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Abstract

We consider autonomous parabolic Dirichlet problems in a regular unbounded open set� ⊂
RN involving second-order operatorA with (possibly) unbounded coefficients. We determine
new conditions on the coefficients ofA yielding global gradient estimates for the bounded
classical solution.
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1. Introduction and notation

In this paper we consider the following Dirichlet parabolic problem:




ut (t, x) − Au(t, x) = 0, t ∈ (0, T ), x ∈ �,

u(t, �) = 0, t ∈ (0, T ), � ∈ ��,

u(0, x) = f (x), x ∈ �,

(1.1)
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where f is continuous and bounded in�. Here� is an unbounded smooth connected
open set inRN and A is a second-order elliptic operator, with (possibly) unbounded
regular coefficients, i.e.,

A =
N∑

i,j=1

qijDij +
N∑

i,j=1

FiDi − V = Tr(QD2) + F · D − V. (1.2)

Our aim is to prove global gradient estimates for the bounded classical solutionu to
(1.1), i.e.,

‖Du(t, ·)‖∞ � C√
t
‖f ‖∞, t ∈ (0, T ), (1.3)

where‖f ‖∞ is the sup norm off in �. Estimate (1.3) is classical when the coefficients
of A are boundedon � and� is a bounded or unbounded open set with sufficiently
smooth boundary, see e.g.[12, Chapter 3]. On the other hand in the recent literature the
interest towards elliptic operators with unbounded coefficients is growing up, see for
instance[4,6,5,13,21,2,16,18,14,23,24]and the references therein. The main motivation
comes from well-known connections with stochastic differential equations, see e.g.
[8,22].
As far as local gradient estimates for (1.1) are concerned, we mention[21], which

establishes them in the Riemannian setting, and[5,20] for the case when� is an open
subset of a Hilbert space andA is an Ornstein–Uhlenbeck operator. Recently, in[17],
see also[18], it was stressed the problem to establish global gradient estimates as a pre-
liminary step towards global Schauder estimates for Dirichlet elliptic problems involving
unbounded coefficients in unbounded domains. Surprisingly enough, a counterexample
in [24] shows that (1.3) fails in general even when� is a half plane. Moreover in[24],
see also[11], connections between estimates (1.3) and some isoperimetric inequalities
are investigated. We also mention[19] and [1], where gradient estimates are proved
for Neumann parabolic problems, under convexity assumptions on�.
Let us explain our main assumptions to obtain (1.3) in the particular whereA =

�+F ·D and� is an unbounded open set with uniformlyC2-boundary. The dissipativity
condition onF, see (1.5) below, is quite natural since a one-dimensional counterexample
to gradient estimates is constructed in[1] when it fails. Observe also that, ifF = D�,
then (1.5) is a concavity assumption on�. On the other hand, condition (1.6) seems
to be quite new and, roughly speaking, it means that the component of the driftF
along the inner normal is bounded from above in a neighborhood of��. Even though
its connection with gradient estimates is not evident from an analytic point of view,
its necessity is clear if one considers the Markov process governed by the operatorA
under Dirichlet boundary conditions. In fact the solutionu(t, x) to (1.1) corresponding
to f = 1 represents the probability that the process starting fromx ∈ � at time t = 0
is not absorbed by the boundary up to timet. If the (inner) normal component ofF
is unbounded from above in a neighborhood of��, one expects thatu(t, x) → 1 as
|x| → ∞ along the boundary. Sinceu(t, �) = 0 for � ∈ ��, it follows that u(t, ·) is
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even not uniformly continuous, see Example6.1 where this heuristic argument is made
rigorous. Finally, we point out that the growth assumption (1.8), even though not very
restrictive, seems to be a technical one in order to use our methods, see the proof of
Theorem1.3.
We use mainly analytic tools and we do not need any convexity assumption on�.

Moreover we stress that our operatorA may contain a potential termV which is difficult
to treat by probabilistic methods.
In Section 2, we prove existence and uniqueness of classical bounded solutionsu

to (1.1). To this purpose we use both classical Schauder estimates and a nonstandard
maximum principle for discontinuous solutions to (1.1), see TheoremA.2. In Section
3, by means of the distance function from the boundary of�, we prove some a priori
estimates forDu. This is done in two steps. First, by comparison with certain one-
dimensional operators one obtains boundary estimates forDu and then, using Bernstein’s
method, one shows that the same estimates hold in the whole�. However, the method
works (and gives (1.3) with the right dependence of all constants involved), if one
already knows thatDu is bounded up to the boundary of� for positivet, see Proposition
3.3. To circumvent this difficulty, we subtract to the operatorA a potentialεW , where
W is big enough to dominate the growth ofF and, following ideas in[3,4,14], we
show that the perturbed operatorAε = A − εW generates an analytic semigroup in
Lp(�) and characterize its domain. Choosing a largep and using Sobolev embedding,
it follows that the bounded classical solutionuε of problem (1.1) with Aε instead ofA
and a smoothf has a bounded gradient in[0, T )×�. Therefore Proposition3.3 applies
and gives (1.3) for uε with a constantC independent ofε. An approximation argument
then completes the proof. This program is carried out in Sections 4 and 5. In Section
6 we present the announced counterexample.
Let us collect our first hypotheses on� and the coefficients ofA. We denote byBR

the euclidean ball with center at the origin and radiusR.

Hypothesis 1.1.(i) � is a connected open subset ofRN with uniformly C2+�-
boundary for some 0< � < 1, see Appendix B.

(ii) qij , Fi, V ∈ C1+�(� ∩ BR) for every i, j = 1, . . . , N andR > 0; moreoverV �0
in �.

(iii) qij = qji ∈ C1
b(�), and there exists� > 0 such that

∑N
i,j=1 qij (x)�i�j � �|�|2, for

every x ∈ � and � ∈ RN .
(iv) There exist a positive function� ∈ C2([0, T ] × �) and �0 > 0 such that

lim
|x|→+∞, x∈�

�(t, x) = +∞, uniformly in [0,T], (Dt − A + �0)��0.

The Lyapunovmap � introduced in assumption (iv) will be used to prove maximum
principles, see Appendix A. Moreover condition (i) ensures that thedistance function

r(x) = dist (x, ��), x ∈ � (1.4)
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is a C2-function with bounded second-order derivatives in��, for some� > 0, where
we set

�� = {x ∈ � : dist (x, ��) < �},

see [7, Lemma 14.16]and also Appendix B (note that (i) implies that the principal
curvatures of��, when�� is considered as an hypersurface, are bounded). Our main
result will be proved assuming also the conditions listed below.

N∑
i,j=1

DiFj (x)�i�j � (sV (x) + k)|�|2, x ∈ �, � ∈ RN, (1.5)

N∑
i,j=1

qij (x)Dij r(x) +
N∑
i=1

Fi(x)Dir(x)�M, x ∈ �� (for some� > 0), (1.6)

|DV (x)|�	(1+ V (x)), x ∈ �, (1.7)

|F(x)|� c1e
c2|x|, x ∈ �, (1.8)

for some constantsk,M,	, c1, c2 ∈ R, s < 1/2.
Observe that, sinceqij ∈ C1

b(�) and � is uniformly C2, (1.6) is only a condition
on the component ofF along the inner normal to�� in a neighborhood of��.
To specify the dependence of some constants we also introduce the quantity

h = sup
x∈�

(
N∑

i,j=1

|Dqij (x)|2
)1/2

(1.9)

which is finite, sinceqij ∈ C1
b(�).

