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Abstract

We analyse the asymptotic behaviour of solutions to the one dimensional fractional version of the porous 
medium equation introduced by Caffarelli and Vázquez [1,2], where the pressure is obtained as a Riesz 
potential associated with the density. We take advantage of the displacement convexity of the Riesz po-
tential in one dimension to show a functional inequality involving the entropy, entropy dissipation, and 
the Euclidean transport distance. An argument by approximation shows that this functional inequality is 
enough to deduce the exponential convergence of solutions in self-similar variables to the unique steady 
states.
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1. Introduction

In this work, we analyse the long-time asymptotics of the nonlinear nonlocal equation

ρt = ∇ · (ρ(∇(−�)−sρ + λx
))

, λ > 0, x ∈R
d , (1.1)

obtained from the fractional version of the porous medium equation introduced by Caffarelli and 
Vázquez [1,2]

uτ = ∇ · (u∇p), p = (−�)−su, (1.2)

by passing to self-similar variables. Indeed, by adding the Fokker–Planck confining term ∇ ·(xu), 
solutions to (1.1) will characterize the long-time asymptotic behaviour of solutions to (1.2). This 
connection will be further explained below.

The fractional porous medium equation (1.2) can be viewed as a continuity equation,
uτ + ∇ · (uV) = 0, for a density or concentration u(τ, y) with velocity V = −∇p, where the 
velocity potential or pressure p is related to u by the inverse of a fractional Laplacian oper-
ator p = (−�)−su, 0 < s < 1. The standard porous medium equation is recovered for s = 0. 
We assume that the unknown u(τ, y), representing a density or concentration, is defined for 
y ∈ R

d and τ > 0 and supply initial data u(y, 0) = u0(y), a nonnegative mass distribution in 
L1(Rd) ∩ L∞(Rd). We also point out that the pressure can be represented as

p = (−�)−su =K ∗ u,

with the singular convolution kernel

K(y) = cd,s |y|2s−d , cd,s = s2−2sΓ (d/2 − s)

πd/2Γ (1 + s)
, (1.3)

and 0 < s < min(1, d/2), called the Riesz potential of u as in the standard textbooks 
[3,4]. This representation also makes sense for s = d/2 with the logarithm kernel K(y) =
−21−dπ−d/2Γ (d/2)−1 log |y| (see [5,6] in one dimension) and for 1/2 < s < 1 in one dimension 
with the negative coefficient c1,s and the positive exponent 2s −1 in K(y). As a result, the kernel 
K(y) does not necessarily decay to zero at infinity in the last two cases, but the magnitude of the 
gradient ∇K(y) does. When the kernel K(y) is replaced by a less singular radially symmetric 
function, the same equation appears in granular flow [7–10] and biological swarming [11–13].

To describe the long-time behaviour of solutions to (1.2), we study the transformed equa-
tion (1.1) by defining

ρ(t, x) := (1 + τ)αu(τ, y), (1.4)

with the similarity variables x = y(1 + τ)−β and t = log(1 + τ). The exponents α and β can be 
determined from dimensional analysis and the mass conservation [14], which are given by

α = d/(d + 2 − 2s), β = 1/(d + 2 − 2s). (1.5)

In this way, the rescaled density ρ(t, x) satisfies (1.1) with λ = β = 1/(d +2 −2s). We will keep 
λ > 0 arbitrary in (1.1) as a parameter to characterize the convexity of the energy defined below 
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and the convergence rate to the steady state later on. As a result, the long-time behaviour of the 
original density u(τ, y) is completely specified if we establish the convergence of ρ(t, x) to the 
steady state ρ∞(x) of (1.1) with λ = β .

The existence and uniqueness of the steady state ρ∞ of (1.1) for each given mass was initially 
characterized by an obstacle problem in [2], and then the explicit expression of ρ∞ was obtained 
by Biler, Imbert and Karch [15,16], for yet more general nonlinear dependence of the pressure 
p = (−�)−sum−1, m > 1. In case m = 2 of our interest here, the self-similar solution of (1.2) is 
given by

u(τ, y) = (1 + τ)−d/(d+2−2s)ρ∞
(
y(1 + τ)−1/(d+2−2s)

)
,

with the self-similar profile

ρ∞(x) = Kd,s

(
R2 − |x|2)1−s

+

and the prefactor

Kd,s = 22s−1Γ (d/2 + 1)

Γ (2 − s)Γ (d/2 + 1 − s)
λ.

The radius of the support R is determined by the total conserved mass M , that is,

M =
ˆ

Rd

u(τ, y) dy = 22sπd/2Γ (d/2 + 1)λ

(d + 2 − 2s)Γ (d/2 + 1 − s)2
Rd+2−2s . (1.6)

After these preliminary discussion, we concentrate on the convergence of ρ(t, x) to the steady 
state ρ∞(x) in the rest of the paper.

Let us point out that the fractional porous medium equation (1.1) can be viewed as a particular 
case of the aggregation equation [10,12,17] written as

ρt = ∇ · (ρ(∇K ∗ ρ + ∇V )
)
, x ∈R

d, (1.7)

where V (x) = λ
2 |x|2 and K(x) = cd,s |x|2s−d , 0 < s < 1.

During the past fifteen years, several important techniques [18–20,10,21,22] have been devel-
oped for the convergence of linear or nonlinear Fokker–Planck equations to their steady states 
with sharp rate. These techniques can also be employed to prove the convergence of solutions 
of (1.1) to ρ∞, by realizing that the free energy E(ρ) defined as

E(ρ) = 1

2

ˆ

Rd

{
(−�)−sρ(x) + λ|x|2}ρ(x)dx

= cd,s

2

ˆ

Rd

ˆ

Rd

ρ(x)ρ(y)

|x − y|d−2s
dy dx + λ

ˆ

Rd

|x|2
2

ρ(x)dx, (1.8)

is a Lyapunov functional for 0 < s < min(1, d/2). One can similarly define the Lyapunov func-
tional for 1/2 ≤ s < 1 in one dimension, assuming that ρ satisfies a growth condition at infinity, 
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namely ρ log |x| ∈ L1(R) if s = 1/2 and ρ|x|2s−1 ∈ L1(R) if 1/2 < s < 1. In fact, (1.1) is a 
gradient flow of the free energy functional (1.8) with respect to the Euclidean transport distance 
in the metric space of probability measures [22,23].

The basic properties of the energy E(ρ) and its dissipation I(ρ) defined below, together with 
the long-time asymptotics of solutions to (1.1), are already derived in [2]. More precisely, along 
the evolution governed by (1.1), one can obtain the formal relation dE(ρ)/dt = −I(ρ), where 
we denote by I(ρ) the entropy production or entropy dissipation of E given by

I(ρ) =
ˆ

Rd

ρ|∇ξ |2 dx, with ξ = δE
δρ

= (−�)−sρ + λ

2
|x|2.

Using this relation, the solution of (1.1) is shown to converge towards ρ∞ in [2], but no rate is 
obtained. To be more precise, they show that solutions of the fractional porous medium equa-
tion (1.1) satisfy the energy inequality E(ρ(t, ·)) + ´ t

0 I(ρ(τ, ·))dτ ≤ E(ρ(0, ·)) that is enough 
to conclude the converge of ρ(t, x) to the steady state ρ∞(x).

In this work, we will focus on obtaining the sharp convergence rate for the solutions of the 
Cauchy problem for (1.1) towards the equilibrium ρ∞, for all 0 < s < 1 in one dimension, al-
though many of the calculations are presented in general dimensions. In the particular case of 
s = 1/2 in one dimension, the kernel is given by the logarithmic potential and it was treated in 
[5], see also [6] for related functional inequalities. In fact, it is shown in [5] that the energy E(ρ)

is displacement convex, which cannot be derived directly from the criteria given in the seminal 
paper by McCann [24]. We will take advantage of these techniques in [5] to prove certain func-
tional inequalities, in particular the HWI inequalities as introduced in [25] (also obtained in [6]
for the logarithmic case s = 1/2). This displacement convexity and related inequalities are then 
used to show the convergence towards equilibrium in one dimension, through the exponential 
decay of the transport distances and the relative energy, for general s ∈ (0, 1).

Finally, we point out that the problem of sharp convergence rates in several space dimen-
sions is still open. Moreover, it could be interesting to prove or disprove analogous functional 
inequalities involving nonlocal operators in several space dimensions corresponding to the ones 
established here in one dimension; see more comments at the end of Section 2. New techniques 
or inequalities have to be developed. Showing asymptotic convergence when the confining term 
∇ · (λxρ) is replace by the general drift ∇ · (ρ∇V ) is another interesting problem, see [26,10].

