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Abstract

We consider a configuration where a planar shock reflects and diffracts as it hits a semi-infinite rigid 
screen. The diffracted reflected shock meets the diffracted expansion wave, created by the incident shock 
that does not hit the screen, and changes continuously from a shock into an expansion. The governing 
equation changes its type and becomes degenerate as the wave changes continuously from a shock to an 
expansion. Furthermore the governing equation has multiple free boundaries (transonic shocks) and an ad-
ditional degenerate sonic boundary (the expansion wave). We develop an analysis to understand the solution 
structure near which the shock strength approaches zero and the shock turns continuously into an expansion 
wavefront, and show the existence of the global solution to this configuration for the nonlinear wave system. 
Moreover we provide an asymptotic analysis to estimate the position of the change of the wave, and present 
intriguing numerical results.
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1. Introduction

This paper addresses one of the longstanding open problems in fluid mechanics and multidi-
mensional conservation laws: shock diffraction by a screen. For the weak diffracted waves, there 
are perturbation analyses by Lighthill [18] for a finite strength shock along a flat wall with an an-
gle near π , by Ting and Ludloff [27] for a finite strength shock along a thin airfoil with an angle 
close to zero, and by Keller and Blank [10] for a weak shock at any angle by a corner of any an-
gle. Hunter and Keller [7] worked on the weak shock diffraction by a rigid wedge and presented 
the asymptotic analysis of nonlinear geometrical acoustics by using Whitham’s nonlinearization 
technique [28]. Recently Hunter and Tesdall [8] provided an interesting numerical result on the 
asymptotically reduced problem, known as the unsteady transonic small disturbance equation, 
to understand the local structure of self-similar solutions near a point at which the diffracted 
reflected shock meets the diffracted expansion wave, and showed that the shock diffracts nonlin-
early into the expansion region. They [8] noted that the nonlinearity is important as the standard 
transonic scaling and matching with the global linearized solution is not sufficient to understand 
this region where the shock changes to an expansion wave. Those asymptotic analyses and nu-
merical results provide some understanding of solutions to the shock diffraction problems.

Despite the physical importance of the problem, however, there are very few rigorous results 
available. The purpose of this paper is to establish the global solution to the shock diffraction 
problem by a screen. More specifically, we consider a planar shock of constant strength hitting a 
semi-infinite, rigid screen at normal incidence. The incident shock, the part that does not hit the 
screen, diffracts around the screen, and creates an expansion wave behind it. The reflected shock 
also diffracts past the screen, and also creates a diffracted expansion wave behind the reflected 
shock. The diffracted reflected shock meets the diffracted expansion wave, and the wave changes 
continuously from a shock into an expansion. See Fig. 1. We study the solution structure of this 
transonic shock diffraction problem for the nonlinear wave system in two space dimensions.

The nonlinear wave system, which can be considered as wave motions of shallow water and 
multidimensional p-systems, is a reduced system from the compressible Euler system for isen-
tropic, irrotational flow in two space dimensions [2,3]. The nonlinear wave system can be also 
considered as a part of an operator splitting scheme in numerics, where the compressible Euler 
system can be split into the nonlinear wave system (the pressure system) and the pressure-less 
system (the gradient flow). In fact [30] noted that the Euler system can be split into the pressure-
gradient system and the pressure-less system, and the pressure-gradient system has been studied 
in [25,29] and the references therein. Note that the pressure-gradient system is a special case of 
the nonlinear wave system. Note also that the pressure-less system is well understood by [24]. 
Hence if one understands the solution structure of the nonlinear wave system, one can construct 
the solution for the Euler system successively by using the splitting method. Furthermore, there 
are many similarities on the structures of both the nonlinear wave system and the Euler system, 
see [2,22]. As such, it is crucial to understand the nonlinear wave system in order to study the 
Euler system.

There are recent progresses on the transonic self-similar nonlinear wave system for different 
configurations including global solutions to Mach stems for interacting shocks [3], local solutions 
to regular shock reflections [9], a global solution to a shock diffraction [12,14], weak solutions 
to regular shock reflections by a wedge [23], a global solution to a shock diffraction by a convex 
corner [4], and numerical solutions to the triple point paradox [26].

Typically the position of the transonic shock is unknown a priori and hence it gives rise to a 
free boundary problem. In this configuration, we have two free boundary problems corresponding 
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to transonic diffracted shocks; one is created by the incident shock and the other is by the reflected 
shock. These two free boundary problems are connected by a sonic boundary which becomes 
a degenerate Dirichlet boundary condition, and the position of the sonic boundary is in part 
unknown as the change of the wave is not known a priori. This is a new type of free boundary 
problems and little progress has been made to rigorously understand such problems. It is also of 
interest to understand how the diffracted wave changes from the compression to the expansion 
wave. This paper provides a correct framework to establish the existence result and an analysis 
to understand how the type of the diffracted wave changes.

Our analysis is advanced from the benchmark work [12,13,15], where the mathematical 
frameworks for self-similar transonic shock problems were provided; in particular, we utilize 
the iteration methods developed in [12,13,15]. We note that, however, those earlier studies are 
focused on the configurations that consist of one transonic shock (free boundary) and one sonic 
(degenerate) boundary and the estimates developed there reply on the wave structures that the 
density of the flow attains its minimum value at the degenerate boundary and they have a spe-
cific geometry of the boundary. Our new configuration gives rise to more complicated boundary 
value problems with two free boundaries and two sonic boundaries, one of which becomes a free 
boundary additionally. The wave structure in this configuration is much more involved (one can 
consider it as an interaction of two flows; one created by the reflected diffracted shock and the 
other by the diffracted expansion wave) and more refined estimates are required to understand 
the problem.

In order to analyze such interaction of the waves, we provide a new local estimate in the region 
where the wave changes. More precisely we establish the estimate for the case when the govern-
ing equation becomes degenerate and at the same time the corresponding directional derivative 
condition also becomes degenerate. And we provide improved estimates, where conditions given 
in [12,13,15] are relaxed, and show that both transonic shock boundaries (the diffracted reflected 
shock and the diffracted shock) and the sonic boundary (the diffracted expansion wave created by 
the reflected shock) are in C1,α� where 0 < α� < 1 depends only on the incident shock strength, 
and the solution is continuous up to the sonic boundary (the diffracted expansion wave) including 
the point at which the wave changes from the shock to the expansion.

The main contributions of this paper are the following. We first formulate the correspond-
ing boundary value problem for the self-similar nonlinear wave system. We next establish local 
estimates near the region on which the shock changes to an expansion wave, and provide the exis-
tence result for the global solution to this configuration. We also present the nonlinear asymptotic 
analysis to the nonlinear wave system in the same spirit of [7], and provide approximate solu-
tions to locate the position at which the diffracted shock meets the diffracted expansion wave. 
Numerical results by using CLAWPACK for certain pressures are presented as well.

We believe our results will add to the understanding of transonic shocks and lead to further 
developments of systematic theories for multi-dimensional conservation laws. Interested readers 
can refer the survey paper [5] for the comprehensive references and the recent progresses in the 
transonic problems.

2. Formulation and main result

From the compressible Euler system for isentropic flow in two space dimensions, ignoring 
the nonlinear velocity terms (assuming low velocities) and assuming irrotational flows, we can 
deduce a simpler system, the nonlinear wave system [2,3]
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Fig. 1. The transonic shock diffraction.

ρt + (ρu)x + (ρv)y = 0,

(ρu)t + px = 0,

(ρv)t + py = 0. (1)

Here ρ(t, x, y) is the density, u(t, x, y) and v(t, x, y) are the x and y components of the velocity, 
respectively, and p(ρ) is the pressure satisfying a polytropic gas law

dp

dρ
= c2(ρ) = kγργ−1,

with constants k (we let k = 1/γ for simplicity) and 1 < γ < ∞, and a local sound speed c2(ρ). 
This system can be considered as wave motions of shallow water (γ = 2) and multidimensional 
p-systems [2,3].

We let the momentum (ρu, ρv) = (m, n) and use U to denote (ρ, m, n):

U = (ρ,m,n) = (ρ,ρu,ρv).

We consider a configuration in which a planar incident shock S0 moves downward and half of 
it hits the screen located on the positive x-axis, creates a reflected shock S1, and the other half 
of the incident shock moves downward continuously. The reflected shock S1 diffracts, creating 
a transonic shock which we denote S. The diffracted wave changes continuously from a com-
pression to an expansion wave and creates a sonic curve, denoted by σ . The incident shock S0

also diffracts and becomes a transonic shock, and we denote this diffracted shock Sd . In order to 
avoid any complications due to the edge of the screen, we consider the boundary associated with 
the screen (the surface of the screen) is smooth, that is, the screen has a small thickness with a 
rounded edge, see Fig. 1. We also ignore the viscous separation of a vortex sheet from the edge 
of the screen.

Let two positive constants satisfying ρ1 > ρ2 > 0 be given. For x < 0, the incident shock S0

separates U1 and U2 where
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U(x, y,0) =
{

U1 = (ρ1,0, n1) if y > 0,

U2 = (ρ2,0, 0) if y < 0,
(2)

with n1 < 0 so that S0 moves downward.
In the self-similar coordinates ξ = x/t and η = y/t , the system (1) can be written in a con-

served form

(F − ξU)ξ + (G − ηU)η = −2U, (3)

where F = (m, p, 0) and G = (n, 0, p), or equivalently,

−ξρξ − ηρη + mξ + nη = 0,

−ξmξ − ηmη + c2(ρ)ρξ = 0,

−ξnξ − ηnη + c2(ρ)ρη = 0. (4)

This system can be written as a second order equation of ρ:

((c2 − ξ2)ρξ − ξηρη)ξ + ((c2 − η2)ρη − ξηρξ )η + ξρξ + ηρη = 0. (5)

The system is sonic when c2(ρ) = ξ2 +η2, supersonic when c2(ρ) < ξ2 +η2, and subsonic when 
c2(ρ) > ξ2 + η2.