Remark 1.2. Observe that assumption (iv) of Hypothesis1.1 follows from the positivity
of V and the boundedness ofqij , when condition (1.5) holds with s = 0. In fact (1.5)
implies, by differentiating the functiont → F(tx) · x, that F(x) · x �F(0) · x + k|x|2,
hence the function�(x) = 1+ |x|2 satisfies (iv), for a suitable�0.

We will prove the following theorem.

Theorem 1.3. There exists a constant C depending only on�, k, s, h,N,M,	, �, T
such that the bounded classical solution u of(1.1) satisfies

‖Du(t, ·)‖∞ � C√
t
‖f ‖∞, t ∈ (0, T ), f ∈ Cb(�).
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Notation: We defineQ = (0, T ) × �, �′
Q = (0, T ) × �� ∪ {0} × � and �txQ =

{0} × ��.
We denote byDtu, Diu the partial derivatives with respect to the variablest and

xi , respectively, of a functionu depending on(t, x) ∈ R × RN . Similarly, Diju stands
for Dxixj u. The space gradient ofu and its Hessian matrix with respect to the space
variables are simply denoted byDu, D2u.
For 0 < � < 1 and k ∈ N, Ck+�(�) denotes the usual Hölder space ofk-times

continuously differentiable functions such that all the derivatives up to orderk are
bounded and those of orderk are �-Hölder continuous in� (or equivalently in�). If
a < b, C1+�/2,2+�((a, b) × �) is the classical parabolic Hölder space, i.e. the space
of functions u = u(t, x) which are continuous and bounded in(a, b) × � together
with their first-order time derivatives and first and second-order space derivatives and
such thatDtu and Diju are �-Hölder continuous in(a, b) × � (or equivalently in
[a, b]×�) with respect to the parabolic distanced((t, x), (s, y)) = |t − s|1/2+ |x − y|.
By C1,2((a, b) × �) we mean the space of functionsu(t, x) which are continuous in
(a, b) × � with their indicated derivatives (not necessarily bounded). Finally,Ck

b(�)

indicates the Banach space of allk-times continuously differentiable functions in�,
bounded together with their derivatives up to the orderk. Whenk = 0 we simply write
Cb(�). C∞

0 (�) is the space ofC∞-functions with compact support in�. The symbols
‖ · ‖p, ‖ · ‖∞ denote theLp-norm and the sup-norm, respectively. The support of a
function � is denoted by supp�.
A function u is called abounded classical solutionof (1.1) if u ∈ C1,2(Q), u is

continuous inQ \ �txQ, bounded inQ and solves (1.1).

2. Existence and uniqueness

As a preliminary step, let us show that (1.1) has a unique bounded classical solution.

Proposition 2.1. Assume Hypothesis1.1. If f ∈ C2+�(�) has compact support in�,
then problem(1.1) has a unique bounded solution u which belongs toC1+�/2,2+�((0, T )

× (� ∩ BR)) for everyR > 0. Moreover, ‖u‖∞ � ‖f ‖∞ and u�0 if f �0. Finally,
Du belongs toC1+�/2,2+�((ε, T )×�′)) for everyε > 0 and�′ open bounded set with
dist (�′,RN \ �) > 0. In particular, Du ∈ C1,2(Q).

Proof. Uniqueness is immediate consequence of a classical maximum principle, see
PropositionA.1.
To prove the existence part, we consider a sequence of uniformly elliptic operators

with coefficients inC�(�),

An =
N∑

i,j=1

qijDij +
N∑
i=1

Fn
i Di − V nu,

such thatFn
i = Fi , V n = V in � ∩ Bn, V n �0 and letun ∈ C1+�/2,2+�(Q) be the

solution of (1.1), with An instead ofA (see e.g.[10, Theorem IV.5.2]). The classical
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maximum principle yields‖un‖∞ � ‖f ‖∞. Let us fix R > 0 and observe that, since
� is unbounded and connected,dist (� \ BR+1,� ∩ BR) > 0. SinceAn = Am = A in
� ∩ BR+1 for n,m > R + 1, by the local Schauder estimates[10, Theorem IV.10.1],
there exists a constantC such that

‖un − um‖C1+�/2,2+�((0,T )×(�∩BR))
�C‖un − um‖C((0,T )×(�∩BR+1)) �2C‖f ‖∞.

Therefore(un) is relatively compact inC1,2([0, T ] × (� ∩ BR)). Considering an in-
creasing sequence of balls and using a diagonal procedure we can extract a subsequence
(unk ) convergent to a functionu ∈ C1+�/2,2+�((0, T )×(�∩BR)) for everyR > 0 which
solves (1.1) and satisfies‖u‖∞ � ‖f ‖∞. By the maximum principle,u�0, whenever
f �0.
In order to prove the last part of the statement it is sufficient to apply[9, Theorem

8.12.1] directly to the operatorDt − A. �
We now introduce linear operators(Pt )t �0 via the formula(Ptf )(x) = u(t, x) for

f ∈ C2+�(�), with compact support in�, whereu is the solution of (1.1) given by
the above proposition. Each operatorPt is positive and contractive with respect to the
sup-norm, by the above proposition.
Now we consider the case wheref is only continuous and bounded in� and extend

the above maps(Pt )t �0 to a semigroup inCb(�).

Proposition 2.2. Assume Hypothesis1.1. If f belongs toCb(�), then problem(1.1) has
a unique bounded classical solution u. Moreover, u(t, x) → f (x) as t → 0, uniformly
on compact sets of�.

Proof. Uniqueness is an immediate consequence of a nonstandard maximum principle,
see TheoremA.2. To show existence, we consider a sequence(fn) ∈ C∞

0 (�) convergent
to f uniformly on compact subsets of� and such that‖fn‖∞ � ‖f ‖∞. Let un ∈
C1+�/2,2+�((0, T ) × (� ∩ BR)), for every R > 0, be the solution of (1.1) with fn
instead of f, given by the previous proposition. Let us fixε > 0. By the Schauder
estimates[10, Theorem IV.10.1], as in the proof of Proposition2.1, we get a constant
C such that