The organization of this work is as follows. We first remind the reader in Section 2 about the 
basics of the entropy/entropy dissipation method, together with the main functional inequality 
that we will prove in one dimension. In fact, we follow closely the strategy developed for non-
linear diffusion equations in [27,28,19,20,29,10] to reduce to the proof of a Log-Sobolev type 
inequality. This inequality is then proved in Section 3 as a consequence of the HWI inequality 
which crucially uses the displacement convexity. Finally, Section 4 is devoted to obtain the rate 
of convergence towards equilibrium of the solutions to (1.1) by an approximation method using 
the construction of solutions in [1].

2. Transport inequalities in dimension 1

In this section, we derive several inequalities originated from optimal transportation theory 
that will be used in the next section to show the exponential convergence of the relative entropy 
in one dimension.
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Before starting the technical computations we are going to use to prove the transport inequali-
ties, let us discuss a bit more on the equilibrium solution ρ∞. It was recently proved in [26, Theo-
rem 1.2] that E restricted to P(Rd) is strictly convex in the classic sense for 0 < s < min(1, d/2), 
and it has a unique compactly supported minimizer ρ∞ characterized by

(−�)−sρ∞(x) + λ
|x2|

2
= C∗, ∀x ∈ supp(ρ∞), (2.1a)

(−�)−sρ∞(x) + λ
|x2|

2
≥ C∗, a.e. Rd, (2.1b)

for some constant C∗ determined by the total mass. This formulation is equivalent to the obstacle 
problem in [2], for the rescaled pressure P = (−�)−sρ and the quadratic obstacle Φ(x) = C∗ −
λ
2 |x|2. Using the following relation (see [15,16])

(−�)−s
(
R2 − |x|2)1−s

+ = 2−2sΓ (2 − s)Γ (d/2 − s)

Γ (d/2)

(
R2 − d − 2s

d
|x|2

)
= λ

2Kd,s

(
d

d − 2s
R2 − |x|2

)
, for all |x| ≤ R, (2.2)

it is easy to verify that ρ∞ = Kd,s(R
2 − |x|2)1−s+ is indeed the minimizer for E for 0 < s <

min(1, d/2). Similar computations can be done in the range 1/2 ≤ s < 1, see [5,17] for instance.
Now, we can consider the difference E(ρ|ρ∞) := E(ρ) − E(ρ∞) as a measure of the distance 

of ρ to the equilibrium state ρ∞.
We know from Section 1 that the following relation holds for sufficiently smooth solutions ρ

to (1.1)

d

dt

(
E(ρ) − E(ρ∞)

)
= −I(ρ).

Hence, once we have the following inequality for a sufficiently large class of functions

E(ρ) − E(ρ∞) ≤ 1

2λ
I(ρ), (2.3)

we can prove the exponential convergence of E(ρ) −E(ρ∞) to zero with exponential rate 2λ (but 
not necessarily the exponential convergence of I(ρ)), by integrating

d

dt

(
E(ρ) − E(ρ∞)

) = −I(ρ) ≤ −2λ
(
E(ρ) − E(ρ∞)

)
in time. The inequality (2.3) is usually called, in the context of optimal transport, Log-Sobolev 
inequality in the linear diffusion case or generalized Log-Sobolev inequalities otherwise. We 
will revisit (2.3) in the next section by investigating the displacement convexity of the energy 
E(ρ). In particular, it becomes the logarithmic Sobolev inequality [30] for linear Fokker–Planck 
equation [28,31,32], and a special family of Gagliardo–Nirenberg inequalities for nonlinear 
Fokker–Planck equations with porous medium type diffusion [20,19,29].

Thus for the rest of this section, we shall prove a generalization of (2.3) and use it in the 
following section to obtain the desired decay for E(ρ) − E(ρ∞).
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Let P2(R) be the set of probability measures with second order moments, and P2,ac(R) be 
the subset of probability measures of P2(R) that are absolutely continuous with respect to the 
Lebesgue measure. Besides E(ρ) and I(ρ) introduced earlier, we also need the following ver-
sions of the energy and energy dissipation of a measure ρ ∈P2,ac(R):

Eε(ρ) := E(ρ) + ε

ˆ

R

ρ logρ,

Iε(ρ) :=
ˆ

R

∣∣∂x(−∂xx)
−sρ(x) + λx + ε∂x logρ(x)

∣∣2
dρ(x),

which are associated with the regularized equation (3.2) in the next section. Throughout the 
rest of the paper we shall commit an abuse of notation and identify every absolutely continuous 
measure with its density. So we shall write dρ(x) and ρ(x) dx meaning the same thing.

We use optimal transport techniques to prove the Log-Sobolev, the Talagrand, and the HWI 
inequalities for the energy Eε for smooth probability measures ρ ∈ P2,ac(R). We shall focus on 
the so-called HWI inequality that generalizes certain elementary inequalities for convex functions 
on Rd with Euclidean distance replaced by the Wasserstein distance on P2(R) (the space of 
probability measures with finite second moment). The Wasserstein distance on P2(R) is defined 
for any ρ1, ρ2 ∈ P2(R) by

W2(ρ1, ρ2) :=
(

inf
π∈Π(ρ1,ρ2)

ˆ

R×R

|x − y|2 dπ(x, y)

) 1
2

,

where Π(ρ1, ρ2) be the set of all nonnegative Radon measures on R ×R with marginals (pro-
jections) ρ1 and ρ2. The HWI inequality is called so because it was first established in [25] for 
the relative Kullback information (denoted by H ), the Wasserstein distance W2 and the relative 
Fisher information (also denoted by I ).

Before stating the main results, let us briefly review the following facts about the Wasserstein 
distance and the weak convergence in P2(R) that shall be used in the proofs.

i) We say that a sequence (ρn)n∈N ⊆ P2(R) weakly converges to ρ ∈ P(R) (denoted as 
ρn ⇀ ρ), if

lim
n→∞

ˆ
ϕ(x)dρn(x) =

ˆ
ϕ(x)dρ(x),

for all ϕ ∈ Cb(R), the space of bounded and continuous functions.
ii) The pair (P2(R), W2) is a complete metric space and the convergence under the distance 

W2 is stronger than the convergence in the weak sense. In fact, the following three facts are 
equivalent for any (ρn)n∈N ⊆P2(R) and ρ ∈P(R):
• W2(ρn, ρ) → 0 as n → +∞;
• ρn ⇀ ρ and

lim
n→∞

ˆ
x2 dρn(x) =

ˆ
x2 dρ(x); (2.4)
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• ρn ⇀ ρ and

lim
R→∞ lim sup

n→∞

ˆ

|x|≥R

x2 dρn(x) = 0.

iii) Given ρ1, ρ2 ∈ P2(R) with ρ1 absolutely continuous with respect to the Lebesgue measure, 
there exists a Borel map θ : R → R such that θ#ρ1 = ρ2, i.e.,

ˆ

R

ϕ(x)dρ2(x) =
ˆ

R

ϕ
(
θ(x)

)
dρ1(x), for every bounded Borel function ϕ,

and θ also satisfies

W2(ρ1, ρ2) =
(ˆ

R

∣∣x − θ(x)
∣∣2

dρ1(x)

) 1
2

,

It is well known that the optimal map θ is nondecreasing on R and increasing on supp(ρ1). 
In fact, θ can be written in terms of the cumulative distribution functions F1 and F2 of ρ1
and ρ2 respectively, that is θ(x) = F−1

2 ◦ F1(x), see [21, Chap 2].

For a detailed proof of the above results and generalizations, the reader may check the stan-
dard references [22] and [21]. Now, let us begin with the following technical lemma about the 
derivative of the Riesz potential.

Lemma 2.1. Let 0 < s ≤ 1 and ρ ∈ L1(R) ∩ L∞(R) ∩ Cα(R) with α > max(1 − 2s, 0). Then 
(−�)−sρ ∈ C1(R) and for any x ∈ R,

∂x(−∂xx)
−sρ(x) = −c1,s(1 − 2s)

ˆ

R

x − y

|x − y|3−2s

(
ρ(y) − ρ(x)

)
dy, if s ∈ (0,1/2]

or

∂x(−∂xx)
−sρ(x) = −c1,s(1 − 2s)

ˆ

R

x − y

|x − y|3−2s
ρ(y) dy, if s ∈ (1/2,1].

Proof. Firstly, let us assume that s ∈ (0, 1/2). To simplify the notation, we write ks(x) :=
c1,s |x|2s−1. Hence, we note that under the hypothesis on ρ, we have that

us(x) := −c1,s(1 − 2s)

ˆ

R

(x − y)

|x − y|3−2s

(
ρ(y) − ρ(x)

)
dy = k′

s ∗ (
ρ − ρ(x)

)
is well defined for all x ∈R.

Now, let η ∈ C1(R) be a radial function such that 0 ≤ η ≤ 1, η(x) = 0 if |x| ≤ 1, η(x) = 1 if 
|x| ≥ 2 and |η′| ≤ 2. Define ηε(x) := η(ε−1x) and
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p(x) := (−∂xx)
−sρ(x) = ks ∗ ρ(x),

pε(x) := (ksηε) ∗ ρ(x).

