim it is enough to show that

lw(t, ¥)| = w(t, x) < —=r(x), te(,T), xecQs, (3.3)
Jit

where w is the solution to 1.1), corresponding tof = 1, andy depends only on
the stated parameters. Indeed, in the general case it is sufficient to observe that, for
x =&+ rx)vé), & e 0Q fixed,

[P f(x) = P fOl = [PfOISPUfI) SIS oo P LX) = [ flloow(, x)

%r(x)ﬂfnoo,

<
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and (3.2 follows easily dividing byr and lettingr — 0. To prove 8.3) we compare
w with an auxiliary functionz, using TheorenA.2. Let

z(t, x) = g(t, r(x)), x € Qs,

whereg : [0, +00) x [0, 6] — R is the solution to 3.1). Now Lemma3.1 yields
Y
NG

lz(t, x)| = g(t,r(x)) < r(x), O<t<T, xeQ;s.

Thus we have only to prove that

w(t,x)<z(t,x), xe€Qs te(T). (3.4)

To verify (3.4), we considern = z—w in the cylinderQs = (0, T) x Q5. It is clear that
v belongs toC12(Q5), is continuous inQ; \ d;x Q5, bounded onQ; and nonnegative
on &' Qs \ d;x Q5. Moreover

v —Av =z — Az =g — Vg — Mg,

N N
+(V8rr+Mgr—grr Z qijDirDjr =g, F - Dr —g, Z qij Dijr + VZ)
ij=1 i,j=1

N N
= grr(v— > qijDirDjr> + g (M — > qijDijr — F - Dr) +Vz>0,

i,j=1 i,j=1

sincez, g, >0, g, <0. The maximum principle Theore®.2 now implies 8.4 and
concludes the proof. I

The following proposition is an a priori estimate ®@u, whereu is the bounded
classical solution of4.1). Its importance relies on pointing out the dependence of the
constantC below.

Proposition 3.3. Assume Hypothesik.1, (1.5 and (1.7). Then there exists a constant
C depending on, h, k, s, 8, T,y with the following property. Every bounded classical
solution u of(1.1) such that

(i) Du belongs toCc2(Q),
(i) +/7|Du| is continuous inQ \ ¢, Q, bounded in Q and verifiekm,;_.o /7| Du(t, x)|
=0,x €,
(iii) u satisfies(3.2)

fulfills the estimate

c
Vi

1Du(t, oo < —= 1 flloo, 7€ (0,T). (3.5)
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Proof. ChangingV to V + 1 (henceu to e "u) we may assume thaDV|< V. We
use Bernstein’s method and define the function

v(t,x) = u(t,x) +at|Du(t,x)|?, te(©T), xe,

wherea > 0 is a parameter to be chosen later. Then we have C12(Q), v is
continuous inQ \ d,, Q, bounded inQ and v(0,x) = f2(x). We claim that for a
suitable value otz > 0, depending on, i, k, s, §, T we have

v(t,x) —Av(t,x) <0, O<t<T, xel (3.6)

This, by TheoremA.2, implies that

vt )< sup O, x)|+  sup  at|Du(r, P < A+ ay) flIZ,
xeQ £€0Q, 1e(0,T)

0<t<T, x€Q, and B.5) follows with C = (a1 + )12,
To verify inequality 8.6), note that, by a straightforward computatiansatisfies the
equation

N
vy — Av =a|Du|2— 2 Z qij Diu Dju + g1+ g2,
i j=1

where

N
g1 m(z > DiFjDiuDju—2uDu - DV — V|Du|2> — Vu?,

i,j=1

N N
g2 = 2at< Z DyqijDxuDjju — Z QijDikuDjk’/l)~
i\ jk=1 i, jk=1

Using the assumptions one has, for al- 0, x € Q, r € (0, T),
v —Av < (a — 2v+ 2akt + at (25 — 1)V)|Du|?
+ 2at (h|Du||D%u| + BV |u||Du| — v|D?u|?) — Vu?
< (a — 2v+ 2akt + at(2s — 1)V)|Du/|?
+at (he Y| Du|? + he|D?u|?
+ e Vu? 4+ BeV|Du|? — 2v|D%u|?) — Vu?,

where|D%u|? = fo'jzl |D;;ul?. Since 2 < 1, choosings anda small enough we get

immediately 8.6). O
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4. An auxiliary problem

In this section, we keep Hypotheslisl and condition {.7) and write our operator
in divergence form

N
A=A0+Z G D; -V,
i=1

where Ag = Zgjﬁl D; (q,'ij) andG; = F; — Z;‘v:l DJ'C],'/'.

