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Abstract

In this paper we study a free boundary problem modeling tumor growth. The model consists of two el-
liptic equations describing nutrient diffusion and pressure distribution within tumors, respectively, and a 
first-order partial differential equation governing the free boundary, on which a Gibbs–Thomson relation is 
taken into account. We first show that the problem may have none, one or two radial stationary solutions de-
pending on model parameters. Then by bifurcation analysis we show that there exist infinite many branches 
of non-radial stationary solutions bifurcating from given radial stationary solution. The result implies that 
cell-to-cell adhesiveness is the key parameter which plays a crucial role on tumor invasion.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we study the following free boundary problem modeling tumor growth:

�σ = λσ in �, (1.1)
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�p = −μ(σ − σ̃ ) in �, (1.2)

σ = σ̄ (1 − γ κ) on ∂�, (1.3)

p = p̄ on ∂�, (1.4)

∂np = 0 on ∂�, (1.5)

where σ = σ(x) and p = p(x) denote concentration of nutrient and internal pressure within tu-
mor’s region � ⊂R3, respectively. σ , p and � are unknown and have to be determined together. 
κ is the mean curvature and ∂n is the outward normal derivative on free boundary ∂�, respec-
tively. λ, σ̄ , p̄, σ̃ , γ , μ are positive dimensionless constants, where λ is the nutrient consumption 
rate, σ̄ and p̄ represent constant external nutrient concentration and pressure, σ̃ is the thresh-
old value of nutrient concentration at which tumor cell’s birth and death meet the balance, γ is 
cell-to-cell adhesiveness, and μ is the proliferation rate of tumor cells.

The above problem is a stationary version of mathematical model for the growth of solid tu-
mors established by Byrne and Chaplain [3]. The motion of cells within a solid tumor is regarded 
as an incompressible fluid flow in a porous medium. Equation (1.1) describes the diffusion and 
consumption of nutrient within tumor region; Equation (1.2) is formulated by mass conservation 
law div v = μ(σ − σ̃ ) and Darcy’s law v = −∇p, where v is the velocity of tumor cells; Equa-
tion (1.3) is due to a Gibbs–Thomson relation, which means the gap (experimentally observed) 
of nutrient concentration across tumor boundary is proportional to the local mean curvature (cf. 
[3,19]); Equation (1.4) means the pressure on tumor boundary is constant; The evolution of free 
boundary is governed by Vn = −∂np where Vn is the velocity of boundary in the direction of 
outward normal, so equation (1.5) means the solid tumor is in a dormant state.

Neglecting the gap of nutrient concentration across boundary, another natural physical bound-
ary condition can be imposed as follows (cf. [11,18]):

σ = σ̄ , p = γ κ on ∂�, (1.6)

and by considering evolutionary condition of free boundary:

Vn = −∂np on ∂�, (1.7)

we get a Hele-Shaw type tumor model (1.1)–(1.2), (1.6)–(1.7). In recent decades, mathematical 
analysis of this kind of tumor models has attracted a lot of attention and many illuminative re-
sults have been obtained. Friedman and Reitich [15] first proved that the Hele-Shaw type tumor 
model (1.1)–(1.2), (1.6)–(1.7) has a unique radial stationary solution for 0 < σ̃/σ̄ < 1, and it is 
globally asymptotically stable under radially symmetric perturbations. By employing a power 
series method they also proved that in two-dimensional case there exist infinite many branches 
of symmetry-breaking stationary solutions bifurcating from the radial one in [16]. Fontelos and 
Friedman [10] generalized this result into three-dimensional case. Later, Borisovich and Fried-
man [1], Cui and Escher [7] simplified the proof by reformulating the problem as a bifurcation 
problem and using classical Crandall–Rabinowitz bifurcation theorem. Motivated by bifurcation 
result, Friedman and Hu [12], Cui and Escher [8] studied asymptotic stability of the radial sta-
tionary solution under non-radial perturbations. For extended studies of Hele-Shaw type tumor 
models, we refer readers to [6,11,14] and references therein.
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Though the gap of nutrient concentration across boundary is small, it is significant to study the 
mechanism of its formation and influence on tumor growth. Byrne and Chaplain [3,4] hypoth-
esized that energy is expended in maintaining the tumor’s compactness by cell-to-cell adhesion 
on the boundary and the nutrient acts as a source of energy and satisfies the Gibbs–Thomson 
relation. For a special simplification by replacing equation (1.1) with �σ = λ, which means the 
nutrient consumption is constant, they studied radial solution and its linear stability under asym-
metric perturbations in [3], and Byrne did further a weakly nonlinear analysis and numerical 
verification in [2]. We also refer to [25] for a recent work of a similar multi-layer tumor problem.