‖un − um‖C1+�/2,2+�((ε,T )×(�∩BR))
�C‖un − um‖C((0,T )×(�∩BR+1)) �2C‖f ‖∞

and then, by a compactness argument, we can extract a subsequence(unk ) convergent
to a functionu ∈ C1+�/2,2+�((ε, T ) × (� ∩ BR)) for every ε, R > 0 which solves the
equationut − Au = 0 in Q and such thatu(t, x) = 0 for t ∈ (0, T ), x ∈ ��. In the
following, we write u = Ptf , for f ∈ Cb(�).
It remains to show thatu(t, x) → f (x) as t → 0, uniformly on compact sets of�.
Assume first thatf ∈ C0(�), i.e. f vanishes on�� and at infinity. Then we can

choose(fn) as above in such a way that‖fn − f ‖∞ → 0. The maximum principle
implies that(un) is a Cauchy sequence inC([0, T ] × �), henceun → u uniformly in
Q and u(0, x) = f (x) for every x ∈ �.
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Let K ⊂ � be a compact set and
 ∈ C0(�), 0� 
�1, be such that
 = 1 in K.
Then Pt
 → 
 as t → 0, uniformly in �, hencePt
 → 1 uniformly in K and, since
0�Pt(1−
)�1−Pt
, we getPt(1−
) → 0 uniformly in K. For f ∈ Cb(�), writing
Ptf = Pt(
f ) + Pt((1− 
)f ) and observing thatPt(
f ) → 
f uniformly in � and
that Pt((1− 
)f ) → 0 uniformly in K we obtain thatPtf → f , uniformly in K. �

Corollary 2.3. The family(Pt )t �0 is a semigroup inCb(�).

Proof. The semigroup lawPt+s = PtPs is immediate consequence of the uniqueness
statement in Proposition2.2. �
Observe that the semigroup(Pt )t �0 is not strongly continuous. In factPtf → f as

t → 0, only uniformly on compact subsets of�. However,Ptf → f uniformly in �
for every f ∈ C0(�).

3. Some a priori estimates

In the following proposition we prove a preliminary boundary gradient estimate for
bounded solutions of problem (1.1). We need the following lemma on gradient estimates
for certain one-dimensional operators.

Lemma 3.1. Let � > 0 and g : [0,+∞) × [0, �] → R be the solution to




gt (t, r) = �grr (t, r) + Mgr(t, r), t > 0, r ∈ (0, �),
g(t,0) = 0, g(t, �) = 1, t > 0,
g(0, r) = 1, r ∈ (0, �).

(3.1)

Thengr �0, grr �0 and for anyT > 0 there existscT > 0 such that

0� g(t, r)� cT√
t
r, 0< t � T , r ∈ (0, �).

Proof. We define the operator(B,D(B)) in C([0, �]) by

Bu = �u′′ + Mu′ D(B) = {u ∈ C2([0, �]) : u(0) = 0, (Bu)(�) = 0}.

Let us show that(B,D(B)) generates an analytic semigroupSt of positive contractions
in C([0, �]) (note thatSt is not strongly continuous since the domainD(B) is not dense
in C([0, �]).
Let D = {u ∈ C2([0, �]) : u(0) = u(�) = 0}. Then (B,D) generates an analytic

semigroup(Tt )t �0 in C([0, �]). Set�(r) = a
∫ r

0 e−M s/�ds. ThenB� = 0, �(0) = 0
and�(�) = 1, if a is suitably chosen. It is easily seen thatStf = Tt (f−f (�)�)+f (�)�
is the analytic semigroup generated by(B,D(B)) in C([0, �]). Since the regularity
properties ofStf coincide with those ofTtf , it follows that u(t, r) = Stf (r) is aC∞



336 S. Fornaro et al. / J. Differential Equations 205 (2004) 329–353

function for t > 0, continuous at the points(0, r), with 0 < r < �. The maximum
principle, see TheoremA.2, now yields positivity and contractivity ofSt .
We can prove the stated properties ofg. Sinceg = St1 we have 0� g �1. Moreover

g(t + s, ·) = St+s1= StSs1� St1= g(t, ·), henceg is decreasing with respect tot and
gt �0. To prove thatgr �0 we write

gt = �

(
grr + M

�
gr

)
= �e−M

� r d

dr

(
e

M
� rgr

)
�0,

r ∈ (0, �). Then e
M
� rgr is decreasing. Sinceg(t, �) = 1 and 0� g �1, we have

gr(t, �)�0, hencegr �0. Now the identitygt = �grr + Mgr yields grr �0.
Since (St )t �0 is analytic, for 0 < t � T we have ‖D2g(t, ·)‖� cT t

−1, hence
‖Dg(t, ·)‖� cT t

−1/2 and the inequalityg(t, r)� cT t
−1/2r follows, sinceg(t,0) = 0.

�

Proposition 3.2. Assume Hypothesis1.1 and (1.6). Then there exists� = �(�,M, �, T )

such that every bounded classical solution u of(1.1), differentiable with respect to the
space variables on]0, T [×�, satisfies the estimate

|Du(t, �)|� �√
t
‖f ‖∞, t ∈ (0, T ), � ∈ ��. (3.2)

Proof. For eachx ∈ �� let �(x) be the unique point in�� satisfying |x − �| = r(x).
Note that

x = �(x) + �(�(x))r(x),

where�(�) is the unit inner normal to�� at � ∈ ��. Recall also thatDr(x) = �(�(x)),
x ∈ ��. See Appendix B for these properties of the distance functionr. To proceed
we remark that, sinceu = 0 on ��,

Du(t, �) = ��u(t, �), � ∈ ��, t > 0.

In order to prove the claim it is enough to show that

|w(t, x)| = w(t, x)� �√
t
r(x), t ∈ (0, T ), x ∈ ��, (3.3)

where w is the solution to (1.1), corresponding tof = 1, and � depends only on
the stated parameters. Indeed, in the general case it is sufficient to observe that, for
x = � + r(x)�(�), � ∈ �� fixed,

|Ptf (x) − Ptf (�)| = |Ptf (x)|�Pt |f |(x)� ‖f ‖∞Pt1(x) = ‖f ‖∞w(t, x)

� �√
t
r(x)‖f ‖∞,
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and (3.2) follows easily dividing byr and lettingr → 0. To prove (3.3) we compare
w with an auxiliary functionz, using TheoremA.2. Let

z(t, x) = g(t, r(x)), x ∈ ��,

whereg : [0,+∞) × [0, �] → R is the solution to (3.1). Now Lemma3.1 yields

|z(t, x)| = g(t, r(x))� �√
t
r(x), 0< t < T, x ∈ ��.

Thus we have only to prove that

w(t, x)� z(t, x), x ∈ ��, t ∈ (0, T ). (3.4)

To verify (3.4), we considerv = z−w in the cylinderQ� = (0, T )×��. It is clear that
v belongs toC1,2(Q�), is continuous inQ� \ �txQ�, bounded onQ� and nonnegative
on �′

Q� \ �txQ�. Moreover

vt − Av = zt − Az = gt − �grr − Mgr

+
(

�grr+Mgr−grr

N∑
i,j=1

qijDirDj r−grF · Dr−gr

N∑
i,j=1

qijDij r + V z

)

= grr

(
� −

N∑
i,j=1

qijDirDj r

)
+ gr

(
M −

N∑
i,j=1

qijDij r − F · Dr

)
+ V z�0,

since z, gr �0, grr �0. The maximum principle TheoremA.2 now implies (3.4) and
concludes the proof.�
The following proposition is an a priori estimate onDu, where u is the bounded

classical solution of (1.1). Its importance relies on pointing out the dependence of the
constantC below.