Moreover, we assume that the potentabnd the driftG satisfy the inequality

G| <oV Y2 +¢y, xeQ, (4.1)

for somes > 0 and show generation of an analytic semigroupLif((2), for ¢ <
min{2v(p — 1), 2}. We follow the ideas 0f[3,4,14] where the situation? = RV is
considered.

For simplicity, we assume throughout this section that 2 < co. Observe that, since
gij € C,}(Q), condition @.1) holds equivalently foi or G with the same constant,

possibly with a different choice of;,.
We endowA with the domain

D, ={uec WP (@ NWy"(Q): Vu e LP(Q))
which is a Banach space when endowed with the norm
lullp, = lullwzr@ + IVullLr@
and remark that the set
D ={u € C®(Q) : upo =0, suppu compact inQ}

is dense inD,,.

We need the following interpolative lemma which is analogouglth Proposition
2.3]
Lemma 4.1. Assume Hypothesi.1 and that condition(1.7) hold. Then there exists
C depending onv, p, f and the coefficientgg;;) such that for even0 < ¢ < 1 and
u e Dy, 2< p < oo, the following inequality holds

IVY2Du), <ellAoull, + Ce 2(lull, + IVull ).

Proof. It suffices to establish the inequality above for functianss D. Moreover,
changingV with V + 1, we may assume thaDV| < gV < V32,
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Integrating by parts and using the fact that 0 on 022 and p > 2 we have
f VZ|Dgu|? = f V 2| Dyu|” 2 DyuDyu
Q Q

_ _gf v%—lpkvakmp—szu—(p—1)f V 2 u| DuP =2 Dygu
0 Q

N

—1 -2
%”fgwnDkuV’*V”zV+(p—1)fgv”2|Dku|P—ZV|u||Dkku|

%(ngleulp)l1/p(/;2\/p|u|”>l/p
+(p—1)</Qv%|Dku|")l_2/p(/ V”Iul” f|Dkku|” /p.

Settingx = [|VY2Dgullp, y = I Vull p, z = | Dixull, we have obtained? < (8p)/2xy+
(p — Dyz, hence

VA

x < ﬁ—py+ (p—Dyz<Cely +ez

for ¢ < 1, with C depending org, p and the statement follows withD?u/|, instead of
|Aoull,. To complete the proof it suffices to use the closednesagobn W2P(Q) N

Wyl(@). O

Proposition 4.2. Assume Hypothesik.1, condition (1.7) and suppose that4.1) holds
with ¢ satisfyinge < min{2v(p —1), 2}. Then(A, D) is closed inL? (), 2< p < oo.
Moreover there is a constanig depending orr, with the following propertyfor every
A > Jg there existCq, C> depending only ok, N, p, 8, g, c; and the coefficientsg;;),
such that for every. € D),

lullp, < Calldu — Aull, < Czllullp,.

Finally, if ¢, =0, then 2o = 0 and the inequalityi|jx ||, < (4 — A)u|, holds.

Proof. By density we may assume that € D. The right-hand side of the above
inequality follows immediately from Lemma.1, since|G| < aV¥2 4 ¢,.

ChangingV with V + w for a suitable largen, we may assume that; = 0 and that
IDV|<BV.

Let us multiply the identityf = Au — Au by u|u|?~2. Integrating overQ we get,
sinceu = 0 on 04,

/(1+V)Iu|p+(p 1)/ Z qijlu? "2 DiuD ju < || 1 ullhy”

i,j=1

+a/ VY2 Dullu|P 1.
Q
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The last term can be estimated with

(/ VW) (/ jul? 2|Du|) <%(fQV|u|p+|u|p‘2|Du|z>.