Since ρ is bounded, we have that p → pε uniformly on R as

∣∣p(x) − pε(x)
∣∣ ≤

ˆ

|x−y|≤2ε

ks(x − y)
(
1 − ηε(x − y)

)
ρ(y)dy

≤ ‖ρ‖∞
ˆ

|y|≤2ε

1

|y|1−2s
dy = C‖ρ‖∞ε2s

for all x ∈ R, where C depends on s.
By the smoothness of ksηε we know that pε ∈ C1 and p′

ε(x) = (kd,sηε)
′ ∗ ρ(x), and since 

ksηε is radial, we can write

p′
ε(x) =

ˆ

R

(ksηε)
′(x − y)

(
ρ(y) − ρ(x)

)
dy.

Therefore,∣∣us(x) − p′
ε(x)

∣∣
=

∣∣∣∣ ˆ

|x−y|≤2ε

(
ks(1 − ηε)

)′
(x − y)

(
ρ(y) − ρ(x)

)
dy

∣∣∣∣
≤

ˆ

|x−y|≤2ε

(∣∣k′
s(x − y)

∣∣∣∣1 − ηε(x − y)
∣∣ + ks(x − y)

∣∣η′
ε(x − y)

∣∣)∣∣ρ(y) − ρ(x)
∣∣dy

≤
ˆ

|x−y|≤2ε

(
c1,s(1 − 2s)

|x − y|2−2s
+ 2

ε

c1,s

|x − y|1−2s

)∣∣ρ(y) − ρ(x)
∣∣dy

≤ C

ˆ

|x−y|≤2ε

(
1

|x − y|2−2s−α
+ 1

ε

1

|x − y|1−2s−α

)
dy

≤ C1ε
α+2s−1, (2.5)

where the constant C1 only depends on s, α and on the Hölder constant of ρ. Thus, we also have 
that p′

ε converges uniformly to us as ε → 0, and therefore p′ = us .
Now, if s ∈ (1/2, 1], we only need to adapt the argument in formula (2.5) for the function

us(x) := −c1,s(1 − 2s)

ˆ

R

x − y

|x − y|3−2s
ρ(y) dy = k′

s ∗ ρ

and using that p′
ε = (ksηε)

′ ∗ ρ in the following way
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∣∣us(x) − p′
ε(x)

∣∣ = C‖ρ‖∞
ˆ

|x−y|≤2ε

(
1

|x − y|2−2s
+ 1

ε

1

|x − y|1−2s

)
dy

= C2ε
2s−1,

where the constant C2 only depends on s and on the L∞ norm of ρ.
Finally, if s = 1/2 we have that

(−∂xx)
− 1

2 ρ(x) = c1, 1
2

ˆ

R

log |x − y|ρ(y)dy

and

u 1
2
(x) = −c1, 1

2

ˆ

R

(x − y)

|x − y|2
(
ρ(y) − ρ(x)

)
dy.

Arguing as above for k 1
2
(x) := c1, 1

2
log |x| we arrive at the following estimates:

∣∣p(x) − pε(x)
∣∣ ≤ ‖ρ‖∞

ˆ

|y|≤2ε

∣∣log |y|∣∣dy = C‖ρ‖∞ε
(| log 2ε| + 1

)
and

∣∣u 1
2
(x) − p′

ε(x)
∣∣ ≤ C

ˆ

|x−y|≤2ε

(
1

|x − y| + 1

ε

∣∣log |x − y|∣∣)∣∣ρ(y) − ρ(x)
∣∣dy

≤ C

ˆ

|x−y|≤2ε

(
1

|x − y|1−α
+ 1

ε
|x − y|α∣∣log |x − y|∣∣)dy

≤ Cεα
(
1 + ε + ε| log 2ε|).

Therefore, since all these estimates are uniform in x, we conclude that the lemma is true for all 
s ∈ (0, 1]. �
Remark 2.2. With this expression for the derivative of (−∂xx)

−sρ for s < 1
2 , we obtain the 

following equality that shall be used in the next proposition:

∂x(−∂xx)
−sρ(x)

c1,s(2s − 1)
= lim

r→0

ˆ

|x−y|≥r

x − y

|x − y|3−2s

(
ρ(y) − ρ(x)

)
dy

= lim
r→0

ˆ

|x−y|≥r

x − y

|x − y|3−2s
ρ(y) dy − lim

r→0
ρ(x)

ˆ

|x−y|≥r

x − y

|x − y|3−2s
dy

= lim
r→0

ˆ
x − y

|x − y|3−2s
ρ(y) dy,
|x−y|≥r
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where we only used the fact that ks is radial and k′
s is integrable at the infinity. For s > 1

2 , the 
expression is valid without taking the limit, as the kernel is locally integrable.

The next proposition shows that the HWI inequality holds for E and Eε at least for a class of 
bounded and Hölder continuous functions on R. The proof follows the arguments given in [6]
where the same inequality is proved for the case of the logarithmic interaction and strongly 
relies on the fact that the optimal transport map w.r.t. the Wasserstein distance is a monotone 
nondecreasing function on R. We point out that the convexity of the confinement due to the drift 
measured by λ > 0 appears explicitly in the inequalities as in [10].

Theorem 2.3. Let s ∈ (0, 1], λ ∈ R, ρ ∈ L1(R) ∩ L∞(R) ∩ Cα(R) nonnegative where α >

max(1 − 2s, 0) and with 
´

ρ = 1, and ρ∞ the minimum point of E on P2(R). Then

E(ρ) − E(ρ∞) ≤ √
I(ρ)W2(ρ,ρ∞) − λ

2
W 2

2 (ρ,ρ∞).

Proof. For s = 1/2 this result was proven at [6]. So, let us suppose that s ∈ (0, 1/2) and, to 
simplify, let us denote Kρ(x) = ∂x(−∂xx)

−sρ(x). Since ρ is absolutely continuous with respect 
to the Lebesgue measure, there exists a nondecreasing transport map θ such that θ#ρ = ρ∞.

Then, let us write

√
I(ρ)W2(ρ,ρ∞) − λ

2
W 2

2 (ρ,ρ∞) − E(ρ) + E(ρ∞) = T1 + T2 + T3

where

T1 :=
(ˆ ∣∣Kρ(x) + λx

∣∣2
dρ(x)

)1/2(ˆ ∣∣x − θ(x)
∣∣2

dρ(x)

)1/2

−
ˆ (

Kρ(x) + λx
)(

x − θ(x)
)
dρ(x),

T2 :=
ˆ {

λx
(
x − θ(x)

) − λ

2
x2 + λ

2
θ(x)2 − λ

2

∣∣x − θ(x)
∣∣2

}
dρ(x),

T3 := c1,s

2

ˆ
dρ(x)dρ(y)

|θ(x) − θ(y)|1−2s
− c1,s

2

ˆ
dρ(x)dρ(y)

|x − y|1−2s

−
ˆ

Kρ(x)
(
θ(x) − x

)
dρ(x),

where we added and subtracted several terms. This allows us to show that T1 ≥ 0 by the Cauchy–
Schwarz inequality and T2 = 0 for all λ ∈ R. Now, for T3 let us call ks(x) = c1,s |x|2s−1. Then, 
by Remark 2.2

Kρ(x) = lim
r→0

ˆ

|y−x|≥r

k′
s(x − y)dρ(y)

and, since k′
s(x) = −k′

s(−x), we can write
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ˆ
Kρ(x)

(
θ(x) − x

)
dρ(x)

= lim
r→0

ˆ

|y−x|≥r

(
θ(x) − x

)
k′
s(x − y)dρ(y)dρ(x)

= 1

2
lim
r→0

ˆ

|y−x|≥r

(
θ(x) − θ(y) − x + y

)
k′
s(x − y)dρ(y)dρ(x).

Furthermore,

c1,s

ˆ
dρ(x)dρ(y)

|x − y|1−2s
= lim

r→0

ˆ

|y−x|≥r

ks(x − y)dρ(x)dρ(y),

c1,s

ˆ
dρ(x)dρ(y)

|θ(x) − θ(y)|1−2s
= lim

r→0

ˆ

|y−x|≥r

ks

(
θ(x) − θ(y)

)
dρ(x)dρ(y)

and then,

T3 = lim
r→0

1

2

ˆ {
ks

(
θ(x) − θ(y)

) − ks(x − y) − k′
s(x − y)

(
θ(x) − θ(y) − x + y

)}
dρ(x)dρ(y).

The integrand is nonnegative by the convexity of ks on the positive semi-axis and by the mono-
tonicity of θ , so T3 ≥ 0 as well.