In this paper, we study the existence of radial and non-radial stationary solutions of problem 
(1.1)–(1.5), and analyze the effect of Gibbs–Thomson relation on tumor growth by comparing 
with the Hele-Shaw type tumor model. Due to the non-local and coupled nonlinearity, it should 
be pointed out that many new difficulties arise and the analysis is complicated even in radial 
stationary case, we need to develop some new techniques. By employing a power series method 
and delicate analysis, we first prove that problem (1.1)–(1.5) may have none, one or two radial 
stationary solutions determined by the model parameters. Note that it is an interesting differ-
ence from the uniqueness of radial stationary solution of Hele-Shaw type tumor model. More 
precisely, our first main result is stated as follows:

Theorem 1.1. There exists a positive constant θ∗ ∈ (0, 1) which is given by (2.31) such that the 
following assertions hold:

(i) For 0 < σ̃/σ̄ < θ∗, problem (1.1)–(1.5) has two radial stationary solutions.
(ii) For σ̃ /σ̄ = θ∗, problem (1.1)–(1.5) has a unique radial stationary solution.
(iii) For σ̃ /σ̄ > θ∗, problem (1.1)–(1.5) has none radial stationary solution.

Next we study the existence of non-radial stationary solutions in the neighborhood of radial 
stationary solution. We reduce problem (1.1)–(1.5) to a bifurcation problem and regarding γ as 
a bifurcation parameter. By studying the linearized problem and employing spherical harmonics 
and some profound properties of modified Bessel functions, we solve its nontrivial solutions 
and get a positive sequence of degenerate points of γ . Then based on the Crandall–Rabinowitz 
bifurcation theorem, we can find infinite many bifurcation points, and get non-radial bifurcation 
solutions.

Our second main result is stated as follows:

Theorem 1.2. Let 0 < σ̃/σ̄ < θ∗. For a given radial stationary solution with radius r = Rs , 
there exist a positive integer k∗ ≥ 2 and a positive null sequence {γk}k≥k∗ , such that there exists 
a family of bifurcation branches of solutions of problem (1.1)–(1.5) with free boundary

r = Rs + εYk,0(ω) + O(ε2) and γ = γk + O(ε) (k even ≥ k∗), (1.8)

where ε is a small real parameter, Yk,0(ω) is the spherical harmonic of order (k, 0).

Remark 1.3. It is interesting to compare results of problem (1.1)–(1.5) with the Hele-Shaw type 
tumor model (1.1)–(1.2), (1.6)–(1.7) well studied in [1,7,10]. For the Hele-Shaw type tumor 
model, the corresponding bifurcation point γk is a linear function on the proliferation rate μ (see 
(2.17) of [10]), so μ can be also taken as a bifurcation parameter and the result indicates that a 
lager value of μ may make the tumor more aggressive, see [1,7,10] and similar results in [13,
23,24]. While our result shows that γk is independent of μ (see (3.28)), so it cannot be taken as 
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a bifurcation parameter and has no effect on tumor’s instability. It is a remarkable phenomenon 
caused by the Gibbs–Thomson relation effecting on tumor growth.