Across the horizontal incident shock S0, the Rankine–Hugoniot jump conditions in (3) be-
come

[G − η0U ] = 0, (6)

or equivalently

[n] = η0[ρ], [p] = η0[n], 0 = η0[m],

where η0 is the shock speed. Then since [n]2 = [p][ρ], η2
0 = [p]/[ρ], and n1 < 0, we obtain

n1 = −√
(p(ρ1) − p(ρ2))(ρ1 − ρ2), (7)

η0 = −
√

p(ρ1) − p(ρ2)

(ρ1 − ρ2)
. (8)

The reflected shock S1 is a plane, and a new state UR = (ρR, mR, nR), where ρR > ρ1, is 
created below the reflected shock S1 (in-between S1 and the screen). Note that we consider a 
configuration in which the screen does not absorb the incident shock and it simply reflects the 
incident shock, that is, the shock strength across S1 is preserved to be the same as the shock 
strength across S0. The Rankine–Hugoniot jump conditions, in particular [n]2 = [p][ρ] and 
(nR − n1)

2 = (n1 − n2)
2, across S1 imply

(p(ρR) − p(ρ1))(ρR − ρ1) = (p(ρ1) − p(ρ2))(ρ1 − ρ2), and ρR > ρ1. (9)
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Hence with ρR satisfying the above stated Rankine–Hugoniot condition (9) for given ρ1 and ρ2, 
we have

nR = 0, (10)

ηR =
√

p(ρR) − p(ρ1)

(ρR − ρ1)
. (11)

We denote sonic circles Ci , where i = 1, 2, R, which correspond to Ci = {c2(ρi) = r2}, and 
write 
 to be the subsonic region of this configuration. We write σ ⊂ C1 to be the sonic boundary 
on which ρ = ρ1. Note that this sonic boundary σ is also unknown a priori, and thus it becomes 
a free boundary.

We also denote two free boundaries due to the transonic shocks; �1 to be the diffracted regular 
shock curve originated from the reflected shock S1, and �2 to be the diffracted shock curve from 
the incident shock S0. The sonic boundary (the expansion wave) behind the reflected shock S1 is 
denoted by σR where σR ⊂ CR . Finally we denote �S to be the boundary of the screen. Hence 
the subsonic region is bounded by two sonic boundaries σR and σ where σ is a free boundary, 
two transonic shock curves �i , i = 1, 2 as free boundaries, and the screen �S .

It is convenient to work in polar coordinates ξ = r cos θ and η = r sin θ , as the sonic line 
becomes the circle for our system. Then the governing equation (5) in the subsonic region 
 is 
written as

(
(c2 − r2)ρr

)
r
+ c2

r
ρr +

(
c2

r2
ρθ

)
θ

= 0, (12)

or in a non-divergence form

(c2 − r2)ρrr + c2

r2
ρθθ + (c2)′

(
ρ2

r + 1

r2
ρ2

θ

)
+ c2

r
ρr − 2rρr = 0. (13)

Next we derive the shock evolution equations along �j . To this end, we first rewrite the system 
in conservation form F̃r + G̃θ = H̃ , where

F̃ =
(−rρ + cos θm + sin θn

p(ρ) cos θ − rm

p(ρ) sin θ − rn

)
, and G̃ = 1

r

(− sin θm + cos θn

−p(ρ) sin θ

p(ρ) cos θ

)
.

Then the Rankine–Hugoniot conditions in polar coordinates along the shocks become [F̃ ] =
dr/dθ [G̃]:

−r[ρ] + cos θ [m] + sin θ [n] = dr

dθ

(
− sin θ

r
[m] + cos θ

r
[n]

)
, (14)

[p] cos θ − r[m] = − dr

dθ
[p] sin θ

r
, (15)

[p] sin θ − r[n] = dr [p]cos θ
. (16)
dθ r
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Solving for [m] in (15) and for [n] in (16), we have

[m] = dr

dθ
[p] sin θ

r2
+ [p]cos θ

r
= [p]

r2
(
r ′

r
η + ξ), (17)

[n] = − dr

dθ
[p]cos θ

r2
+ [p] sin θ

r
= [p]

r2
(− r ′

r
ξ + η). (18)

From (14) eliminate [m] and [n] by using (17) and (18) to obtain the following shock evolution 
equations on �j , j = 1, 2,

dr

dθ
= −r

√
r2[ρ] − [p]

[p] = −r

√
r2 − cj

cj

= −s(r, ρ,ρj ), (19)

where

cj = [p]
[ρ] = p(ρ) − p(ρj )

ρ − ρj

.

Note that we have chosen the negative sign in (19) so that dr/dθ ≤ 0 because the other one is 
not physical in our configuration.

While the Rankine–Hugoniot conditions (19) can be used as a shock evolution equation, the 
problem then becomes underdetermined since the position of the transonic shock is unknown 
a priori. In order to obtain the well-posed problem, it is necessary to impose an appropriate 
boundary condition on �j , j = 1, 2. We use the following nonlinear oblique derivative boundary 
condition:

Mjρ = βj · ∇ρ = 0 on �j ,

where ∇ρ = (ρr , ρθ ) and βj = (β
j

1 , βj

2 ) are

β
j

1 = r ′ (−c2(r2 − cj ) + 3cj (c
2 − r2)

)
, β

j

2 = −3c2(r2 − cj ) + cj (c
2 − r2).

Here the obliqueness, denoted by μ, becomes

μj = βj · (−1, r ′) = −2r ′ (cj (c
2 − r2) + c2(r2 − cj )

)
.

The oblique boundary condition is derived by taking the tangential derivative along the shock 
(assuming the shock position is differentiable) and using the first order system F̃r + G̃θ = H̃ , 
see [12,15] for details on the derivation.

It is noteworthy to point out that [1] is the first to derive the oblique derivative boundary con-
dition on the transonic shock for a different model (the steady small disturbance equation) as 
it is done in this paper. Since their work, by now, it became a convention to have the oblique 
boundary condition on the transonic shock. The rational to use the oblique boundary condition 
along the transonic shock is following: In order to establish the existence of the subsonic solu-
tion, a standard of procedure is to apply an appropriate fixed point type argument which requires 
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a certain compactness. The correct boundary condition would then lead to the regularity esti-
mates and thus to obtain the compactness. The oblique derivative boundary condition has been a 
conventional boundary condition for the transonic shock problems for the nonlinear wave system 
to obtain the necessary compactness.

Note that [23] derived an oblique derivative boundary condition for the nonlinear wave system 
in a different way; from the second order density equation in a weak form with a test function in a 
linear form with two independent parameters. They deduced two Rankine–Hugoniot conditions; 
one is exactly the same as the shock evolution equation as in this paper, and the other becomes an 
oblique boundary condition after simplifying higher-order derivative terms by using tangential 
derivatives of the shock evolution equation along the transonic shock. Their oblique boundary 
condition is very similar to ours, in particular, both have the same mathematical difficulties (the 
degeneracies appeared in both conditions are exactly the same). Hence whichever the boundary 
value problem one imposes, the degeneracies must be handled and thus the techniques developed 
in this paper will be applicable for both boundary problems.

Finally, since the transonic shock hits the screen �S perpendicularly due to the no-flow con-
dition on the screen, we impose ∂ρ/∂n = 0 on �S .

The governing boundary value problem for ρ in the subsonic region 
 becomes;

Qρ = (
(c2 − r2)ρr

)
r
+ c2

r
ρr +

(
c2

r2
ρθ

)
θ

= 0, c2(ρ) > r2, in 
, (20)

ρ = ρR on σR, (21)

M1ρ = β1 · ∇ρ = 0,
dr

dθ
= −s(r, ρ,ρ1) = −r

√
r2 − c1

c1
on �1, (22)

c2(ρ) = r2 on σ, (23)

M2ρ = β2 · ∇ρ = 0,
dr

dθ
= −s(r, ρ,ρ2) = −r

√
r2 − c2

c2
on �2, (24)

∂ρ

∂n
= 0 on �S. (25)

The hyperbolic state U1 remains to be a constant, and consequently along the diffracted re-
flected shock S on �1, the density ρ must hold ρ > ρ1. Similarly the other diffracted shock Sd

must stay in between two sonic circles C1 and C2 in order to be physical. Hence we have the 
following shock entropy conditions:

E1. C1 < S < CR ,
E2. C2 < Sd < C1.

The diffracted reflected shock S loses its strength and becomes sonic, that is, ρ = ρ1 at the 
point where the shock becomes sonic. In order words, the shock becomes sonic when it hits the 
sonic circle C1, and thus the sonic curve σ ⊂ C1. Hence ρ decreases from ρR to ρ1 as it changes 
from the shock to the expansion wave. However, it is not known a priori where the shock becomes 
sonic, that is, the position, denoted by �1 = �1 ∩ σ , is unknown a priori. The remaining sonic 
boundary σ is located on the sonic circle C1.
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We denote corner points by

�R = (cR, θR) = σR ∩ �1,

�1 = (c1, θ1) = σ ∩ �1,

�2 = (c1, θ2) = σ ∩ �2,

�s = (cs, θs) = �2 ∩ �S,

where θR = arctan(ηR/ξR), ηR satisfying (11) and ξR =
√

c2(ρR) − η2
R , and θ2 = arctan(η0/ξ0), 

η0 satisfying (8) and ξ0 = −
√

c2(ρ1) − η2
0. We point out that θ1 is unknown a priori. Also, we 

note that r ′(θs) = 0 and thus the obliqueness becomes degenerate (μ = 0) at θ = θs . We denote 
a set V = {�R, �1, �2, �s} to be the collection of the corner points.