If s ∈ (1/2, 1], we still have ks(x) = c1,s |x|2s−1 convex because c1,s is negative in this range. 
Thus, the previous computations still apply. �
Remarks. 1) It is known that, if the HWI inequality holds for some λ > 0, then the Log-Sobolev 
inequality also holds. One just needs to maximize the right-hand side for W2 ≥ 0 or use the 
Young’s inequality for (λ− 1

2
√
I )(λ

1
2 W2). Then we have that

E(ρ) − E(ρ∞) ≤ 1

2λ
I(ρ), (2.6)

for all ρ satisfying the assumptions of the theorem above.
2) Note that in the proof of Theorem 2.3 we did not use the fact that ρ∞ is the minimum of 

E , only the fact that E(ρ∞) < ∞. In fact, the same inequality holds for any ρ0 in the place of 
ρ∞, and also with ρ∞ in the place of ρ, since ρ∞ is absolutely continuous with respect to the 
Lebesgue measure, which allows the existence of the map θ by the item (iii) from page 742.
Therefore, if we exchange ρ and ρ∞ in the HWI we obtain the fractional version of the so-called
Talagrand inequality or transportation cost inequality

W2(ρ,ρ∞) ≤
√

2

λ

(
E(ρ) − E(ρ∞)

)
. (2.7)

We can derive similar results for the ε problems.
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Proposition 2.4. Let s ∈ (0, 1], λ > 0, 0 < ε < λ/2π , ρ ∈ L1(R) ∩L∞(R) ∩Cα(R) nonnegative 
where α > 1 − 2s and with 

´
ρ = 1, and ρε∞ the minimum point of Eε on P2(R). Then

Eε(ρ) − Eε

(
ρε∞

) ≤ √
Iε(ρ)W2

(
ρ,ρε∞

) − λ

2
W 2

2

(
ρ,ρε∞

)
.

Proof. The proof is basically the same, but since we have a new term inside the respective 
diffusion, we shall include it for completeness.

As in the previous theorem, let Kρ(x) = ∂x(−∂xx)
−sρ(x) and θ be such that θ#ρ = ρε∞. 

Then, we decompose the inequality as

√
Iε(ρ)W2

(
ρ,ρε∞

) − λ

2
W 2

2

(
ρ,ρε∞

) − Eε(ρ) + Eε

(
ρε∞

) = T1 + T2 + T3

where

T1 :=
(ˆ ∣∣Kρ(x) + λx + ε∂x logρ(x)

∣∣2
dρ(x)

)1/2(ˆ ∣∣x − θ(x)
∣∣2

dρ(x)

)1/2

−
ˆ (

Kρ(x) + λx + ε∂x logρ(x)
)(

x − θ(x)
)
dρ(x),

T2 := −
ˆ (

ε∂x logρ(x) + λx
)(

θ(x) − x
)
dρ −

ˆ (
λ

2
x2 + ε logρ

)
dρ

+
ˆ (

λ

2
x2 + ε logρε∞

)
dρε∞ − λ

2

ˆ ∣∣x − θ(x)
∣∣2

dρ(x),

T3 := c1,s

2

ˆ
dρ(x)dρ(y)

|θ(x) − θ(y)|1−2s
− c1,s

2

ˆ
dρ(x)dρ(y)

|x − y|1−2s

−
ˆ

Kρ(x)
(
θ(x) − x

)
dρ(x).

By the same arguments, we conclude that T1, T3 ≥ 0. Now, for T2, let us define the following 
functional

H(f |g) :=
ˆ

f (x) log

(
f (x)

g(x)

)
dx

for all nonnegative f, g ∈ L1(R) with g > 0. Then we can rewrite T2 in the following way

T2 = ε

(
−
ˆ

∂x log

(
ρ(x)

e−πx2

)(
θ(x) − x

)
dρ(x) − H

(
ρ|e−πx2)

+ H
(
ρε∞

∣∣e−πx2) + π

ˆ ∣∣θ(x) − x
∣∣2

dρ

)
+

(
1 − 2π

ε

)ˆ {
−λx

(
θ(x) − x

) − λ
x2 + λ

θ(x)2 + λ(
θ(x) − x

)2
}

dρ(x).

λ 2 2 2
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Note that the second line is equal to (λ − 2πε) ́ |θ(x) − x|2 dx, which is nonnegative for 
ε < λ/2π . For the first line, we can use the proof of the HWI inequality made in [25]. Actually, 
Otto and Villani showed that whenever ρ, ρε∞ ∈ C∞

c (R) ∩ P(R) and V ∈ C2(R) is such that ´
e−V dx = 1 and V ′′ ≥ λ for some constant λ ∈R, then

H
(
ρε∞

∣∣e−V
) − H

(
ρ
∣∣e−V

) −
ˆ

∂x log
ρ(x)

e−V (x)

(
θ(x) − x

)
ρ(x)dx

− λ

2

ˆ ∣∣θ(x) − x
∣∣2

ρ(x)dx ≥ 0,

and for the density argument given in the proof of Theorem 9.17 of [21], we have that this 
inequality holds for all ρ, ρε∞ ∈ L1(R) ∩P2(R). So, applying this for V (x) = πx2 we have that 
λ = 2π and we conclude that T2 ≥ 0. �
Remark 2.5. By the same arguments given for (2.6) and s(2.7), we conclude that the following 
Log-Sobolev and Talagrand inequalities hold for Eε, as long as ρ satisfies the assumptions of 
Proposition 2.4:

Eε(ρ) − Eε

(
ρε∞

) ≤ 1

2λ
Iε(ρ),

W2
(
ρ,ρε∞

) ≤
√

2

λ

(
Eε(ρ) − Eε

(
ρε∞

))
. (2.8)

Remark 2.6. These results also work for a general confinement potential V : R → R instead of 
the quadratic one λ2x2, as long as V − λ

2 x2 is convex.

Finally, let us prove the following lemma that shall be used in the last section for the conver-
gence in entropy of the solutions of the approximate problems. The proof uses similar arguments 
given in Theorem 1.4 of [33]. Let us just remind that a sequence {ρn}n∈N ⊆ P(R) is said to 

converge in the weak-∗ sense to ρ ∈ P(R), ρn
∗
⇀ ρ if

lim
n→∞

ˆ

R

ϕ(x)dρn(x) =
ˆ

R

ϕ(x)dρ(x), for all ϕ ∈ C0(R)

where C0(R) is the space of continuous functions on R that goes to zero at infinity. It is clear 
that convergence in W2 implies weak convergence and weak convergence implies weak-∗ con-
vergence.

Lemma 2.7. The entropy Eε is weak-∗ lower semi-continuous for all ε ≥ 0 on Pac(R).

Proof. We know from [24] that the functional

ρ �→
ˆ

ρ logρ
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is weak-∗ lower semi-continuous on Pac(R), so we just need to show the result for E . For this, 
let us write it in the following way:

E(ρ) =
ˆ

R2

F(x, y) dρ(x)dρ(y),

where

F(x, y) =
{

λ
4 (x2 + y4) + c1,s

2
1

|x−y|1−2s , if x �= y,

+∞, if x = y.

Since F is nonnegative and smooth outside the diagonal x = y, we can find a sequence 
{Fk}k∈N ⊂ C0(R

2) such that Fk(x, y) ↗ F(x, y) for all (x, y) ∈ R
2. Therefore, by the mono-

tone convergence theorem and the fact that ρn × ρn
∗
⇀ ρ × ρ if ρn

∗
⇀ ρ, we have that

E(ρ) =
ˆ

F(x, y) dρ(x)dρ(y) = lim
k→∞

ˆ
Fk(x, y) dρ(x)dρ(y)

= lim
k→∞ lim

n→∞

ˆ
Fk(x, y) dρn(x) dρn(y) ≤ lim

n→∞

ˆ
F(x, y) dρn(x) dρn(y)

= lim inf
n→∞ E(ρn). �

3. Exponential convergence

In this section we shall prove that the energy of the solution decays exponentially fast for the 
regularized equation with mollified initial data, and then passing the limit on these regularizing 
parameters.

Theorem 3.1. Let ρ0 ∈ L1(R) ∩ L∞(R) such that

0 ≤ ρ0(x) ≤ Ae−a|x|,

for some constants a, A > 0. Then, for each 0 < s < 1/2, the solution ρ(t, ·) of (1.1) with initial 
data ρ0 satisfies

E
(
ρ(t)

) − E(ρ∞) ≤ e−2λt
(
E(ρ0) − E(ρ∞)

)
.

