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Abstract

Barros-Neto and Gelfand (Duke Math. J. 98 (3) (1999) 465; Duke Math. J. 117 (2) (2003)

561) constructed for the Tricomi operatory�2x+�2y on the plane the fundamental solutions with
the supports in the regions related to the geometry of the characteristics of the Tricomi operator.

We give for the Tricomi-type operator�2t − tm$x a fundamental solution relative to an arbitrary
point of Rn+1 with the support in the regiont�0, where the operator is hyperbolic. Our key
observation is that thefundamental solution for the Tricomi-type operator can be written like
an integral of the distributions generated by the fundamental solution of the Cauchy problem
for the wave equation. The application of that fundamental solution to theLp − Lq estimate
for the forced Tricomi-type equation is given as well.
© 2004 Elsevier Inc. All rights reserved.
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0. Introduction

Recently in[1,2] Barros-Neto and Gelfand constructed the fundamental solutions for
the Tricomi operatorT ,

T u = yuxx + uyy . (0.1)
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They have obtained explicit solutions in the sense of distributions of the equation

T E = �(x − x0, y − y0) , (0.2)

where�(x−x0, y−y0) is the Dirac function at(x0, y0), an arbitrary point in the plane.
A solutionE of (0.2) is said to be afundamental solution relative to point(x0, y0). In
the first of cited papers[2] the authors emphasize as physically meaningful fundamental
solutions two of them with the support inDI andDII , while in the second paper they
suggest a fundamental solution with the support in the closure of the complement of
the regionDI . From now on we will focus our attention on the fundamental solution
with the support in the closureDI(x0; y0) of the region

DI(x0; y0) := {(x, y) ∈ R2 ; 3|x − x0| < 2(y − y0)
3/2}.

Barros-Neto and Cardoso[3] considered similar problem for the generalized Tricomi
operator

T u = y$x + uyy , (0.3)

where $x = ∑n
j=1

�2

�2j
is the Laplace operator. To construct fundamental solution

relative to an arbitrary point(a,0) on the hyperplaney = 0 in Rn+1, they use the
Fourier transform with respect to the variablex. There are many articles and books
which employ the Fourier integral operators to construct a parametrix and fundamental
solutions to the Cauchy problem (see, e.g.[19]). But as it is mentioned in[3], if n > 1
in the construction of the fundamental solution for the operator using that approach,
technical difficulties in evaluating Fourier transforms involving Bessel functions do
occur. In [3] the authors partially circumvent these difficulties by calculating integrals
of the type

Iε(a, b) =
∫ ∞

0
e−εt t−�J�(at)J�(bt) dt

with b = 0. Those integrals allow authors to obtain the fundamental solution relative
to point (x0,0) only.
Thus there was a gap related to the case wheny0 < 0, n > 1. In this note we

fill up that gap and develop a tool for the investigation of the nonlinear Tricomi-type
equations.
In 1923, Tricomi [17] initiated the work on boundary value problems for linear

partial differential operator of mixed type (0.1) and related equations of variable type.
Then, in 1945 Frankl[9] drew attention to the fact that the Tricomi problem was
closely connected to the study of gas flows with nearly sonic speeds. Namely Tricomi
equation describes the transition from subsonic flow (elliptic region) to supersonic
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flow (hyperbolic region)[5]. That initiated an extremely intensive study of the different
problems for the Tricomi equation as well as for other equations with the characteristics
of variable multiplicity. There is a long history of finding fundamental solution for such
operators even in the higher dimensional cases. That is impossible to give in short note
a complete bibliography and we refer only to[2,7,8,10,12,15,18].
In this note we consider a slightly generalized operator, sometimes called also the

Gellerstedt operator,

T u := utt − tm�xu , (0.4)

with m ∈ N, x ∈ Rn, t ∈ R, and�x the Laplace operator inRn. The well-posedness
of the Cauchy problem for (0.4) in the hyperbolic domaint > 0 and in the different
functional spaces is exhaustively investigated. The existence of the different fundamental
solutions for the Cauchy problem is established (see, e.g.[19] for the bibliography). The
parametrix in the form of the Fourier integral operators with the amplitude functions
represented by the Bessel functions is constructed in[20].
Unfortunately, we must admit that the results of all above-mentioned papers and

books are not suitable enough for deriving the so-calledLp − Lq estimates for the
equations with the right-hand side force function. On the other hand to study the local
and global existence in the Cauchy problem for the semilinear equations of the form

utt − tm �u = f (u) ,

Lp − Lq estimates are very useful. In fact, they are the main tool in establishing
existence theorems for the semilinear wave equation (see, e.g.[16]). The well-known
Duhamel’s principle allows to obtain the above-mentionedLp − Lq estimates for the
nonhomogeneous wave equation by reduction to the Cauchy problem for the homoge-
neous wave equation and, consequently, to the correspondingLp −Lq -decay estimates
for the last one (see, e.g.[6]). For the operator (0.4) with variable coefficient the
Duhamel’s principle does not work. In the present paper we suggest some integral
transformation that serves for the nonhomogeneous equation involving the operator
(0.4) in the left-hand side. This integral transformation is as good as the Duhamel’s
principle for the wave equation. According to our knowledge this transformation is
novel.
The classical works on the Tricomi (m = 1) and Gellerstedt (m = 2k + 1) equa-

tions (see, e.g.[7,8,18]) appeal to the singular Cauchy problem for the Euler–Poisson–
Darboux equation,

�u = utt + c

t
ut , c ∈ C

and to the Asgeirsson mean value theorem to handle high-dimensional case. Our ap-
proach is free of an equation with the singularities and seems to us more immediate.
Recently the semilinear Tricomi equations became the focus of interest of many

authors (see, also[11,13,14]), and the creation of a tool for the investigation of the
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local and global solvability in the Cauchy problem for these equations appears to be a
worthwhile undertaking.
Therefore, our goal in this note is an explicit construction of the fundamental solution

relative to an arbitrary point(x0; t0), t0�0, with the support in the closureDI(x0; t0)
of the regionDI(x0; t0) := {(x, t) ∈ Rn+1 ; (m + 2)|x − x0| < 2(t − t0)

m/2+1}. We
will show that such fundamental solution is “an integral” of the one-parameter family
of the distributions generated by the fundamental solutionEwe(x, t; x0) of the Cauchy
problem for the wave equation, that is the solution of the problem

Ewe
t t − �Ewe = 0, Ewe(x,0) = �(x − x0), Ewe

t (x,0) = 0.