Sinces < min{2v(p — 1), 2} we easily obtain, forl > 0, Allull, <l fll,. To estimate
Vu we observe that

/2

[Q(AOM)VP*%W|1’*2 - — Z [ qij DiuD; (VP ulu|P~2)

i,j=1

= —(p— 1)/ Z qij VP Y ulP~2DjuDju

i,j=1

—(p — 1)[ ZqUV” 2ulu|P~2D; uD;V.

i,j=1

Multiplying the identity lu — Au = f by VP~ 1u|u|P~2 and integrating oveR we
obtain

f VP VP ul? 4+ v(p — 1)/ VP Yu|P=?| Du)?
Q Q
< f(zvp—1+v”)|u|p+<p—1>/ V2 u72q (Du, Du)
Q Q
=—(p—-1 p—2 p—2 p—1 p—2
=—(p ) | VP ulul’"“q(Du, DV) + | V" ulu|’~“G - Du
Q Q

+ / FVPtulul?2,
Q

whereg(Du, DV) = Zl{?,j=1q,‘le’MDjV and similarly forg(Du, Du). Next, observe
that

‘/ VP—1u|u|P—2G-Du( < 0/ VP=121 71| Dy
Q Q

12 172
<o /v”—l|u|f’—2|Du|2 /V”Iulf’
Q Q
< 2( [ vt + [ vewe
2\ Jo Q
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and that, for a suitabl& depending only orlg;; oo,

f|u|p—1v”—2|q<Du,DV)| < K/ u|P~ VP2 Du||DV|
Q Q

1/2 1/2
< KP /v”‘lw’—zwm2 [|u|PVP‘1
Q Q
< Kpe /VP*1|M|P*2|DM|2+/ VP |u|P
Q Q
+Cg/ lu|?.
Q

In the last inequality we have used the inequality* < er? + C,.

Sinceo < min{2v(p — 1), 2}, taking a smalls one concludes thatVul|, < CIl f .
with C as in the statement.

We now use Lemmd.1 to estimate the second-order derivativesuofVe have

IG - Dull, < alVY?Dull, <a(ellAoull, + Ce Hull, + Ce | Vull,)
< aellfll, +€lG - Dull, + el Vull, + eAlull,
+Ce Hull, + Ce7HVul )

hence, taking a smal, |G - Du|, <C| fll, and ||Aoul, <C| fll,, by difference.

Using the closedness ofg on W27 (Q) N Wol’p(Q) given by the Calderon-Zygmund
estimates, we gthzqu <CIfllp, with C as in the statement.[]

Proposition 4.3. Assume Hypothesit.1, condition (1.7) and suppose thaf4.1) holds
with ¢ satisfyinge < min{2v(p—1), 2}. Then(A, D,) generates a semigroup ib” (),
2< p < oo.

Proof. As in the proof of Propositiod.2, we may assume that; = 0, |[DV| < fV,
so thatillull, < ||[Au — Aull, for 4 > 0. By the Lumer—Phillips theorem it suffices to
show 4 — A is surjective forld > 0.

Setting fore > 0

Vv G

Ve=m —, Ge= —n—,
T 14V T /1xevV

it is immediate to check thav,, G, satisfy

IDVe| <PV,  |Gel<aV2
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SinceV,, G, are bounded, the operatdr, = Ag+ G- D — V. with domain W27 (Q)nN
W&’p(Q) generates an analytic semigroup ifi (2) see[12, Theorem 3.1.3]which is
contractive by Propositiod.2

Given f € LP(Q), letu, € W2P(Q)NWy"(Q) such that(Z— A.)u. = f. By Propo-
sition 4.2 |lugll2,p, | Veuell, < Cll f1l, with C independent ot. By weak compactness
we finde, — 0 such thaiu,,) converges weakly to a functianin WZ’P(Q)OW&”(Q)
and strongly inWli’C”(Q). Moreover we may assume théi,,) — u a.e. inQ. By
Fatou’s lemma||Vull,<C| fl,, henceu € D, and it is easy to check that
A=—Au=f. 0O

Let us show that the above semigroup is analytic.