Proof. In order to use the results of Section 2, firstly we shall assume that

ρ0 ∈ C∞(R) and
ˆ

R

ρ0(x) dx = 1. (3.1)

Let ρ∞, ρε∞ ∈ P(R) be the minimizers for E and Eε respectively. By the assumption on ρ0 we 
know from the proofs of Theorems 4.1 and 4.2 in [1] that the solutions ρ and ρε to{

∂tρ = ∂x

(
ρ∂x(−∂xx)

−sρ + λxρ
)
, in R× (0,∞),

(3.2)

ρ(0) = ρ0, in R,
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and {
∂tρ

ε = ∂x

(
ρε∂x(−∂xx)

−sρε + λxρε
) + ε∂xxρ

ε, in R× (0,∞),

ρε(0) = ρ0, in R,
(3.3)

satisfy ρ ∈ C([0, ∞); L1(R)) and ρε ∈ C1((0, ∞) ×R) for all ε > 0 sufficiently small. Because 
of the regularization in (3.3), for fixed time t > 0, ρε(t, .) is in fact in C2(R). Moreover, there 
exist C(t), a(t) > 0, such that

0 ≤ ρ(t, x), ρε(t, x) ≤ C(t)e−a(t)|x|. (3.4)

Since ρε(t) is smooth, we can apply the Log-Sobolev inequality (2.8) for Eε and obtain that 
for all t ≥ 0,

Eε

(
ρε(t)

) − Eε

(
ρε∞

) ≤ 1

2λ
Iε

(
ρε(t)

)
.

Making use of the fact that

d

dt
Eε

(
ρε(t)

) = −Iε

(
ρε(t)

)
,

we conclude that

Eε

(
ρε(t)

) − Eε

(
ρε∞

) ≤ e−2λt
(
Eε(ρ0) − Eε

(
ρε∞

))
. (3.5)

To take the limits as ε → 0+, let us analyze each term on both sides of (3.5) separately:

i) The easiest one is the limit Eε(ρ0), since limε→0+ Eε(ρ0) = E(ρ0) holds as long as 
Eε(ρ0) < ∞ for some ε > 0, which is true by the assumptions on ρ0.

ii) For the term Eε(ρ
ε∞), let us first define the following auxiliary functional on P2,ac(R):

H(ρ) := H
(
ρ
∣∣e−πx2) = π

ˆ
x2ρ +

ˆ
ρ logρ.

Since 
´

e−πx2
dx = 1, we can write

H(ρ) =
ˆ

ρ

e−πx2 log

(
ρ

e−πx2

)
e−πx2

dx

=
ˆ [

ρ

e−πx2 log

(
ρ

e−πx2

)
− ρ

e−πx2 + 1

]
e−πx2

dx,

which is nonnegative by Jensen’s inequality.
Let us prove that lim supε→0 Eε(ρ

ε∞) ≤ E(ρ∞). Using the fact that ρε∞ is the minimum for Eε , 
we obtain the following inequality

Eε

(
ρε∞

) ≤ Eε(ρ∞) = E(ρ∞) + ε

ˆ
ρ∞ logρ∞. (3.6)
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By the characterization of the minimum ρ∞ in [2,26], we know that ρ∞ ∈P2
ac(R) ∩L∞(R), 

and hence the second term on the right-hand side of (3.6) is finite. Thus, we can take the 
limit ε → 0 and obtain that lim supε→0+ Eε(ρ

ε∞) ≤ E(ρ∞).
For the opposite inequality lim infε→0+ Eε(ρ

ε∞) ≥ E(ρ∞), we can use the fact that ρ∞ is the 
minimum for E and write

E(ρ∞) ≤ E
(
ρε∞

) = Eε

(
ρε∞

) − εH
(
ρε∞

) + επ

ˆ
x2ρε∞ (3.7)

≤ Eε

(
ρε∞

) + επ

ˆ
x2ρε∞. (3.8)

So, it is sufficient to prove that the second moments of ρε∞ are uniformly bounded for ε > 0
sufficiently small. For this, note that

0 ≤ λ

4

ˆ
x2ρε∞ ≤ (1 − επ)λ

2

ˆ
x2ρε∞

≤ (1 − επ)λ

2

ˆ
x2ρε∞ + c1,s

2

ˆ
dρε∞(x) dρε∞(y)

|x − y|1−2s
+ ελ

2
H

(
ρε∞

)
= Eε

(
ρε∞

) ≤ Eε(ρ∞) ≤ E(ρ∞) +
∣∣∣∣ˆ ρ∞ logρ∞

∣∣∣∣
for all 0 < ε < 1/2π . Therefore, by (3.7) and (3.8)

E(ρ∞) ≤ lim inf
ε→0+ Eε

(
ρε∞

) + lim
ε→0+ επ

ˆ
x2ρε∞ = lim inf

ε→0+ Eε

(
ρε∞

)
.

Hence, as ε goes to zero from above, we have that the minimum of Eε(ρ) indeed converge 
to the minimum of E(ρ), i.e., E(ρ∞) = limε→0+ Eε(ρ

ε∞).
iii) Finally, let us prove that E(ρ(t)) ≤ lim infε→0+ Eε(ρ

ε(t)), as a consequence of the conver-
gence of ρε(t) to ρ(t) in P2,ac(R) and the lower semi-continuity of the energy Eε. For this 
we can use the bound (3.4) to obtain

lim
R→∞ sup

ε>0

ˆ

|x|>R

ρε(t, x) dx ≤ lim
R→∞C(t)

ˆ

|x|>R

e−a(t)|x| dx = 0,

which means that ρε(t) is a tight family of probability measures and by Prokhorov Theorem, 
there exist a sequence εn → 0+ such that ρεn(t) ⇀ ρ(t), i.e.,

ˆ

R

ϕ(x)ρεn(t, x) dx →
ˆ

R

ϕ(x)ρ(t, x) dx, ∀ϕ ∈ Cb(R). (3.9)

Moreover, due to uniform exponential bound, we also have that

lim
R→∞ sup

εn→0

ˆ
x2ρεn(t, x) dx ≤ lim

R→∞C(t)

ˆ
x2e−a(t)|x| dx = 0. (3.10)
|x|≥R |x|>R
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Therefore, by the equivalent conditions of weak convergence we have that (3.9) and (3.10)
imply that ρεn(t) converges to ρ(t) in (P2(R), W2). Now, for the following inequality

E
(
ρεn(t)

) = Eεn

(
ρεn(t)

) − εnH
(
ρεn(t)

) + πεn

ˆ
x2ρεn(t, x)

≤ Eεn

(
ρεn

) + πεn

ˆ
x2ρεn(t, x),

and by the fact that E is lower semi-continuous in (P2(R), W2) and the second moments of 
ρεn(t) are uniformly bounded w.r.t. n, we obtain

E
(
ρ(t)

) ≤ lim inf
n→∞ E

(
ρεn(t)

) ≤ lim inf
n→∞ Eεn

(
ρεn(t)

)
.

Putting all the limits as ε goes to zero together, we can conclude the exponential convergence of 
E(ρ(t)) − E(ρ∞), that is,

E
(
ρ(t)

) − E(ρ∞) ≤ lim inf
n→∞ Eεn

(
ρεn(t)

) − lim
n→∞Eεn

(
ρεn∞

)
= lim inf

n→∞
(
Eεn

(
ρεn(t)

) − Eεn

(
ρεn∞

))
≤ e−2λt lim inf

n→∞
(
Eεn(ρ0) − Eεn

(
ρε∞

))
= e−2λt

(
E(ρ0) − E(ρ∞)

)
.

If the regularity assumption in (3.1) is not true, we can proceed the above argument with 
the mollified initial data ρ0,δ = ηδ ∗ ρ0, which has the same bound and mass as ρ0. Since we 
still have the same exponential bounds for the respective solutions ρδ(t), we can argue as above 
and conclude that E(ρ(t)) ≤ lim infδ→0 E(ρδ(t)) holds for all t > 0. For t = 0 we can use the 
exponential bound of the initial data and the Dominated Convergence Theorem to conclude that 
limδ→0 E(ρδ,0) = E(ρ0). �

As a direct consequence of the Talagrand inequality in (2.7), we also obtain the exponential 
decay in Wasserstein distance.

Corollary 3.2. Assume that ρ0 satisfies 0 ≤ ρ0(x) ≤ Ae−a|x| for all x ∈ R and some a, A > 0. 
Then, for each 0 < s < 1/2, the solution of (1.1) with initial data ρ0 satisfies

W2
(
ρ(t), ρ∞

) ≤ e−λt

√
2

λ

(
E(ρ0) − E(ρ∞)

)
.

For the Fokker–Planck equation or the classic Porous Medium Equations, exponential con-
vergence of the relative entropy E(ρ) − E(ρ∞) implies convergence of ρ to the steady states ρ∞
in some classical Lp norms, using for this the classical Csiszár–Kullback–Pinsker inequality as 
in [28,29]. Here we can show that the convergence in the relative entropy implies the convergence 
of the norm ‖(−∂xx)

− s
2 (ρ − ρ∞)‖2.
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Lemma 3.3. Let ρ∞ be the unique minimizer of E , then for any ρ ∈P2(R),

1

2

∥∥(−∂xx)
− s

2 (ρ − ρ∞)
∥∥2

2 ≤ E(ρ) − E(ρ∞).