The structure of the rest of this paper is arranged as follows. In the next section, we show 
the existence of radial stationary solutions. In section 3 we first linearize the problem at a given 
radial stationary solution and compute its eigenvalues. In Section 4 we prove Theorem 1.2 by bi-
furcation analysis. In the last section, we make a conclusion and give some interesting biological 
implications.

2. Radial stationary solutions

In this section we study radial stationary solutions of free boundary problem (1.1)–(1.5). For 
simplicity of notations, by a rescaling argument we always assume λ ≡ 1 later on.

We denote radial stationary solution by (σs, ps, �s) with radius Rs > 0, it means that

�s = {x ∈R
3 : r = |x| < Rs} and σs(x) = σs(r), ps(x) = ps(r) for x ∈ �s.

It is easy to verify that in radial case, problem (1.1)–(1.5) equals to the following system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ ′′
s (r) + 2

r
σ ′

s(r) = σs(r) for 0 < r < Rs,

p′′
s (r) + 2

r
p′

s(r) = −μ(σs(r) − σ̃ ) for 0 < r < Rs,

σs(Rs) = σ̄ (1 − γ

Rs

),

ps(Rs) = p̄,

p′
s(Rs) = 0.

(2.1)

Clearly, for a fixed Rs > 0, the solution of problem (2.1)1 and (2.1)3 is given by

σs(r) = σ̄ (1 − γ

Rs

)
Rs sinh r

r sinhRs

, (2.2)

and the solution of problem (2.1)2 and (2.1)4 can be expressed as

ps(r) = −μσ̄ (1 − γ

Rs

)
Rs sinh r

r sinhRs

+ 1

6
μσ̃r2 + p̄ + μσ̄ (1 − γ

Rs

) − 1

6
μσ̃R2

s . (2.3)

We compute

p′
s(Rs) = −μσ̄ (1 − γ

Rs

)(cothRs − 1

Rs

) + 1

3
μσ̃Rs. (2.4)

Introduce two continuous functions f (η) and g(η) defined on R+:

g(η) = η cothη − 1
2

and f (η) = (1 − γ
)g(η). (2.5)
η η



J. Wu / J. Differential Equations 260 (2016) 5875–5893 5879
Then we see that p′
s(Rs) = 0 is equivalent to the following equation

f (Rs) = 1

3

σ̃

σ̄
. (2.6)

In conclusion, we have

Lemma 2.1. The triple (σs(r), ps(r), Rs) with the form of (2.2) and (2.3) is a solution of prob-
lem (2.1) if and only if Rs > 0 is a solution of equation (2.6).

Next we study the property of function f (η) and show the existence of positive solutions of 
equation (2.6).

It is easy to verify that

lim
η→0+ g(η) = 1

3
, lim

η→+∞g(η) = 0 and g(η) > 0 for η > 0, (2.7)

so that

lim
η→0+ f (η) = −∞, lim

η→+∞f (η) = 0 and f (η)

{
< 0, for 0 < η < γ,

≥ 0, for η ≥ γ.
(2.8)

Since we seek for positive solutions of (2.6), we consider η > γ later on.
By a direct computation,

f ′(η) = 1

η2

[
γg(η) + (η2 − γ η)g′(η)

]

= γ

η4
(η cothη − 1) + η − γ

η4 sinh2 η
(2 sinh2 η − η coshη sinhη − η2)

= 1

η4

[
−η2(η − γ ) coth2 η − η(η − 2γ ) cothη + η3 − γ η2 + 2η − 3γ

]
. (2.9)

Then if η ≥ 2γ + 2, by using cothη > 1, we have

f ′(η) <
1

η4

[
−η2(η − γ ) − η(η − 2γ ) + η3 − γ η2 + 2η − 3γ

]

= 1

η4

[
η(2 + 2γ − η) − 3γ

]
< 0. (2.10)

On the other hand, we rewrite (2.9) as

f ′(η) = 1

η4 sinh2 η
H(η), (2.11)

where
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H(η) = ( − η3 − η2 sinhη coshη + 2η sinh2 η
) + γ