The existence of the operator transforming solutions of the Cauchy problem for the
wave equationinto the solutions of the Cauchy problem for thenonhomogeneous
Tricomi equationwe will call “time-speed transformation principle” . As a particular
case (m = 0) it includes also “in-two-steps” Duhamel’s principle. Roughly speaking the
time-speed transformation principle assists to make time-dependent speed of propagation
equal to a constant one.
We give in this note some application to the Cauchy problem for the linear

equation

utt − tm�u = f (x, t) . (0.5)

As a consequence we conclude that the strong Huygens’ principle does not hold
for any dimensionn and for everym > 0. For m = 1 that is proved in[1–3].
Then we deriveLp − Lq estimates for solutions of (0.5) with a support in the up-
per half-space. Applications to the nonlinear problems will be given in forthcoming
papers.

1. Fundamental solutions: main results

To motivate our approach we recall the following well-known feature of the string
equation and wave equation. The function

u(x, t) = 1

2

∫ t

0
d�
∫ t−�

−t+�
f (x + z, �) dz (1.1)

solves the Cauchy problem for the nonhomogeneous string equation

�2u
�t2

− �2u
�x2

= f (x, t) , u(x,0) = 0 , ut (x,0) = 0 .
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If we plug f (x, t) = �(x − x0)�(t − t0) in (1.1), where 0� t0 < t , then we get the
fundamental solutionE = E(x, t; x0, t0) for the string operator,

�2

�t2
E − �2

�x2
E = �(x − x0)�(t − t0) ,

with the support in the closureDI(x0; t0) of the coneDI(x0; t0) := {(x, t) ; |x − x0| <
t − t0}. In fact

E(x, t; x0, t0) =
{
1/2 if (x, t) ∈ DI(x0; t0);
0 otherwise.

To extract from this well-known fundamental solution the key observation and to
adjust that to our purpose we note here that fort� t0 it can be written in the following
way:

E(x, t; x0, t0) = t

∫ 1−(t0/t)

0

1

2
{�(x − x0 + zt)+ �(x − x0 − zt)} dz ,

where one-parameter family of the distributions12{�(x−x0+zt)+�(x−x0−zt)}, t > 0,
is generated by the fundamental solutionEstring = 1

2{�(x − x0+ y)+ �(x − x0− y)} of
the Cauchy problem for the string equation,

E
string
yy − E

string
xx = 0 , Estring(x,0) = �(x − x0), E

string
y (x,0) = 0.

It turns out that such relation between thefundamental solution to the operatorand
the fundamental solution to the Cauchy problemexists also for the wave equation.
This elementary integral relation will serve as a guide to build a bridge between
the fundamental solution to the Tricomi-type operatorand the fundamental solution
to the Cauchy problem for the wave equation. Such integral transformation with more
sophisticated kernel will be given in Theorem1.2 by formula (1.10). That is an essence
of our key observation.
So then we turn to the wave equation and set inDI(x0, t0), t > t0�0, analogously

to the one-dimensional case,

EI(x, t; x0, t0) = t

∫ 1−(t0/t)

0
Ewe(x, rt; x0) dr,

where if n is odd, then

Ewe(x, t; x0) := 1

�n−11 · 3 · 5 · · · · (n− 2)

�
�t

(
1

t

�
�t

) n−3
2 1

t
�(|x − x0| − t) , (1.2)
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while for n even,

Ewe(x, t; x0) := 2

�n−11 · 3 · 5 · · · · (n− 1)

�
�t

(
1

t

�
�t

) n−2
2 1√

t2 − |y|2�Bt (x) . (1.3)

Here �Bt (x) denotes the characteristic function of the ballBt(x) := {x ∈ Rn; |x| � t}.
Constant�n−1 is the area of the unit sphereSn−1 ⊂ Rn. The distribution�(|x−y|− t)
is defined by

< �(|x − ·| − t), f (·) >=
∫

|y|=t
f (x + y) dy for all f ∈ C∞

0 (R
n). (1.4)

It can be easily verified thatdistribution EI(x, t; x0, t0) is a fundamental solution to
the wave operator with the support inDI(x0, t0).
In this section we give the fundamental solution to the Tricomi-type operator

T := �2

�t2
− t2k$ , (1.5)

where 2k is an integer number, andk�1/2. Thefundamental solutionE of the operator
T relative to the point(x0, t0) is a distributionE ∈ D′(Rn+1) such that

T E = �(x − x0, t − t0) ,
�2E
�t2

− t2k$E = �(x − x0, t − t0) . (1.6)

Here �(x − x0, t − t0) is the Dirac function at(x0, t0). We look for the fundamental
solution with a support in the “forward cone”DI(x0, t0), t0�0, defined as follows

DI(x0, t0) :=
{
(x, t) ∈ Rn+1 ; |x − x0| < 1

k + 1
(tk+1 − tk+1

0 )

}
.

First we consider one-dimensional casen = 1. Define fort0�0 in the domainDI(0, t0)
a function

E(x, t;0, t0) := (x + �(t)+ �(t0))−�(−x + �(t0)+ �(t))−�F(�, �;1; 	), (1.7)

whereF
(
�, �;1; 	

)
is the hypergeometric function (see, e.g.[4]), while

	 = (x + �(t)− �(t0))(x − �(t)+ �(t0))
(x + �(t)+ �(t0))(x − �(t)− �(t0))

, �(t) := tk+1

k + 1
, � := k

2
�(1). (1.8)
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Let E(x, t;0, b) be a function defined by (1.7) and (1.8), and define

EI(x, t;0, t0) =
{
ckE(x, t;0, t0) in DI(0, t0),
0 elsewhere.

(1.9)

Here ck = (k + 1)−
k
k+1 2− 1

k+1 . Since functionE = E(x, t;0, t0) is smooth inDI(0, t0)
and bounded on the boundary ofDI(0, t0), it follows that EI(x, t;0, t0) is a locally
integrable function and defines a distribution whose support is in the closureDI(0, t0)
of DI(0, t0). The next theorem generalizes Theorem 3.1[2] (See also[12, Proposition
69].) and gives our first result.

Theorem 1.1. The distributionEI(x, t;0, t0) is a fundamental solution for the operator
T relative to point(0, t0).