Theorem 4.4. Assume Hypothesis1, condition(1.7) and suppose thg#.1) holds with

o satisfyinge < min{2v(p — 1), 2}. Then(A, D,) generates an analytic semigroup in
LP(Q), 2< p < o0.

Proof. We keep the same notation of the proof of PropositioR We may assume

thatc, = 0. Letu € D and setu* := u|u|P~2. Integrating by parts, since = 0 on
0Q, a lengthy but straightforward computation yields

—Re (/ (Au)u*) =(p— 1)/ lulP~*q(Re(@Du), Re(@Du))
Q Q

+/ |u|p_4q(1m(ﬁDu),Im(ﬁDu))—/ G-Re(ﬁDu)|u|p_2+/ Viul?
Q Q Q

and

'Im / (Au)u*
Q

Condition @.1) implies

<(p—2>/ |u|"—4q<Re(aDu),1m<ﬁDu>)+/ \GlJul?2 Im@Du)|.
Q Q

1 —4
/|G||u|”—2|1m(ﬁDu)| < af v Im@Du)lul % u) 2"
Q Q

1 1
G <f V|u|P> ’ (/ |u|p_4|1m(ﬁDu)|2> ’
Q Q

<
1 1
o 2 _4 _ _ 2
< W(/;zv'mp) (/;2|u|p q(Im(uDu),Im(uDu)))
and
—4
f|G||u|P*2|Re(ﬁDu)| < o-/ V2|Re@Du)||u|2 |u| "z
Q Q
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! ;
< o—(/ V|u|f’) (/ |u|f’—4|Re<ﬁDu)|2)
Q Q

o 3 3
< —(/ V|u|P> </ |u|f’—4q(Re(ﬁDu),Re(ﬁDu))) .
Vv \Ja Q

If we put B2 := [, [ul?~*q(Re(@Du), Re(@Du)), C? = [, |u|"~*q(Im@@Du),
Im(uDu)), and D? := fQ V0u|?, then we deduce from the previous estimates

—Re (/Q(Au)u*> > (p —1- %)BZ +C24 (1— %)DZ.

Therefore,

g
1 Auwyu* )| <(p—2)BC+ —CD
)m</9( u)M)‘ (r—2 NG

and one can findc > 0 such that

o) e o)

for everyu € D and, by density, for every € D,. Since we already know tha#, D))
generates a semigroup, by15, Theorem 3.9, Chapter IJthe proof is
complete. [

Remark 4.5. Observe that all the results proved until now, in this section (but not
the next lemma), hold assuming less local regularity on the coefficients. For example
gij € CHQ), F € L.(Q), V e C1(Q) suffice. Moreover, the existence of the Lyapunov
function ¢ is not necessary.

We call (T;); > o the semigroup generated Byin L?(L). For the proof of our main
result we need some regularity results of the functign x) = (7; f)(x).

Lemma 4.6. Assume that the conditions of Theorém hold for a fixedp > N+1 and
let f e C3°(2). Then the function(z, x) = (T; f)(x) is the bounded classical solution
of problem(1.1) and therefore has the regularity properties stated in Proposioh
Moreovet Du is continuous and bounded i@.

Proof. Since f € D,, the functionr — T; f is continuous fron{0, T'] to w2r(Q) and
Sobolev embedding implies that Du are bounded and continuous @. To complete
the proof, we have to show thate C12(Q).

Let us fix e > 0 and open bounded se€, Q, such thatQ; c Q> and Q> c Q.
Since (T;); > ¢ is analytic,u is continuously differentiable frone, 7] to W2r(Q) and
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Sobolev embedding yields, € C(Q). Set

k= sup_ (It Mwarig + It Vlwan )-
e<t<T

For every fixedr € [g, T] the functionu(z,-) belongs toW?P(Q) and solves the
equation

N
Z qijDiju = —F - Du+ Vu — u;
ij=1

in Q. Since the right-hand side belongs wqﬁg’(sz) it follows that u(z, -) € Wli’cp(Q)
and that, for a suitable depending on2;, 2> and the coefficients of,

sup lu(, )llwsr < ck,
e<t<T

see[7, Theorem 9.19]We have thus proved that for eveiyj = 1,..., N, D;Djju,
DDjju € LP([e, T] x 21). By Sobolev embedding, since > N + 1, D;ju € C(Q)
and the proof is complete. O

5. Proof of Theorem 1.3

For ¢ > 0 let V.(x) = sexpldcz/1+ |x|2}. Then |DV,| <4c2V, and for every
o > 0 there exists:; > 0 (depending ore) such that|F| < o(V + V;)Y2 + ¢,. Define
A, = A — V. and note that the hypotheses of Theorém are satisfied.