Proposition 3.3. Assume Hypothesis1.1, (1.5) and (1.7). Then there exists a constant
C depending on�, h, k, s,	, T , � with the following property. Every bounded classical
solution u of(1.1) such that

(i) Du belongs toC1,2(Q),
(ii)

√
t |Du| is continuous inQ\�txQ, bounded in Q and verifieslim t→0

√
t |Du(t, x)|

= 0, x ∈ �,
(iii) u satisfies(3.2)

fulfills the estimate

‖Du(t, ·)‖∞ � C√
t
‖f ‖∞, t ∈ (0, T ). (3.5)
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Proof. ChangingV to V + 1 (henceu to e−t u) we may assume that|DV |�	V . We
use Bernstein’s method and define the function

v(t, x) = u2(t, x) + a t |Du(t, x)|2, t ∈ (0, T ), x ∈ �,

where a > 0 is a parameter to be chosen later. Then we havev ∈ C1,2(Q), v is
continuous inQ \ �txQ, bounded inQ and v(0, x) = f 2(x). We claim that for a
suitable value ofa > 0, depending on�, h, k, s,	, T we have

vt (t, x) − Av(t, x)�0, 0< t < T, x ∈ �. (3.6)

This, by TheoremA.2, implies that

v(t, x)� sup
x∈�

|v(0, x)| + sup
�∈��, t∈(0,T )

at |Du(t, �)|2� (1+ a�2)‖f ‖2∞,

0< t � T , x ∈ �, and (3.5) follows with C = (a−1 + �2)1/2.
To verify inequality (3.6), note that, by a straightforward computation,v satisfies the

equation

vt − Av = a|Du|2 − 2
N∑

i,j=1

qij DiuDju + g1 + g2,

where

g1 = at

(
2

N∑
i,j=1

DiFjDiuDju − 2uDu · DV − V |Du|2
)

− V u2,

g2 = 2at

(
N∑

i,j,k=1

DkqijDkuDiju −
N∑

i,j,k=1

qijDikuDjku

)
.

Using the assumptions one has, for allε > 0, x ∈ �, t ∈ (0, T ),

vt − Av � (a − 2� + 2akt + at (2s − 1)V )|Du|2
+2at (h|Du||D2u| + 	V |u||Du| − �|D2u|2) − V u2

� (a − 2� + 2akt + at (2s − 1)V )|Du|2
+ at (hε−1|Du|2 + hε|D2u|2
+	ε−1V u2 + 	εV |Du|2 − 2�|D2u|2) − V u2,

where|D2u|2 = ∑N
i,j=1 |Diju|2. Since 2s < 1, choosingε anda small enough we get

immediately (3.6). �
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4. An auxiliary problem

In this section, we keep Hypothesis1.1 and condition (1.7) and write our operator
in divergence form

A = A0 +
N∑
i=1

GiDi − V,

whereA0 = ∑N
i,j=1Di(qijDj ) andGi = Fi −∑N

j=1Djqij .
Moreover, we assume that the potentialV and the driftG satisfy the inequality

|G(x)|�
V (x)1/2 + c
, x ∈ �, (4.1)

for some
 > 0 and show generation of an analytic semigroup inLp(�), for 
 <

min{2�(p − 1),2}. We follow the ideas of[3,4,14] where the situation� = RN is
considered.
For simplicity, we assume throughout this section that 2�p < ∞. Observe that, since

qij ∈ C1
b(�), condition (4.1) holds equivalently forF or G with the same constant
,

possibly with a different choice ofc
.
We endowA with the domain

Dp = {u ∈ W2,p(�) ∩ W
1,p
0 (�) : V u ∈ Lp(�)}

which is a Banach space when endowed with the norm

‖u‖Dp = ‖u‖W2,p(�) + ‖V u‖Lp(�)

and remark that the set

D = {u ∈ C∞(�) : u|�� = 0, suppu compact in�}

is dense inDp.
We need the following interpolative lemma which is analogous to[14, Proposition

2.3].

Lemma 4.1. Assume Hypothesis1.1 and that condition(1.7) hold. Then there exists
C depending onN,p,	 and the coefficients(qij ) such that for every0 < ε < 1 and
u ∈ Dp, 2�p < ∞, the following inequality holds:

‖V 1/2Du‖p � ε‖A0u‖p + Cε−1(‖u‖p + ‖V u‖p).

Proof. It suffices to establish the inequality above for functionsu ∈ D. Moreover,
changingV with V + 1, we may assume that|DV |�	V �	V 3/2.
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Integrating by parts and using the fact thatu = 0 on �� andp�2 we have∫
�
V

p
2 |Dku|p =

∫
�
V

p
2 |Dku|p−2DkuDku

= −p

2

∫
�
V

p
2−1DkV u|Dku|p−2Dku − (p − 1)

∫
�
V

p
2 u|Dku|p−2Dkku

� 	p
2

∫
�

|u||Dku|p−1V
p−1
2 V + (p − 1)

∫
�
V

p−2
2 |Dku|p−2V |u||Dkku|

� 	p
2

( ∫
�
V

p
2 |Dku|p

)1−1/p( ∫
�
V p|u|p

)1/p

+(p − 1)
( ∫

�
V

p
2 |Dku|p

)1−2/p( ∫
�
V p|u|p

)1/p( ∫
�

|Dkku|p
)1/p

.

Settingx = ‖V 1/2Dku‖p, y = ‖V u‖p, z = ‖Dkku‖p we have obtainedx2� (	p)/2xy+
(p − 1)yz, hence

x � 	p
2

y +√
(p − 1)yz�Cε−1y + εz

for ε < 1, with C depending on	, p and the statement follows with‖D2u‖p instead of
‖A0u‖p. To complete the proof it suffices to use the closedness ofA0 on W2,p(�) ∩
W

1,p
0 (�). �

Proposition 4.2. Assume Hypothesis1.1, condition (1.7) and suppose that(4.1) holds
with 
 satisfying
 < min{2�(p−1),2}. Then(A,Dp) is closed inLp(�), 2�p < ∞.
Moreover, there is a constant�0 depending onc
 with the following property: for every
� > �0 there existC1, C2 depending only on�, N, p,	,
, c
 and the coefficients(qij ),
such that for everyu ∈ Dp

‖u‖Dp �C1‖�u − Au‖p �C2‖u‖Dp .

Finally, if c
 = 0, then �0 = 0 and the inequality�‖u‖p � ‖(� − A)u‖p holds.

Proof. By density we may assume thatu ∈ D. The right-hand side of the above
inequality follows immediately from Lemma4.1, since |G|�
V 1/2 + c
.
ChangingV with V +� for a suitable large�, we may assume thatc
 = 0 and that

|DV |�	V .
Let us multiply the identityf = �u − Au by u|u|p−2. Integrating over� we get,

sinceu = 0 on ��,∫
�
(� + V )|u|p + (p − 1)

∫
�

N∑
i,j=1

qij |u|p−2DiuDju� ‖f ‖p‖u‖p−1
p

+

∫
�
V 1/2|Du||u|p−1.
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The last term can be estimated with



( ∫

�
V |u|p

)1/2(∫
�

|u|p−2|Du|2
)1/2

� 

2

(∫
�
V |u|p + |u|p−2|Du|2

)
.