Note that fort > t0�0 one can rewrite formally that fundamental solution as follows:

EI(x, t; x0, t0)

= 2ckt�(1)�(1)
∫ 1−(t0/t)k+1

0
dr

((
t0

t

)k+1

+ r + 1

)−� ((
t0

t

)k+1

− r + 1

)−�

×F
(
�, �;1; (−r + 1− (t0/t)

k+1)(−r − 1+ (t0/t)
k+1)

(−r + 1+ (t0/t)k+1)(−r − 1− (t0/t)k+1)

)
Estring(x,�(t)r; x0),

where the distributionEstring(x, t; x0) := 1
2{�(x−x0+ t)+�(x−x0− t)} coincides with

the fundamental solutionEstring(x, t; x0) of the Cauchy problem for the string equation,
E
string
t t − E

string
xx = 0, Estring(x,0) = �(x − x0), E

string
t (x,0) = 0. Thus, in the new

writing we have the one-parameter familyEstring(x,�(t)r; x0), parametert ∈ [t0,∞),
generated by the fundamental solutionEstring.
Now we are going to show that such reduction of the fundamental solution for the

Tricomi-type operatorto the fundamental solution for the Cauchy problem forwave
equationis possible for an arbitrary dimensionn.
Next we construct the fundamental solution with the support in the forward “cone”

DI(x0, t0) = {(x, t) | |x − x0|� (tk+1 − tk+1
0 )/(k + 1)} for the operator (1.5) in Rn,

x ∈ Rn, with odd n, n = 2m+ 1, m ∈ N. Namely we set inDI(x0, t0), t > t0�0,

EI(x, t; x0, t0)

= 2ckt�(1)�(1)
∫ 1−(t0/t)k+1

0
dr

((
t0

t

)k+1

+ r + 1

)−� ((
t0

t

)k+1

− r + 1

)−�
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×F
(

�, �;1; (−r + 1− (t0/t)
k+1)(−r − 1+ (t0/t)

k+1)

(−r + 1+ (t0/t)k+1)(−r − 1− (t0/t)k+1)

)
×Ewe(x,�(t)r; x0) (1.10)

while

EI(x, t; x0, t0) = 0 if (x, t) �∈ DI(x0, t0). (1.11)

Here the distribution

Ewe(x, r; x0) := 1

c
(n)
0

�
�r

(
1

r

�
�r

) n−3
2

rn−2 1

�n−1

∫
Sn−1

�(x − x0 + ry) dSy (1.12)

coincides with the fundamental solutionEwe(x, t; x0) of the Cauchy problem for the
wave equation,

Ewe
t t −$Ewe = 0 , Ewe(x,0) = �(x − x0), Ewe

t (x,0) = 0, (1.13)

represented also by (1.2). Herec(n)0 = 1·3·5·· · ··(n−2). Denoting by<EI(x, t; x0, t0),

(x0)> the value of the distributionEI(x, t; x0, t0) on the test function
 ∈ C∞

0 (R
n),

we give a meaning to (1.10) as follows:

< EI(x, t; x0, t0),
(x0) >

= 2ckt�(1)�(1)
∫ 1−(t0/t)k+1

0
dr

((
t0

t

)k+1

+ r + 1

)−� ((
t0

t

)k+1

− r + 1

)−�

×F
(

�, �;1; (−r + 1− (t0/t)
k+1)(−r − 1+ (t0/t)

k+1)

(−r + 1+ (t0/t)k+1)(−r − 1− (t0/t)k+1)

)
× <Ewe(x,�(t)r; x0),
(x0)> . (1.14)

Then spatial translation impliesEwe(x, t; x0) = Ewe(x−x0, t;0) andEI(x, t; x0, t0) =
EI(x − x0, t;0, t0). In particular, in (1.14) on can replace<Ewe(x, �(t)r; x0),
(x0)>
with <Ewe(x − x0,�(t)r;0),
(x0)>.

Theorem 1.2. Let n be odd, n = 2m+ 1, m ∈ N. Then the distributionEI(x, t;0, t0)
defined by(1.10), (1.11), (1.12), and (1.13) is a fundamental solution for the operator
T in x ∈ Rn relative to point(x0, t0).
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Let n be even, n = 2m, m ∈ N. Then the distributionEI(x, t;0, t0) defined by(1.10),
(1.11), with (1.3), and (1.13) is a fundamental solution for the operatorT in x ∈ Rn

relative to point(x0, t0).

We give a direct proof of Theorem1.1 in the next section. The fundamental solution
from Theorem1.1 is used to get a representation of the solution to the Cauchy problem
described by Theorem3.1. Then we give another proof of that representation. Some
details of that second proof set up a base for the proof of Theorem3.4.
To prove Theorem1.2 we first establish a representation of the solution to the

Cauchy problem for the nonhomogeneous equation with the homogeneous initial data
(Theorem3.4). Then we plugf (x, t) = �(t − t0)�(x − x0) in that representation and
obtain statements of Theorem1.2.

2. Proof of Theorem 1.1

In the characteristic coordinatesl andm,

l = x + �(t), m = x − �(t) (2.1)

the operatorT reads

�2

�t2
− t2k

�2

�x2
= −2

2
k+1 (k + 1)

2k
k+1 (l −m)

2k
k+1

×
{

�2

�l �m
− k

2(k + 1)(l −m)

(
�
�l

− �
�m

)}
.

Consider point(x, t) = (0, b), then two backward characteristics meet thex line at the
pointsx = a andx = −a, a := �(b). Note that the point(l, m) = (�(b),−�(b)) repre-
sents point(0, b) in characteristic coordinates. The following lemma is a generalization
of (2.2)[2] (see also[12, Chapter 9]), where the case withk = 1/2 is considered.

Lemma 2.1. The function

E(l,m; a, b) = (l − b)−�(a −m)−�F

(
�, �;1; (l − a)(m− b)

(l − b)(m− a)

)
(2.2)

solves the equation

{
�2

�l �m
− k

2(k + 1)(l −m)

(
�
�l

− �
�m

)}
E(l,m; a, b) = 0 . (2.3)
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Proof. Indeed, after simple calculation we obtain{
�2

�l �m
− k

2(k + 1)(l −m)

(
�
�l

− �
�m

)}
E(l,m; a, b)

= 1

m− l
(a − b)(−b + l)−1−�(a −m)−1−�

×
{
z(1− z)F ′′(�, �;1; z)+

(
1− 2k + 1

k + 1
z

)
F ′(�, �;1; z)− �2F(�, �;1; z)

}
,

wherez = (l − a)(m− b)

(l − b)(m− a)
. Hence (2.3) holds. The lemma is proved.�

According to the next proposition the functionR(l,m; a, b) defined by

R(l,m; a, b) := (l −m)
k
k+1E(l,m; a, b) (2.4)

is the Riemann function of thereduced hyperbolicform Th, of the operatorT ,

Th := �2

�l �m
− k

2(k + 1)(l −m)

(
�
�l

− �
�m

)
,

relative to the point(a, b). To formulate and to prove that proposition we consider the
formally adjoint operator

T ∗
h := �2

�l �m
+ k

2(k + 1)(l −m)

(
�
�l

− �
�m

)
− k

(k + 1)(l −m)2

and the following lemma, which is a generalization of (2.4)[2], where the case with
k = 1/2 is considered.