Proof. The characterization (2.1a) and (2.1b) of the global minimizer ρ∞ and the nonnegativity
of ρ − ρ∞ outside of the support of ρ∞ imply that

0 = C∗
ˆ

R

(ρ − ρ∞) ≤
ˆ

R

(
(−�)−sρ∞(x) + λ

|x2|
2

)
(ρ − ρ∞).

Therefore, we deduce

E(ρ) − E(ρ∞) = 1

2

ˆ

R

ρ(−∂xx)
−sρ − 1

2

ˆ

R

ρ(−∂xx)
−sρ∞ + λ

2

ˆ

R

|x|2(ρ − ρ∞)

≥ 1

2

ˆ

R

ρ(−∂xx)
−sρ − 1

2

ˆ

R

ρ(−∂xx)
−sρ∞ −

ˆ

R

(ρ − ρ∞)(−∂xx)
−sρ∞

= 1

2

ˆ

R

(ρ − ρ∞)(−∂xx)
−s(ρ − ρ∞) = 1

2

∥∥(−∂xx)
− s

2 (ρ − ρ∞)
∥∥2

2. �

Since ‖(−∂xx)
− s

2 (ρ − ρ∞)‖2 is the H−s/2-norm of ρ − ρ∞, it is unlikely to produce a bound 
on any stronger Lp norm for the difference ρ − ρ∞. One way to show the exponential con-
vergence of ρ(t) to ρ∞ is to assume a uniform bound on a higher order norm of ρ − ρ∞. 
For example, if ‖(−∂xx)

s
2 (ρ − ρ∞)‖2 is uniformly bounded, then we have (easy to establish 

in Fourier space)

‖ρ − ρ∞‖2
2 ≤ ∥∥(−∂xx)

s
2 (ρ − ρ∞)

∥∥
2

∥∥(−∂xx)
− s

2 (ρ − ρ∞)
∥∥

2

and ‖ρ − ρ∞‖2 converges to zero also exponentially fast, but with a smaller rate.
Let us prove that in fact the exponential convergence also holds in L2 without any additional 

hypothesis. For this, since (−∂xx)
− s

2 u usually has more regularity than u, we need to look for an 
interpolation inequality containing some sort of fractional differentiation, which in our case, it 
seems natural to be a Hölder semi-norm, i.e., for every α ∈ (0, 1] and v ∈ Cα(R) we denote the 
α-Hölder semi-norm of v by

[v]α := sup
x �=y

|v(x) − v(y)|
|x − y|α

Therefore, to obtain the desired decay in L2 we shall use the following new interpolation 
inequality, that we will prove for any dimension d ≥ 1.

Theorem 3.4. Let 0 < α ≤ 1 and 0 < s < d/2 and 0 < r < α/2. There exists a constant C =
C(d, s, α) such that

‖u‖2 ≤ C
∥∥(−�)−

s
2 u

∥∥σ1[u]σ2
α ‖u‖σ3 (3.11)
2 1
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for all u ∈ L1(Rd) ∩ Cα(Rd) with

σ1 = r

s + r
, σ2 = s(d + 2r)

2(d + α)(s + r)
, σ3 = s(d + 2α − 2r)

2(d + α)(s + r)
.

Proof. We first use Fourier variables, Plancherel’s formula, and the Hölder’s inequality to inter-
polate between Ḣ r(Rd) and (−�)− s

2 u ∈ L2(Rd) obtaining

‖u‖2
2 =

ˆ

Rd

∣∣̂u(ξ)
∣∣2

dξ ≤
( ˆ

Rd

∣∣̂u(ξ)
∣∣2|ξ |−2s dξ

)σ1
( ˆ

Rd

∣∣̂u(ξ)
∣∣2|ξ |2r dξ

)1−σ1

= ∥∥(−�)−
s
2 u

∥∥2σ1
2

( ˆ

Rd

∣∣̂u(ξ)
∣∣2|ξ |2r dξ

)1−σ1

(3.12)

where σ1 = r/(s + r), for all 0 < s < 1/2 and r > 0.
Our aim now is to bound Ḣ r (Rd) by [u]α and ‖u‖1. We write the singular integral represen-

tation of this norm (Proposition 3.4 of [34]) and we split it as

‖u‖2
Ḣ r =

ˆ

Rd

∣∣̂u(ξ)
∣∣2|ξ |2r dξ = Cd,r

ˆ

Rd

ˆ

Rd

(u(x) − u(y))2

|x − y|d+2r
dx dy

= Cd,r

¨

|x−y|≤R

(u(x) − u(y))2

|x − y|d+2r
dx dy + Cd,r

¨

|x−y|>R

(u(x) − u(y))2

|x − y|d+2r
dx dy

:= I1 + I2.

To estimate I1, we make use of |u(x) − u(y)| ≤ [u]α|x − y|α to get, by the change of variables 
(z, w) = (x − y, x + y), that

I1 = Cd,r

¨

|x−y|≤R

(u(x) − u(y))2

|x − y|d+2r
dx dy ≤ Cd,r [u]α

¨

|x−y|≤R

|u(x) − u(y)|
|x − y|d+2r−α

dx dy

≤ C[u]α‖u‖1

ˆ

|z|≤R

|z|α−2r−d dz ≤ C[u]α‖u‖1R
α−2r ,

where the last step is allowed since 2r < α. On the other hand, we can similarly estimate the far 
field term as

I2 = Cd,r

¨

|x−y|≥R

(u(x) − u(y))2

|x − y|d+2r
dx dy ≤ 4Cd,r

ˆ

Rd

∣∣u(x)
∣∣2

dx

ˆ

|z|≥R

dz

|z|d+2r
≤ C‖u‖2

2R
−2r .

Joining the two integrals and optimizing in R, we infer

‖u‖2
r ≤ C‖u‖2(α−2r)/α‖u‖2r/α[u]2r/α. (3.13)
Ḣ 2 1 α
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We finally use the classical interpolation results between Lp(Rd) and Cα(Rd) spaces due to 
L. Nirenberg in [35], see also [36] for a full statement. This interpolation inequality ensures the 
existence of a constant depending on α and d such that

‖u‖2
2 ≤ C‖u‖(d+2α)/(α+d)

1 [u]d/(α+d)
α .

Putting it together with (3.13), it yields

‖u‖2
Ḣ r ≤ C‖u‖(d+2α−2r)/(d+α)

1 [u](d+2r)/(d+α)
α .

Finally, we plug this into (3.12) to conclude (3.11). �
Therefore, from Theorem 3.1 and Theorem 3.4, we derive the following decay towards the 

stationary state under the L2 norm.

Corollary 3.5. Assume that ρ0 satisfies 0 ≤ ρ0(x) ≤ Ae−a|x| for all x ∈ R and some a, A ≥ 0. 
Then, for each 0 < s < 1/2, the solution of (1.1) with initial data ρ0 satisfies

∥∥ρ(t) − ρ∞
∥∥

2 ≤ C
(
1 + [ρ∞]α

)σ2
(
E(ρ0) − E(ρ∞)

) σ1
2 e−λσ1t .

Proof. Given ρ0 under the conditions above, we know from Theorem 5.1 of [37] that there 
exists an α ∈ (0, 1) such that the solution ρ of (1.1) satisfies ρ(t) ∈ Cα(R) for all t > 0 with a 
uniform bound in time. Since ρ∞ is (1 − s)-Hölder continuous, we can use inequality (3.11) for 
u = ρ(t) − ρ∞ and 0 < r < 2 min(α, 1 − s) to conclude. �

Let us point out that the decay of the entropy in Theorem 3.1 implies a uniform in time control 
of the second moment of the solutions trivially at least for 0 < s < 1/2. Otherwise, one has to 
work a bit due to the sign of the constant in the fractional operator. In any case, a uniform in time 
control of the second moments together with the L2-decay rates implies L1-decay rates of the 
form

∥∥ρ(t) − ρ∞
∥∥

1 ≤
ˆ

|x|<R

∣∣ρ(t, x) − ρ∞(x)
∣∣dx +

ˆ

|x|≥R

∣∣ρ(t, x) − ρ∞(x)
∣∣dx

≤ C

(
Rd/2

∥∥ρ(t) − ρ∞
∥∥

2 + R−2
ˆ

Rd

|x|2(ρ(t, x) + ρ∞(x)
)
dx

)

≤ C
(
E(ρ0) + E(ρ∞)

)d/(d+4)∥∥ρ(t) − ρ∞
∥∥4/(d+4)

2 , (3.14)

by choosing R ∼ ((E(ρ0) + E(ρ∞))/‖ρ(t) − ρ∞‖2)
2/(d+4); see a similar calculation in [38, 

Lemma 2.24] for instance. In one dimension, using Corollary 3.5, we obtain the decay rate 
e−4λσ1t/5 for ‖ρ(t) − ρ∞‖1.