Since
 < min{2�(p − 1),2} we easily obtain, for� > 0, �‖u‖p � ‖f ‖p. To estimate
Vu we observe that

∫
�
(A0u)V

p−1u|u|p−2 = −
N∑

i,j=1

∫
�
qijDiuDj

(
V p−1u|u|p−2)

= −(p − 1)
∫
�

N∑
i,j=1

qijV
p−1|u|p−2DiuDju

−(p − 1)
∫
�

N∑
i,j=1

qijV
p−2u|u|p−2DiuDjV .

Multiplying the identity �u − Au = f by V p−1u|u|p−2 and integrating over� we
obtain

∫
�
(�V p−1 + V p)|u|p + �(p − 1)

∫
�
V p−1|u|p−2|Du|2

�
∫
�
(�V p−1 + V p)|u|p + (p − 1)

∫
�
V p−1|u|p−2q(Du,Du)

= −(p − 1)
∫
�
V p−2u|u|p−2q(Du,DV ) +

∫
�
V p−1u|u|p−2G · Du

+
∫
�
fV p−1u|u|p−2,

whereq(Du,DV ) = ∑N
i,j=1 qijDiuDjV and similarly forq(Du,Du). Next, observe

that

∣∣∣ ∫
�
V p−1u|u|p−2G · Du

∣∣∣ � 

∫
�
V p−1/2|u|p−1|Du|

� 


(∫
�
V p−1|u|p−2|Du|2

)1/2(∫
�
V p|u|p

)1/2

� 

2

(∫
�
V p−1|u|p−2|Du|2 +

∫
�
V p|u|p

)
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and that, for a suitableK depending only on‖qij‖∞,

∫
�

|u|p−1V p−2|q(Du,DV )| � K

∫
�

|u|p−1V p−2|Du||DV |

� K	

(∫
�
V p−1|u|p−2|Du|2

)1/2(∫
�

|u|pV p−1

)1/2

� K	ε

(∫
�
V p−1|u|p−2|Du|2 +

∫
�
V p|u|p

)

+Cε

∫
�

|u|p.

In the last inequality we have used the inequalitytp−1� εtp + Cε.
Since
 < min{2�(p − 1),2}, taking a smallε one concludes that‖V u‖p �C‖f ‖p,

with C as in the statement.
We now use Lemma4.1 to estimate the second-order derivatives ofu. We have

‖G · Du‖p � 
‖V 1/2Du‖p �
(ε‖A0u‖p + Cε−1‖u‖p + Cε−1‖V u‖p)
� 
(ε‖f ‖p + ε‖G · Du‖p + ε‖V u‖p + ε�‖u‖p

+Cε−1‖u‖p + Cε−1‖V u‖p)

hence, taking a smallε, ‖G · Du‖p �C‖f ‖p and ‖A0u‖p �C‖f ‖p, by difference.

Using the closedness ofA0 on W2,p(�) ∩ W
1,p
0 (�) given by the Calderon–Zygmund

estimates, we get‖D2u‖p �C‖f ‖p, with C as in the statement.�

Proposition 4.3. Assume Hypothesis1.1, condition (1.7) and suppose that(4.1) holds
with 
 satisfying
 < min{2�(p−1),2}. Then(A,Dp) generates a semigroup inLp(�),
2�p < ∞.

Proof. As in the proof of Proposition4.2, we may assume thatc
 = 0, |DV |�	V ,
so that�‖u‖p � ‖�u − Au‖p for � > 0. By the Lumer–Phillips theorem it suffices to
show � − A is surjective for� > 0.
Setting forε > 0

Vε = V

1+ εV
, Gε = G√

1+ εV
,

it is immediate to check thatVε,Gε satisfy

|DVε|�	Vε, |Gε|�
V 1/2
ε .
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SinceVε,Gε are bounded, the operatorAε = A0+Gε ·D−Vε with domainW2,p(�)∩
W

1,p
0 (�) generates an analytic semigroup inLp(�) see[12, Theorem 3.1.3], which is

contractive by Proposition4.2.
Givenf ∈ Lp(�), let uε ∈ W2,p(�)∩W

1,p
0 (�) such that(�−Aε)uε = f . By Propo-

sition 4.2, ‖uε‖2,p, ‖Vεuε‖p �C‖f ‖p with C independent ofε. By weak compactness

we find εn → 0 such that(uεn) converges weakly to a functionu in W2,p(�)∩W
1,p
0 (�)

and strongly inW1,p
loc (�). Moreover we may assume that(uεn) → u a.e. in�. By

Fatou’s lemma‖V u‖p �C‖f ‖p, hence u ∈ Dp and it is easy to check that
(� − A)u = f . �
Let us show that the above semigroup is analytic.

Theorem 4.4. Assume Hypothesis1.1,condition(1.7) and suppose that(4.1) holds with

 satisfying
 < min{2�(p − 1),2}. Then (A,Dp) generates an analytic semigroup in
Lp(�), 2�p < ∞.

Proof. We keep the same notation of the proof of Proposition4.2. We may assume
that c
 = 0. Let u ∈ D and setu∗ := u|u|p−2. Integrating by parts, sinceu = 0 on
��, a lengthy but straightforward computation yields

−Re

(∫
�
(Au)u∗

)
= (p − 1)

∫
�

|u|p−4q(Re(uDu), Re(uDu))

+
∫
�

|u|p−4q(Im(uDu), Im(uDu)) −
∫
�
G · Re(uDu)|u|p−2 +

∫
�
V |u|p

and

∣∣∣∣Im
∫
�
(Au)u∗

∣∣∣∣ � (p − 2)
∫
�

|u|p−4q(Re(uDu), Im(uDu)) +
∫
�

|G||u|p−2|Im(uDu)|.

Condition (4.1) implies∫
�

|G||u|p−2|Im(uDu)| � 

∫
�
V

1
2 |Im(uDu)||u| p2 |u| p−4

2

� 

(∫

�
V |u|p

) 1
2
(∫

�
|u|p−4|Im(uDu)|2

) 1
2

� 
√
�

(∫
�
V |u|p

) 1
2
(∫

�
|u|p−4q(Im(uDu), Im(uDu))

) 1
2

and∫
�

|G||u|p−2|Re(uDu)| � 

∫
�
V

1
2 |Re(uDu)||u| p2 |u| p−4

2
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� 

(∫

�
V |u|p

) 1
2
(∫

�
|u|p−4|Re(uDu)|2

) 1
2

� 
√
�

(∫
�
V |u|p

) 1
2
(∫

�
|u|p−4q(Re(uDu), Re(uDu))

) 1
2

.