Lemma 2.2. If v is a solution of the equationT ∗
h v = 0, then u = (l − m)−cv with

c = k/(k + 1) is a solution toThu = 0, and vice versa.

Proof. Indeed, direct calculations lead to

T ∗
h v = (l −m)c

[
�2

�m �l
u− k

2(k + 1)(l −m)

(
�
�l
u− �

�m
u

)]

provided thatc = k/(k + 1). Lemma is proved. �
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Proposition 2.3. The functionR(l,m; a, b) is the unique solution of the equation
T ∗v = 0 that satisfies the following conditions:

(i) Rl = k

2(k + 1)(l −m)
R along the linem = b;

(ii) Rm = − k

2(k + 1)(l −m)
R along the linel = a;

(iii) R(a, b; a, b) = 1.

Proof. First of all the equationT ∗R = 0 is satisfied due to Lemma2.1 and Lemma
2.2. Then along the linem = b we have

R(l, b; a, b) = (l − b)�(a − b)−�F(�, �;1;0) =
(
l − b

a − b

)�

= exp

(∫ l

a

�
(t − b)

dt

)
.

Hence (i) holds. In the similar way we verify the remaining statements.�

Proof of Theorem 1.1. In fact the proof is an almost verbatim repetition of the proof
of Theorem 3.1 of[2], therefore we omit almost all details and keep only the main
steps and formulas. Note that the operatorT is formally self-adjoint,T = T ∗. We must
show that

< EI , T� >= �(0, b) for every � ∈ C∞
0 (R

2+) .

SinceE(x, t;0, b) is locally integrable inR2, this is equivalent to showing that

∫ ∫
R2+
EI(x, t;0, b) T�(x, t) dx dt = �(0, b) for every � ∈ C∞

0 (R
2+). (2.5)

In the mean time 2−�(1)(k + 1)−
k
k+1 (l −m)−

k
k+1 is the Jacobian of the transformation

(2.1). Hence the integral in the left-hand side of (2.5) is equal to

−2
2
k+1 (k + 1)

2k
k+1

∫ −l0

−∞

∫ ∞

l0

ckE(l,m; l0,−l0) 1

2�(1)(k + 1)
k
k+1 (l −m)

k
k+1

dl dm

×
{
(l −m)

2k
k+1

{
�2

�l �m
− k

2(k + 1)(l −m)

(
�
�l

− �
�m

)}
�

}
.
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Here ck = �(1)k�(1). Then using Riemann function we write∫ ∫
R2+
EI(x, t;0, b)T�(x, t) dx dt

= −
∫ −l0

−∞

∫ ∞

l0

R(l,m; l0,−l0)
{

�2

�l �m
− k

2(k + 1)(l −m)

(
�
�l

− �
�m

)}
� dl dm.

Integrating by parts we obtain (2.5) and this completes the proof.�

3. Application to the Cauchy problem

Consider now the Cauchy problem for the equation

�2u
�t2

− t2k
�2u
�x2

= f (x, t) , t > 0 , x ∈ R , (3.1)

with vanishing initial data,

u(x,0) = ut (x,0) = 0 . (3.2)

For every(x, t) ∈ DI(0, b) one hasa − �(t)� x� − a + �(t), so that

E(x, t;0, b) = (�(b)+ x + �(t))−�(�(b)− x + �(t))−�

×F
(
�, �;1; (x + �(t)− �(b))(x − �(t)+ �(b))

(x + �(t)+ �(b))(x − �(t)− �(b))

)
.

The coefficient of the Tricomi equation is independent ofx, thereforeEI(x, t; y, b) =
EI(x− y, t;0, b). Using the fundamental solution from Theorem1.1 one can write the
convolution

u(x, t) =
∫ ∞

−∞

∫ ∞

−∞
EI(x, t; y, b)f (y, b) db dy

=
∫ t

0
db

∫ ∞

−∞
EI(x − y, t;0, b)f (y, b) dy

since suppf ⊂ {t�0}. Then according to the definition of the functionEI we obtain

Theorem 3.1. Assume that the functionf is continuous along with its all second-order
derivatives, and that for every fixedt it has a compact support, supp f (·, t) ⊂ R.
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Then the function defined by the integral representation

u(x, t) = ck

∫ t

0
db

∫ x+�(t)−�(b)

x−(�(t)−�(b))
dy f (y, b)

×(x − y + �(t)+ �(b))−�(�(b)− (x − y)+ �(t))−�

×F
(
�, �;1; (x − y + �(t)− �(b))(x − y − �(t)+ �(b))

(x − y + �(t)+ �(b))(x − y − �(t)− �(b))

)
(3.3)

is a C2-solution to the Cauchy problem for Eq.(3.1) with vanishing initial data, (3.2).

The following corollary is a manifestation of the time-speed transformation princi-
ple. Indeed, it implies the existence of an operator transforming the solutions of the
Cauchy problem for the string equation to the solutions of the Cauchy problem for
the nonhomogeneous Tricomi equation. As a particular case (k = 0) it includes also
“in-two-steps” Duhamel’s principle, but unlike the last one, it reduces the equation
with the time-dependent speed of propagation to the one with the speed of propagation
independent of time.

Corollary 3.2. The solutionu(t, x) of the Cauchy problem(3.1)–(3.2) can be repre-
sented as follows:

u(x, t) = 2ck

∫ 1

0
db

∫ 1−bk+1

0
ds v(x,�(t)s; tb)(bk+1 + 1− s)−�(bk+1 + 1+ s)−�

×t2�(1)�(1)F
(
�, �;1; (−s + 1− bk+1)(−s − 1+ bk+1)

(−s + 1+ bk+1)(−s − 1− bk+1)

)
, (3.4)

where the functionsv(x, t; �) := 1
2(f (x + t, �) + f (x − t, �)), � ∈ [0,∞), form a

one-parameter family of solutions to the Cauchy problem for the string equation

vtt − vxx = 0 , v(x,0; �) = f (x, �) , vt (x,0; �) = 0.