Due to the corner points, the solution may not be smooth near these points and consequently 
we consider the weighted Hölder space with the weighted norms.

Recall the following standard norms [6]

|w|0:
 = sup



|w|,

|w|a:
 =
∑
|β|<k

|Dβw|0:
 +
∑
|β|=k

sup
x 	=y∈


|Dβw(x) − Dβw(y)|
|x − y|α ,

where a = k + α with a nonnegative integer k and 0 < α < 1. We then define weighted norms

|w|(b)
a:
 = sup

δ>0
δa+b|w|a:
δ where 
δ = {x ∈ 
 : dist(x,V ) > δ}.

We now state the main theorem.

Theorem 2.1. Assume that Riemann data given in (2) satisfy (7) and (8). Then the free boundary 
problem consisting of (20)–(25) has a classical solution ρ ∈ C2,α(
 ∪ �S) ∩ C1,α(
 ∪ �1 ∪
�2) ∩ Cα�(
 ∪ {�R, �2, �s}) ∩ C0,1(
 ∪ σR \ {�R}) ∩ C0(
) satisfying ρ2 < ρ < ρR , where 
ρR with ρR > ρ1 is the solution of (9). Moreover, the free boundary r(θ) satisfies E1, E2, and 
(19), strictly decreases in θ -direction for θ ∈ [θR, θ1) ∪ (θ2, θs], and is in C1,α� ([θR, θs] \ {θ2}) ∩
C0,1([θR, θs]), where 0 < α, α� < 1 are determined by the Riemann data of the problem.

The proof comprises the following procedures of iteration methods. We first impose several 
cut-offs (f will be used for the ellipticity and g, h will be used for the obliqueness and well-
posedness of the shock evolution equation respectively), and elliptic and oblique regularizations 
(ε, δ will be used as the corresponding parameters). We then construct a sequence of solutions 
by using the fixed point methods and regularity results. We next establish uniform barriers near 
the point at which the wave changes from a shock into an expansion, and remove the cut-off 
functions g and h. The oblique regularization parameter, δ, is then removed. We next show that 
the solutions are strictly elliptic inside of the subsonic region, that is the cut-off function f is 
removed. We then find the limiting solution (ε → 0) by using the local compactness argument. 
We finally construct upper barrier functions to show the continuity of the limiting solution up to 
the degenerate boundary.
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3. Regularized problems

Since the governing equation becomes sonic on σ and σR , we first consider regularized prob-
lems. That is, for given 0 < ε < 1 we write

Qερ = Qρ + ε�ρ = 0, in 
,

and for ρ ∈ C2 we can write the governing equation in the non-divergent form:

Qερ = aε
iiDiiρ + a(ρ2

r + ρ2
θ

r2
) + bρr

= (c2 − r2 + ε)ρrr + (
c2

r2
+ ε)ρθθ + (c2)′(ρ2

r + ρ2
θ

r2
) + 1

r
(c2 − 2r2)ρr = 0.

We use the standard fixed point iteration method, see for example [3,12], to establish the solutions 
of the regularized problems.

We define a set R ⊂ C1,α0([θR, θ2) ∪ (θ2, θs]) ∩ Cα0([θR, θs]) with 0 < α0 < 1, where
r(θ) ∈ R satisfies

R1. r(θR) = cR , and r ′(θR) = −s(cR, ρR, ρ1) = −cR

√
c2
R−c1(ρR)

c1(ρR)
,

R2. c1 ≤ r(θ) ≤ cR for θR ≤ θ ≤ θ2,
R3. −s(cR, ρR, ρ1) ≤ r ′(θ) ≤ 0 for θR ≤ θ ≤ θ2,

R4. r(θ2) = c1, and r ′(θ2) = −s(c1, ρ1, ρ2) = −c1

√
c2

1−c2(ρ1)

c2(ρ1)
,

R5. r ′(θs) = 0,
R6. c2 ≤ r(θ) ≤ c1 for θ2 ≤ θ ≤ θs ,
R7. −s(c1, ρ1, ρ2) ≤ r ′(θ) ≤ 0 for θ2 ≤ θ ≤ θs .

Since the problem is nonlinear, the ellipticity, obliqueness and well-posedness of the shock 
evolution equation are not known a priori. To get around these difficulties, we introduce cut-off 
functions in the equations Qρ = 0, Mjρ = 0 and r ′(θ) = −s(r, ρ, ρj ), j = 1, 2. We define 
cut-off functions for ρ in 
, and c and r2 − c on �j respectively:

f (t) = max{t, (c2)−1(r2)} in 
,

gj (t) = min{t, r2 − min{τ0, τ∗dq}} on �j ,

hj (t) = max{t,min{τ0, τ∗dq}} on �j ,

where d = d(X) = |X−�k|, k = m, s and �m = (c1, θm), and θm is defined in (26). The positive 
constants τ0, τ∗, q will be determined later. As discussed before, it is not known a priori whether 
the governing equation becomes elliptic in the subsonic region, and the directional derivative 
boundary conditions becomes oblique on the boundary. The standard of procedure is that first 
impose appropriate cut-off functions as necessary and next construct upper/lower barriers via 
Maximum principle arguments to remove the cut-off functions. For this configuration, the prob-
lem is nonlinear, which includes several degeneracies (the governing equation becomes sonic on 
the part of the boundary, and the directional derivative becomes degenerate at the exact same 
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point where the governing equation becomes sonic), and has mixed boundary conditions. Al-
though the cut-off functions applied in the problem may appear to be cumbersome, however, they 
are crucial to establish ellipticity and obliqueness, and most importantly to develop the estimates 
near degenerate boundaries. The roles of cut-off functions are following: The cut-off functions 
f is to ensure the ellipticity within the subsonic region. The cut-off functions gj , j = 1, 2 ensure 
the uniform obliqueness on the transonic shock boundaries. The cut-off functions hj , j = 1, 2
ensures the well-posedness on the shock evolution equation, and consequently the shock position 
is at least Lipschitz.

We then consider the following modified equations:

Q+ρ = (c2(f (ρ)) − r2)ρrr + c2(f (ρ))

r2
ρθθ + (c2)′(f (ρ))

(
ρ2

r + 1

r2
ρ2

θ

)

+ c2(f (ρ))

r
ρr − 2rρr

= a+
ii Diiρ + a+(ρ2

r + 1

r2
ρ2

θ ) + b+ρr = 0,

Mj,+ρ = β
j,+
i Diρ = 0,

where

β
j,+
1 = r ′ (−c2(f (ρ))(r2 − gj (c)) + 3gj (c)(c

2(f (ρ)) − r2)
)

,

β
j,+
2 = −3c2(f (ρ))(r2 − gj (c)) + gj (c)(c

2(f (ρ)) − r2).

Hence the obliqueness becomes

μ+ = β+ · (−1, r ′) = −2r ′ (gj (c)(c
2(f (ρ)) − r2) + c2(f (ρ))(r2 − gj (c))

)
≥ 0.

We next consider, for j = 1, 2,

dr

dθ
= −s+(r, ρ,ρj ) = −r

√
hj (r2 − cj )

cj

on �j .

3.1. Regularized solutions

For a given r ∈R, we let

θm = min
θ

{r(θ) = c1}. (26)

Note that there exists a positive constant δR such that θR + δR ≤ θm ≤ θ2 since r ′(θR) < 0. We 
first consider the following fixed boundary problem:
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Q+,ερ = a
+,ε
ii (�,ρ)Diiρ + b̃(�,ρ,Dρ) = 0 in 
,

ρ = ρR on σR = {(r = cR, θ) : 0 ≤ θ ≤ θR} ⊂ CR,

M1,+,δρ = β
1,+
i (�,ρ)Diρ + δ

∂ρ

∂ν
= 0 on �1 = {(r(θ), θ) : θR < θ < θm},

ρ = ρ1 on σ = {(r, θ) : θm ≤ θ ≤ θ2} ⊂ C1,

M2,+,δρ = β
2,+
i (�,ρ)Diρ + δ

∂ρ

∂ν
= 0 on �2 = {(r(θ), θ) : θ2 < θ < θs − δ},

ρ = (c)−1(r2(θ) − τ∗dq) ≥ ρ2 on �δ = {(r(θ), θ) : θs − δ ≤ θ ≤ θs},
∂ρ/∂n = 0 on �s = 0, (27)

where ν is the inward normal on �j , and δ is a sufficiently small positive parameter. For the reg-
ularization, we consider �δ , a small neighborhood of �s on �2, and impose a Dirichlet boundary 
condition on �δ . Thus as δ → 0 the limiting solution satisfies the point valued Dirichlet bound-
ary condition at �s . We note that the limiting solution is obtained after we establish the uniform 
obliqueness, and the obtained estimates are independent of δ and ε.

The existence result of the fixed boundary value problem (27) is given in the following theo-
rem.