If we put B2 := ∫
� |u|p−4q(Re(uDu), Re(uDu)), C2 := ∫

� |u|p−4q(Im(uDu),

Im(uDu)), andD2 := ∫
� V |u|p, then we deduce from the previous estimates

−Re

(∫
�
(Au)u∗

)
�
(
p − 1− 


2�

)
B2 + C2 +

(
1− 


2

)
D2.

Therefore, ∣∣∣∣Im
(∫

�
(Au)u∗

)∣∣∣∣ � (p − 2)BC + 
√
�
CD

and one can find� > 0 such that∣∣∣∣Im
(∫

�
(Au)u∗

)∣∣∣∣ ��
[
−Re

(∫
�
(Au)u∗

)]

for everyu ∈ D and, by density, for everyu ∈ Dp. Since we already know that(A,Dp)

generates a semigroup, by[15, Theorem 3.9, Chapter I] the proof is
complete. �

Remark 4.5. Observe that all the results proved until now, in this section (but not
the next lemma), hold assuming less local regularity on the coefficients. For example
qij ∈ C1

b(�), F ∈ L∞
loc(�), V ∈ C1(�) suffice. Moreover, the existence of the Lyapunov

function � is not necessary.

We call (Tt )t �0 the semigroup generated byA in Lp(�). For the proof of our main
result we need some regularity results of the functionu(t, x) = (Ttf )(x).

Lemma 4.6. Assume that the conditions of Theorem4.4 hold for a fixedp > N+1 and
let f ∈ C∞

0 (�). Then the functionu(t, x) = (Ttf )(x) is the bounded classical solution
of problem(1.1) and therefore has the regularity properties stated in Proposition2.1.
Moreover, Du is continuous and bounded inQ.

Proof. Sincef ∈ Dp, the functiont → Ttf is continuous from[0, T ] to W2,p(�) and
Sobolev embedding implies thatu,Du are bounded and continuous inQ. To complete
the proof, we have to show thatu ∈ C1,2(Q).
Let us fix ε > 0 and open bounded sets�1,�2 such that�1 ⊂ �2 and �2 ⊂ �.

Since(Tt )t �0 is analytic,u is continuously differentiable from[ε, T ] to W2,p(�) and
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Sobolev embedding yieldsut ∈ C(Q). Set

� = sup
ε� t � T

(
‖u(t, ·)‖W2,p(�) + ‖ut (t, ·)‖W2,p(�)

)
.

For every fixed t ∈ [ε, T ] the function u(t, ·) belongs toW2,p(�) and solves the
equation

N∑
i,j=1

qijDiju = −F · Du + V u − ut

in �. Since the right-hand side belongs toW1,p
loc (�) it follows that u(t, ·) ∈ W

3,p
loc (�)

and that, for a suitablec depending on�1,�2 and the coefficients ofA,

sup
ε� t � T

‖u(t, ·)‖W3,p(�1)
� c�,

see[7, Theorem 9.19]. We have thus proved that for everyi, j = 1, . . . , N , DtDiju,

DDiju ∈ Lp([ε, T ] × �1). By Sobolev embedding, sincep > N + 1, Diju ∈ C(Q)

and the proof is complete. �

5. Proof of Theorem 1.3

For ε > 0 let Vε(x) = ε exp{4c2
√
1+ |x|2}. Then |DVε|�4c2Vε and for every


 > 0 there existsc
 > 0 (depending onε) such that|F |�
(V + Vε)
1/2 + c
. Define

Aε = A − Vε and note that the hypotheses of Theorem4.4 are satisfied.
Fix p > N + 1, f ∈ C∞

0 (�) and letuε be the semigroup solution of (1.1) with Aε

instead ofA, given by Theorem4.4. By Lemma4.6 the functionuε is the bounded
solution of the above problem andDuε is continuous and bounded inQ. By Proposition
3.2we deduce that|Duε(t, �)|� (�/

√
t)‖f ‖∞, � ∈ ��, with � depending on�,M, �, T

and independent ofε.
Sinceuε satisfies the hypotheses of Proposition3.3, we deduce that

‖Duε(t, ·)‖∞ � (C/
√
t)‖f ‖∞,

with C as in the statement.
Observe that‖uε‖∞ � ‖f ‖∞. Let us fix R > 0 and note that theC�-norm of the

coefficients ofAε is bounded, uniformly with respect toε < 1, in � ∩ BR+1. By the
local Schauder estimates[10, Theorem IV.10.1]applied to the operatorDt −Aε, there
exists a constantC, independent ofε < 1, such that

‖uε‖C1+�/2,2+�((0,T )×(�∩BR))
� C

(
‖uε‖C((0,T )×(�∩BR+1)

)
+ ‖f ‖C2+�(�∩BR+1)

� 2C‖f ‖C2+�(�).
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By a standard compactness argument we conclude that a subsequence(uεn) converges
in C1,2([0, T ] × (� ∩ BR)) for everyR to a functionu which is the bounded classical
solution of (1.1) and satisfies‖Du(t, ·)‖∞ � (C/

√
t)‖f ‖∞.

Finally, to treat the general case off ∈ Cb(�) we consider a sequence(fn) ⊂ C∞
0 (�)

convergent tof uniformly on compact subsets of� and such that‖fn‖∞ � ‖f ‖∞.
Let un be the bounded classical solution of (1.1) relative to fn. Then ‖Dun(t, ·)‖∞
� (C/

√
t)‖f ‖∞, by the previous step. Since(un) → u in C1,2(Q), see the proof of

Proposition2.2, the estimate forDu follows. �

6. Examples and applications

We first show that gradient estimates fail, in general, if condition (1.6) is not satisfied.
We refer the reader to[1, Example 5.6]for an operator defined on the whole space,
for which condition (1.5) is violated and gradient estimates fail. The following result
refines and generalizes an example in[24].

Example 6.1.We consider the following Dirichlet problem in� = R2+ = {(x, y) ∈ R2,

x > 0}


ut (t, x, y) = uxx(t, x, y) + uyy(t, x, y) + g(y)ux(t, x, y), t > 0, (x, y) ∈ �,

u(t,0, y) = 0, t > 0, y ∈ R,

u(0, x, y) = 1, (x, y) ∈ �,

whereg ∈ C2(R) and

lim
y→+∞ g(y) = +∞.

Observe that (1.6) fails. However, Proposition2.2 yields existence and uniqueness of
a bounded solutionu. Let us show that, fort > 0, u(t, ·) is not uniformly continuous
in �. To this end, it is enough to show that, for everyt, x > 0,

sup
y>0

u(t, x, y) = 1. (6.1)

Fix n > 0 and takecn such thatg(y)� n for y � cn. DefineRn = (0,+∞)×(cn,+∞)

and considerv = vn which solves


vt (t, x, y) = vxx(t, x, y) + vyy(t, x, y) + nvx(t, x, y), t > 0, (x, y) ∈ Rn,

v(t, z) = 0, t > 0, z ∈ �Rn,

v(0, x, y) = 1, (x, y) ∈ Rn,

We prove that fort, x > 0

(i) lim
n→∞ sup

y>cn

vn(t, x, y) = 1; (ii ) u(t, x, y)� vn(t, x, y).
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Clearly (i) and (ii) give (6.1). Let us verify (i). Note thatvn(t, x, y) = an(t, x)bn(t, y),
wherea = an, b = bn solve, respectively,


at (t, x) = axx(t, x) + nax(t, x), t > 0,
a(t,0) = 0, t > 0,
a(0, x) = 1, x > 0,




bt (t, y) = byy(t, y), t > 0,
b(t, cn) = 0, t > 0,
b(0, y) = 1, y > cn.

