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We consider the focusing energy-critical nonlinear Schrédinger
8

equation of fourth order iu; + A%u = |u|@4u, d > 5. We prove

that if a maximal-lifespan radial solution u:1 x RY — C obeys

sup;e [lAu(t)|l2 < [[AW ||, then it is global and scatters both
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forward and backward in time. Here W denotes the ground state,
which is a stationary solution of the equation. In particular, if a
solution has both energy and kinetic energy less than those of the
ground state W at some point in time, then the solution is global
and scatters.
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1. Introduction

Fourth-order Schrédinger equations have been introduced by Karpman [12] and Karpman, Sha-
galov [13] to take into account the role of small fourth-order dispersion terms in the propagation of
intense laser beams in a bulk medium with Kerr nonlinearity. Such fourth-order Schrédinger equa-
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tions are written as
ideu + A%u+eAu+ f(jul®)u=0, (1)

where e =+1 or e =0, and u: I x RY — C is a complex-valued function. In this paper, we will
investigate the focusing energy-critical case when & =0, namely,

iuy + A%u= |u|ﬁu, inRIxR, d>5,
u(0) = ug(x), in RY.

The name ‘energy-critical’ refers to the fact that the scaling symmetry

44
u(t,x) > up(t,x) ;= A 7 u(r%, ix)

leaves both the equation and the energy invariant. The energy of a solution is defined by
1 2 d—4 20
E(u(®) = 5/‘Au(t,x)| dx — 7/}u(t,x)|d*4 dx
Rd Rd

and is conserved under the flow. We refer to the Laplacian term in the formula above as the kinetic
energy and to the second term as the potential energy.

Definition 1.1 (Solutions). Let d > 5. A function u : [ x R? — C on a non-empty time interval I C R
2(d+4)

is a solution to (2) if it lies in the class C°HZ(K x RY) N Ly* (K x RY) for all compact K C I, and
obeys the Duhamel formula

t
u(t) = e Ay () — / e DA E (y(7)) dr

to

for all t,tg € I, where F(u) = |u|d%4u. We refer to I as the lifespan of u. We say that u is a maximal-
lifespan solution if the solution cannot be extended to any strictly larger interval. We say that u is a
global solution if I =R.

We define the scattering size of a solution to (2) on a time interval I by
2d+4)
Si(w) :://|u(t, x)| = dxde.
I Rd
If I =R, we write Sg(u) = S(u).

Associated to the notion of solution is a corresponding notion of blowup, which precisely corre-
sponds to the impossibility of continuing the solution.

Definition 1.2 (Blowup). We say that a solution u to (2) blows up forward in time if there exists a
time t1 € I such that

Sty sup(ny) (U) =00
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and that u blows up backward in time if there exists a time t; € I such that

S(inf (1,1 (W) = 00.

Sharp dispersive estimates for the biharmonic Schrédinger operator in (1), namely for the lin-
ear group associated to i9; + A2 &+ A, have recently been obtained in Ben-Artzi, Koch, and Saut [2],
while specific nonlinear fourth-order Schrédinger equations as in (1) have been recently discussed
in Fibich, Ilan, and Papanicolaou [8], Guo and Wang [9], Hao, Hsiao, and Wang [10,11], Miao and
Zhang [22] and Segata [26]. In [23], B. Pausader established the global well-posedness in the defocus-
ing subcritical case, namely, f(u) = [u/P"lu with1<p <1+ %. Moreover, he established the global

well-posedness and scattering for radial data in the defocusing critical case, namely, p =1 + %,
where a very important Strichartz estimate was established.

Lemma 1.3 (Strichartz estimates). (See [23].) If (q,r) is such that % + % = %, where 2 < q,r < oo and
(q,r,d) # (2,00, 2). Let u be the solution of

iur + A%u=h,
e 3)
u(to) € H*(RY).

Then we have

lAull g gurey S AUl + VA 20 .
LIRS L2L3+2 (IxRY)

The key feature of such lemma is that the spacetime norm of the second derivative of u is es-
timated using only one derivative of the forcing term. In fact, this is the consequence of smoothing
effect for all higher-order nonlinear Schrédinger equations, see Proposition 2 in [22]. This is in sharp
contrast with the classical second-order nonlinear Schrédinger equations, where the estimate like (3)
does not hold true as it would violate Galilean invariance. Moreover, local well-posedness and stability
were established.

Theorem 1.4 (Local well-posedness). (See [23].) Let d > 5. Given ug € H,% (RY) and ty € R, there exists a
unique maximal-lifespan solution u : I x RY — C to (2) with initial data u(to) = uo. This solution also has the
following properties:

e (Local existence) I is an open neighborhood of t.

o (Energy conservation) The energy of u is conserved, that is, E(u(t)) = E(ug) forallt € I.

e (Continuous dependence) Ifug’) is a sequence converging to ug in H2(R%) and u™ : I x RY — C are the
associated maximal-lifespan solutions, then u™ converge locally uniformly to u, that is, on every compact
interval K C I, and K C I, for all sufficiently large n, u, converges strongly to u in C?H%(K x R N

2(d+4)
L&* (K xRY asn— oo.

e (Blowup criterion) If sup(I) is finite, then u blows up forward in time; if inf(I) is finite, then u blows up
backward in time.

e (Scattering) If sup(I) = oo and u does not blow up forward in time, then u scatters forward in time, that
is, there exists a unique u € H2(R%) such that

tlinolo Juc) — e’mqur ”Hf(Rd) =0. (4)

Conversely, given u, € H,% (RY) there is a unique solution to (2) in a neighborhood of infinity so that (4)
holds.
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o (Small data global existence) If || Aug||2 is sufficiently small (depending on d), then u is a global solution
2(d+4)

which does not blow up either forward or backward in time. Indeed, in this case S (u) < || Aug ||2"’4

Theorem 1.5 (Stability). (See [23].) Let d > 5. Let I C R be a compact time interval such that 0 € I, and i be
an approximate solution of (2) in the sense that

8
il + A%l — |i1| a2

i=e
2d
for some e with Ve € LfL,‘j’+2 (I x RY). Assume that
I 2t4) <400 and ||ﬁ||L?oH%(,XRd) < +o00.
L g~% (IxR9)
For any A > 0 there exists 8o > 0 such that if
IVell  2¢ <38

121342 (IxRY)

and if ug € H2(RY) satisfies

VA
)

|@(0) —uo| ;o <A and | Ve™ (@(0) — uo)| agy e

L —4 [ 42-2d+8 ([ pdy

for some & € (0, 8g), then there exists a solution u € C(I, H%) of (2) such that u(0) = ug. Moreover,

lull 2w+a) < 00.
L3 (IxRY)

Let

(d(d — 4)(d? — 4))% )24

W(x):W(x,t):( TP

be a stationary solution of (2). That is W > 0 solves the nonlinear elliptic equation
2 8
AW =|W|TaW. (5)
Analogous to the nonlinear Schrodinger equations of the second order, we have

Conjecture 1.6. Let d > 5 and let u : I x RY — C be a solution to (2) and W is the stationary solution of this
equation. If

E. = sup| Au) [, < 1AW, (6)
€

then

//\u(t,x)yz =4 dxdt < C(E,) < oo.

I Rd
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Naturally, we will apply the ideas and techniques which come from the study of classical focusing
nonlinear Schrodinger equations to fourth-order nonlinear Schrodinger equations. For energy-critical
nonlinear Schrédinger equations

. _4_ .
iuy + Au=»XAluld2u, in RY x R,

7
u(0) = up(x) € H}(RY), "

the local well-posedness and global well-posedness for small data were established by T. Cazenave
and F.B. Weissler [4] regardless of the sign of 1. There have been a lot of works devoted to obtaining
the global well-posedness and scattering for large data in defocusing case A =1, see [3,5,25,27,29],
etc.

However, the global well-posedness and scattering for large data in focusing case A = —1 re-
mains not completely solved. In [14], C.E. Kenig and F. Merle introduced an efficient approach to deal
with the focusing energy-critical nonlinear Schrédinger equations, where they obtained global well-
posedness and scattering for radial data with energy and Kkinetic energy less than those of ground
state in the focusing case in dimensions 3 < d < 5. They reduced matters to a rigidity theorem using
a concentration compactness theorem, with the aid of localized Virial identity. The radiality enters
only at one point in the proof of the rigidity theorem because of the difficulty in controlling the mo-
tion of spatial center of global solutions. Moreover, their result is sharp because the ground state itself
is the solutions of (7) but it does not scatter. One of the main ingredients in their arguments is proved
by S. Keraani in [17], namely, the fact that every sequence of solutions to the linear Schrédinger equa-

tion, with bounded data in H!(R?) (d > 3) can be written, up to subsequence, as an almost orthogonal
d—2

sum of sequences of the type A, 2 V((t — tn)/A%, (X — Xn)/An), where V is a solution of the linear
Schrodinger equation, with a small remainder term in Strichartz norm. Earlier steps in this direction
include [1].