We finally remark that the decay in Lp-norms obtained via Corollary 3.5 and (3.14) are trans-
lated through the change of variables (1.4)–(1.5) into algebraic decay rates toward self-similar 
solutions of the original fractional porous medium equation (1.2).
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4. Fractional diffusion in higher dimensions and open problems

In this section, we first show some formal computations using the Bakry–Émery strategy [27]
to identify the main technical problem with passing from dimension d = 1 to d > 1 in the results 
about the exponentially fast decay of the relative entropy E(ρ|ρ∞) := E(ρ) − E(ρ∞). We shall 
do this by taking the second order time derivative of E(ρ|ρ∞) along the evolution equation (1.1).

We first rewrite Eq. (1.1) as

ρt = ∇ · (ρ∇ξ) with ξ := (−�)−sρ + λ|x|2/2. (4.1)

Assuming that ρ (and thus ξ ) is smooth enough, taking the time derivative of the entropy dissi-
pation rate I(ρ) along the evolution equation, we obtain

d

dt
I(ρ) =

ˆ
ρt |∇ξ |2 + 2

ˆ
ρ∇ξ · ∇ξt

=
ˆ

∇ · (ρ∇ξ)|∇ξ |2 + 2
ˆ

ρ∇ξ · ∇[
(−�)−s

(∇ · (ρ∇ξ)
)]

.

Using the fact D2ξ = D2(−�)−sρ + λI for the Hessian matrix of ξ , the first term on the right-
hand side above can be written asˆ

∇ · (ρ∇ξ)|∇ξ |2 = −2
ˆ

ρ
〈
D2ξ · ∇ξ,∇ξ

〉 = −2λI(ρ) − 2
ˆ

ρ
〈
D2(−�)−sρ · ∇ξ,∇ξ

〉
.

Therefore, dI(ρ)/dt = −2λI(ρ) − 2R(ρ) with

R(ρ) =
ˆ

ρ
〈
D2(−�)−sρ · ∇ξ,∇ξ

〉 − ˆ
ρ∇ξ · ∇[

(−�)−s
(∇ · (ρ∇ξ)

)]
. (4.2)

The entropy–entropy dissipation method can be summarized as follows: if R(ρ) ≥ 0 for the 
solution ρ, then from the conditions dE(ρ)/dt = −I(ρ) and dI(ρ)/dt ≤ −2λI(ρ), we can 
conclude that I(ρ)(t) ≤ I(ρ)(0)e−2λt and E(ρ)(t) − E(ρ∞) ≤ (E(ρ)(0) − E(ρ∞))e−2λt , or the 
exponential convergence of both I(ρ)(t) and E(ρ)(t) − E(ρ∞) towards zero.

When s = 0, Eq. (1.1) reduces to the standard porous medium equation with quadratic non-
linearity. In this special case, the nonnegativity of R(ρ) was established in [19] using several 
integration by parts, leading to (with ξ = ρ + λ|x|2/2)

R(ρ) = 1

2

ˆ
ρ2[(�ξ)2 + ∥∥D2ξ

∥∥2
F

] ≥ 0.

Here ‖A‖F = √
tr(AT A) is the Frobenius norm of the matrix A. Consequently, by deducing 

various decay on the norms of ρ(t, ·) − ρ∞(·), the solution ρ converges to its steady state expo-
nentially fast.

However, in the case s ∈ (0, 1) considered here, it is not immediately clear whether R(ρ)

given in (4.2) above is nonnegative or not. To simplify R(ρ), we need more explicit expressions 
of D2(−�)−sρ and ∇[(−�)−s(∇ · (ρ∇ξ))], or the second order derivatives of the Riesz poten-
tial of ρ and ρ∇ξ respectively. Since these derivatives cannot be applied to the corresponding 
kernel K(x) = cd,s |x|2s−d directly, we have to invoke the following technical lemma. For the 
sake of completeness, we shall also include a proof of it.
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Lemma 4.1. If ρ is a smooth function on Rd , then the components of the Hessian matrix of the 
Riesz potential (−�)−sρ are given by

Dij (−�)−sρ(x) = ∂ij (−�)−sρ(x) = −c+
d,s

ˆ
Kij (x − y)

(
ρ(x) − ρ(y)

)
dy, (4.3)

where Kij (x) = |x|2s−2−d((d + 2 − 2s)xixj /|x|2 − δij ) and c+
d,s = (d − 2s)cd,s .

Proof. Since the Riesz potential (−�)−s is a singular integral, these second order derivatives 
cannot be applied to the kernel (1.3) directly, but can be derived from several equivalent ap-
proaches. We shall interpret Dij (−�)−sρ as distributional derivatives, and obtain the expressions 
using the definition in a similar way as representing the velocity gradient using vorticity in fluid 
mechanics [39].

For any function φ ∈ S(Rd) (the Schwartz space of rapidly decreasing functions on Rd ), the 
distributional derivative Dij (−�)−sρ is defined as

〈
Dij (−�)−sρ,φ

〉 := 〈
(−�)−sρ,Dijφ

〉 = cd,s

ˆ

Rd

ˆ

Rd

ρ(y)

|x − y|d−2s

∂2φ(x)

∂xi∂xj

dy dx.

Next, we use integration by parts to shift the derivatives from the test function φ to the singular 
integral (−�)−sρ, by writing the above expression as a limit outside a ball. More precisely,

〈
(−�)−sρ,Dijφ

〉 = lim
ε→0+ cd,s

ˆ

Rd

ρ(y)

[ ˆ

B(y,ε)c

1

|x − y|d−2s

∂2φ(x)

∂xi∂xj

dx

]
dy

= lim
ε→0+(d − 2s)cd,s

ˆ

Rd

ρ(y)

[ ˆ

B(y,ε)c

xi − yi

|x − y|d+2−2s

∂φ(x)

∂xj

dx

]
dy,

where B(y, ε)c is the complement of the ball B(y, ε) = {x ∈ R
d | |x −y| < ε} and the integration 

on the boundary ∂B(y, ε) vanishes in the limit. Integrating by parts again, we obtain (the unit 
outer normal at x ∈ B(y, ε)c is −(x − y)/|x − y|)

lim
ε→0+ c+

d,s

ˆ

Rd

ρ(y)

[ ˆ

B(y,ε)c

Kij (x − y)φ(x)dx −
ˆ

∂B(y,ε)

(xi − yi)(xj − yj )

|x − y|d+3−2s
φ(x) dSx

]
dy,

(4.4)

where c+
d,s = (d − 2s)cd,s and

Kij (x) = 1

d − 2s

∂2

∂xi∂xj

|x|2s−d = 1

|x − y|d+2−2s

(
(d + 2 − 2s)

xixj

|x|2 − δij

)
.

Since for any x ∈ ∂B(y, ε), φ(x) = φ(y) + (x − y) · ∇φ(y) + O(|x − y|2), we can replace 
φ(x) by φ(y) in the boundary integral in (4.4), i.e.,
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lim
ε→0+

ˆ

∂B(y,ε)

(xi − yi)(xj − yj )

|x − y|d+3−2s
φ(x) dSx = φ(y) lim

ε→0+

ˆ

∂B(y,ε)

(xi − yi)(xj − yj )

|x − y|d+3−2s
dSx.

It is easy to see that for j �= i,
ˆ

∂B(y,ε)

(xi − yi)(xj − yj )

|x − y|d+3−2s
dSx =

ˆ

B(y,ε)c

Kij (x − y)dx = 0,

and for j = i,

ˆ

∂B(y,ε)

(xi − yi)(xi − yi)

|x − y|d+3−2s
dSx =

ˆ

B(y,ε)c

Kii(x − y)dx = |Sd−1|
d

ε2s−2,

where |Sd−1| is the area of the unit sphere Sd−1 = {x ∈R
d | |x| = 1}.

Therefore, the distributional derivative 〈Dij (−�)−sρ, φ〉 written as the limit (4.4) can be 
simplified as〈

Dij (−�)−sρ,φ
〉

= lim
ε→0+ c+

d,s

ˆ

Rd

ρ(y)

[ ˆ

B(y,ε)c

Kij (x − y)φ(x)dy − φ(y)

ˆ

B(y,ε)c

Kij (x − y)dy

]
dy

= lim
ε→0+ c+

d,s

¨

|x−y|>ε

Kij (x − y)
(
ρ(y)φ(x) − ρ(y)φ(y)

)
dy dx

= − lim
ε→0+ c+

d,s

ˆ

Rd

φ(x)

[ ˆ

B(x,ε)

Kij (x − y)
(
φ(x) − φ(y)

)
dy

]
dx.