To find an explicit formula foran, we first remark thatan(t, x) = a1(n
2t, nx). Then,

settingv(t, x) = ex/2e
1
4 t a1(t, x), v solves


vt (t, x) = vxx(t, x), t > 0, x > 0,
v(t,0) = 0, t > 0,
v(0, x) = ex/2, x > 0;

By a reflection argument we get easily an explicit expression forv and finally we
obtain for anyt > 0, y � cn, x �0,

an(t, x) = e
−n2t
4

n
√
4�t

∫ +∞

0

(
e
− |nx−z|2

4n2t − e
− |nx+z|2

4n2t

)
e

z−nx
2 dz, bn(t, y) =

∫ y−cn

0

e
−z2
4t√
�t

dz.

To check that (i) holds we write

an(t, x) = A1
n(t, x) − A2

n(t, x),

A1
n(t, x) = e

−n2t
4

n
√
4�t

∫ +∞

0

(
e
− |nx−z|2

4n2t

)
e

z−nx
2 dz,

A2
n(t, x) = e

−n2t
4

n
√
4�t

∫ +∞

0

(
e
− |nx+z|2

4n2t

)
e

z−nx
2 dz.

Let us considerA1
n. By a change of variables we obtain

A1
n(t, x) = 1√

�

∫ +∞

− x+n

2
√
t

e−s2 ds,

which is increasing inx and converges to 1 asn → +∞. In a similar way we get that
A2

n(t, x) is decreasing inx and converges to 0 asn → +∞. Then (i) easily follows.
To prove (ii) we use TheoremA.2. Set w = u − vn in (0, T ) × Rn. We have

w(0, x, y) = 0, (x, y) ∈ Rn. Moreoverw(t, z)�0, z ∈ �Rn, t > 0. To conclude it
suffices to verify that

wt(t, x, y)��w(t, x, y) + g(y)wx(t, x, y), t > 0, (x, y) ∈ Rn. (6.2)

Sincewt = �w + g(y)wx + [g(y) − n](vn)x , g(y)� n, for y � cn and (vn)x(t, x, y) =
(an)x(t, x)bn(t, y)�0, t > 0, (x, y) ∈ Rn, as verified above, (6.2) follows and the
proof is complete.
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For instance, we can take, in the above example,g(y) = √
1+ y2. On the other

hand, if g(y) = −√1+ y2 then all the conditions of Theorem1.3 hold and gradient
estimates hold.

Remark 6.2. We point out that our main result can be used to prove some boundary
gradient estimates for solutions of Dirichlet elliptic problems, involving the operatorA.
Indeed if� ∈ Cb(�) ∩ C2(�) solves{

A�(x) = 0, x ∈ �,

�(�) = 0, � ∈ ��,
(6.3)

then� is the bounded classical solution of (1.1) with f = �. Thus, under the assump-
tions of Theorem1.3, we get

sup
x∈�

|D�(x)|�C‖�‖∞.

This extends some classical boundary gradient estimates concerning linear and nonlinear
second elliptic operators, involving bounded coefficients, see for instance
[7, Section 14].

Remark 6.3. Theorem1.3 has also some applications to isoperimetric inequalities, see
[11,24].
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Appendix A. Two maximum principles

We prove the following maximum principle for unbounded domains, using the Lya-
punov function� introduced in Hypothesis1.1. The proof is similar to the one given
in [13], see also[9, Chapter 8]. We recall thatQ = (0, T ) × �.

Proposition A.1. Assume Hypothesis1.1. Let u ∈ C(Q) ∩ C1,2(Q) be a bounded
function satisfying 


ut (t, x)�Au(t, x), 0< t � T , x ∈ �,

u(t, x)�0, 0< t � T , x ∈ ��,

u(0, x)�0 x ∈ �,

Thenu�0.



S. Fornaro et al. / J. Differential Equations 205 (2004) 329–353 349

Proof. Set v = e−�0t u. We prove thatv �0 in Q. To this end define

vn(t, x) = v(t, x) − �(t, x)

n
, (t, x) ∈ Q.

It is easy to see that(Dt − A + �0)vn �0 in Q. Moreovervn(0, x)�0, vn(t, �)�0,
t > 0, x ∈ �, � ∈ ��.
The functionvn has a maximum overQ in (tn, xn). Assume, by contradiction, that

this maximum is positive. Then 0< tn � T and xn ∈ � and therefore(Dt − A +
�0)vn(tn, xn) > 0, which is absurd. It follows thatvn �0 and, lettingn → ∞, we infer
that v �0. �
Next we present a maximum principle for discontinuous solutions to parabolic prob-

lems. The result is suggested in[9] and involves special domains.

Theorem A.2. Assume Hypothesis1.1. Let � be an open subset ofRN , gi : � → R,
i = 1, . . . , n, be C2-functions. Suppose that

� = {x : gi(x) > 0, i = 1, . . . , n}, |Dgi |�1 on �i = �� ∩ {gi = 0}.

Let u ∈ C1,2(Q), u continuous onQ\�txQ, bounded on Q. If ut �Au in Q andu�0
in �′

Q \ �txQ, then u�0 in Q.
Finally, if ut = Au, |u(t, �)|�K for t > 0, � ∈ �� and |u(0, x)|�K, x ∈ �, then

‖u‖∞ �K.

Proof. The proof is given into two steps.
Step 1: We assume in addition that� is bounded.In this case the functionsgi

are bounded in� together with their derivatives up to the second order. A long but
straightforward computation shows that the functions

�i (t, x) = 1

tε�
exp

(
�t − εg2i (x)

t

)
(A.1)

verify, for ε > 0 small enough and� large enough,(Dt − A)�i �0, i = 1, . . . , n, in
(0,∞) × �.
Let M = sup

Q

u = sup
Q\�txQ

u > 0 (otherwise the proof is finished). Let� > 0 and define

u�(t, x) = u(t, x) − M�ε�
n∑

i=1

1

(t + �)ε�
exp

(
�(t + �) − εg2i (x)

t + �

)
,

where ε and � are given in (A.1). Clearly (Dt − A)u� �0. Take 
 > 0 such that
�� − ε


� > 0 and consider

I
 = {x ∈ � : ∃i = i(x) = 1, . . . , n : g2i (x)� 
}.
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For eachx ∈ I
, one has

�ε�
n∑

i=1

1

�ε�
exp

(
�� − εg2i (x)

�

)
� exp

(
�� − ε


�

)
> 1.