R. Killip and M. Visan [20] extended C.E. Kenig and F. Merle’s result to nonradial case in d > 5.
The method is to reduce minimal kinetic energy blowup solutions to almost periodic solutions mod-
ulo symmetries, which match one of the three scenarios: finite-time blowup, low-to-high frequency
cascade and soliton. Then the aim is to eliminate such solutions. The finite-time blowup solutions can
be precluded using the method in [14]. For the other two types of solutions, R. Killip and M. Visan
proved that they admit additional regularities, namely, they belong to Lfon‘ € for some € > 0. In par-
ticular, they are in L)2<. Similar ideas have appeared in [18] and [19] in order to deal with mass-critical
nonlinear Schrédinger equations. But different from before, a remarkable difficulty comes from the
minimal kinetic energy blowup solution because the kinetic energy, unlike the energy, is not con-
served. Related arguments (for the cubic NLS in three spatial dimensions) appeared in [16]. Now the
low-to-high frequency cascade can be precluded by negative regularity and the conservation of mass.
To preclude the soliton, one need to control of motion of spatial center of the soliton solution. The
method comes from [6] and [15] with the aid of negative regularity. The fist step is to note that a
minimal kinetic energy blowup solution with finite mass must have zero momentum. A second in-
gredient is a compactness property of the orbit of {u(t)} in L2. Finally the soliton-like solution is
precluded by using a truncated Virial identity. Note that the negative regularity in [20] cannot be
obtained in dimensions three and four because the dispersion is too weak. Indeed the method of [14]
and [20] can be applied to defocusing case without much difficulty.

In this paper, we will verify Conjecture 1.6 in radial case, namely,

Theorem 1.7 (Spacetime bounds). Let d > 5 and let u : I x RY — C be a radial solution to (2). If

«i=supl|Aau®, < 1AW ]2,
tel



3720 C. Miao et al. /. Differential Equations 246 (2009) 3715-3749

then

2(d+4)
//|u(t,x)y =4 dxdt < C(Ey) < oo.

I Rd

A more effective criterion for global well-posedness (depending directly on ug) can be obtained us-
ing an energy-trapping argument in Section 3 (the corresponding argument for nonlinear Schrédinger
equations is in [14]).

Corollary 1.8. Let d > 5 and let ug € H,z((Rd) be a radial function and such that ||Aug|y < |[AW||2 and
E(ug) < E(W). Then the corresponding solution u to (2) is global and moreover,

2d44)
//|u(t,x)| =2 dt dx < oo.

R Rd

In this paper, we establish the corresponding result of the theorem in [14] on the setting of nonlin-
ear Schrodinger equations of fourth order. For later use in [21], the arguments here are direct “fourth
order” analogue of [20], including [14], [17] and [18]. First, we will do a lot of ground work including
establishing concentration compactness principle and the energy-trapping of the ground state. Next,
we reduce the failure of Conjecture 1.6 to almost periodic solutions, where we will rely heavily on
Theorem 1.5. To show that such almost periodic solutions match one of the three scenarios, we an-
alyze the properties of the almost periodic solutions such as quasi-uniqueness of N, compactness of
almost periodic solutions, etc. (see Section 4). Because we are considering the minimal kinetic blowup
solution, the assumption (6) plays an important role, which is used in the proof of quasi-uniqueness
of N. Finally, we established localized Virial identity and precluded all the possibility of the three
scenarios. Note that the radiality enters only in Section 8, so all the conclusions in Sections 3-7
remain true for general solutions. Moreover, the method here applies equally well to defocusing non-
linear Schrodinger equations of fourth order. Because no Galilean transformation is available for (2),
it seems difficult to remove the radial assumption as in [20] even in high dimensions. But we can
remove the radial assumption in the defocusing case in dimensions d > 9, see [21].

After the paper was finished and submitted, we learned that B. Pausader has obtained indepen-
dently the similar result in [24], where the author proved the same result with (6) replaced by
E(u) < E(W).

The rest of the paper is organized as follows: In Section 2, we introduce some notations. The
energy-trapping of the ground state is given in Section 3. In Section 4, we define almost periodic
solutions and list their properties. The concentration compactness principle is proved in Section 5. In
Section 6, we reduce the failure of Conjecture 1.6 to the existence of almost periodic solutions and in
Section 7, we prove that such solutions must admit one of three scenarios, namely, we set up three
enemies. Finally, we preclude all the scenarios in Section 8.

2. Notations

We introduce some notations. If X,Y are nonnegative quantities, we use X <Y or X = 0(Y) to
denote the estimate X < CY for some C which may depend on the energy E(u) and X ~ Y to denote
the estimate X <Y < X. Sometimes we write X ~¢ ¢ Y to mean the implicit constant depends on
¢, C and E(u). We use X <Y to mean X < cY for some small constant ¢ which is again allowed to
depend on E(u). We write L{L], to denote the Banach space with norm

. q/r 1/q
Nl o ey = (/(/|u(t,x)\ dx) dt) ,

R Rd
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with the usual modifications when q or r is equal to infinity, or when the domain R x R¢ is replaced
by spacetime slab such as I x RY. When g =r we abbreviate L{L] as L{ .

We use C > 1 to denote various large finite constants. and 0 < ¢ <« 1 to denote various small
constants.

The Fourier transform on RY is defined by

F&) =) ? / e f(x)dx,
]Rd

giving rise to the fractional differentiation operators |V|*, defined by

[VEF&) =gl F ().

These define the homogeneous Sobolev norms

1 g = 1VEF | 2 gy

Let ei2” be the free fourth-order Schrodinger propagator given by

et [ (&) = €41 T ),

We recall some basic facts in Littlewood-Paley theory. Let ¢ (&) be a radial bump function supported
in the ball {¢ e R%: |£] < %} and equal to 1 on the ball {¢ € RY: |£| < 1}. For each number N > 0,
we define the Fourier multipliers

Pn[ (€)= E/N)fE),

Ponf ) :=(1—@E/N)f &),
PNT(®) = (pE/N) — p26/N)) f (§)

and similarly Py and P>y. We also define

Py<gn:=Pg<n—Pgu = E Py
M<N'SN

whenever M < N. We will usually use these multipliers when M and N are dyadic numbers; in
particular, all summations over N or M are understood to be over dyadic numbers. Nevertheless, it
will occasionally be convenient to allow M and N to not be a power of 2. Note that Py is not truly a
projection; to get around this, we will occasionally need to use fattened Littlewood-Paley operators:

Py :=Pnj2 + Py + Pan. (8)

They obey PNIBN = PNPN = Pn.

As all Fourier multipliers, the Littlewood-Paley operators commute with the propagator e’mz, as
well as with differential operators such as id; + A%. We will use basic properties of these operators
many times, including
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Lemma 2.1 (Bernstein estimates). For 1 < p < q < oo,

1915 PN F ] o gy ~ N 1PN Fll 2 ey

d_d

IP<N fllaay SNP~TIP<N Fllp oy

Q,Q

”PNf”Lg(Rd) N» q”PNf”LF’ (Rd)-
3. Ground state

Let

(d(d — 4)(d — 4))% )T“

W(x):W(x,t):( e

be a stationary solution of (2). That is W > 0 solves the nonlinear elliptic equation
AW = |W|T3W,
then by the invariances of the equation, for 6 € [—7, 7], Ao > 0, X9 € RY,
Woo.x0.00 = 6"90?»0% W (ho(x — x0))
is still a solution. By the work of [7], we have the following characterization of W:
VueH?, |ull,+ < CallAuf2;:
moreover, if u # 0 is such that

lull o+ = Call Aull 2,

(11)

then there exist (6p, Ao, Xo) such that u = Wy, x,.1,, where C4 is the best constant of the Sobolev

inequality in dimension d and 2% = 2d

Eq. (9) gives [ |AW 2 =f|W|2 Also (11) yields C2 [ AW |? —(f|W|2 T an easy computation

shows that
/|AW| =, and EW)=Zc;"
Lemma 3.1. Assume that
lAullz < AWl
and Eu) < (1 — 80)E(W) where 8y > 0. Then there exists § = (8o, d) such that

/|Au|2<<1—5>/|AW|2,
/(|Au|2— ") >Sf|Au|2,

E(u)>0
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#
Proof. Consider the function f(y) = %y — dz;d“cg#y% and let y = ||Au||%_ From (10), we have
Y 2
FH<KEW) <A—=8)EW)=(1— 50)dc—”’/2'
d

#
-1

H#
Note that f(0) =0, f'(y) =1 — %sz , 50 f'(y) =0 if and only if y = yc, where yc = Cd_d/2 =
f|AW|2. Note also that f(yc) = E(W). But since 0 <y < yc and f(¥) < (1 —80)f(yc) and f is
nonnegative and strictly increasing between 0 and yc, f”(yc) #0, we have 0 < f(y) and y < (1 —
8) [ |AW 2. Thus (12) and (14) hold.