Theorem 3.1. For a given r ∈R, there exists a solution ρε,δ ∈ Cγε,δ (
) ∩ C1,αε,δ (
 \ V ), where 
V is the set of all the corner points, which satisfies (27) and

ρ2 < ρε,δ < ρR in 
 \ (σR ∪ �δ), |ρε,δ|(−γε,δ)

1+αε,δ
< K in 
, (28)

for a positive constant K = K(ε, δ) and 0 < αε,δ, γε,δ < 1.

Proof. Since the problem is homogeneous, and ρ2 and ρR are constants, the standard maximum 
principle applies to have the uniform bound, ρ2 < ρε,δ < ρR in 
\ (σR ∪�δ) in (28). In addition, 
the existence of the solution for the fixed boundary value problem (27) can be followed by using 
the similar argument as in [12, Lemma 2.1].

For the second inequality in (28), with the uniform bound ρ2 < ρε,δ < ρR , apply the inte-
rior Hölder estimates in [6, Lemma 15.4], the local estimates near the Dirichlet boundaries [6, 
Corollary 9.29] where the quadratic gradient terms can be handled as in [6, Lemma 15.4], the 
local estimates near the oblique boundaries in the remark after [17, Theorem 2.3], the corner es-
timates obtained in [16, Lemmas 4.1 and 4.2], and piece these estimates as in [6, Theorem 8.29]
to obtain the Hölder estimates in 
 with 0 < γε,δ < 1. Next, we treat the governing equation 
Q+,ερ = 0 to be linear so that we can apply the Schauder estimates in [16, Lemma 3.1] to obtain 
|ρε,δ|(−γε,δ)

1+αε,δ
< K in 
, where the quadratic gradient terms can be handled as in [12, Lemma 2.1]. 

This completes the proof. �
Now with the solution ρ satisfying (27) and (28), we define

θ̃m = min
θ

{c1(ρ(c1, θ)) = c2
1}, (29)

and define a map J on R such that J r = r̃ and r̃ satisfies
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r̃ ′(θ) = −s+(r, ρ,ρ1) = −r

√
h(r2 − c1(ρ(r, θ)))

c1(ρ(r, θ))
, θ ∈ (θR, θ̃m), r̃(θR) = cR,

r̃(θ) = c1, θ ∈ [θ̃m, θ2],

r̃ ′(θ) = −s+(r, ρ,ρ2) = −r

√
h(r2 − c2(ρ(r, θ)))

c2(ρ(r, θ))
, θ ∈ (θ2, θs), r̃(θ2) = c1. (30)

By showing J is compact in R and by the Schauder fixed point theorem, we next establish the 
existence of regularized free boundary problems:

Theorem 3.2. There exist solutions ρε,δ ∈ C1,α(
 \ V ) ∩ Cα0(
) and rε,δ ∈ C1,α0([θR, θs] \
{θ2}) ∩ Cα0([θR, θs]) satisfying (27) and r ′ = −s+(r, ρ, ρj ) on �j , j = 1, 2, where
0 < α, α0 < 1.

Proof. By ρ being a solution to the fixed boundary problem (27) and satisfying (28), J maps 
R into itself. In particular, at �̃m = (c1, θ̃m), the solution ρ satisfies c(ρ(�̃m)) = r2(θ̃m) = c2

1, 
and thus r̃ ′(θ̃m) = 0. By the definition of the map J , clearly r̃ ′ = 0 when θ ∈ [θ̃m, θ2]. In addition 
since we showed that |ρ|(−γε,δ)

1+αε,δ
< K , and since r̃ satisfies (30), we now have |r̃|1+γε,δ :[θR,θs ]\{θ2} ≤

K1, and thus |r̃|(−γε,δ)

1+γε,δ
≤ K1 on � (where the weight is given at θ2). This shows that the map J

is compact in R, when α0 is chosen sufficiently small, and is continuous.
Hence we apply the Schauder fixed point theorem to obtain a fixed point r̃ = r in R ⊂

C1,α0([θR, θs] \ {θ2} ∩ Cα0([θR, θs]) where r = rε,δ . Using the fact that the fixed boundary prob-
lem (27) has a solution for the corresponding σ = σε,δ , we establish the existence of a solution 
(ρε,δ, rε,δ) where ρε,δ ∈ C1,α(
 \ V ) ∩ Cα0(
) and rε,δ ∈ C1,α0([θR, θs] \ {θ2}) ∩ Cα0([θR, θs])
of the free boundary problem Q+,ερ = 0 in 
, Mj,+,δρ = 0 and r ′ = −s+(r, ρ, ρj ) on �j , 
j = 1, 2, ρ |σR

= ρR , ρ |σ = ρ1, and ∂ρ/∂n |�s = 0, for sufficiently small α = α(ε, δ) and 
α0 = α0(ε, δ). The regularity argument, such as Theorem 6.2 in [6], ensures that the solution 
ρε,δ ∈ C1,α(
 \ V ) ∩ Cα0(
) is in fact in C2,α(
ε,δ). This completes the proof. �
4. The limiting solution

The main difficulty of constructing the limiting solution is lack of uniform estimates near the 
point at which the shock becomes sonic; both the governing equation and directional derivative 
boundary condition become degenerate. Furthermore, the position of the degenerate point is not 
known a priori. As discussed before, the degeneracy that we have in this paper appears to be 
much more involved than the one in the earlier studies. More precisely the governing equation 
degenerates and at the same time both components of the directional derivatives β1, β2 become 
zero simultaneously whereas the position of the change of the wave is unknown. Hence we must 
establish new estimates near the degenerate point.

We first show the uniform obliqueness and well-posedness of the shock evolution equations in 
Lemma 4.1. That is, we can remove the cut-off functions gj and hj , j = 1, 2. With the uniform 
obliqueness, we next push δ → 0 so that the sequence of solutions is now ρε. With the uniform 
obliqueness, we then establish the uniform ellipticity near the degenerate point in Lemma 4.6. 
This will allow us to remove the cut-off function f and push ε → 0 to obtain the limiting solution.
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4.1. The uniform obliqueness and well-posedness of the shock evolution equations

In this section, we show r2 − cj (ρ
ε,δ) > 0 on �j , j = 1, 2, which implies that the shock 

evolution equations are well-posed and the directional derivative is oblique. Consequently we 
can remove the related cut-off functions gj and hj , j = 1, 2.

We first establish the following key lemma, Lemma 4.1, to construct the lower bound for 
r2 − c near the sonic point �m. The earlier work in [12,13,15] depends on the conditions that 
the density attains its minimum at the degenerate point and the boundary has a perpendicular 
angle at the degenerate point. Our result does not rely on those restrictions, is allowed to have 
degeneracies arising in the governing equation and on the both components of the directional 
derivative vector, and is independent of the degenerate point.

Lemma 4.1. There exist positive constants τ0, R0, τ∗, q independent of ε, δ, depending only on 
c1, cR and γ , and satisfying τ∗Rq

0 = τ0, such that

r2 − c ≥ τ∗dq = τ∗|X − �m|q, (31)

where X ∈ �1(R0) = {X ∈ �1 : |X − �m| < R0}.

Proof. The solutions ρε,δ are depending on the regularization parameters. However, for the no-
tational simplicity, throughout the proof, we write ρ ≡ ρε,δ . Also we write β1 = β , and �1 = �.

We write 
1 = {ρ > ρ1} ⊂ 
. We consider local polar coordinates d = |X − �m| where 
X ∈ 
1 and ϕ = tan−1((η − ηm)/(ξ − ξm)) where ϕ0 ≤ ϕ ≤ ϕ1 so that ϕ = ϕ1 on � ∩ BR′(�m), 
and ϕ = ϕ0 on ∂
1 ∩ BR′(�m). We consider D = {|r2 − c| ≤ τ̃ } ⊂ BR′(�m) ∩ 
1 for some 
constants R′ > 0 and τ̃ > 0.

We define

w = A[(ϕ − ϕ0)
s − (ϕ1 − ϕ0)

s] + B(ϕ1 − ϕ) − C(ϕ1 − ϕ)t ,

where A is a positive constant to be determined, with B = sA(ϕ1 −ϕ0)
s−1, C = 2(s − 1)A(ϕ1 −

ϕ0)
s−t , s < α, and with appropriate 1 < s < 2 < t so that w′′ > 0 when ϕ0 ≤ ϕ ≤ ϕ1.
We next define

u = c − r2 + χ + w, χ = k(ϕ)dα, and v = uζ(Rh
0 − dh), (32)

where h ≥ 2α > 0 are constants to be determined, and k with k(ϕ1) = τ∗ > 0 and a cut-off 
function ζ with ζ(0) = 0, ζ > 0 otherwise, are functions to be determined. We denote O = {X ∈
D : v > 0}. We now fix A in w so that v ≤ 0 when ϕ = ϕ0, that is the set O does not intersect on 
ϕ = ϕ0.

Assume that O ∩ � 	= ∅ (otherwise we are done). Then there exists Xc ∈O ∩ � so that Xc is 
either a local maximum point or a saddle point of v. We show by contradictions that both cases 
cannot occur and thus deduce O ∩ � = ∅.

Suppose Xc is a local maximum point. Then by using M+,δρ = 0 and c is a function of ρ, we 
evaluate and denote

M+,δu = β+
i Diu + δ∂u/∂ν

= −2rβ+ + β+Diχ + δ(2r + ∂χ/∂ν) ≡ G.
1 i
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Note that since w′(ϕ1) = 0, the term M+,δw is negligible. For d ≤ R0 small and α > 1, we have

2r + ∂χ/∂ν = 2r + dα−1(−k′(ϕ1) − r ′rαk(ϕ1)) ≥ 0.