The next corollary solves the problem with the initial data. Namely, we setf (x, t) =
�(t)�(x) and obtain the following statement.

Corollary 3.3. The solutionu(t, x) of the Cauchy problem

utt − t2kuxx = 0 , u(x,0) = 0 , ut (x,0) = �(x) ,

can be represented as follows:

u(x, t) = tck�(1)�(1)F (�, �;1;1)
∫ 1

0
{�(x − �(t)s)+ �(x + �(t)s)}(1− s2)−�ds.
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In the last formula the function12{�(x − �(t)s) + �(x + �(t)s)} coincides with
the solutionv(x, t) to the Cauchy problem for the string equation,vtt − vxx = 0,
v(x,0) = �(x), vt (x,0) = 0, taken at the point(x,�(t)s), that is with v(x,�(t)s).
Now we consider the casex ∈ Rn, n�2.

Theorem 3.4. The classical solutionu = u(x, t) of the Cauchy problem

utt − t2k$u = f (x, t) , u(x,0) = 0 , ut (x,0) = 0 (3.5)

with n = 2m + 1, m ∈ N, x ∈ Rn, and f ∈ C
(n+3)/2,2
x,t is given by the following

formula:

u(x, t)

= 2ck

∫ t

0
db

∫ �(t)−�(b)

0
dr1

(
�
�r

(
1

r

�
�r

) n−3
2

× rn−2

�n−1c
(n)
0

∫
Sn−1

f (x + ry, b) dSy

)
r=r1

×(r1 + �(t)+ �(b))−�(�(b)− r1 + �(t))−�

×F
(
�, �;1; (−r1 + �(t)− �(b))(−r1 − �(t)+ �(b))

(−r1 + �(t)+ �(b))(−r1 − �(t)− �(b))

)
, (3.6)

wherec(n)0 = 1 · 3 · · · · · (n− 2).

If n is even, n = 2m, m ∈ N, and f ∈ C
n/2+2,2
x,t , then the classical solution

u = u(x, t) of the Cauchy problem(3.5) can be represented as follows:

u(x, t)

= 2ck

∫ t

0
db

∫ �(t)−�(b)

0
dr1

(
�
�r

(
1

r

�
�r

) n−2
2

× 2rn−2

�n−1c
(n)
0

∫
Bn1 (0)

f (x + ry, b)√
1− |y|2 dVy

)
r=r1

×(r1 + �(t)+ �(b))−�(�(b)− r1 + �(t))−�

×F
(
�, �;1; (−r1 + �(t)− �(b))(−r1 − �(t)+ �(b))

(−r1 + �(t)+ �(b))(−r1 − �(t)− �(b))

)
. (3.7)

Here Bn1(0) := {|y|�1} is the unit ball inRn, while c(n)0 = 1 · 3 · · · · · (n− 1).
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Corollary 3.5. The solutionu = u(x, t) of the Cauchy problem

utt − t2k$u = 0 , u(x,0) = 0 , ut (x,0) = �(x)

(n = 2m+ 1, m ∈ N) can be represented as

u(x, t) = t2ck�(1)�(1)F (�, �;1;1)
∫ 1

0
(1− s2)−�v(x, s�(t)) ds.

Here the functionv(x, s�(t)) := ( 1
c
(n)
0

�
�r ((

1
r

�
�r )

n−3
2 rn−2 1

�n−1

∫
Sn−1 �(x+ry) dSy))r=s�(t)

coincides with the valuev(s�(t), x) of the solutionv(t, x) of the Cauchy problem
vtt −$v = 0 , v(x,0) = �(x) , vt (x,0) = 0.

Corollary 3.6. If k �= 0 then the strong Huygens’ principle does not hold.

4. Proof of Theorem 3.1

First we note that the functionu(x, t) = t2/2 is the unique solution to the Cauchy
problem (3.1)–(3.2) with the force functionf (x, t) ≡ 1. Therefore in the next lemma
we give a representation for that particular solution, which is helpful to handle the
more general case.

Lemma 4.1. One has

1

2
t2 = ck

∫ t

0
db

∫ x+�(t)−�(b)

x−(�(t)−�(b))
dy

×(x − y + �(t)+ �(b))−�(�(b)− (x − y)+ �(t))−�

×F
(
�, �;1; (x − y + �(t)− �(b))(x − y − �(t)+ �(b))

(x − y + �(t)+ �(b))(x − y − �(t)− �(b))

)
. (4.1)

Proof. First we prove the convergence of the integral. The argument

z(x − y, t, b) = (x − y + �(t)− �(b))(x − y − �(t)+ �(b))
(x − y + �(t)+ �(b))(x − y − �(t)− �(b))

of the hypergeometric function is nonnegative for the prescribed values of variables.
Moreover,

0� z(x − y, t, b)� (tk+1 − bk+1)2

(tk+1 + bk+1)2
�1 .
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The integrand is nonnegative (see, e.g., the hypergeometric series (1) of Section 2.8,
v.1 [4]) and is less than

CF,k(x − y + �(t)+ �(b))−�(�(b)− x + y + �(t))−�

uniformly for all 0� b� t and allx ∈ R, such thatx−�(t)+�(b)� y� x+�(t)−�(b).
Next we use

∫ x+�(t)−�(b)

x−(�(t)−�(b))
dy(x − y + �(t)+ �(b))−�(�(b)− x + y + �(t))−�

= �(1)�(1)
∫ tk+1−bk+1

−(tk+1−bk+1)

(bk+1 + tk+1 + z)−�(bk+1 + tk+1 − z)−�dz .

By means of representation (7) of Section 2.12, v.1[4],

F(a, b; c; z) = 2�(c)
�(b)�(c − b)

∫ 
/2

0

(sin t)2b−1(cos t)2c−2b−1

(1− z sin2 t)a
dt ,

the last integral can be evaluated and estimated as follows:

2�(1)�(1)(tk+1 − bk+1)(tk+1 + bk+1)−
k
k+1F

(
1

2
, �; 3

2
; (t

k+1 − bk+1)2

(tk+1 + bk+1)2

)
�C′

F,k�(1)
�(1)(tk+1 − bk+1)(tk+1 + bk+1)−

k
k+1 .