To show (13), consider the function g(y) =y — Cﬁ#yﬁ. Because of (10), we have that f(lAul2 —
|u|2#) > g(y). Note that g(y) =0 if and only if y =0 or y = yc and that g’(0) =1, g'(yc) = —ﬁ.
We then have, for 0 < y < yc, g(y) = Cmin{y, yc — y}, so (13) follows from 0 < y < (1 —§)yc which
is given by (12). O

By energy conservation, Lemma 3.1 and a continuity argument, we have

Theorem 3.2 (Energy trapping). Let u be a solution of (2) with initial data ug such that

/|Au0|2 </|AW|2 and E(ug) < (1 —80)E(W).

Let I 3 0 be the maximal interval of existence. Let § = 5(So, d) be as in Lemma 3.1, then for each t € I, we have

/|Au(t)|2 <@ —S)/|AW|2, (15)
/(\Au(t)\z - |u(t)}2#) >S/|Au(t) 2 (16)
E(u(t)) >0. (17)

Proof. See [14]. O

Corollary 3.3. Let u, ug be as in Theorem 3.2. Then for all t € I we have E(u(t)) ~ [ [Au(t)|? ~ J |Augl?,
with comparability constants which depend only on .

Proof. E(u(t)) < [ |Au|? dx. But by (16) we have

1 1

1 #
E(u) > (5 - 2—#) f|Au(t)|2dx+ 2—#/(|Au(t)|2 — |u©*") dx

> cg/yAu(t)yzdx,

so the first equivalence follows. For the second one, note that E(u(t)) = E(ug) >~ f | Aug|? dx, by the
first equivalence when t =0. O
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4. Almost periodic solutions

Definition 4.1 (Symmetry group). For any phase 6 € R/27Z, position xo € RY and scaling parameter
A > 0, we define the unitary transformation gy x, ., : H*(RY) — H2(R%) by the formula

(80,50 F100 =277 e f (A7 (x = x0)).

We let G be the collection of such transformations. If u : I x R? — C is a function, we define Tgyrgill
A4 x RY — C where 141 := {%t: t €I} by the formula

-4 .
[Tgy u1(6. ) 1= 27T e®u (a4, 071 (x — x0)).

We also let G;,q C G denote the collection of transformations in G which preserve spherical symme-
try, or more explicitly,

Grad ' =1{80,02: 0 eR/27Z; ) > 0}.

Definition 4.2 (Enlarged group). For any 6 € R/27Z, position xo € _Rd, scaling parameter A > 0 and
time to, we define the unitary transformation gg x,,x.t, : H)% (R — Hi (RY) by the formula

itg A2
gQ,X(),)L,I‘O = gQ,Xo,Xe 0 .

Let G’ be the collection of such transformations. We also let G’ act on global spacetime functions
u:R x RY — C by defining

. 1 i/ oAl t X—Xo
(Tgo.10.0.0 W(E %) 1= = () 5 =)

Given any two sequences gp, g, in G’, we say that g, and gj, are asymptotically orthogonal if (gn)‘lg{1
diverges to infinity in G. If we write explicitly

80 = &onxintns  &n = 80Xy huth>
then the asymptotic orthogonality is equivalent to

(M AR — DA X — X?
llm _1/1 + n + | n‘n n( n) | + | n /nl =+OO
n—>co\ Ay A K%)\,/—,Z AnAn

Remark 4.3. If g,, g/, € G’ are asymptotically orthogonal, then

nan;o(Agnf, Agyf)zey =0 forall f,f'e H2(RY). (18)

2(d+4)
A variant of this is that if v,v e L, 5 * (R x RY), then

Jim [T, 1Ty v/, =0 (19

d
4_2

.. . .4 d
for any 0 <6 < 1 and admissible pair (q,r) (¢ < o0), that is, R
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Definition 4.4 (Almost periodic solutions). Let d > 5. A solution u to (2) with lifespan I is said to be
almost periodic modulo G if there exist functions N : I — R*, x: [ — R¢ and C : Rt — R* such that
foralltel, and n >0,

\Au(t,x)\zdxg n (20)
[x—x(t)|=C(n)/N(t)
and
A~ 2
&4 di(e. &) dg < . (21)
[E1=C(mN()

We refer to the function N as the frequency scale function for the solution u, x the spatial center
function, and to C as the compactness modulus function.

By Ascoli-Arzela theorem, almost periodicity modulo G means that the quotient orbit {Gu(t): t € I}
is a precompact set of G\ H2, where G\ H? is the moduli space of G-orbits Gf := {gf: g € G}
of H%(R?). Moreover, a family of functions is precompact in H? if and only if it is norm-bounded and
there exists a compactness modulus function C so that

/|Af(x)\2dx+ / g1 F @) de <n
[x|=>C(n) |&[=C(m)

for all functions f in the family. By Sobolev embedding, any solution u: I x R? — C that is almost
periodic modulo G must also satisfy

2d
u(t, )| dx < n.
[Xx=x(t)] =C (1) /N(t)
Lemma 4.5 (Quasi-uniqueness of N). Let u be a non-zero solution to (2) satisfying (6) with lifespan I that
is almost periodic modulo G with frequency scale function N : I — R+ and compactness modulus function

C :RT — R* and also almost periodic modulo G with frequency scale function N’ : I — R* and compactness
modulus function C' : RT™ — R*. Then we have

N(t) ~u,c.c N'(t)
forallt el

Proof. It suffices to prove N'(t) <, c.cr N(¢t), for all t € I. Otherwise, there exists a sequence {t,} such
that limy_ oo N(ty)/N’(ty) = 0. For any 1 > 0, by Definition 4.4, we have

|Au(tn,x)|2dx <7
[x=X'(tn)|ZC"(n)/N'(tn)
and

i

[§1ZC)N(tn)

i(tn, &) dg <. (22)
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Let u(tp,X) = uq(tn,X) + Ua(tn,x), where uq(tn,X) = u(tn, X)1x—xn)=C)/N ) U2(En, X) =
U(tn, X) 1 x—x (t2)|<C'(p)/N'(tn)- Then by Plancherel’s theorem, we have

R{@‘*

while from Cauchy-Schwartz we have

iy (ta, &)|* d& S, (23)

sup [51*[ii2(tn. §)° Sy | Autn) 5N )~

EeRd

Integrating the last inequality over the ball |£| < C(n)N(t,), we get

14 fia (tn, &) dt

[EISCON(E)

ity )7 d& S | 1€1%]i0n (6, 8] d + g4
| /

[EISCODN(®)

Aut) [ANE)IN' @) 79).

<Sn+0y.c.0(
This, combined with (22), (6) and Corollary 3.3, yields that

/!Auo(X)lde~/I$I4

Rd

i(tn, &) dg S0+ 000 (| Aut) | INEN €) %)

SN+ 0yc.o(IAWIBN @GN (6) %),
Since limy— o0 N(tn)/N’(tn) =0, we have
2
/\Auo(x)] dx <.

By the arbitrary of 1, we get

/]Auo(x)|2dx =0.

Thus, ugp =0 and by mass conservation, u(t) =0 for all t € R. This contradicts that u is non-zero. O

Lemma 4.6 (Quasi-continuous dependence of N on u). Let u™ be a sequence of solutions to (2) with lifespan
I™ satisfying (6), which are almost periodic modulo scaling with frequency scale functions N : [ —
R* and compactness modulus function C : R — R™, independent of n. Suppose that u™ converge locally
uniformly to a non-zero solution u to (2) with lifespan 1. Then u is almost periodic modulo scaling with a
frequency scale function N : I — R and compactness modulus function C. Furthermore, we have

N(t) ~y.c liminf N® (t) ~, ¢ limsup N (t) (24)
n—0o0 n—00

forallt € I. Finally, if all u™ are spherically symmetric, then u is also.
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Proof. We first show that
0 < liminf N™ (t) < limsup N™ (¢) < +o0 (25)
n—00 n—o0

for all t € I. Indeed, if one of these inequalities failed for some t, then (by passing to a subsequence if
necessary) N™ (t) would converge to zero or infinity as n — co. Thus by Definition 4.4, u™ (t) would
converge weakly to zero, hence by the local uniform convergence, would converge strongly to zero.
But this contradicts the hypothesis that u is not identically zero. This establishes (25).

From (25), we see that for each t € I the sequence N™ (t) has at least one limit point N(t). Thus,
using the local uniform convergence we easily verify that u is almost periodic modulo scaling with
frequency scale function N and compactness modulus function C. It is also clear that if all u™ are
spherically symmetric, then u is also.