(
η2 + 2η sinhη coshη − 3 sinh2 η

)
≡ H1(η) + γH2(η). (2.12)

Recall the power series expansions

sinhη =
∞∑

k=0

1

(2k + 1)!η
2k+1, coshη =

∞∑
k=0

1

(2k)!η
2k, (2.13)

and

sinhη coshη = 1

2
sinh 2η =

∞∑
k=0

1

(2k + 1)!22kη2k+1,

sinh2 η = 1

2
(cosh 2η − 1) =

∞∑
k=0

1

(2k + 2)!22k+1η2k+2. (2.14)

By substituting (2.14) into (2.12), we have

H1(η) = − η3 − η2
∞∑

k=0

1

(2k + 1)!22kη2k+1 + 2η

∞∑
k=0

1

(2k + 2)!22k+1η2k+2

=
∞∑

k=1

1

(2k + 2)!22k+1(1 − k)η2k+3, (2.15)

H2(η) = η2 + 2η

∞∑
k=0

1

(2k + 1)!22kη2k+1 − 3
∞∑

k=0

1

(2k + 2)!22k+1η2k+2

=
∞∑

k=1

1

(2k + 2)!22k+1(2k − 1)η2k+2, (2.16)

and

H(η) = H1(η) + γH2(η)

=
∞∑

k=1

1

(2k + 2)!22k+1(1 − k)η2k+3 + γ

∞∑
k=1

1

(2k + 2)!22k+1(2k − 1)η2k+2

=
∞∑

k=1

1

(2k + 2)!22k+1η2k+2
[
(1 − k)η + (2k − 1)γ

]
. (2.17)

Then for 0 < η ≤ 2γ and k ≥ 1 we see that

(1 − k)η + γ (2k − 1) ≥ (1 − k)2γ + (2k − 1)γ = γ > 0.
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Hence we obtain

H(η) > 0 for 0 < η ≤ 2γ. (2.18)

In summary, by (2.10)–(2.12) and (2.18), there holds the following result.

Lemma 2.2. For any given γ > 0, we have

f ′(η)

{
> 0, for 0 < η ≤ 2γ,

< 0, for η ≥ 2γ + 2.

Next we study the properties of f ′(η) on (2γ, 2γ + 2).
We rewrite (2.12) as

H(η) = −η3 + γ η2 − (η2 − 2γ η) sinhη coshη + (2η − 3γ ) sinh2 η

= −η3 + γ η2 − (η2 − 2γ η)
sinh 2η

2
+ (2η − 3γ )

cosh 2η − 1

2
. (2.19)

A simple computation shows that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

H ′(η) = −3η2 + 2γ η − 1 + (−η2 + 2γ η + 1) cosh 2η + (η − 2γ ) sinh 2η,

H ′′(η) = −6η + 2γ − 2γ cosh 2η + (−2η2 + 4γ η + 3) sinh 2η,

H ′′′(η) = −6 − 4η sinh 2η + (−4η2 + 8γ η + 6) cosh 2η,

H(4)(η) = (−16η + 8γ ) cosh 2η + (−8η2 + 16γ η + 8) sinh 2η,

H(5)(η) = −16η(η − 2γ ) cosh 2η − 16(3η − 2γ ) sinh 2η.

(2.20)

One can easily verify that

H(5)(η) < 0 for η ≥ 2γ, (2.21)

H(k)(2γ + 2) < 0 for k = 1,2,3,4, (2.22)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H ′(2γ ) = −8γ 2 − 1 + cosh 4γ > 0,

H ′′(2γ ) = 3 sinh 4γ − 2γ cosh 4γ − 10γ,

H ′′′(2γ ) = 6 cosh 4γ − 8γ sinh 4γ − 6,

H (4)(2γ ) = 8 sinh 4γ − 24γ cosh 4γ.