Hence the right-hand side of (4.1) is less than∫ t

0
CF,kC

′
F,k�(1)

�(1)(tk+1 − bk+1)(tk+1 + bk+1)−
k
k+1 db = C(F, k)t2.

Further we note that the function of the right-hand side of (4.1) is independent ofx
and according to Theorem1.1 solves the equation with the right-hand sidef (t, x) = 1.
The uniqueness in the Cauchy problem impliesu(t, x) = a+bt+ct2 so thata = b = 0,
c = 1/2. This completes the proof of the lemma.�

Proof of Theorem 3.1. It follows from Theorem1.1 and Lemma4.1 that the integral
of the right-hand side of (3.3) defines a continuous functionu = u(x, t), which solves
Eq. (3.1) and such that

|u(x, t)|� 1

2
t2 max
b∈[0,t], y∈[x−�(t),x+�(t)]

|f (y, b)| .
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Eq. (3.1) is partially hypoelliptic in the direction of time, so that

u ∈ C∞([0, T ]; D′(Rx)) .

Further for every� ∈ C∞
0 (Rx) the function v(t) :=< u(·, t),�(·) > belongs to

C2([0, T ]) and solves the equation

vtt − t2k < u(·, t),$�(·) >=< f (·, t),�(·) > .

Hence v(0) = vt (0) = 0 implies u(0) = ut (0) = 0 in D′(Rx). The theorem is
proved. �

Proof of Corollary 3.2. We derive from Theorem3.1

u(x, t) = ckt

∫ 1

0
db

∫ �(t)(1−bk+1)

−�(t)(1−bk+1)

dy f (x + y, tb)

×(−y + �(t)+ �(t)bk+1)−�(�(t)bk+1 + y + �(t))−�

×F
(
�, �;1; (−y + �(t)− �(t)bk+1)(−y − �(t)+ �(t)bk+1)

(−y + �(t)+ �(t)bk+1)(−y − �(t)− �(t)bk+1)

)
,

which can be easily transformed into (3.4). The corollary is proved. �

Proof of Corollary 3.3. If we plug f (x, t) = �(t)�(x) in (3.3), then we can rewrite
this solution as follows:

u(x, t) = ckF (�, �;1;1)
{∫ 0

−�(t)
dy �(x + y) (−y + �(t))−�(y + �(t))−�

+
∫ �(t)

0
dy �(x + y)(−y + �(t))−�(y + �(t))−�

}
.

That completes the proof of Corollary3.3. �

Remark 4.2. If we denotey = x + �(t)(2s − 1) , then the representation given by
Corollary 3.3 can be reduced to the fractional derivatives,[15, (4.7) Chapter V].
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5. Proofs of Theorem 3.4 and Theorem 1.2

We consider the casex ∈ Rn, where n = 2m + 1. First for the given function
u = u(x, t) we define the spherical means ofu about pointx:

Iu(x, r, t) = 1

�n−1

∫
Sn−1

u(x + ry, t) dSy ,

where�n−1 denotes the area of the unit sphereSn−1 ⊂ Rn. Then we define an operator
�r by

�r (u)(x, t) :=
(1
r

�
�r

)m−1
r2m−1Iu(x, r, t) .

One can show that there are constantsc
(n)
j , j = 0, . . . , m− 1, wheren = 2m+ 1, with

c
(n)
0 = 1 · 3 · 5 · · · (n− 2), such that

(
1

r

�
�r

)m−1

r2m−1�(r) = r

m−1∑
j=0

c
(n)
j rj

�j

�rj
�(r).

One can recover the functions according to

u(x, t) = lim
r→0

Iu(x, r, t) = lim
r→0

1

c
(n)
0 r

�r (u)(x, t) ,

u(x,0) = lim
r→0

1

c
(n)
0 r

�r (u)(x,0) , ut (x,0) = lim
r→0

1

c
(n)
0 r

�r (�t u)(x,0) ,

f (x, t) = lim
r→0

If (x, r, t) = lim
r→0

1

c
(n)
0 r

�r (f )(x, t) ,

f (x,0) = lim
r→0

1

c
(n)
0 r

�r (f )(x,0) , ft (x,0) = lim
r→0

1

c
(n)
0 r

�r (�t f )(x,0) .

It is well known that�x�rh = �2

� r2�rh for every functionh ∈ C2(Rn). Therefore we
arrive at the following mixed problem for the functionv(x, r, t) := �r (u)(x, r, t):

vtt (x, r, t)− t2kvrr (x, r, t) = F(x, r, t) for all t�0 , r�0 , x ∈ Rn ,

v(x,0, t) = 0 for all t�0, x ∈ Rn ,

v(x, r,0) = 0, vt (x, r,0) = 0 for all r�0, x ∈ Rn ,

F (x, r, t) := �r (f )(x, t) , F (x,0, t) = 0 for all x ∈ Rn.
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It must be noted here that the spherical meanIu defined forr > 0 has an extension
as even function forr < 0 and hence�r (u) has a natural extension as an odd func-
tion. That allows replacing the mixed problem with the Cauchy problem. Namely, let
functions ṽ and F̃ be the continuations of the functionsv andF , respectively, by

ṽ(x, r, t) =
{
v(x, r, t), if r�0,
−v(x,−r, t), if r�0,

F̃ (x, r, t) =
{
F(x, r, t), if r�0,
−F(x,−r, t), if r�0.

Then ṽ solves the Cauchy problem

ṽt t (x, r, t)− t2kṽrr (x, r, t) = F̃ (x, r, t) for all t�0 , r ∈ R , x ∈ Rn ,

ṽ(x, r,0) = 0 , ṽt (x, r,0) = 0 for all r ∈ R , x ∈ Rn.

Hence according to Theorem3.1 one has the representation

ṽ(x, r, t) = ck

∫ t

0
db

∫ r+�(t)−�(b)

r−(�(t)−�(b))
dr1 F̃ (x, r1, b)

×(r − r1 + �(t)+ �(b))−�(�(b)− (r − r1)+ �(t))−�

×F
(
�, �;1; (r − r1 + �(t)− �(b))(r − r1 − �(t)+ �(b))

(r − r1 + �(t)+ �(b))(r − r1 − �(t)− �(b))

)
.