It remains to establish (24), which we prove by contradiction. Suppose it fails. Then given any
A = Ay, there exists a t € I for which N (t) has at least two limit points which are separated by a
ratio of at least A, and so u has two frequency scale functions with compactness modulus function C
which are separated by this ratio. But this contradicts Lemma 4.5 for A large enough depending on u.
Hence (24) holds. O

Definition 4.7 (Normalized solution). Let u be a solution to (2), which is almost periodic modulo G with
frequency scale function N, position center function x. We say that u is normalized if the lifespan I
contains zero and

N@©) =1, x(0) =0.
More generally, we can define the normalization of a solution u at time tg in its lifespan I to be
ultol = Tgo—xtgicg) Nitg) (u(- +t0))- (26)
Observe that ul®l is a normalized solution which is almost periodic modulo G and has lifespan
[Ml:= {seR: to+s/N(to)* € 1}.
It has frequency scale function

N(to + tN(to)™%)

N1 () = N(to)

and position center function

Xyit01 (£) = N(to)[x(to + EN(to) ~*) — x(to)].

Lemma 4.8 (Compactness of almost periodic solutions). Let u™ be a sequence of normalized maximal-lifespan
solutions to (2) satisfying (6) with lifespan 1™ > 0, which are almost periodic modulo G with frequency scale
functions N®™ : [™ — R+ and a uniform compactness modulus function C : RT — R*. Assume that we also
have a uniform energy bound

0< iInle(u(")) < sng(u(”)) < 0.

Then after passing to a subsequence if necessary, there exists a non-zero maximal-lifespan solution u to (2)
with lifespan I > 0 that is almost periodic modulo G, such that u™ converge locally uniformly to u. Moreover,
if all u™ are spherically symmetric and almost periodic modulo G,q, then u is also.
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Proof. By hypothesis and Definition 4.4, we see that for every ¢ > 0 there exists R > 0 such that

|Au™©, %)) dx< e

[XI=R

and

€4 |u™ (0,8)|*dt <&

[E1ZR

for all n. Since sup, E(u™) < co, we have sup, ||Au™(0)3 < co. By the Ascoli-Arzela theorem, we
see that the sequence u™ (0) is precompact in the strong topology of H2(RY). Thus passing to a sub-
sequence if necessary, we can find ug € H2(R%) such that u™ (0) converge strongly to ug in H2(RY).
Since 0 < inf, E(u™), we see that ug is not identically zero.

Now let u be the maximal Cauchy development of ug from time 0, with lifespan I. By Theorem 1.4,
u™ converges locally uniformly to u. The remaining claims now follow from Lemma 4.6. O

Corollary 4.9 (Local constancy of N). Let u be a non-zero maximal-lifespan solution to (2) satisfying (6) with
lifespan I that is almost periodic modulo G with frequency scale function N : I — R™. Then there exists a small
number 8, depending on u, such that for every to € I we have

[to — 8N (to) ™. to +8N(to) *] C I (27)

and

N(t) ~y N(to) (28)
whenever |t — to] < SN(to) 4.

Proof. Let us establish (27) first. We argue by contradiction. Assume that (27) failed. Then there exist
sequences t; € I and 8§, — 0 such that t, + 8;N(t;)~* ¢ I for all n. Define the normalization ulf]
of u from time t, by (24). Then ul™l are maximal-lifespan normalized solutions whose lifespan It
contain 0 but not §,; they are also almost periodic modulo G with frequency scale functions

Nl (s) := N (tn + SN(t) ™) /N (tn)

and the same compactness modulus function C as u. Applying Lemma 4.8 (and passing to a sub-
sequence if necessary), we conclude that ulf"l converge locally uniformly to a maximal-lifespan
solution v with some lifespan J > 0. By Theorem 1.4, | is open and so contains §, for all suffi-
ciently large n. This contradicts the local uniform convergence as, by hypothesis, 8, does not belong
to I™], Hence (27) holds.

We now show (28). Again, we argue by contradiction, shrinking § if necessary. Assume (28)
failed no matter how small one select §. Then one can find sequences ty, t, € I such that s, :=
(t) — tn)N(tn)* — 0 but N(t},)/N(ty) converge to either zero or infinity. If we define ult"l and N]
as before and apply Lemma 4.8, we see once again that ulf converge locally uniformly to maximal
solution with some open interval J 5 0. But then NItl(s,) converge to either zero or infinity and thus
by Definition 4.4, ulf"l(s;) are converging weakly to zero. On the other hand, since s, converge to

zero and ul™l are locally uniformly convergent to v € C2,) H2(J x R%), we may conclude that uf}(s;)

converge strongly to v(0) in HZ(RY). Thus |[v(0)|| f2@ey = 0. S0 v(0) =0. Since E(ultly = E(u), we
see that u vanishes. Thus (28) holds. O
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As a direct consequence of Corollary 4.9, we have

Corollary 4.10 (Blowup criterion). Let u be a non-zero maximal-lifespan solution to (2) satisfying (6) with
lifespan I that is almost periodic modulo G with frequency scale function N : I — R™.If T is any finite endpoint
of I, then

lim N(t) = oo.
t—T

Lemma 4.11 (Local quasi-boundedness of N). Let u be a non-zero solution to (2) with lifespan I that is almost
periodic modulo G with frequency scale function N : I — R, If K is any compact subset of I, then

0 < inf N(t) <supN(t) < oo.
tek tek

Proof. We only prove the first inequality; the argument for the last is similar.

We argue by contradiction. Suppose that the first inequality fails. Then, there exists a sequence
tp € K such that lim,_, o, N(tp) =0 and hence by Definition 4.4, u(t;) converge weakly to zero. Since
K is compact, we can assume t, converge to a limit to € K. As u € COHZ(K x R%), we see that u(t,)
converge strongly to u(tg). Thus u(tg) must be zero, contradicting the hypothesis. O

5. Concentration compactness

Theorem 5.1 (Linear profile decomposition). Fix d > 5 and {up}n,>1 be a sequence of functions bounded
in 111)% (RY). Then after passing to a subsequence if necessary, there exist a sequence of functions {¢1} j>1C
Hi (RY), group elements gj € G and times t), € R such that we have the decomposition

J )
i A2
un =Y ghe ¢l + wij (29)
j=1
forall J > 1; here wj € H2(R?) obey
lim limsupHe”AZwr{ | 20+ =0. (30)
J—00 n—oo L[‘S—‘l (RxRY)
Moreover, for any j # j/,
An o AL A=t A |xn — X)1?
tim (204 20y e — O] P ) (31)
n—oco\An  An AZA2 Ay

Furthermore, for any | > 1 we have the kinetic energy decoupling property
! 2 T2
. 2 i
,,&rgz[munuz - a6} - [awd uz} -0 (32)
j=1
Remark 5.2. In fact, for any (q, 1) (q # 2) such that g + % = % — 2, we have by Holder’s inequality,

; ; ita . J _
IILH;ollrETLSOlOIPHE Wn”LfL;(lde)_O‘ (33)
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Moreover, by interpolation we have

U itaZ J —
jll)rr;ollgrisouopHVel Wi HL?L';(Ide)_O’ (34)

where 4 +4=4_1,a#2.

The proof of Theorem 5.1 is very similar to Theorem 1.6 of [17]. We need only establish the fol-
lowing

Lemma 5.3. Fixd > 5. Forevery f € Hi (R%), we have

d

—4 4
d d
||f||L% SCIASI IIAfIIBgm

. . . . 2(d+4)
Lemma 5.4. Let {t'}, {A/}, {x'} be sequences as in (31) and V’ € Lt’i"‘ (R x RY) for every j > 1, then

. X 2(d+4)
J 1 NV a4 2(d+4)
i E J E : NE
lim 4 Vv PR P 2(d+4) < ”V | 2(d+4) : (35)
n—oo I\ 52 )\.] 4 )\] ‘i
=1 ) 2 (An) n /L 5 ®xrd) =1 L% ®xRY)

Lemma 5.5. For all ] >1and all 1 < j < ], the sequence e‘”éAz[(g,{)qw,{] converges weakly to zero in
H,% (RY) as n — oo. In particular, this implies the kinetic energy decoupling (32).

Proof of Lemma 5.3. This is a direct adaption of the proof in Bahouri and Gerard [1]. For every A > 0,
we decompose f =P.af + Pgaf, then we have

d_ d_ A
IP<afllie < 37 IPkflli S 3 2T AP flle SAT2IAfllgg =2
2k<A <A '

2
Then A(A) = (m)fi—4 and
2,00

A
m{|f| > A} <m{|P>A(A)f| > 5}

4
< A—2||P>Amf||%

4 -4 2 2
< 5AG) - 1P P2 acy FO5-

Therefore,

+00

2
L1 =—d/)~%3m{|f|>k}d}~

0
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o0

4 _4, x4
S/A—ZA(A) Ad=a
0

[§1>A®)
8
Shafi’ IAfIZ,-
This completes the proof of Lemma 5.3. O

Proof of Lemma 5.4. Let

|s|“|f<s>|2ds) dx

: 1 Y
Vi= jﬂvj( v
(An) 2 (Aq)

it suffices to prove that

2(d+4)
J | T J
. ] '
nango Z Vi 2(d+4) S Z H v/
j=1 LI ®RxRY) =1

We denote the maximal integer less than a by [a] and let k(d) = [%], then

~—Xf.>
A

k@

dtdx

dt dx

= LI

D Va| s DoVl |V

j=1 L &= RxRY) Rugd | i=1 j=1
J T =)
< [ mil)zv
I=TRy R =1

j=17j j A.A,jk(d)RXRd

=A+B.