Thus, on � ∩O, we obtain

G ≥ −2rβ+
1 + dα−1(k′(ϕ1)β

+
1 − rαk(ϕ1)β

+
2 )

= c(c2 − r2)[−6rr ′ + dα−1(3k′(ϕ1)r
′ − rαk(ϕ1))]

+c2(r2 − c)[2rr ′ + dα−1(−k′(ϕ1)r
′ + 3rαk(ϕ1))]

≥ g0d
ατ

3/2∗
> 0,

by choosing k(ϕ1) = τ∗ satisfying

6
r√
c

>
√

τ∗ >
2

3

r√
c
, (33)

for sufficiently small d ≤ R0 with α = q = 2. Here g0 > 0 is a constant independent of ρ and r .
Hence at Xc noting that Xc 	= Xm so ζ(Xc) = ζc > 0, for d ≤ R0 sufficiently small if neces-

sary and h > α + 1, we obtain

0 ≥ M+,δv(Xc) = ζM+,δu + uM+,δζ

> ζcg0τ
3/2∗ dα + uζ ′hdh−1β+

2

> 0,

which leads to a contradiction.
Next, if Xc is a saddle point then there exists an interior maximum point Xi so that v(Xi) ≥

v(Xc) where Xi ∈ 
 and Xi 	= Xc.
By multiplying c′ over Q+,ερ = 0 we have

0 = c′Q+,ερ

= aε
ii(Diic − c′′

(c′)2
|Dic|2) + a

c′ (c
2
r + 1

r2
c2
θ ) + bcr ,

where aε
ii = a+

ii + ε, and thus we can write

0 = aε
iiDiic + a1c

2
r + a2c

2
θ + bcr ,

where a1 = −aε
11

c′′
(c′)2 + a

c′ and a2 = −aε
22

c′′
(c′)2 + a

r2c′ . We then obtain and denote

0 = aε
iiDiic + ai |Dc|2 + bcr

= aε
iiDii(u + r2 − χ − w) + ai |Di(u + r2 − χ − w)|2 + b(u + r2 − χ − w)r

≡ Lu + F1 + F2,
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where

Lu = aε
iiDiiu + ai |Diu|2 + biDiu

= aε
iiDiiu + ai |Diu|2 + (2a1(2r − χr − wr) + b)ur − 2a2(χθ + wθ)uθ ,

F1 = −aε
iiDiiχ + ai |Diχ |2 − (4ra1 + b)χr + 2aε

11 + 4r2a1 + 2rb,

F2 = −aε
iiDiiw + ai |Diw|2 − (4ra1 + b)wr + 2aiDiχDiw.

We will seek χ in O satisfying

−F1 = aε
iiDiiχ − ai |Diχ |2 + (4ra1 + b)χr − 2aε

11 − 4r2a1 − 2rb > 0.

Notice that

(4ra1 + b)χr − 4r2a1 − 2rb = (4ra1 + b)(χr − r) − rb,

and

4ra1 + b = −4r
c′′

(c′)2
(c2 − r2 + ε) + 4r

a

c′ + 1

r
(c2 − r2) − r.

Hence we can write

(4ra1 + b)χr − 4r2a1 − 2rb

=
(

−4r
c′′

(c′)2
(c2 − r2 + ε) + 4r

a

c′ + 1

r
(c2 − r2) − r

)
(χr − r) − (c2 − r2) + r2

= −4r
c′′

(c′)2
(c2 − r2 + ε)(χr − r) + (c2 − r2)

(
1

r
(χr − r) − 1

)
+ r2 +

(
4r

a

c′ − r
)

(χr − r).

When ρ > ρ1 and d(X) = |X−Xm| ≤ R small where ρ(Xm) = ρ1, we have a/c′ ≤ 1 +ε0 where 
0 ≤ ε0 ≤ 1/4 so that(

4r
a

c′ − r
)

(χr − r) = ((4ε0 − 1)r + 4r)(χr − r) ≥ 4r(χr − r),

where χr = k′dα−1 < r since d is small and α > 1. Thus we have

−F1 ≥ (c2 − r2 + ε)(dα−2k′′ − 2) + c2

r2
α(α − 1)dα−2kr2 − a0d

2α−2(k2 + (k′)2)

− 4r
c′′

(c′)2
(c2 − r2 + ε)(k′dα−1 − r) + (c2 − r2)

(
1

r
(k′dα−1 − r) − 1

)
+ r2 + 4r(k′dα−1 − r)
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= (c2 − r2 + ε)

(
dα−2k′′ − 2 − 4r

c′′

(c′)2
(k′dα−1 − r)

)
+ c2

r2
α(α − 1)dα−2kr2 − a0d

2α−2(k2 + (k′)2)

+ (c2 − r2)
1

r
(k′dα−1 − 2r) + 4rk′dα−1 − 3r2.

Notice that α = 2 and thus by choosing k ≥ 3/2, which also satisfying (33), we see that

c2

r2
α(α − 1)dα−2kr2 − 3r2 = 2kc2 − 3r2 ≥ 3(c2 − r2).

In addition, we can decrease d ≤ R further if necessary to have

4rk′dα−1 − a0d
2α−2(k2 + (k′)2) ≥ rk′d > 0.

Hence by choosing k′′ > 1 large if necessary, we have

−F1 ≥ (c2 − r2 + ε)

(
dα−2k′′ − 2 − 4r

c′′

(c′)2
(k′dα−1 − r)

)
+ (c2 − r2)(

k′

r
dα−1 − 2) + 3(c2 − r2) + rk′d

≥ (c2 − r2 + ε)
k′′

2
+ (c2 − r2)(

k′

r
dα−1 + 1) + rk′d

≥ (c2 − r2)
k′′

2
+ rk′d

≥ rk′d,

for the interior point in O.
For F2, since we have chosen w′′ > 0 (for given ϕ1, we can choose ϕ0 so that ϕ1 − ϕ0 suffi-

ciently small if necessary so that w′′ > 0 is the dominant positive term) whereas the lower order 
terms are of order O((ϕ − ϕ0)

s−1), we have −F2 ≥ 0 for d ≤ R0 sufficiently small.
Now evaluate

Div = ζDiu + uDiζ

Diiv = ζDiiu + 2DiuDiζ + uDiiζ = ζDiiu + 2

ζ
(Div − uDiζ )Diζ + uDiiζ,

and write

0 = ζ(Lu + F1 + F2) = L1v + F,

where
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L1v = aε
iiDiiv − 2

ζ
aε
iiDiζDiv + 1

ζ
ai |Div|2 − 2

ζ
uaiDivDiζ + biDiv,

F = ζ(F1 + F2) − aε
iiuDiiζ + 2

aε
ii

ζ
u|Diζ |2 + ai

ζ
u2|Diζ |2 − biuDiζ.

Evaluate

aε
iiDiiζ − 2

aε
ii

ζ
|Diζ |2 − ai

ζ
u|Diζ |2 + biDiζ

= aε
ii(ζ

′′h2d2h−2|Did|2 − h(h − 1)ζ ′dh−2|Did|2 − ζ ′hdh−1Diid)

− (2
aε
ii

ζ
+ ai

ζ
u)(ζ ′)2h2d2h−2|Did|2 − ζ ′hdh−1biDid

= O(dh−2).

Thus by choosing h ≥ 4 and d ≤ R0 sufficiently small if necessary, (notice that ζ ≥ ζ0 > 0 where 
v(Xi) ≥ v(Xc) and Xi /∈ {d = R′},) and at the interior maximum point, we have

0 ≥ L1v = −F > 0,

which is a contradiction. This completes the proof. �
Remark 4.2. We note that the proof of Lemma 4.1 does not depend on the strict ellipticity and the 
position �m. Lemma 4.1 can be generalized to the case when the degenerate corner point (where 
the governing equation and both β1 and β2 become zero simultaneously) satisfies an exterior 
cone condition, and the estimate depends only on the angle of the exterior cone, and nonlinear 
structures of the governing equation and the boundary conditions.

With a simple modification of the proof of Lemma 4.1, we establish the following lemma.

Lemma 4.3. There exist positive constants R0, τ∗, q , independent of ε and δ, depending only on 
c1, c2 and γ , such that

r2 − c ≥ τ∗dq = τ∗|X − �s |q, for �2(R0) = {X ∈ �2 : |X − �s | < R0}. (34)

Proof. Replace β2 = β and �2 = �. Consider local polar coordinates d = |X − �s | where 
X ∈ 
′ = {ρ < ρ1} ⊂ 
, and ϕ = tan−1((η − ηs)/(ξ − ξs)) where ϕ0 ≤ ϕ ≤ ϕ1 so that ϕ = ϕ1
on � ∩B ′

R(�s), and ϕ = ϕ0 on �S ∩BR′(�s). Then the result follows immediately by repeating 
the same argument as we did in the proof of Lemma 4.1. �

Note that the same result can be found in [15, Lemma 3.7], however as noted before, 
Lemma 4.3 does not depend on the condition that ρ attains its minimum at �s , and the angle 
of the corner point can be other than π/2.