Fix p> N+1, feC5(Q) and letu, be the semigroup solution ofl (1) with A,
instead ofA, given by Theorem4.4 By Lemma4.6 the functionu. is the bounded
solution of the above problem arlu, is continuous and bounded @. By Proposition
3.2we deduce thatDu, (¢, &)| < (/D flloo, ¢ € 02, with y depending o, M, 5, T
and independent of.

Sinceu, satisfies the hypotheses of Proposit®3, we deduce that

I1Due (2, ) lloo < (C/VD f oo,

with C as in the statement.

Observe thatlju.||co < || flloo- Let us fix R > 0 and note that th&*-norm of the
coefficients of A, is bounded, uniformly with respect o < 1, in QN Bg11. By the
local Schauder estimat¢$0, Theorem IV.10.1]applied to the operatob; — A, there
exists a constant, independent ot < 1, such that

”uS”C1+“/2’2+“((0,T)><(QHBR)) < C(””s||C((O,T)x(QmBR+1)> + ||f||c2+z(QmBR+1)

< 2C|I fllcorny-
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By a standard compactness argument we conclude that a subsequgnoeonverges
in C12([0, T] x (2N Bg)) for everyR to a functionu which is the bounded classical
solution of (L.1) and satisfieg| Du(z, -)|lco < (C/vVOI fllso-

Finally, to treat the general case ffe C,(2) we consider a sequenc¢g,) C C3° (L)
convergent tof uniformly on compact subsets d® and such that] f;|lco < || fllco-
Let u, be the bounded classical solution df.1) relative to f,,. Then || Du, (¢, )|l
<(C/VDIl fllso, by the previous step. Sino@,) — u in CY2(Q), see the proof of
Proposition2.2, the estimate foDu follows. [

6. Examples and applications

We first show that gradient estimates fail, in general, if conditib6)(is not satisfied.
We refer the reader tfl, Example 5.6]for an operator defined on the whole space,
for which condition {.5) is violated and gradient estimates fail. The following result
refines and generalizes an examplg2d].

Example 6.1. We consider the following Dirichlet problem 2 = Ri ={(x,y) e R?,
x > 0}

ur(t, x, y) = uxx(t,x,y) +uyy(t, x,9) + gMux(t, x,y), t>0, (x,y) €Q,
M([707y):07 t>0,y€R,
u©,x,y)=1, (x,y) € Q,

whereg € C%(R) and

Iim g(y) = +oc.

y—>+00

Observe that 1.6) fails. However, Propositior2.2 yields existence and uniqueness of
a bounded solutiom. Let us show that, for > 0, u(z, -) is not uniformly continuous
in Q. To this end, it is enough to show that, for every > 0,

supu(t, x,y) =1 (6.1)
y>0

Fix n > 0 and takec, such thatg(y) >n for y > ¢,. Define R, = (0, +00) x (¢, +00)
and considew = v,, which solves

vi(t, X, y) = vax(t, X, ) F vy (8, x, y) +nue(t, x, y), >0, (x,y) € Ry,
v(t,z) =0, t>0, z€0R,,
U(07x7)’)=l, (xay)ERl‘h

We prove that fort, x > 0

(i) lim supv,(t,x,y) =1 (i) u(t,x,y) >v,(t, x, y).

n—>00 yo .
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Clearly (i) and (ii) give 6.1). Let us verify (i). Note that, (¢, x, y) = a,(z, x)b,(t, y),
wherea = a,, b = b, solve, respectively,

ar(t, x) = axx(t, x) +nax(t,x), t>0, bi(t,y) = byy(t,y), t>0,
a(t,0) =0, t >0, b(t,c,) =0, t >0,
a(0,x) =1, x>0, b, y) =1, Y > cy.