We estimate A first:

J
A<y / Zikza dtdx+ZZ /|v1"(">|vf'

]=1]RX d =1 A RxRd

The second term can be written as

L5 [ g

J - .
+2Y % [ miv|vdey
J'#jJ3

2(d+4) —k(d)

J=10#5 g pa
J
2k(d)—
S22 lva !I Py il

j=1j#] * (RxRY)

L3 ®xRY)

2(d+4)
d—4
2(d+4)

L I (RxRY)

3731
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2k(d)— —k(d)
= Z Z IV e || vivi d ,

j=1j#j L% ®xRY) & (Rde)

which is 0(1) as n — oo by (19). Now we estimate B. By Holder’s inequality,

2(d+4)
D k()

o I
/ Vavi v v Y v dedx
RxRI =
! j
iy k)
<§”V Vi “ %(R Rd) ”V H 2:1+4) (R Rd)"'” Va H t% (Bxk ”V ”LZ(ddt;t) RxE)

—0 asn— oo.
Thus we establish Lemma 5.4. O

Proof of Lemma 5.5. Fix | >1 and 1< j < J. Notice that {uy}s>1 and ¢/ are bounded in H2(RY),
by (29) we deduce that {e=iA*[(gd)~1wi]},>; is bounded in H2(RY). Using Alaoglu’s theorem (and

passing to a subsequence if necessary), we obtain that e*itrj;Az[(g,{)*lw,! ] converges weakly in H,z((]Rd)
to some ¢ € H% (R%). To prove this lemma, it suffices to show that y = 0.
By weak convergence and (29),

112, = Jim (A4 (gh) " w]], Av)

L
. _iti A2 iv—1 ith A2
=n1L“30<Ae s [(gé) ( > gheln® ¢’+Wﬁ)}AW>
I=J+1

L
J A2 in—1
— Z llm (Agle” A? 90 Agjelt,,A w>+nll>ngo< —ity A (g'{‘) WL',AI//)
l:]+1

for all L > J. By (18),
. ol A2 N )
nhm <Ag£1e”ﬂA @', Agleitn® v) =

forall L>1> ] +1>]j.

On the other hand, combining the fact that the family {e‘”']l.Az[(g,{)‘lw,ﬁ]}n,L% is bounded in
H2(RY) with

lim limsupSR(e”Aze"‘t'{Az[(g,{)_]wﬁ]) = 11m limsup Sg (e ”AZWL) =0,

n
L—00 n—soo L—00 n—soo

we deduce that e’ (g,{)”wf7 converges weakly to zero in H2(R%) as n, L — oo. Thus for L suffi-
ciently large,

lim sup}(Ae"‘t'J'AZ (g,ﬁ')ﬂwﬁ, INTIES ||‘/f||Hz (RY)"

n—oo

So we have i = 0. This finishes the proof of Lemma 5.5. O
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6. Reduction to almost periodic solutions

Theorem 6.1. Suppose d > 5 is such that Conjecture 1.6 failed. Then there exists a maximal-lifespan solution
u:IxR?— Cto(2)such that sup;¢; 1Au(t)|l2 < AW |2, u is almost periodic modulo G, and u blows up
both forward and backward in time. Moreover, u has minimal kinetic energy among all blowup solutions, that
is

sup|au(t) |, < sup| aveo)
tel te]

for all maximal-lifespan solution v : ] x RY — C that blows up at least one time direction. If furthermore
d > 5 and Conjecture 1.6 failed for spherically symmetric data, then we can also ensure that u is spherically
symmetric and almost periodic modulo Gi,gq.

For any 0 < Eg < AW |3, we define

L(Eo) :=sup{S(u): u:I x R — C such that sup|Au(t) H; < Eo},
tel

where the supremum is taken over all solutions u : I x R — C to (2) obeying Sup;¢; ||Au(t)||% < Eo.

Thus L : [0, ||AW||%] — [0, 00] is a non-decreasing function with L(||AW||%) = oo. Moreover, from
Theorem 1.4,

m
L(Eo) Sq Eg*  for Eg <o,

where 19 = no(d) is the threshold from the small data theory.

From Theorem 1.5, we see that L is continuous. Therefore, there must exist a unique critical kinetic
energy E. such that L(Eg) < oo for Eg < E. and L(Eg) = oo for Eg > E.. In particular, if u : I x R? — C
is a maximal-lifespan solution to (2) such that sup;; ||Au(t)||§ < E¢, then u is global and

2
Swy<L Au(t .
W) (i‘é?” u®])

Failure of Conjecture 1.6 is equivalent to the existence of 0 < E. < ||AW||§.

Proposition 6.2 (Palais-Smale condition modulo symmetries). Fixd > 5. Let uy, : I, X R? — Cbea sequence
of solutions to (2) such that

lim sup supHAun(t)H; =E, (36)

n—oo tely
and let t, € I, be a sequence of times such that
lim S>¢ (up) = lim S, (up) = oo.
n—oo n—oo
Then the sequence uy (t,) has a subsequence which converges in ILI,Z( (RY) modulo G.

Proof. By the time translation symmetry of (2), we may set t, =0 for all n > 1. Thus,

lim S>o(up) = lim S¢o(uy) = o0. (37)
n—oo n—oo
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Applying Theorem 5.1 to the sequence u,(0) (which is bounded in H,z( by (36)) and passing to a
subsequence if necessary, we obtain the decomposition

J .
i it A2 i
un(0) =) gle ™ ¢ + wy.
j=1

Redefining the subsequence once for every j and using a diagonal argument, we may assume
that for each j, the sequence {tn}n>1 converges to some ti e [—o0, +00]. If t4 € (=00, +00), then by
replacing ¢J by e’ A% ¢4 and t} —t/ by t], we may assume that t/ = 0. Moreover, absorbing the error
ZI<J<]: tizo gn(e"nA ¢4 —¢7) into the error term w,{, we may assume that t,]1 = 0. Thus either t,ﬁ =0
or t,’; — +o00.

We now define the nonlinear profiles v/ : I x R? — C associated to ¢/ and t} as follows:

e If t) =0, then v/ is the maximal-lifespan solution to (2) with initial data v/(0) = ¢/.

o If t} — +o00, then v/ is the maximal-lifespan solution to (2) that scatters forward in time to
eitAZ ® j

o If t£ — —oo, then v/ is the maximal-lifespan solution to (2) that scatters backward in time to
ei[Angj'

For each j,n > 1, we define vi : I} x R? — C by
Vi) = T [vI(-+&)]®.
where I,]; ={teR: (A%)*“t +t,£ € 13}. Each v£ is a solution to (2) with initial data at time t =0 given

by vi(0) = g} vi(t}) and maximal lifespan I} = (—T T, ), where —o0 < —T,; <0 < T,/; < +o0.
By (32), there exists Jo > 1 such that

n,j’

|ag|, <mo forall j= Jo,

where 19 = no(d) is the threshold for the small data theory. Here, by Theorem 1.4 for all n > 1 and
all j > Jo the solutions v; are global and moreover,

sup| a3+ 5z (v]) < a0/ (38)
Lemma 6.3 (At least one bad profile). There exists 1 < jo < Jo such that
limsup Sy 1+ )(v,];") = oc0.
n—00 ' n.Jo
Proof. Assume for a contradiction that for all 1< j < Jo,
limsup S, T+')(vﬂ;) < 00, (39)
n—00 Tonj

which implies T+ =oo for all 1< j < Jo and all sufficiently large n. Moreover, subdividing [0, +o00)

into intervals where the scattering size of vn is small, applying the Strichartz inequality on each such
interval, and then summing, we obtain
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li;risolip H VA H $2(10,00)) =X

for all 1 < j < Jo, where

||f||§2(1) = Sszd . ”Af”L?L;(’X]Rd)-
(@n: g+7=3

By (36), (38), (39) and (32), we have

3 Si000 (V) ST+ Y [A¢ |5 S1+E (40)
j21 izJo

for all n large enough. Now we define the approximation
J "
ul t) = Z Vi) + e wj.
j=1

Note that

J
||Ur1 (0) — un(0) H 2 (Rd) N Z gnv] tn ltn ¢])

HZ(RY)