We next establish the following lemma, which is an improved version of [12, Lemma 3.2].
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Lemma 4.4. There exists a positive constant τ0 = τ∗Rq

0 depending only on c1, γ , and cR for �1, 
and c2 for �2, such that

r2 − c ≥ τ0 on �j \ �j(R0), j = 1,2. (35)

Proof. As before we write ρ = ρε,δ and assume that there exists a non-empty set �′ = {� ∈ �j \
�j(R0) : c − r2 > −τ0} where τ0 = τ∗Rq

0 , j = 1, 2. Then there exists a point Xc = (rc, θc) ∈ �′
such that max�′ c(ρ) − r2 + τ0 = (c(ρ) − r2)(Xc) + τ0 = m > 0 for some constant m. This Xc

can be either a local maximum point or a saddle point in 
 ∪ �′.
Define d = rc − r + r ′(θc)(θ −θx) and B = {d > 0} ∩{c− r2 +τ0 > m} ⊂ 
. Next for d0 > 0, 

define

u = c − r2 + χ, χ = χ(d), and v = uζ(dh
0 − dh),

where h ≥ 4, and χ is the function to be determined.
If Xc is a local maximum point then by using Mj,+,δρ = 0, and choosing χ ′ ≥ cR , we have

Mj,+,δu = −2rβ
j,+
1 + χ ′βj,+

i Did + δ(2r + χ ′∂χ/∂ν)

≥ (−2r ′)
(
c2(r2 − gj )(−r + χ ′) + gj (c

2 − r2)(3r + χ ′)
)

> (−2r ′)c2(r2 − gj )(−r + χ ′) > 0.

Hence the contradiction follows by repeating the same argument as we did in the proof of 
Lemma 4.1.

Next, if Xc is a saddle point then there exists an interior maximum point Xi so that v(Xi) ≥
v(Xc) where Xi ∈ 
 and Xi = Xc. Then from

0 = aε
iiDiic + ai |Dc|2 + bcr

= aε
iiDii(u + r2 − χ) + ai |Di(u + r2 − χ)|2 + b(u + r2 − χ)r

≡ Lu + F,

where

Lu = aε
iiDiiu + ai |Diu|2 + biDiu

= aε
iiDiiu + ai |Diu|2 + (2a1(2r − χr) + b)ur − 2a2χθuθ ,

F = −aε
iiDiiχ + ai |Diχ |2 − (4ra1 + b)χr + 2aε

11 + 4r2a1 + 2rb,

evaluate

−F = χ ′′(aε
11 + (r ′(θc))

2aε
22) − (χ ′)2(a1 + (r ′(θc))

2a2)

− (4ra1 + b)χ ′ − 2aε − 4r2a1 − 2rb.
11
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Notice that r ′(θc) = −rc

√
hj (r2

c − cj )/cj and thus (r ′(θc))
2 = τ0 > 0. Thus by choosing χ ′′ ≥

K(χ ′)2 > 0 with χ(0) = 0 for K > 1 sufficiently large if necessary; for example

χ(d) = 1

K

(
ln

1

cR

− ln

(
1

cR

− Kd

))
where d ≤ d0 <

1

cRK
;

we have F > 0 in B . Therefore by choosing h ≥ 4 and d ≤ d0 sufficiently small, we deduce the 
contradiction and this completes the proof. �

Thus from Lemmas 4.1, 4.3 and 4.4, the cut-off functions gj on the directional derivative 
conditions on Mj,+,δρ = 0, and hj on the evolution equations r ′ = −s(r, ρ, ρj ), for j = 1, 2, 
are removed.

We now push δ → 0 (by using diagonalization arguments if necessary) so that the sequence 
is depending only on ε. The limiting solution for δ → 0 is constructed in a standard way. Since 
the elliptic regularity ε is still at present, one can use the Hölder gradient estimates (for instance, 
see [3,11]) and obtain a convergent subsequence. Then use Lemmas 4.1, 4.3 and 4.4 to establish 
the limit. Hence we now have ρε , and Mj,+,δρ = Mj,+ρ = 0 and r ′ = −s(r, ρ, ρj ) for j =
1, 2. Note that the cut-off function f in βj is still present and so we write Mj,+ρ = 0 with 
understanding that gj and hj are removed.

4.2. The uniform ellipticity

We next establish the uniform ellipticity locally away from the boundary of the domain, 
which then implies the domain is subsonic, in the following lemma. Thus the cut-off function 
f throughout the governing equation is then removed, and Q+,ερ = Qερ = 0 and Mj,+ρ =
Mjρ = 0, j = 1, 2.

Lemma 4.5. There exist positive constants R and δ0 depending only on ρR , ρ1, ρ2, γ (indepen-
dent of ε), such that

c2(ρε) − r2 ≥ δ0(1 − |X − X0|2
R2

), (36)

where BR = {|X − X0|2 < R2} ⊂ 
 and ∂BR ∩ ∂
 = {Xa} where Xa is an arbitrary point on 
∂
.

Proof. For the notational simplicity, throughout the proof, we write ρ = ρε .
Let BR = {|X − X0|2 < R2} ⊂ 
 and ∂BR ∩ ∂
 = {Xa}, where X0 ∈ 
 and Xa ∈ ∂
 are 

arbitrary points. Write ϕ = δ(1 − |X−X0|2
R2 ). Suppose that c2(ρ) − r2 < ϕ for all sufficiently small 

δ > 0, since otherwise we are done.
By the maximum principle we have ρ > ρ2 in 
. Thus for BR ⊂ {r2 < c2

2} ∩
, the inequality 
(36) where δ0 and R depends only on ρ2 follows immediately by observing

c2(ρ) − r2 > c2
2 − r2 > 0.

We now consider 
a = 
 \ {r2 < c2
2}. By multiplying dc2/dρ = (γ − 1)ργ−2 throughout the 

equation Qερ = 0 and letting c2(ρ) = u, we have
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Lu = (a+
ii + ε)Diiu + ai |Diu|2 + bur = 0,

where

a1 = − γ − 2

(γ − 1)ργ−1
(a+

11 + ε) + a

(γ − 1)ργ−2
,

and a2 = − γ − 2

(γ − 1)ργ−1
(a+

22 + ε) + a

r2(γ − 1)ργ−2
.

Note a

(γ−1)ργ−2 ≥ 1 due the cut-off function f . Define v = u − r2 − ϕ. Using Lu = 0 we have

0 = Lu

= (a+
ii + ε)Dii(v + r2 + ϕ) + ai |Di(v + r2 + ϕ)|2 + b(v + r2 + ϕ)r

= L1v + L2ϕ,

where

L1v = (a+
ii + ε)Diiv + ai |Div|2 + {2a1(2r + ϕr) + b}vr + a2ϕθvθ ,

L2ϕ = (a+
ii + ε)Diiϕ + ai |Diϕ|2 + (4ra1 + b)ϕr + {2(a11 + ε) + 4r2a1 + 2rb}.

We evaluate

2(a+
11 + ε) + 4r2a1 + 2rb

≥ 2(c2 − r2 + ε)(1 − 2r2 γ − 2

(γ − 1)ργ−1
) + 4r2 + 2(c2 − 2r2)

= 2(c2 − r2 + ε)

(γ − 1)ργ−1
[(γ − 1)(c2 − r2) + r2 − (γ − 2)r2] + 2(c2 − r2) + 2r2.

The last inequality is bounded below by 2c2
2 > 0 when 1 < γ ≤ 3. For γ > 3, we choose ε0 =

ε0(γ, c2) small so that for any ε, δ ≤ ε0, the last inequality becomes

2(c2 − r2 + ε)

(γ − 1)ργ−1
[(γ − 1)(c2 − r2) + r2 − (γ − 2)r2] + 2(c2 − r2) + 2r2

≥ 2r2

(
c2 − r2 + ε0

c2
2

(3 − γ ) + 1

)

≥ 2r2

(
δ + ε0

c2
2

(3 − γ ) + 1

)
≥ r2,

when c2 − r2 < ϕ ≤ δ for small δ ≤ ε0, so that the lower bound becomes c2
2. The rest terms with 

ϕ in the equation L2ϕ is of order δ and thus by choosing 0 < δ ≤ δ0 = ε0 sufficiently small we 
have
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L2ϕ > c2
2 + O(δ) > 0.

Thus we have L1v = −L2ϕ < 0 in BR ∩ {c2 − r2 < ϕ}. By the standard maximum principle, v
must attain its minimum on ∂BR ∩{c2 − r2 ≤ ϕ} or BR ∩{c2 − r2 = ϕ}, that is, v = c2 − r2 −ϕ ≥
0 on BR ∩ {c2 − r2 < ϕ}, which is a contradiction. This completes the proof. �

We next construct uniform barriers locally away from σ ∪ σR .

Lemma 4.6. There exists a function ϕ = δ0ζ
τ where δ0 = δ0(ρ1, ρR, γ ) and τ ≥ 2 are positive 

constants and 0 ≤ ζ ≤ 1 independent of ε such that c2(ρε) − r2 ≥ ϕ in 
 \ {σ ∪ σR}.
Moreover, there exists a positive constant λ0 independent of ε such that ρε satisfies

c2(ρε) − r2 ≥ λ0|X − �m|2, X ∈ BR(�m) ∩ 
. (37)

Proof. The first part of the statement immediately follows from the results of [12, Lemma 3.6]
and [15, Lemma 3.10]. Hence we show (37) in this proof. For the notational simplicity, through-
out the proof, we write ρ = ρε , β1 = β and �1 = �.

Notice that using c2 − r2 ≥ ϕ in 
 \ {�m}, for R ≤ R0, we find 0 < δ1 ≤ δ0 small so that 
c2 − r2 ≥ δ1 on ∂BR(�m) ∩ 
.