To find an explicit formula fora,, we first remark thati, (s, x) = a1(n?t, nx). Then,
settingv(z, x) = ¢"/2e'ay (1, x), v solves

v(t, x) = vge (£, %), >0, x>0,
v(t,0) =0, t >0,
v(0, x) = et/2, x>0

By a reflection argument we get easily an explicit expressionuvf@and finally we
obtain for anyr > 0, y >¢,, x >0,

—nzt

.2
e 7 +00  ja—f? el g Y=Cn ¢4
a,(t,x) = / (e wZ — e  ak )e 2 dz, bn(t,y)zf dz.
0 0

n~/4nt Nz

To check that (i) holds we write

an(t, x) = AL(t, x) — A2(1, x),

—1121

— +o00 _2
e 4 _ Inx—z| 7—nx
AL, x) = / (e a2 )e 2 dz,
" n«/4nt Jo

L2

o S [
fx) = e 44t e 2 dz.
n nv4ant Jo

Let us considerA,%. By a change of variables we obtain

Al(t ) 1 /+OO 7s2d
2t x) = — e S,
vrls

which is increasing inx and converges to 1 as— +oo. In a similar way we get that
A2(t, x) is decreasing irx and converges to 0 as— +oo. Then (i) easily follows.

To prove (ii) we use Theorem\.2. Setw = u — v, in (0,T) x R,. We have
w(0,x,y) =0, (x,y) € R,. Moreoverw(t,z) >0, z € 0R,, t > 0. To conclude it
suffices to verify that

we(t, x, y) = Aw(t, x,y) + g)wy(t,x,y), >0, (x,y) €R,. (6.2)

Sincew, = Aw + g(y)wy + [g(y) — nl(vn)x, g(y) =n, for y > ¢, and (v,): (¢, x, y) =
(ap)x(t,x)b,(t,y) =20, ¢t > 0, (x,y) € R,, as verified above,6(2) follows and the
proof is complete.
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For instance, we can take, in the above examplg) = /1+ y2. On the other

hand, if g(y) = —/1+ y2 then all the conditions of Theorerh.3 hold and gradient
estimates hold.

Remark 6.2. We point out that our main result can be used to prove some boundary
gradient estimates for solutions of Dirichlet elliptic problems, involving the operator
Indeed if ¢ € C,»(2) N C2(Q) solves

{ Ap(x) =0, xe€Q, 6.3)

) =0 el

then ¢ is the bounded classical solution df.{) with f = ¢. Thus, under the assump-
tions of Theoreml.3, we get

SUp| DG ()| < Clllloo-
xeQ

This extends some classical boundary gradient estimates concerning linear and nonlinear
second elliptic operators, involving bounded coefficients, see for instance
[7, Section 14]

Remark 6.3. Theorem1.3 has also some applications to isoperimetric inequalities, see
[11,24]
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Appendix A. Two maximum principles

We prove the following maximum principle for unbounded domains, using the Lya-
punov function¢ introduced in Hypothesid.1 The proof is similar to the one given
in [13], see alsd9, Chapter 8] We recall thatQ = (0, T) x Q.

Proposition A.1. Assume Hypothesid.1. Let u € C(Q) N C12(Q) be a bounded
function satisfying

u(t, x) <Au(t,x), 0<t<T, xe€Q,
u(t, x) <0, 0<t<T, x e,
u(0,x)<0 x € Q,

Thenu <0.



S. Fornaro et al. / J. Differential Equations 205 (2004) 329-353 349

Proof. Setv = ¢~%"y. We prove that <0 in Q. To this end define

P, x

v (t, x) =v(t, x) — —, (t,x) € Q.

It is easy to see thatD, — A + Jg)v, <0 in Q. Moreoverv, (0, x) <0, v,(t, &) <0,
t>0,xeQ, EecoQ.

The functionv, has a maximum oveg in (1,, x,). Assume, by contradiction, that
this maximum is positive. Then & ¢, <7 and x, € Q and therefore(D;, — A +
A0) v (ty, x,) > 0, which is absurd. It follows that, <0 and, lettingn — oo, we infer
thatv<0. O

Next we present a maximum principle for discontinuous solutions to parabolic prob-
lems. The result is suggested [@ and involves special domains.