—

SZH"j(tr{) elth ¢”H2(]Rd

i=1
and hence, by our choice of v/,

limsup[u7 (©) — un(0) | 2 za, = 0.
n—oo

We now show that u,{ does not blow up forward in time. Indeed, by (19), the fact that vf; does not
blow up forward in time, Lemma 5.4, (30) and (40), we have

lim limsup Sjo,00) (un) < 11m lim sup(S[O oo)<2vn) + Sio,00) (e ”AZW,{))

J—>00 n-soco

j=1
< hm limsu S <1+E 11
fim Tim PJX; (0,00) (V ) c- (41)
Similarly, we can obtain that
11m llmsupHun ||52([0 sy SC(EQ) < o0 (42)
J

In order to apply Theorem 1.5, it suffices to show u; asymptotically solves (2) in the sense that

11m limsup| V[ (id; + A%)u) — F(u))]| = 2 =0, (43)

J=00 n—oo 121,34 ([0,00) xRY)
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which reduces to proving

J 4 J
lim limsup V(ZF(V%) - F(Zv,ﬁ)) =0 (44)
J=00 n—oo = =1 LEL;’%([O,oo)de>
and
11m lim sup |V (F (1 — e‘mzw,{) —Ful)| =0. (45)

J=00 n—sco 121342 (0,00) xRY)

We first address (44). Note that we can write

J . l
V[ZF(V;) - F<Zv{,)}
j=1 j=1
for d > 12 and

o e -e(z)]

for 5 <d < 12. By the similar argument deriving (19), for any j # j’, we have

SO

J#i

; o 12—d o
<5 (WAl |75+ vil vl | 5 vl )
J#T

11msup|||vj|d4}Vv]||| =0
2L & ([0,00) xR9)

for all d > 5 and

2d_ =0
L2L8+2 (10,00) xRY)
2d

J o
| ren-r( )]
j= 120,342 (10,00) xRY)

limsu vi &= | vyl =0
S DIV

lim sup|[|v4|[vi | &5 | v v,
n—oo

for 5 <d < 12. Thus we have

llm sup

and (44) follows.
We now consider (45). In dimensions d > 12, by Hélder and interpolation, we have

V(F(ul — ™ wl) - F(u]
|| ( ( n Yl) ( n))”LtzLXdz%(lO’oo)X]Rd)

gHeitAz H d+4) _2d(d+4) “Vun ” 22d+4)
3(d B EDED (0 00) R L f72 ([0,00)xRY)
. £
28 ] L TP [ve S wi | 2

1 4>L<d+1>(d D (10.00) x RY) L.272 (10,00)xRY)
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5
i) 20dd) | Ve ien? Wi || 2(d+4)

+ [u ’
Ju ] 7 e
3(d 4) L(d+1>(d D (10,00)x RY) L, ([0,00) xIR4)

L

so (45) follows from (41), (33), (34) and the fact that eitA? w,{ is bounded in $2. In dimensions 5 <
d < 12, one must add the term

d_d ”e:mz J H

Jua] 0 ) - )
Ly ([0,00) xRY) LELY™ ([0,00) xR )

[vua]
L°°Ld % ([0,00) x RY) Lp

which is acceptable, too.
We are now in a position to apply Theorem 1.5; invoking (41), we conclude that for n sufficiently
large,

S10,00)(Un) S 1+ Ee,
this contradicts (37). This finishes the proof of Lemma 6.3. O

Let us return to the proof of Proposition 6.2 now. Rearranging the indices, we may assume that
there exists 1 < J1 < Jo such that

limsup S, T+,)(v,]1') =00 for1<j< Jq
n—o0o Tong
and
lim sup S[oyoo)(v,j;) <oo forj> Ji. (46)
n—-oo

Passing to a subsequence in n, we can guarantee that Sio. ing )(v,l.,) — 0.

For each m,n > 1 let us define an integer j(m,n) € {1 ., J1} and an interval K] of the form
[0, 7) by
sup Sin(va) = Sgn (V™) = m. (47)
1<j< U

By the pigeonhole principle, there is a 1 < j; < J1, so that for infinite many m, one has j(m,n) = j1,
for infinite many n. Note that the infinite set of n for which this holds may be m-dependent. By
reordering the indices, we may assume that j; = 1. Then by the definition of the critical kinetic
energy, we obtain

llm sup lim sup sup |vvl (t)||2 (48)
—00 N—>00 teK
On the other hand, by virtue of (46) and (47), all v}, ' have finite scattering size on K}' for each m >

Thus, by the same argument used in Lemma 6.3, we see that for n and J sufficiently large, u,{ is a
good approximation to u, on each KJ'. More precisely,

=0 (49)

]lggc li;?lsolép Jun —un ”L[°°H2(K,q" xRd)

for each m > 1.
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Lemma 6.4 (Kinetic energy decoupling for u,jl). Forall J>1andm > 1,
11msup sup lau] ||2 X:“AVH(I)H2 — |awi H
j=1
Proof. Fix | > 1 and m > 1. Then for all t € K},
) J
[l 3= Y1 avils+ [awd [+ Y (avio, avi o)
j=1 J#T

+ e wl AVI(D) + (Avi©), AeA w])).

M\

J=1

It suffices to prove that for all sequences t; € K},

lim (AVA(En), AV] (6) =0 (50)
and
lim (Ae'n® *wi, Av%(tn)) =0 (51)
n—oo

for all 1< j,j < J with j # j/. We will only demonstrate the latter, which requires Lemma 5.5; the
former can be deduced in much the same manner using (31). By a change of variables,

<Aeit’{;A2wr{’Avfj;(tn)):<Aeifn(}»rj;)_4A2[(g'{)* ]] AVJ(();) +tﬁ>>. (52)

As t, € K™ C [0, T;j) for all 1< j < J1, we have ty(A))~4 4t} € I/ for all j > 1. Recall that I/ is the
maximal lifespan of v/; for j > J; we have Rt c I{. By refining the sequence once for every j and
using the standard dlagonallzatlon argument, we may assume t, ()J y~* 4+t converges for every j.

Fix 1<j<J. If tn(A] A4t converges to some point 7l in the interior of I/, then by the conti-
nuity of the flow, vf(tn(xr,) —4 4 t)) converges to vi(zd) in Hf (RY). On the other hand, by (32),

tim sup|let ™2 [(g]) " w <E:.

n—-oo

= 11m sup|| wi

r{] || H2(RY) ” H2(RY)

Combining this with (52), we obtain

lim <Ae”” *wi, Avn(tn)) = lim (Ae't“()‘ n 4A2[(g,{)71w,{], AvI(zd))

n—oo

— i —itia “Twd1 Ae—iT A% (),
Jim (A~ (gh) " wi ], AT AV (¢)
Invoking Lemma 5.5, we deduce (51).

Consider the case when t;(A})~* + t; converges to sup I/. Then we must have sup I/ = oo and v/
scatters forward in time. In fact, this is clearly true if t] — oo as n — oo; in other cases, failure would
imply
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llmsup Sho. tn](vn) —hmsupS =00,

J
4581 (V)
which contradicts t, € K. Therefore, there exists v/ € H2(R%) such that

nlin;o||vj(tn(xé)—4 +t,§) _ ei(tn()\f;)*4+t,{m2¢j|| 2@t = 0.

Together with (52), this yields

lim (Ae”éAZ wi, Avﬁ(tn)> = lim (Ae’”“z[(g,{)_lw,{], Ayd),
n—oo n—oo
which by Lemma 5.5 implies (51). ; ; .
Finally, we consider the case When ta(A)~* +t) converges to inf /. Since ta(y =4 >0andinfl/ <
oo for all j > 1 we see that tn does not converge to +oco. Moreover, if tl =0, then infl’ < 0; as
ta(A)~* >0, we see that t] cannot be ldentlcally zero. This leaves t} - —o0o as n — oo. Thus infl/ =
—oo and v/ scatters backward in time to eitA’ ¢7. We obtain
fim v (6 (3) 4 + ) — eitn G+ Al i
n—oo

”H,Z((]Rd) =0,

which by (51) implies

lim (Ae't" ‘wj, Av%(t,ﬂ) = nan;Q(Ae_itgAz[(g£)71w£], AgY).

n—oo

Invoking Lemma 5.5 once again, we derive (51). This finishes the proof of Lemma 6.4. O

Thus by (36), (49) and Lemma 6.4, we have

> limsup sup | Aun () “2 = 11m 11msup HAWn H2 + sup ZHAvn(t)HZ}

n—-oo te n]]

Invoking (48), this implies | =1, v{; =0 forall j>2and w,:= W,l1

In other words,

converges to zero strongly in H,z(.

un(0) = g% ¢ + wy (53)

for some g, € G, T, € R and some functions ¢, w;, € Hﬁ (RY) with w, — 0 strongly in I;I,% (RY). More-
over, the sequence t, =0 or 7,; — *£o0.

If T, =0, (53) immediately implies that u,(0) converges modulo G to ¢, which proves Proposi-
tion 6.2 in this case.