We write ϕ = λd2 where d = |X−�m| and λ > 0 is to be determined. On {d = R} ∩
 we use 
the local ellipticity established in Lemma 4.5 and the ellipticity away from �m on �, to obtain

c2 − r2 ≥ λ0 > 0. (38)

Let v = c2(ρ) − r2 − ϕ and λR2 ≤ λ0. From Lemma 4.5, we find an interior ball BR ⊂ 
 such 
that ∂BR ∩ 
 = �m and c2(ρ) − r2 ≥ δ0(1 − |X − X0|2/R2) in BR . Hence we choose λ ≤ δ0 so 
that v ≥ 0 on the edge of the cone with a vertex at �m where the edge is located interior to 
. 
We now consider a cone with a vertex at �m and an angle ϕ0 ≤ ϕ ≤ ϕ1 where ϕ = ϕ0 is interior 
to BR ⊂ 
 so that v ≥ 0 is ensured and ϕ = ϕ1 is on �. Assume that there exists a nonempty set 
O = {v > 0} in the cone we have defined.

By the same calculation as before in Lemma 4.5, we have L1v = −L2ϕ < 0 with a sufficiently 
small λ on the interior set {c2 − r2 < ϕ} ⊂ 
. We evaluate

Mv = (c2)′βiDiρ − 2rβ1 − βiDiϕ = −2rβ1 − βiDiϕ,

and observe that

β1 = r

√
r2 − c

c
(c2(r2 − c) − 3c(c2 − r2))

> r

√
τ∗
c

d(c2τ∗d2 − 3cλd2) >
r

2
c1/2τ

3/2∗ d3

by choosing

λ <
τ∗

. (39)

6
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Also since βi s are in terms of c2 − r2 and r2 − c, where notice that r2 − c ≤ r2 − c2
1 ≤ d2, we 

have

|βiDiϕ| = 2λd|βiDid|
≤ 2λd

(
c2(r2 − c)|r ′dr + 3dθ | + c(c2 − r2)|3r ′dr + dθ |

)
≤ C0λd3,

where C0 is a positive constant.
Hence by choosing λ further sufficiently small if necessary, on the set O = {c2 − r2 < ϕ} ∩�, 

we have

Mv < −r2c1/2τ
3/2∗ d3 + C0λd3 < 0.

Thus by the maximum principle applied on the set O to L1v < 0 and Mv < 0, we have 
v ≥ min∂O v = 0, which is a contradiction. �
4.3. The limiting solution

Since we now have strict ellipticity locally away from the sonic boundary, by using local com-
pactness and diagonalization arguments, see for example [3,12], we next establish the limiting 
solution.

Lemma 4.7. There exist a limit ρ ∈ C2,α(
) for some 0 < α < 1 and a limit r(θ) ∈
C1,α� ([θR, θs] \ {θ2}) ∩C0,1([θR, θs]) for some 0 < α� < 1 such that ρ and r satisfy the govern-
ing equation Qρ = 0 in 
, Mjρ = 0 and r ′ = −s(r, ρ, ρj ) on �j , j = 1, 2.

We have now established the limit r from rε , and thus we let �1 be the corresponding limit of 
�m. We next construct a uniform barrier function to show the continuity of the limiting solution 
at �1. A new barrier function is necessary in our problem because the proof in the earlier work 
[15, Lemma 3.11] depends on the fact that the solution ρ attains its minimum at the degenerate 
point whereas our configuration is not the case.

Lemma 4.8. There exists a function ψ = Kdt independent of ε where

d = r − c1 + q0

√
(θ − θ1)2 + q1 − q0

√
q1, 0 < q0, q1 < 1, 0 < t < 1/2, and K ≥ 1,

with �1 = (c1, θ1) such that c2(ρε) − r2 ≤ ψ in {d < d0} ∩ 
 where d0 > 0 is independent of ε.

Proof. For the notational simplicity, throughout the proof, we let ρε = ρ, β1 = β and �1 = �. 
Since r ′(θ1) = 0 and r ∈ C1+α� we can find 0 < q0 < 1 so that r(θ) ≥ c1 − q0|θ − θ1| for 
|θ − θ1| < 1 small. Hence d = r − c1 + q0

√
(θ − θ1)2 + q1 − q0

√
q1 > 0 whenever θ 	= θ1 and 

d = 0 at �1.
As we did in the proof of Lemma 4.6, multiply dc2/dρ = (γ − 1)ργ−2 throughout the equa-

tion Qερ = 0 and denote c2(ρ) = u to have;
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Lu = (aii + ε)Diiu + ai |Diu| + bur = 0.

Define v = c2 − r2 − ψ and assume that there exists a non-empty set O = {X ∈ 
1 : v > 0} (if 
O is an empty set then we are done). From Lu = 0, we have

0 = Lu

= aε
iiDii(v + r2 + ψ) + ai |Di(v + r2 + ψ)|2 + b(v + r2 + ψ)r

= L1v + L2ψ

where

L2ψ = (a11 + ε)t (t − 1)Kdt−2 + a1t
2K2d2t−2 − (4ra1 + b)tKdt−1

+ (a22 + ε)[t (t − 1)Kdt−2d2
θ + tKdt−1dθθ ] + a2t

2K2d2t−2d2
θ

+ 2(a11 + ε) + 4r2a1 + 2rb

< t(2t − 1)K2d2t−2 − (4ra1 + b)tKdt−1 + 2(a11 + ε) + 4r2a1 + 2rb

< 0,

with 0 < t < 1/2 and K sufficiently large if necessary.
Next evaluate

Mv = −2rβ1 − βiDiψ = −2rβ1 − Ktdt−1βiDid.

Notice that Did = (1, dθ ) while the inward normal on � = (r(θ), θ) is ν = (−1, r ′(θ)), and 
thus by the choice of qi , i = 0, 1 small, we have βiDid ≤ 0. Moreover, on the set O we have 
c2 − r2 > ψ = Kdt and c2(ρ) > c > c2

1 while ρ > ρ1, and thus

−2rβ1 = 2r2

√
r2 − c

c
(3c(c2 − r2) − c2(r2 − c))

> 2r2

√
r2 − c

c
(3cKdt + c2(c2

1 − r2))

≥ 2r2

√
r2 − c

c
(3cKdt − c2d2)

> 0,

for sufficiently small d ≤ R′ and sufficiently large K if necessary.
By the choice of K > 1 sufficiently large, we have v ≤ 0 on �(R0) and 
 ∩ ∂
(R′). Hence 

we apply the maximum principle type argument applied in the set O to obtain v ≤ 0. Thus we 
establish the result. �
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Remark 4.9. The barrier function in Lemma 4.8 is constructed locally and it can be used also 
the neighboring points near �1 on σ . Away from �1, since σ ⊂ C1, we can construct the barrier 
function ψ = K[(c1 − r)t + (θ − θ0)

2] locally for �0 = (c1, θ0) ∈ σ . That is, for each �0 ∈ σ , 
since we can find a neighborhood B of �0 so that c1 −r > 0 in B , and repeat the similar argument 
as in Lemma 4.8 and c2 − r2 ≤ ψ on B ∩ σ to show ψ is the local upper barrier at �0 ∈ σ .

Using these barrier functions ψ , we obtain that the limiting solution is continuous on σ .

Remark 4.10. On σR , since the solutions ρ < ρR in 
, while c2(ρ) − r2 > r2 − r2
R in 
, we 

have

lim
r→rR

|c2(ρ) − r2|
rR − r

≤ 2rR. (40)

That is ρ ∈ C0,1(
 ∪ σR).

4.4. Proof of the main theorem

Finally we now establish the main theorem.

Proof of Theorem 2.1. Lemmas 4.4 and 4.5, and Remarks 4.9 and 4.10 show that existence of 
a solution pair (ρ, r) where ρ ∈ C2,α(
 ∪ �S) ∩ C1,α(
 ∪ �1 ∪ �2) ∩ Cγ (
 ∪ {�R, �2, �s}) ∩
C0,1(
 ∪σR \{�R}) ∩C0(
) satisfying ρ2 < ρ < ρR , and r ∈ C1,γ ([θR, θs] \{θ2}) ∩C([θR, θs]), 
where 0 < α, α� < 1, satisfying (20)–(25). This completes the proof. �
5. Asymptotic analysis

In this section, we discuss the asymptotic analysis for weak shocks of the nonlinear wave sys-
tem in the same spirit of Hunter and Keller [7]. The approximate solution to the linear acoustics 
near the diffracted wavefront is given by Keller and Blank [10], and from [7] it can be written as

ρ = ρi + δρi

k(θ)

r1/2
(ci t − r)1/2 + O[δ(ci t − r)3/2] + O(δ2), (41)

where δ is the shock strength and

k(θ) = 1

21/2π cos θ

(
21/2 cos

θ

2

(
1 + ρR − ρ1

ρ1 − ρ2

)
+

(
1 − ρR − ρ1

ρ1 − ρ2

))
(42)

= 2 cos(θ/2)

π cos θ
+ O(ρ1 − ρ2).