Sinceu(x, t) = limr→0
(̃
v(x, r, t)/(c

(n)
0 r)

)
, we consider a case withr < t in the above

representation to obtain:

u(x, t) = ck
1

c
(n)
0

∫ t

0
db

∫ �(t)−�(b)

0
dr1 lim

r→0

1

r
{F̃ (x, r − r1, b)+ F̃ (x, r + r1, b)}

×(r1 + �(t)+ �(b))−�(�(b)− r1 + �(t))−�

×F
(
�, �;1; (−r1 + �(t)− �(b))(−r1 − �(t)+ �(b))

(−r1 + �(t)+ �(b))(−r1 − �(t)− �(b))

)
.

Then by definition of the functioñF we replace limr→0
1
r
{F̃ (x, r− r1, b)+ F̃ (x, r+

r1, b)} with 2( �
�r F (x, r, b))r=r1 in the last formula. The definitions ofF(x, r, t) and of

the operator�r yield:

u(x, t) = 2ck
1

c
(n)
0

∫ t

0
db

∫ �(t)−�(b)

0
dr1

(
�
�r

(
1

r

�
�r

)m−1

r2m−1If (x, r, t)

)
r=r1

×(r1 + �(t)+ �(b))−�(�(b)− r1 + �(t))−�

×F
(
�, �;1; (−r1 + �(t)− �(b))(−r1 − �(t)+ �(b))

(−r1 + �(t)+ �(b))(−r1 − �(t)− �(b))

)
,
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whereRn, n = 2m+ 1, m ∈ N. Thus the solution to the Cauchy problem is given by
(3.6). We employ the method of descent to complete the proof for the case with even
n, n = 2m, m ∈ N. Theorem3.4 is proved. �

Proof of Corollary 3.5. For f (x, t) = �(t)�(x) according to Theorem3.4 we have

u(x, t) = 2
ck

c
(n)
0

F(�, �;1;1)
∫ �(t)

0
dr1

 �
�r

(
1

r

�
�r

) n−3
2 rn−2

�n−1

∫
Sn−1

�(x + ry) dSy


r=r1

×(r1 + �(t))−�(−r1 + �(t))−� .

The change of variable completes the proof of the corollary.�

Proof of Theorem 1.2. The setf (x, t) = �(x − x0)�(t − t0) in (3.6):

E(x, t; x0, t0) = 2ck

∫ �(t)−�(t0)

0
dr (r + �(t)+ �(t0))−�(�(t0)− r + �(t))−�

×F
(
�, �;1; (−r + �(t)− �(t0))(−r − �(t)+ �(t0))

(−r + �(t)+ �(t0))(−r − �(t)− �(t0))

)
×Ewe(x, r; x0) .

The evident transformations of the last representation lead to (1.10). �

6. Application to Lp − Lq estimates

The estimates for the solutions of the nonhomogeneous wave equation are generally
obtained by the use of Duhamel’s principle (see, e.g.[6,16]). For the Tricomi-type
equation we use the representation of the solutions given by the theorems of Section
3. First we consider the one-dimensional case.

Theorem 6.1. For every functionf ∈ C2(R × [0,∞)) such thatf (·, t) ∈ C∞
0 (Rx)

for arbitrary t ∈ [0,∞), the solutionu = u(x, t) to the Cauchy problem(3.1),(3.2)
satisfies

‖ u(·, t) ‖Lq(Rx) � Ck,p,�

∫ t

0
(tk+1 − bk+1)

1
� (tk+1 + bk+1)−

k
k+1 ‖ f (·, b) ‖Lp(Rx) db

with p, q, such that1< p < �′, 1/q = 1/p − 1/�′, 1/� + 1/�′ = 1.
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Proof. From

u(x, t) =
∫ t

0
db

∫ ∞

−∞
EI(x − y, t;0, b)f (y, b) dy

due to Young’s inequality we have

‖u(x, t)‖Lq(Rx) � ck

∫ t

0
db

(∫ �(t)−�(b)

−(�(t)−�(b))
|E(x, t;0, b)|� dx

)1/�
‖f (x, b)‖Lp(Rx).

Consider now∫ �(t)−�(b)

−(�(t)−�(b))
|E(x, t;0, b)|� dx

=
∫ �(t)−�(b)

−(�(t)−�(b))
(x + �(t)+ �(b))−

k�
2(k+1) (−x + �(t)+ �(b))−

k�
2(k+1)

×F
(
�, �;1; (x + �(t)− �(b))(x − �(t)+ �(b))

(x + �(t)+ �(b))(x − �(t)− �(b))

)�

dx.

Estimating the hypergeometric function we easily obtain that the right-hand side is less
than or equal to

C

∫ �(t)−�(b)

−(�(t)−�(b))
(�(b)+ x + �(t))−

k�
2(k+1) (�(b)− x + �(t))−

k�
2(k+1) dx,

which in turn is (see the integral representation forF(a, b; c; z) used in the proof of
Lemma4.1)

Ck,p(t
k+1 − bk+1)(tk+1 + bk+1)−

k�
k+1F

(
1

2
,

k�
2(k + 1)

; 3
2
; (t

k+1 − bk+1)2

(tk+1 + bk+1)2

)
with some constantCk,p. We conclude

∫ �(t)−�(b)

−(�(t)−�(b))
|E(x, t;0, b)|� dx�Ck,p(t

k+1 − bk+1)(tk+1 + bk+1)−
k�
k+1 .

Thus the theorem is proved.�

In some applications to the semilinear problems the space of the force functions
f = f (x, t) is endowed with the norm max�(�−� ‖ f (·, �) ‖Lp(Rx)), ��0, therefore
we give here an estimate for the solutions in that norm.
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Corollary 6.2. Suppose that the functionf ∈ C2(R × [0,∞)) is such thatf (x, t) ∈
C∞
0 (Rx) for every t ∈ [0,∞), and that with some� > −1,

t−� ‖ f (·, t) ‖Lp(Rx) � const f or all t .

Then the solutionu = u(x, t) of the Cauchy problem(3.1),(3.2) satisfies

‖ u(·, t) ‖Lq(Rx) �Ct
�−k+1+(k+1) 1� max

0� �� t
(‖ f (·, �) ‖Lp(Rx) �−�) f or all t,

with p, q, such that1< p < �′, 1/q = 1/p − 1/�′, 1/� + 1/�′ = 1.