Theorem A.2. Assume Hypothesi.1. Let Q be an open subset &”, g; : Q — R,
i =1,...,n, be C2functions. Suppose that

={x:g(x)>0,i=1...,n}, |Dgl|=1on I';=02nN{g =0}

Letu € C12(Q), u continuous orQ \ d;, Q, bounded on QIf u, < Au in Q andu <0
in 8’Q\6,XQ, thenu <0 in Q.

Finally, if u;, = Au, |u(t, )| <K fort >0, ¢ € 0Q2 and |u(0, x)| < K, x € Q, then
lulloo < K.

Proof. The proof is given into two steps.

Step 1: We assume in addition tha® is bounded.In this case the functiong;
are bounded inQ2 together with their derivatives up to the second order. A long but
straightforward computation shows that the functions

Vit x) = —exp( 8g’t(x)> (A1)
verify, for ¢ > 0 small enough and large enough(D, — A)y; >0,i =1,...,n,in
(0, c0) x Q.

Let M = supu = sup u > O (otherwise the proof is finished). Let> 0 and define
Q 0\0ix 0

n 1 (x)
p = — My -
uy(t, x) = u(t, x) y ;:1 (t+?)sv (l(t+ 7) +y )

where ¢ and /4 are given in A.1). Clearly (D; — A)u, <0. Taken > 0 such that
Ay — % > 0 and consider

L={xeQ: 3i=ix)=1...,n: g2(x)<n).
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For eachx € I, one has

n 1 2
)Y —expl Ay — £8 (%) > exp()vy - ﬁ) > 1.
il Y y

By continuity, there exist$ > 0 such that for anyr, x) € [0, 6] x I,
S eg?(x)
Y ——— —exp| A+ ) - L— 1
N p< oy ) .

It follows thatu, <M — M =0 in ([0, 6] x I;) \ 0:x Q.

Sinceu(0,x) <0, x € 2\ I;, we haveu,(0,x) < 0, x € Q\ I, as well. Because
Q is bounded, by continuity we obtaim, (¢, x) <0, (z,x) € [0, 0] x Q\ I,;, for some
0> 0.

We have obtained that, <0 in ([0, 6] x Q)\ 6, 0. Applying the classical maximum
principle in[6, T] x Q, we get thatu, <0 in O\ d,, Q. Letting y — 0*, we infer the
claim.

Step2: We consider a possibly unbound@dHere we will use the Lyapunov function
¢. Setv = ¢ "'y and observe that, — Av + Agv < 0. We prove that <0 in Q. Fix
R > 1 and consider

Qr=QNBr={g >0)N{R*—|x|*>0}, Qr=(0.T)x Q.

Note thatQy satisfies the same geometric assumptiong2oif one adds to the set
{g1. .- .. ga} the functiongo(x) = R? — |x|2. Let Cg = inf g 71, (200 ¢- Remark that
Cr — o0 as R — oo. Define

UR(t,x):U(t,x)_ ”v”OO@’ (tv-x) € QR'
R

It is easy to see thatD, — A + Ag)vg <0 in Qg. Moreovervg(0, x) <0, x € Q.
If t € (0, T), thenvg(z,x) <0 forx € 0BRNL, sincec% > 1. Moreovervg(t, x) <0

for x € 0Q, t € (0, T). This shows}habR < 0 on the parabolic boundary ap .
Applying Step 1 to the operatot = A — g in Qg, we getvg <0, in Ok, that is

o, x)
<vlleo .
v(t, x) < vl Cr

Letting R — oo, we get the claim.

The last statement easily follows considering the functigms— K. [

Observe that the above theorem covers also the case of certain non smooth do-
mains, whose boundaries can be described by a finite number of fungti@ssin the
statement, see e.g. Exampel
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Let us show that uniformly}C2 domains are covered by Theorek®.
Corollary A.3. . TheoremA.2 holds for uniformlyC?-domains.