As in [7], we write the corresponding nonlinear approximate solution of the diffracted wave for 
the nonlinear wave system,

(
ρ

u

v

)
=

(
ρi

ui

vi

)
+ εk(θ)

cir1/2

(
ζ

ε

)1/2
(

ρiφt

−(ciφx + uiφt )

−(ciφy + viφt )

)
, (43)
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where

ε = δ2, φ = ci t − r,

and the nonlinear effect ζ is

ζ = ci t − r + (γ − 1)(εrζ )1/2k(θ). (44)

When k(θ) < 0, the diffracted wave is a rarefaction and ζ has the unique nonnegative solution

ζ 1/2 =
(

ci t −
(

1 − ε
(γ − 1)2

4
k2

)
r

)1/2

+ γ − 1

2
k(εr)1/2. (45)

Hence for r < cit , the rarefaction wave becomes(
ρ

u

v

)
=

(
ρi

ui

vi

)

+ ε1/2 k(θ)

r1/2

[(
ci t −

(
1 − ε

(γ − 1)2

4
k2

)
r

)1/2

+ γ − 1

2
k(εr)1/2

]

×
(

ρi

ci
x
r

− ui

ci
y
r

− vi

)
. (46)

The jump in the gradient across the wave front, ρr , can be written as

[ρr ] = ρi

1

(γ − 1)r
. (47)

When k(θ) > 0, the diffracted wave is compressive and the wave front becomes a shock. By 
checking an envelope equation on which the characteristic lines ζ = constant ≤ 0 overlap, the 
shock location is given by

ci t =
(

1 − ε(γ − 1)2

4
k2(θ)

)
r, (48)

and the corresponding wave is(
ρ

u

v

)
=

(
ρi

ui

vi

)
+ ε

γ − 1

2
k2(θ)

(
ρi

ci
x
r

− ui

ci
y
r

− vi

)
. (49)

The density jump across the shock can be written as

[ρ] = ερi

γ − 1
k2(θ) + O(ε2). (50)
2
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Fig. 2. Density ρ contour plot where γ = 3, ρ1 = 0.5, ρ2 = 0.4, and the corresponding ρR = 0.5832. Magenta dashed 
circles are sonic circles C1,C2, and CR . Red solid curve is the sonic line. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

The diffracted wavefront is a shock when k(θ) ≥ 0 and then it becomes a rarefaction when 
k(θ) ≤ 0. Hence, from the equation for k(θ) in (42), we obtain an approximation of θ1, denoted 
by θa , where the diffracted shock meets the diffracted expansion wave:

θa = 2 cos−1
(

2−1/2 ρR − 2ρ1 + ρ2

ρR − ρ2

)
. (51)

We now show that θa > π and θa → π+ as ρ1 − ρ2 → 0+.

Lemma 5.1. The approximation θa from (51) of θ1 holds

θa > π, θa → π+, (52)

as ρ1 − ρ2 → 0+.

Proof. Recall (9) whence

(ρR − ρ1)
2 ρ

γ

R − ρ
γ

1 = (ρ1 − ρ2)
2 ρ

γ

1 − ρ
γ

2 . (53)

ρR − ρ1 ρ1 − ρ2
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Fig. 3. Density ρ contour plot where γ = 3, ρ1 = 0.5, ρ2 = 0.1, and the corresponding ρR = 0.7112. Magenta dashed 
circles are sonic circles C1,C2, and CR . Red solid curve is the sonic line. (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

Since y = xγ , γ > 1 is convex and ρR > ρ1 > ρ2, we have 
ρ

γ
R−ρ

γ
1

ρR−ρ1
>

ρ
γ
1 −ρ

γ
2

ρ1−ρ2
, which in turn 

implies

0 < ρR − ρ1 < ρ1 − ρ2 �⇒ 0 <
ρR − ρ1

ρ1 − ρ2
< 1.

Then

ρR − 2ρ1 + ρ2

ρR − ρ2
=

ρR−ρ1
ρ1−ρ2

− 1
ρR−ρ1
ρ1−ρ2

+ 1
< 0

which shows θa > π . If ρ2 → ρ1, then ρR → ρ1 and thus from (53), we see that ρR−ρ1
ρ1−ρ2

→ 1. 
Therefore, we deduce that θa → π+ when ρ1 − ρ2 → 0+. �

This computation based on the above weakly nonlinear approximation alludes that the point, 
at which the diffracted reflected weak shock wave changes into an expansion wave, is located 
just below the negative x-axis.

Remark 5.2. On the other hand, θR and θ2 representing the other two corner points are explicitly 
given and so their limits when ρ1 − ρ2 → 0+ are. To compute the limits, we recall



J. Jang, E.H. Kim / J. Differential Equations 260 (2016) 445–477 473
Fig. 4. Density ρ plot in the radial coordinate for given θ from θ = π/2 to 3π/2. γ = 3, ρ1 = 0.5, ρ2 = 0.4.

Fig. 5. Density ρ plot in the radial coordinate for given θ from θ = π/2 to 3π/2.where γ = 3, ρ1 = 0.5, ρ2 = 0.1.
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Fig. 6. Density ρ plot with respect to θ for r = 0.5 (this corresponds to the sonic circle C1) and ρ2 =
0.1, 0.2, 0.3, 0.4, 0.45. γ = 3, ρ1 = 0.5.

θR = arctan

(
ηR

ξR

)
, ηR =

√
p(ρR) − p(ρ1)

(ρR − ρ1)
, ξR =

√
c2(ρR) − η2

R.

Write

ηR

ξR

=

√√√√√ ρ
γ
R−ρ

γ

1
ρR−ρ1

γρ
γ−1
R − ρ

γ
R−ρ

γ
1

ρR−ρ1

.

Since 
ρ

γ
R−ρ

γ

1
ρR−ρ1

→ γρ
γ−1
1 as ρR → ρ1, we see that ηR/ξR → ∞, that is θR → π/2−. Similarly, 

one can compute the limit of θ2 = arctan(η0/ξ0) as 3π/2−.

6. Numerical results

In this section we present our intriguing numerical results of this configuration. The numerical 
results are obtained by using CLAWPACK [20]. We implement Roe average methods [21] and 
finite volume methods on quadrilateral grids. More precisely we implement Roe average methods 
in a uniform grid in polar coordinates as our computational domain along with a coordinate 
mapping and an appropriate scaling of the flux differences. The scaling is done by using the area 
ratio “capacity” of the computational cell which is determined by the size of the corresponding 
physical cell [19].
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Fig. 7. Enlarged figure of density ρ plot with respect to θ for r = 0.5 (this corresponds to the sonic circle C1) and 
ρ2 = 0.1, 0.2, 0.3, 0.4, 0.45. γ = 3, ρ1 = 0.5.

The numerical results presented in this paper are with the computational domain 10−2 ≤
r ≤ 1.5 and 0 ≤ θ ≤ 2π where (r, θ) are polar coordinates, and mesh sizes �r = 1.49/2400 ≈
6.2083 × 10−4 and �θ = 2π/3600 ≈ 1.7453 × 10−3, and with the final time T = 1.

We have tested different γ values where γ ranges from 2 to 4. However in all cases the 
numerics are similar and we only present the results with γ = 3 in this paper. In all numerics we 
fix ρ1 = 0.5 and vary ρ2 where 0 < ρ2 < ρ1. Figs. 2, 3, 4 and 5 are results with different values 
of ρ2. We discuss them in the following sections.

Figs. 2 and 4 are the results with ρ2 = 0.4. In this case, the incident shock strength is relatively 
small with the corresponding ρR = 0.5832. Fig. 2 depicts the density plot for given θ in the radial 
coordinate, where θ is ranging from π/2 to 3π/2 incrementing by 10 degrees for each plot. In 
this case since c2(ρ) = ρ2, the shock becomes sonic when ρ = 0.5. However the numerical result 
appears to be the case that the wave continues to be compressed even inside of the sonic circle 
C1, and may stay as an infinitesimally small shock inside of the subsonic region. On the other 
hand, for the nonlinear wave system, the shock must become sonic upon it meets to the sonic 
circle C1.

Similar phenomenons appear for larger incident shock strengths. Figs. 3 and 5 are the results 
with ρ2 = 0.1. Fig. 5 is the density plot in the radial coordinates for given θ ranging from θ = π/2
to 3π/2. Again it shows that the diffracted shock is apparent inside of the sonic circle C1.

At this point, we do not have a sharp estimate on the location at which the shock becomes 
sonic, �1 = ∂�1 ∩ σ . The asymptotic analysis shown in Lemma 5.1 in the previous section 
suggests that the position �1 is near θ = π for a small incident shock. More precisely, we have 
shown in Lemma 5.1 that θa → π+, as ρ1 − ρ2 → 0, where θa is an approximation to θ1. From 
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equation (51), we can evaluate θa explicitly: θa = 3.2714 (187.4358 in degrees) when θ2 = 0.4
and θa = 3.532 (205.2332 in degrees) when θ2 = 0.1. However Fig. 2 (when ρ2 = 0.4) indicates 
that the sonic curve meets the sonic circle C1 already near 3π/4. On the other hand Fig. 3 (when 
ρ2 = 0.1) shows that the sonic curve meets the sonic circle C1 near π . As mentioned before, 
the numerics suggest that the wave continues to be compressed even inside of the sonic circle 
C1, and thus our numerical results are insufficient at this point to find a correlation between the 
incident shock strengths and the location �1, as similar to that of [8].

Fig. 6 is the density plot with respect to 0 ≤ θ ≤ 2π for r = 0.5 which corresponds to the 
sonic circle C1 and ρ2 varying from 0.1 to 0.45, for γ = 3 and ρ1 = 0.5. We also provide Fig. 7
for the enlargement of Fig. 6 when ρ is near 0.5. These figures suggest that the angle θ values 
at which the shock becomes sonic maybe away from π even close to π/2 for the small incident 
shock strength (see the case when ρ2 = 0.45).

The statement in this section is based on an observation from our numerical results. Further 
refined numerical schemes may provide better results and we leave this question to interested 
readers.
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