Finally, we will show that this is the only possible case, that is, T, cannot converge to either co
or —oo. We argue by contradiction. Assume that t, converges to +oo, the proof in the negative time
direction is essentially the same. By the Strichartz inequality, SR(e“AZ(p) < 0. Thus we have

: itA? ity A2
Jim $o(e"¥" e ) 0.
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Since the action of G preserves linear solutions and the scattering size, this implies
; itA? | ity A?
lim S>o(e'? gne'™*"¢) =0.
n—oo
Combining this with (53) and w, — 0 in H%, we conclude
lim S=o(e™” 1y (0)) =0.
n—oo
An application of Lemma 1.5 yields
lim S>o(up) =0,
n—-oo
which contradicts (36). O

Proof of Theorem 6.1. Suppose d > 5 is such that Conjecture 1.6 failed. Then the critical kinetic energy
E. must obey E; < ||AW||%. By the definition of the critical kinetic energy, we can find a sequence
Up : Ip x RY — C of solutions to (2) with I, compact,

sup sup || Aup (t) H; =E. and lim Sy, (up) = 0. (54)
n>1tely n—00

Let t, € Iy be such that S, (uy) = S, (Un). Then

lim S>¢, (up) = lim S, (up) = oo. (55)
n—oo n—oo

Using the time translation, we may take all t; =0.

Applying Proposition 6.2 and passing to a subsequence if necessary, we can find g, € G and a
function up € A2(RY) such that gnu,(0) — ug strongly in H2(RY). By applying the group action T,
tpzth% solution u, we may take all the g, to be identity. Thus u,(0) converges strongly to ug in
Hi(RY).

Let u:I x R? - C be the maximal-lifespan solution to (2) with initial data u(0) = up. As
up(0) — up in FI%(R“), Theorem 1.5 shows that I C liminfI, and

nll)rgo lun = ull o2 wrey =0 for all compact K C I.
Thus by (54),
2
su?HAu(t)”2 <E.. (56)
te

Next we prove that u blows up both forward and backward in time. Indeed, if u does not blow
up forward in time, then [0, 00) C I and S>o(u) < oo. By Theorem 1.5, this implies S>o(un) < oo for
sufficiently large n, which contradicts (55). A similar argument proves that u blows up backward in
time.

Therefore, by our definition of E., sup;, ||Au(t)||§ > E.. Combining this with (56), we obtain

supHAu(t)Hi =E,.
tel
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It remains to show that u is almost periodic modulo G. Consider an arbitrary sequence t, € I. As u
blows up in both time directions

Sy, (U) = S<q, (U) = o0.

Applying Proposition 6.2, we conclude that u(t;) admits a convergent subsequence in Hf(]Rd) mod-
ulo G. Thus the orbit {Gu(t): t € I} is precompact in G \ HZ(R%).

A direct analogue of Theorem 7.3 in [28] shows that if u, is a sequence of bounded radial func-
tions in H2(RY), then there exists a family of radial functions ¢/, j=1,2,..., in H2(RY) and group

elements G,ﬁj) € G;ad for j,n=1,2,..., such that we have decomposition (29) for all [ =1,2,...,
where wf1 € H2 is radial and obeys (30). Moreover g;, g,(,Jl) are asymptotically orthogonal in the sense

of (31) for any j # j’ and for [ > 1, we have the energy decoupling property (32). This concludes the
proof of Theorem 6.1. O

7. Three enemies

Theorem 7.1 (Three special scenarios for blowup). Fixd > 5 and suppose that Conjecture 1.6 fails for this choice
of d. Then there exists a minimal kinetic energy, maximal-lifespan solution u : I x RY — C, which is almost
periodic modulo G, S;(u) = oo, and obeys sup;¢; [[Aullz < |AW 2. If furthermore d > 5 and Conjecture 1.6
failed for spherically symmetric data, then u may be chosen to be spherically symmetric and almost periodic
modulo Gaq.

With or without spherical symmetry, we can also ensure that the lifespan I and the frequency scale function
N : I — R™ match one of the following three scenarios:

I (Finite time blowup) We have that either | infI| < oo or sup I < oo.
I (Soliton-like solution) We have I = R and

N({t)=1 forallteR.
Il (Low-to-high frequency cascade) We have I = R and

inf N(t) >1, and limsupN(t) = oo.
teR

t—o00

Proof. The proof is a straightforward adaptation of the similar proof in Killip, Tao and Visan [18,20].
Let v: J x R? — C denote a minimal kinetic energy blowup solution whose existence is guaranteed
by Theorem 6.1. We denote the frequency scale function of v by Ny(t) and spatial center function
of v by x,(t). For any T > 0, define the quantity

TNy (to) ™4}
TNy (to) ™4}

Ny(t): t d|t—t
osc(T) = inf SPINL(O: t€ J and It~ to

57
toeJ Inf{N,(t): t € J and |t — to] (57)

NN

Case L. lim7_, o 0sc(T) < oo.

In this case, we can find a finite number A = A, a sequence t, of times in J, and a sequence
T — oo such that

sup{N,(t): t e J and |t — t;]| < TuNy (t2) ™%}

<
- <A
inf{Ny (t): te J and |t — ty| < TNy (t;) "%}

for all n. Note that this, together with Corollary 4.9, implies that
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[ta — Tn/Ny(&)* ta + Tn/Ny ()] € J

and

Ny (t) ~y Ny(tn)

for all t in this interval.
Let vl be the normalization of v at times ¢, as in (26), then v{! is a maximal-lifespan normal-
ized solution with lifespan

1
]n‘Z{SGR. fn+mse_’}3[—Tn,Tn]

and energy E(v). It is almost periodic modulo G with frequency scale function

1 1
Nv[[n] (s) = N—v ) Ny (tn + —Nv (tn)4 S)

and compactness modulus function C. In particular, we see that

Nyl (s) ~y 1 (58)

for all s € [—Ty, Tyl.

We now apply Lemma 4.8 and conclude (passing to a subsequence if necessary) that v{"] converge
locally uniformly to a maximal-lifespan solution u with energy E(v) defined on an open interval I
containing 0 and which is almost periodic modulo G. As T;, — oo, Lemma 4.6 and (58) imply that the
frequency scale function N : I — RT of v satisfies

0 < infN(t) <supN(t) < oco.
tel tel

In particular, by Corollary 4.10, I has no finite endpoints and hence I = R. By modifying C by a
bounded amount we may now normalize N(t) = 1. Thus we have constructed a soliton-like solution
in the sense of Theorem 7.1.

When osc(T) is unbounded, we must seek a solution belonging to one of the remaining two
scenarios. We introduce the quantity

Ny (to) Ny (to)
sup{Ny(t): t <to} =~ sup{Ny(t): t >to}

a(to) =

Case L. lim7_, o, 0sc(T) = 0o and inft,ej a(tg) = 0.

As infy e ja(to) = 0, there exists a sequence of times t, € J such that a(t;) — 0 as n — oo. By the
definition of a, we can also find times t; <t, <t} with ¢, t;7 € J such that

NV(t"_)—>+oo and Ny (&)

Ny (tn) Nt . °

Next we choose times t, € (t;,t;) so that

Ny () < 2inf{N(0): t e [t; . tF]}.
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In particular,

, .
Nv(tn) tn’gtlit,,* Ny(t),

which allows us to deduce that

Ny (t- N, (tF
"(”,)—>+oo and V('j)—>+oo
Ny (tr) Ny (tr)

We define the rescaled and translated times s, <0 <s; by
+._ I\4 (ot ’
Sp =Ny (tn) (tn - tn)

and the normalizations v at times t;, by (26). These are normalized maximal-lifespan solutions with
lifespans containing [s;, s 1, which are almost periodic modulo G with frequency scale functions

1 1
N ¢,(8):= ——Ny [t + ——s). 59
9= e (1 s e
By the way we choose t;, we see that
Nv[r,’,] 21 (60)
forall s; <s< s,:r. Moreover,

N i (s7) = 00 asn— oo (61)

for either choice of sign.

We now apply Lemma 4.8 and conclude (passing to subsequence if necessary) that vlt] converge
locally uniformly to a maximal-lifespan solution u of energy E(v) defined on an open interval I
containing 0, which is almost periodic modulo G.

Let N be a frequency scale function for u. From Lemma 4.11 we see that N(t) is bounded from
above on any compact set K C I. From this, Lemmas 4.5 and 4.6, we see that Nv[rhl(t) is also bounded
from above, uniformly in ¢ € K, for all sufficiently large n (depending on K). As a consequence of this
and (61), we see that s; and s cannot be any limit points in K; thus K C [s;, ;7] for all sufficiently
large n. Therefore sni converge to the endpoints of I. If sup(I) < 400 or |inf(I)| < 400, then u blows
up in finite time. Otherwise, I = R. In this case, we need to show that

limsup N(t) = limsup N(t) = co.

t——00 t—+400

By time reversal symmetry, it suffices to establish that lim;—. o N(t) = co. By (60) and Lemma 4.6,
we conclude that

inf N(t) > 1.
inf ® 2

Suppose lim;_, 1o N(t) < 0o, then N(t) ~, 1 for all t > 0. We conclude from Lemma 4.6 that for every
m > 1, there exists an n,, such that
Nv[ ](t) ~y 1

/
thm



3744 C. Miao et al. /. Differential Equations 246 (2009) 3715-3749

for all 0 <t < m. But by (57) and (59) this implies osc(%) <1 for all m and some &€ =&(u) >0
independent of m. Note that ¢ is chosen as a lower bound on the quantities N(t;{m)“/N(t,gm)4 where
t;{m = t,@m + %N(t,@m)“‘. This contradicts the hypothesis lim7_, o 0sc(T) = co and so settles Case II.