Proof. Indeed, according to Theorem6.1 we have

‖ u(·, t) ‖Lq(Rx) � C max
0� �� t

(
�−� ‖ f (·, �) ‖Lp(R)

)
×
∫ t

0
b�(tk+1 − bk+1)

1
� (tk+1 + bk+1)−

k
k+1db,

where the integral is a positively homogeneous function of order� − k+ 1+ (k+ 1) 1�
of variable t . �

To consider the high-dimensional case we start with some corollary from the well-
known results onLp − Lq estimates.

Lemma 6.3. For � ∈ C∞
0 (R

n) the functions

 1

c
(n)
0

�
�r

(1
r

�
�r

) n−3
2

rn−2 1

�n−1

∫
Sn−1

�(x + ry) dSy


r=s�(t)

and

 2

c
(n)
0

�
�r

(1
r

�
�r

) n−2
2 rn−2

�n−1

∫
Bn1 (0)

1√
1− |y|2�(x + ry) dVy


r=s�(t)

coincide with the valuev(x, s�(t)) of the solutionv(x, t) of the Cauchy problem
vtt −$v = 0 , v(x,0) = �(x) , vt (x,0) = 0 for odd n, n = 2m + 1, and evenn,
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n = 2m+ 2, respectively. They satisfy the inequality

‖v(·, s�(t))‖Lq(Rn
x)

�Cs
−n( 1

p
− 1
q
)
t
−n(k+1)( 1

p
− 1
q
)‖�‖Lp(Rn

x)
f or all s, t ∈ (0,∞)

provided that1< p�2, 1/p + 1/q = 1.

Proof. It follows from the results of[6]. �

Theorem 6.4. For the solutionu = u(x, t) of the Cauchy problem(n > 1)

utt − t2k$u = f (x, t) , u(x,0) = 0 , ut (x,0) = 0 (6.1)

with the functionf ∈ C2([0,∞)×Rn) such thatf (t, ·) ∈ C∞
0 (R

n
x) for everyt ∈ [0,∞),

the following estimate holds

‖u(·, t)‖Lq(Rn
x)

� Ct
2−n(k+1)( 1

p
− 1
q
)

∫ 1

0
‖f (·, tb)‖Lp(Rn

x)
db

∫ 1−bk+1

0
s
−n( 1

p
− 1
q
)

×(bk+1 + 1+ s)−�(bk+1 + 1− s)−� ds,

provided thatn( 1
p

− 1
q
) < 1, 1< p�2, 1/p + 1/q = 1.

Proof. We give a proof for the oddn only, since the proof for evenn is very similar.
According to Theorem3.4 for n = 2m+ 1, x ∈ Rn, the classical solutionu = u(x, t)

to the Cauchy problem withf ∈ C
(n+3)/2,2
x,t is given by the formula (3.6), which can

be rewritten as follows:

u(x, t) = t22ck�(1)�(1)
∫ 1

0
db

∫ 1−bk+1

0
ds (s + 1+ bk+1)−�(bk+1 − s + 1)−�

×
 �

�r

(
1

r

�
�r

) n−3
2 rn−2

�n−1c
(n)
0

∫
Sn−1

f (x + ry, tb) dSy


r=s�(t)

×F
(
�, �;1; (−s + 1− bk+1)(−s − 1+ bk+1)

(−s + 1+ bk+1)(−s − 1− bk+1)

)
,
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wherec(n)0 = 1 · 3 · · · · · (n− 2). To estimate its norm we write

‖u(·, t)‖Lq(Rn
x)

� t22ck�(1)�(1)
∫ 1

0
db

∫ 1−bk+1

0
ds (s + 1+ bk+1)−�(bk+1 − s + 1)−�

∥∥∥∥∥∥∥
 �

�r

(
1

r

�
�r

) n−3
2 rn−2

�n−1c
(n)
0

∫
Sn−1

f (x + ry, tb) dSy


r=s�(t)

∥∥∥∥∥∥∥
Lq(Rn

x)

×F
(
�, �;1; (−s + 1− bk+1)(−s − 1+ bk+1)

(−s + 1+ bk+1)(−s − 1− bk+1)

)
.

An application of Lemma6.3 gives

‖u(·, t)‖Lq(Rn
x)

� Ct
2−n(k+1)( 1

p
− 1
q
)

∫ 1

0
‖f (x, tb)‖Lp(Rn

x)
db

×
∫ 1−bk+1

0
ds s

−n( 1
p

− 1
q
)
(s + 1+ bk+1)−�(bk+1 − s + 1)−�

×F
(
�, �;1; (−s + 1− bk+1)(−s − 1+ bk+1)

(−s + 1+ bk+1)(−s − 1− bk+1)

)
,

sincen( 1
p

− 1
q
) < 1. The theorem is proved.�

Corollary 6.5. If we assume that the functionf ∈ C2([0,∞) × Rn) is such that
f (·, t) ∈ C∞

0 (R
n
x) for every t ∈ [0,∞), and with some� > −1,

t−� ‖ f (·, t) ‖Lp(Rn) � const f or all t,

then the solutionu = u(x, t) of the Cauchy problem(6.1) satisfies

‖ u(·, t) ‖Lq(Rn
x)

�Ct
�+2−n(k+1)( 1

p
− 1
q
) max
0� �� t

(
‖ f (·, �) ‖Lp(Rn

x)
�−�

)
f or all t.

Proof. Indeed, according to the theorem

‖u(·, t)‖Lq(Rn
x)

�Ct
1−n(k+1)( 1

p
− 1
q
) max
0� �� t

(
‖ f (·, �) ‖Lp(Rn

x)
�−�

) ∫ t

0
b� db
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×
∫ ∫ 1−(b/t)k+1

0
s
−n( 1

p
− 1
q
)
((b/t)k+1 + 1+ s)−�((b/t)k+1 + 1− s)−� ds

�Ct
�+2−n(k+1)( 1

p
− 1
q
) max
0� �� t

(‖ f (·, �) ‖Lp(Rn
x)

�−�)

∫ 1

0
b� db

×
∫ 1−bk+1

0
s
−n( 1

p
− 1
q
)
(bk+1 + 1+ s)−�(bk+1 + 1− s)−� ds,

which completes the proof of the corollary.�

In conclusion we note that we did not intend to minimize the regularity hypothesis on
the functionf needed in Theorems6.1, 6.4, and Corollaries6.2, 6.5. That minimization
is crucial for the weak solutions of the nonlinear equations and it will be done in a
forthcoming paper.
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