This implies the following singular integral represent of the Hessian matrix of (−�)−sρ:

Dij (−�)−sρ(x) = −c+
d,s

ˆ

Rd

Kij (x − y)
(
ρ(x) − ρ(y)

)
dy.

In particular, we can write the fractional Laplacian (−�)1−sρ as

(−�)1−sρ(x) = −
d∑

i=1

Dii(−�)−sρ(x) = c+
d,s

ˆ

Rd

Kij (x − y)
(
ρ(x) − ρ(y)

)
dy

= c+
d,s

ˆ

Rd

ρ(x) − ρ(y)

|x − y|d+2−2s
dy,

recovering its standard singular integral representation [3,4]. �
Using the singular integral representation (4.3), we obtain
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R(ρ) =
∑
i,j

ˆ

Rd

{
ρ(x)∂iξ(x)∂j ξ(x)Dij (−�)−sρ(x) − ρ(x)∂iξ(x)Dij (−�)−s[ρ∂j ξ ](x)

}
dx

= −c+
d,s

∑
i,j

ˆ

Rd

ˆ

Rd

ρ(x)∂iξ(x)Kij (x − y)

× {
∂j ξ(x)

(
ρ(x) − ρ(y)

) − ρ(x)∂j ξ(x) + ρ(y)∂j ξ(y)
}
dy dx

= c+
d,s

∑
i,j

ˆ

Rd

ˆ

Rd

ρ(x)ρ(y)∂iξ(x)Kij (x − y)
{
∂j ξ(x) − ∂j ξ(y)

}
dy dx

= c+
d,s

2

ˆ

Rd

ˆ

Rd

ρ(x)ρ(y)
〈∇ξ(x) − ∇ξ(y),K(x − y)

(∇ξ(x) − ∇ξ(y)
)〉

dy dx, (4.5)

where K(x) is a matrix with entries Kij (x) and the integrand is symmetrized in the last step.
Similar expressions like

R(ρ) =
ˆ

Rd

ˆ

Rd

ρ(x)ρ(y)
〈(∇ξ(x) − ∇ξ(y)

)
,D2K(x − y)∇ξ(x) − ∇ξ(y)

〉
dy dx

already appear in the context of nonlocal equations for granular flow or biological swarms [21], 
when the interaction kernel K in the equation ρt = ∇ · (ρ∇K ∗ ρ) is smooth. Therefore, we 
recover the following proposition.

Proposition 4.2. Let ρt be a smooth solution of ρt = ∇ · (ρ∇K ∗ ρ) where K is a C2 smooth 
kernel such that the Hessian K = D2K is a nonnegative and locally integrable matrix function. 
Then the second time derivative of the energy E[ρ] = 1

2

´
ρK ∗ ρ is nonnegative.

In one dimension, K(x) = (2 − 2s)|x|2s−3 is a positive function almost everywhere and 
R(ρ) ≥ 0 for any nonnegative density ρ, leading to the desired exponential convergence. How-
ever, in higher dimensions, the matrix K(x) can be written as

K(x) = |x|2s−2−d
(
(d + 2 − 2s)x ⊗ x/|x|2 − I

)
,

which has one positive eigenvalue λ1 = (d + 1 − 2s)|x|2s−d−2 and d − 1 negative eigenvalues 
λi = −|x|2s−d−2, i = 2, . . . , d . Therefore, it is not known from (4.5) whether R(ρ) is positive or 
not. We can conclude that both the relative entropy E(ρ) −E(ρ∞) and the entropy dissipation rate 
converge to zero exponentially fast in dimension d = 1, but in the cases of d > 1, it is unknown 
whether there is always exponentially fast convergence.

The above approach for the exponential decay in one dimension can be proved rigorously, by 
establishing the results for mollified solutions to the regularized equation (with linear diffusion 
for example). One of the main difficulties in our case lies in the definition and continuity of 
the entropy dissipation I(ρ). The set of functions for which I is finite is difficult to handle. 
Therefore, passing to the limit the exponential decay of the entropy dissipation using density 
argument is a complicated task in our case.
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Another possible way to obtain the exponential decay for higher dimensions could be the 
following: we know from Section 2 that the exponential decay for the entropy follows from the 
generalized Log-Sobolev inequality

E(ρ) − E(ρ∞) ≤ 1

2λ
I(ρ). (4.6)

Therefore, in order to obtain (4.6) for other dimensions than one, one idea is to follow a 
similar approach as Del Pino and Bolbeault [20] by expanding both sides of (4.6) and obtaining 
the equivalent inequality

λ

[ˆ
Rd

ρ(x)(−�)−sρ(x) dx − 2
ˆ

Rd

ρ(x)x · ∇(−�)−sρ(x) dx

]

≤ 2λE(ρ∞) +
ˆ

Rd

ρ(x)
∣∣∇(−�)−sρ(x)

∣∣2
dx.

The second term on the left-hand side can be simplified using the definition of (−�)−sρ as the 
Riesz integral

(−�)−sρ(x) = cd,s

ˆ

Rd

1

|x − y|d−2s
ρ(y) dy,

and consequently

−2
ˆ

Rd

ρ(x)x · ∇(−�)−sρ(x) dx

= 2(d − 2s)cd,s

ˆ

Rd

ˆ

Rd

ρ(x)ρ(y)x · (x − y)|x − y|2s−d−2 dy dx

= (d − 2s)cd,s

ˆ

Rd

ˆ

Rd

ρ(x)ρ(y)|x − y|2s−d dy dx

= (d − 2s)

ˆ

Rd

ρ(x)(−�)−sρ(x) dx.

Therefore, the inequality (4.6) becomes

λ(d + 1 − 2s)

ˆ

Rd

ρ(x)(−�)−sρ(x) dx ≤ 2λE(ρ∞) +
ˆ

Rd

ρ(x)
∣∣∇(−�)−sρ(x)

∣∣2
dx. (4.7)

To get a self-consistent inequality, we have to write E(ρ∞) in terms of some functionals of ρ, 
which is established through the total conserved mass, M = ´

ρ = ´
ρ∞. Using the explicit 

expression for ρ∞(x) = Kd,s(R
2 − |x|2)1−s+ , the identity (2.2) implies that
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(−�)−sρ∞(x) = λ

2

d

d − 2s
R2 − λ

2
|x|2, for |x| ≤ R.

Therefore, we conclude that

E(ρ∞) = 1

2

ˆ

Rd

ρ∞(x)
(
(−�)−sρ∞(x) + λ|x|2)dx

= λKd,s

4

ˆ

Rd

(
R2 − |x|2)1−s

+

(
d

d − 2s
R2 + |x|2

)
dx

= λKd,s

4

dπd/2(d + 2 − 2s)Γ (2 − s)

(d − 2s)Γ (d/2 + 3 − s)
Rd+4−2s = K̃d,s

( ˆ

Rd

ρ(x) dx

) d+4−2s
d+2−2s

,

where (1.6) is used in the last step, together with the constant

K̃d,s = d(d + 2 − 2s)(d+4−2s)/(d+2−2s)λ(d−2s)/(d+2−2s)

(d − 2s)(d + 4 − 2s)2(d+2−s)/(d+2−2s)πd/(d−2−2s)
.

Therefore, (4.6) is reduced to an inequality bounding the integral 
´

ρ(−�)−sρ dx by 
´

ρ dx

and 
´

ρ|∇(−�)−sρ|2 dx, that is,

λ(d + 1 − 2s)

ˆ

Rd

ρ(−�)−sρ dx ≤ 2λK̃d,s

( ˆ

Rd

ρdx

) d+4−2s
d+2−2s +

ˆ

Rd

ρ
∣∣∇(−�)−sρ

∣∣2
dx,

where the equality holds for the steady state ρ∞. The last inequality and (4.6) are implied by the 
equivalent inequality

ˆ

Rd

ρ(−�)−sρ dx ≤ C

( ˆ

Rd

ρ dx

)2−3θ( ˆ

Rd

ρ
∣∣∇(−�)−sρ

∣∣2
dx

)θ

(4.8)

in the product form, where θ = d−2s
2d+2−4s

is determined by the homogeneity and C is given by 

any function ρ(x) = A(R2 − |x − x0|2)1−s+ (which is independent of A, R and x0).
However, unlike the case of porous medium equation [20], we still do not know how to 

prove (4.8) to establish the Log-Sobolev inequality (4.6). The main difficulty lies in the inte-
gral 

´
Rd ρ|∇(−�)−sρ|2, where basic questions like monotonicity under symmetric decreasing 

rearrangement are not clear. Because of the equivalence between (4.6) and (4.8), we showed in 
Section 2 that (4.8) holds in one dimension and it is a consequence of the HWI inequalities, but 
it remains an open problem to prove or disprove (4.8) in higher dimensions.
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