Case III. lim7_, o, 0sc(T) = co and infy,ej a(to) > 0.

Let € = &(v) > 0 be such that infyc;a(to) > 2e. We call a time to future-spreading if N(t) <
e~ IN(tp) for all t > to; we call a time tp past-spreading if N(t) < e IN(tg) for all t < to. Note that
every to € J is future-spreading, past-spreading or possibly both.

We will show that either all sufficiently late times are future-spreading or that all sufficiently
early times are past-spreading. We only show the first half because the other half is similar. If this
were false, there would be a future-spreading time ty and a sequence of past-spreading times t,
that converges to sup(J). For sufficiently large n, we have t; > to. Since Ny (to) < & !N, (t;) and
Ny (tn) <& IN,(ty) we see that

Ny (tn) ~v Ny (to)

for all such n. For any tp <t < t,, we know that t is either past-spreading or future-spreading; thus
we have either Ny (tg) < & Ny (t) or Ny(tn) < e N, (t). Also, since tq is future-spreading Ny (t) <
e~INy(tg) and t, is past-spreading, N, (t) < &~ 'Ny(t;), we conclude that

Ny (t) ~y Ny (to)

for all tg <t < t,; since t, converges to sup(J), this claim in fact holds for all tyg <t < sup(J). From
Corollary 4.10 we see that v does not blow up forward in finite time, that is, sup(J) = oco. This
implies that limr_ o 0sc(T) < oo, a contradiction. We may now assume that future-spreading occurs
for all sufficiently late times; more precisely, we can find ty € J such that all times t >ty are future-
spreading.

Choose T so that osc(T) > 2e~!. We will now recursively construct an increasing sequence of
times {t,}72, so that

_ 1
0 <tpy1 —tn <8TNy(ty) 4 and Nv(tn+1)<§Nv(tn)-

Given ty, set t; :=t; + 16T N, (tn) % If Ny (ty) < %Nv (ta) we choose tp41 =t;, and the properties set
out above follow immediately. If N, (t}) > %NV (tn), then

Jni=[th = TNy (6)) " th + TNy (¢2) %] S [tn, tn + 8T Ny (6) 4. (62)

As t, is future-spreading, this allows us to conclude that Ny (t) < & 'N,(t;) on J,, but then by the
way T is chosen, we may find t;11 € J; so that Ny (tp+1) < Ny (ty). Having obtained a sequence of
times obeying (62), we may conclude that any subsequential limit u of v{f! is a finite-time blowup
solution. To elaborate, set s, = (to — tp)Ny (tn)4 and note that N1 (sp) > 2". However s, is a bounded
sequence; indeed,

-1 -1 -1
Isal = N(t )4112[t —t] <8Tnzl\l(t”)4 <8TnZz*<"*’<> < 8T
nl = n = k+1 k1l X P N(tk)4 X P < .

In this way, we see that the solution u must blow up at some time —8T <t < 0.
This completes the proof of Theorem 71. O
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8. Kill the enemies

Theorem 8.1 (No finite-time blowup). Let d > 5. Then there are no maximal-lifespan radial solutions u : [ x
RY — C to (2) that are almost periodic modulo G,q4, obey

Si(u) = oo, (63)
sup|Au(®)|| < |AW ]2
tel
and are such that either | infl| < oo or sup I < oo.

Proof. Suppose for a contradiction that there existed such a solution u. Without loss of generality, we
may assume that sup I < oco. Then by Corollary 4.10,

liminf N(t) = co. (64)
t/'supl
We now show that
limsup / |uct, x)|2dx =0 forall R>0. (65)
t/'supl‘ <R
XS

In fact, let u(t,x) = N(t)d%4 v(N(t)x, t), then
f |u(e, x> dx =N~ / lvix, o) dx
XI<R WI<RN(@)
=N(@t)™ / lvix, ) dx + N6 / lvix, o) dx

|x|<€RN(t) |x| <RN(t)
|X|>€RN(t)

=A+B.

By Holder’s inequality, we have
—4 4
A< (N®) " (eRN®)IVIZ,0 < (€RFIAW]S.

A can be acceptable if we take € to be sufficiently small. By Holder, (64) and the fact that u is almost
periodic, we have

45,012
< .
B<R ||v||L2#(‘x‘>€RN(t)) —0 ast—supl

Thus (65) is proved.
For t € I, define

Mg (t) :=/¢<|%|>\u(t,x)|2dx,
]Rd

where ¢ is a smooth, radial function such that ¢(r) =1 for r <1 and ¢ (r) =0 for r > 2. By (65),
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limsupMg(t) =0 forall R > 0. (66)
t/'supl

On the other hand,

atMR(t)—_ZIm/ ( ( ))uAudx—Zlm/ ( (';')) Vil Audx.

So by Hélder and Hardy’s inequality, we have

|ullAu] [Vul|Aul
|0 MR (D] < / rz dx+ —r
WI~R I~R

<Jrl,

SlAaul3 SlAaw.

[Vu|
lAull2 + ]

Thus,

t
MRm)=MR<t2>+/atMR<t)drsMR(rz>+|t1 CollAW

)

for all t1,t; €l and R > 0. Let t; / sup! and invoking (66), we have
Mg(t1) S [supl — t1] [ AW 3.

Now letting R — oo and using the conservation of mass, we obtain ug € Lf(Rd). Finally, letting t; 7
sup I, we deduce ug = 0. Thus u =0, contradicting (63). O

Theorem 8.2 (Absence of cascades and solitons). Let d > 5. There are no global radial solutions to (2) that are
low-to-high cascades or solitons in the sense of Theorem 7.1.

Proof. We will show that no global radial solutions that are almost periodic modulo G4 with the
frequency scale function N(t) > 1 for all t € R.

By the almost periodicity of u and Hardy’s inequality, we have that for any € > 0, there exists
R(€) > 0 such that for all t € [0, +00),

Vul?  |ul?
|Au|2—}—| | lul )dxge

= 67
X2 |x|* &7)

|X|>R(€)

On the other hand, (13) and Corollary 3.3 yields

af 1ol —a [ P> &, [ 18w

This and (67) with € = eof |Aupg|?, implies that there exists Rg > 0 such that for all ¢ € [0, c0), we

have
4 / AupP — 4 / |u|2”>caU/|Auo|2. (68)

[xI<Ro [X|<Ro
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Lemma 8.3. Define

zr(t) = Im/xqb('%l) -Vuudx, (69)

where ¢ (r) is a smooth function with ¢ (r) =1 whenr <1 and ¢ (r) = 0 when r > 2. Then

zﬁe(r)>4/(IAu|2—|u|2#)dx—o< / ('ulﬁ”'+|VugAu|+|Au|2>dx>. (70)

[XI<R R<IXIS2R
Thus, by (67) and (68), we get
Zp(®) > Ca s, / |Augl?

for R large.
Integrating in t, we have

2(6) — 2R (0) > tCa s, / | Augl?.

But by the definition of zg(t), we have
|zr (1) — Zr (0)| <2R*| AW 3,

which is a contradiction for t large. O

Proof of Lemma 8.3. We will compute 9;zg(t):

atzR(t):lm/x¢<%> -Vﬂtudx+[m/x¢(%> - Viuuedx
o A 4
=2Im | x¢ T -Vuugdx+1Im | V- [ x¢ T uug

=A+B.

A and B can be computed as follows:

A=(4—d)/¢(%)(|Au|2_ |u|z#)dx
+2Re/W(%)%d}(—%Z/W(%)IAuI%x
L 11\ x- VuAu d—4 (XD Il
+2Re/¢ (F) 2 dx + 1 /¢<?> R dx,

VA
B:d/qb('%l)(mulz— |u|2#)dx+2dRe/$dx

) (B e o ()5
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x| \d—1 X\ d+1 X1\ %1 -
Re | — " = " = )= |uAudx
+ /(¢<R>R|x| +9 R R2 +é R /R
X1\ 1 X\ 1 _
2R = )=— " = )= |x- ViiAudx.
+ e/(qb(R R|x|+¢ R sz uAudx

Since ¢’, ¢” and ¢” are supported in {x: R < |x| < 2R}, (70) follows. O
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