By continuity, there exists� > 0 such that for any(t, x) ∈ [0, �] × I
,

�ε�
n∑

i=1

1

(t + �)ε�
exp

(
�(t + �) − εg2i (x)

t + �

)
> 1.

It follows that u� �M − M = 0 in ([0, �] × I
) \ �txQ.
Sinceu(0, x)�0, x ∈ � \ I
, we haveu�(0, x) < 0, x ∈ � \ I
 as well. Because

� is bounded, by continuity we obtainu�(t, x)�0, (t, x) ∈ [0, �] × � \ I
, for some
� > 0.
We have obtained thatu� �0 in ([0, �]×�)\�txQ. Applying the classical maximum

principle in [�, T ] × �, we get thatu� �0 in Q \ �txQ. Letting � → 0+, we infer the
claim.
Step2:We consider a possibly unbounded�. Here we will use the Lyapunov function

�. Setv = e−�0t u and observe thatvt − Av + �0v �0. We prove thatv �0 in Q. Fix
R > 1 and consider

�R = � ∩ BR = {gi > 0} ∩ {R2 − |x|2 > 0}, QR = (0, T ) × �R.

Note that�R satisfies the same geometric assumptions of� if one adds to the set
{g1, . . . , gn} the functiong0(x) = R2−|x|2. Let CR = inf [0,T ]×(�BR∩�) �. Remark that
CR → ∞ asR → ∞. Define

vR(t, x) = v(t, x) − ‖v‖∞
�(t, x)

CR

, (t, x) ∈ QR.

It is easy to see that(Dt − A + �0)vR �0 in QR. MoreovervR(0, x)�0, x ∈ �R.
If t ∈ (0, T ), thenvR(t, x)�0 for x ∈ �BR∩�, since �

CR
�1. MoreovervR(t, x)�0

for x ∈ ��, t ∈ (0, T ). This shows thatvR �0 on the parabolic boundary ofQR.
Applying Step 1 to the operator̃A = A − �0 in �R, we getvR �0, in QR, that is

v(t, x)� ‖v‖∞
�(t, x)

CR

.

Letting R → ∞, we get the claim.
The last statement easily follows considering the functions±u − K. �
Observe that the above theorem covers also the case of certain non smooth do-

mains, whose boundaries can be described by a finite number of functionsgi as in the
statement, see e.g. Example6.1.
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Let us show that uniformlyC2 domains are covered by TheoremA.2.

Corollary A.3. . TheoremA.2 holds for uniformlyC2-domains.

Proof. It suffices to show that there exists aC2-function g : � → R such thatg > 0 in
�, |Dg|�1 in �� = {g = 0}. Let r be the distance function from��. Thenr ∈ C2(��)

for some� > 0 and |Dr| = 1 on ��. Let moreover
 be a smooth function such that
0� 
�1, 
 = 1 in ��/2, 
 = 0 outside��. It is easy to check thatg = 
r + 1− 

satisfies the claim. �

Appendix B. Some properties of the distance function

In this appendix, we collect some regularity results of the distance functionr(x) =
dist (x, ��), when�� is the boundary of a smooth open subset� of RN . These results
are well-known in the case where� is bounded (see e.g.[7, Section 14.6]), but most
of them may be extended, without much effort, to the unbounded case, as it is shown
below.
First we define open sets with uniformlyC2+� boundaries, for 0� � < 1.

Definition B.1. Let � be an open subset ofRN . We say that�� is uniformly of class
C2+� if there exist a covering of��, at most countable,{Uj }j∈N, and a sequence of
diffeomorphisms�j : Uj → B1 of classC2+� such that

�j (Uj ∩ �) = {y ∈ B1 | yN > 0},
�j (Uj ∩ ��) = {y ∈ B1 | yN = 0}

and the following properties are satisfied:

(i) there existsk ∈ N such that
⋂

j∈J Uj = ∅, if |J | > k;
(ii) there exists 0< ε < 1 such that{x ∈ � | r(x) < ε} ⊆ ⋃

j∈N Vj , whereVj =
�−1
j (B1/2);

(iii) there existsC > 0 such that

sup
j∈N

∑
0� |	|�2+�

‖D	�j‖∞ + ‖D	�−1
j ‖∞ �C.

Now we show that such a set� satisfies auniform interior sphere condition, i.e. at
each pointy0 ∈ �� there exists a ballBy0 depending ony0, contained in� and such
that By0 ∩ �� = {y0}; moreover the radii of these balls are bounded from below by a
positive constant.

Proposition B.2. If �� is uniformly of classC2, then it satisfies a uniform interior
sphere condition.
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Proof. Using condition (iii) and taking into account that�j is a diffeomorphism from

Uj into B1, it is easy to see that ify ∈ Vj and |x − y| < 1/(2C), thenx ∈ Uj .
Let y0 ∈ �� and let �(y0) denote the unit inward normal vector to�� at y0. For

0� t < 1/(2C) the point x = y0 + t�(y0) belongs toUj and (�(N)
j denotes theNth

component of�j )

�(N)
j (x) = tD�(N)

j (y0) · �(y0) + R(t)

with |R(t)|�Ct2/2. Since�(N)
j = 0 on Uj ∩ ��, then D�(N)

j (y0) = k�(y0), with

k �C−1, by (iii). This yields�(N)
j (x)� tC−1 − Ct2/2> 0 for 0< t < 2/C3 := �.

Thus, we have proved that

y + t�(y) ∈ �, y ∈ ��, t ∈]0, �[.

Now, let y ∈ �� and setB = B(z, �/2), wherez = y + �(y)�/2. Then, it is easy to
see thatB ⊂ � and y ∈ �B. If y is not the unique point in�� ∩ �B, then it suffices
to replace the above ball with that of radius�/4, centered atz = y + �(y)�/4. �
We are now ready to prove the properties of the distance function used in this

paper.

Proposition B.3. Assume that�� is uniformly of classC2 and let � be a positive
constant such that at each point of�� there exists a ball which satisfies the interior
sphere condition aty0 with radius greater or equal to�. Then

(a) for everyx ∈ �� = {y ∈ � | r(y) < �} there exists a unique� = �(x) ∈ �� such
that |x − �| = r(x);

(b) r ∈ C2
b (��);

(c) Dr(x) = �(�(x)), for everyx ∈ ��.

Proof. (a) The existence part is obvious. For the uniqueness assertion, letx ∈ �� and
y ∈ �� such thatr(x) = |x − y|. From PropositionB.2 there exists a ballB = B(z,�)
such thatB ⊂ � andB ∩ �� = {y}. Moreover from the definition of�, x ∈ B. It is
easy to see thatx and z lie on the normal direction�(y) and that the ballsB(x, r(x))

andB(z,�) are tangent aty. ThenB(x, r(x)) still verifies the interior sphere condition
at y. It follows that for everyy ∈ ��\{y}, one hasy /∈ B(x, r(x)), so thaty is actually
the unique point such that|x − y| = r(x).
The proof of the last two assertions relies on the first statement and the implicit

function theorem and it is completely similar to that of the case� bounded. We refer
to [7, section 14.6]. �
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