Proof. It suffices to show that there existsC#-function g : @ — R such thatg > 0 in
Q, |Dg|>1indQ = {g = 0}. Letr be the distance function fro@Q. Thenr € C2(Qs)
for someo > 0 and|Dr| = 1 on 0. Let moreovery be a smooth function such that
0<n<1l,n=1in Qs n=0 outsideQs. It is easy to check thag =nr +1—1n
satisfies the claim. [

Appendix B. Some properties of the distance function

In this appendix, we collect some regularity results of the distance funetion=
dist(x, 0Q), whenoQ is the boundary of a smooth open sub&of RY. These results
are well-known in the case where is bounded (see e.7, Section 14.6] but most
of them may be extended, without much effort, to the unbounded case, as it is shown
below.

First we define open sets with uniformy?t* boundaries, for & o < 1.

Definition B.1. Let Q be an open subset &". We say that’Q is uniformly of class
C2* if there exist a covering 0P, at most countable{U;};en, and a sequence of
diffeomorphisms¢; : U; — B1 of classC?™* such that

$;U;NQ) ={y e Bi|lynv >0},

$;U;N0R) = {y € Bilyy =0}
and the following properties are satisfied:

(i) there existsk € N such that"),., U; =¥, if |J] > k;
(i) there exists O< ¢ < 1 such that{x € Q | r(x) < ¢} € |

¢ (B1y2);
(i) there existsC > 0 such that

jen Vi, whereV; =

sup Y IDPgllee + IDP I < C.
TN o< 1B < 24

Now we show that such a sé& satisfies auniform interior sphere conditigni.e. at
each pointyg € 0Q there exists a balB,, depending onyg, contained inQ and such
that Fyo N 02 = {yo}; moreover the radii of these balls are bounded from below by a
positive constant.

Proposition B.2. If dQ is uniformly of classC?, then it satisfies a uniform interior
sphere condition.
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Proof. Using condition (jii) and taking into account that; is a diffeomorphism from
U; into By, it is easy to see that if € V; and |x — y| < 1/(2C), thenx € U;.

Let yo € 02 and letv(yg) denote the unit inward normal vector &2 at yg. For
0<t < 1/(2C) the pointx = yo + tv(yo) belongs toU; and @;.N) denotes theNth
component of¢ ;)

‘f’.(/N) () = fD¢§N)(yo) -v(y0) + R(1)

with |R(1)| < Cr?/2. Since (j);N) = 0 on U; N 02, then D¢>§.N)(yo) = kv(yp), with

k>C~1, by (iii). This yields ¢\ (x) >1C™1 — C12/2> 0 for 0< 1 < 2/C%:=3.
Thus, we have proved that

y+1v(y) € Q, y € 0Q, t €]0, .

Now, let y € 02 and setB = B(z, 4/2), wherez = y + v(y)d/2. Then, it is easy to
see thatB c Q and y € 0B. If y is not the unique point i®Q2 N dB, then it suffices
to replace the above ball with that of raditig4, centered at = y + v(y)o/4. [
We are now ready to prove the properties of the distance function used in this
paper.

Proposition B.3. Assume that)Q is uniformly of classC? and let 5 be a positive
constant such that at each point 6f2 there exists a ball which satisfies the interior
sphere condition atp with radius greater or equal t@. Then

(a) for everyx € Qs = {y € Q|r(y) < J} there exists a uniqué = £(x) € dQ such
that |x — ¢| = r(x);

(b) r € CE(Qs);

(c) Dr(x) = v(&(x)), for everyx € Q;.

Proof. (a) The existence part is obvious. For the uniqueness assertionel€?; and
y € 09 such thatr(x) = |x — y|. From PropositiorB.2 there exists a balB = B(z, p)
such thatB ¢ Q and B N dQ = {y}. Moreover from the definition ob, x € B. It is
easy to see that andz lie on the normal directiorv(y) and that the ball$(x, r(x))
and B(z, p) are tangent ay. Then B(x, r(x)) still verifies the interior sphere condition
aty. It follows that for everyy € 0Q\ {y}, one hasy ¢ B(x, r(x)), so thaty is actually
the unique point such thak — y| = r(x).
The proof of the last two assertions relies on the first statement and the implicit
function theorem and it is completely similar to that of the c&bounded. We refer
to [7, section 14.6] [
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