(2.23)

By a basic analysis we can prove that

Equation H(k)(2γ ) = 0 has a unique positive root γ(k) > 0 for each k = 2,3,4. (2.24)

Moreover, the following assertions hold:
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Lemma 2.3. For any given γ > 0, we have:
(i) If H(4)(2γ ) ≥ 0, then H ′′′(2γ ) > 0;
(ii) If H ′′′(2γ ) ≥ 0, then H ′′(2γ ) > 0.

Proof. (i) Regard γ as a variable. By (2.23), we have

d

dγ

[
H ′′′(2γ )

] = 16 sinh 4γ − 32γ cosh 4γ > 16(sinh 4γ − 3γ cosh 4γ ) = 2H(4)(2γ ).

For a given γ > 0, if H(4)(2γ ) ≥ 0, we get 
d

dγ
[H ′′′(2γ )] > 0. Note that

H(k)(2γ )

∣∣∣
γ=0

= 0 and lim
γ→+∞H(k)(2γ ) = −∞ for k = 2,3,4.

Then by (2.24), we immediately have H ′′′(2γ ) > 0.
(ii) Since

d

dγ

[
H ′′(2γ )

] = 10 cosh 4γ − 8γ sinh 4γ − 10 > H ′′′(2γ ),

the assertion (ii) follows similarly. �
With above preparations, we can prove the following result.

Lemma 2.4. For any given γ > 0, f ′(η) = 0 has a unique solution in [2γ, 2γ + 2].

Proof. Recall (2.11) we see f ′(η) = 1

η4 sinh2 η
H(η), it suffices to show equation H(η) = 0 has 

a unique solution in [2γ, 2γ + 2].
Case (i): H(4)(2γ ) ≥ 0. By (2.21) and (2.22), we have

H(4)(η) = 0 has a unique solution for η in [2γ,2γ + 2]. (2.25)

Note that Lemma 2.3 (i) implies that H ′′′(2γ ) > 0. By a contradiction argument we claim that

H ′′′(η) = 0 has a unique solution for η in [2γ,2γ + 2]. (2.26)

In fact, if H ′′′(η) =0 has two solutions in [2γ, 2γ +2], then by H ′′′(2γ ) >0 and H ′′′(2γ +2)<0, 
one can easily show that H(4)(η) = 0 has at least two solutions in [2γ, 2γ + 2], and it is a con-
tradiction.

By (2.22), (2.23), Lemma 2.2 and Lemma 2.3 (ii), we have H(k)(2γ ) > 0 and H(k)(2γ +2) <
0 for k = 0, 1, 2. Then by a similar argument, we can get that

H(η) = 0 has a unique solution for η in [2γ,2γ + 2]. (2.27)

Case (ii): H(4)(2γ ) < 0. By (2.21) we immediately have

H(4)(η) < 0 for 2γ ≤ η ≤ 2γ + 2.
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Then by a similar argument we see if H ′′′(2γ ) ≥ 0, the assertion is true. If H ′′′(2γ ) < 0, then

H ′′′(η) < 0 for 2γ ≤ η ≤ 2γ + 2.

By a similar discussion for H ′′(2γ ), and noting that H ′(2γ ) > 0 and H(2γ ) > 0, we can finally 
get (2.27). The proof is complete. �

Now we give a proof of Theorem 1.1.

Proof of Theorem 1.1. For a given γ > 0, by Lemma 2.2 and Lemma 2.4, f (η) has a unique 
extremum point η∗ ∈ (2γ, 2γ + 2) such that

f ′(η)

⎧⎪⎨
⎪⎩

> 0, for 0 < η < η∗,
= 0, for η = η∗,
< 0, for η > η∗.

(2.28)

Note that

f (η∗) = max
2γ≤η≤2γ+2

(
1 − γ

η

)η cothη − 1

η2
, (2.29)

and we have

f (η) < f (η∗) for η > 0, η �= η∗. (2.30)

Since g′(η) < 0 for η > 0 (cf. (2.7) of [15]), by (2.7) we have

0 < f (η∗) <
1

3
.

Denote that

θ∗ := 3f (η∗) = max
2γ≤η≤2γ+2

3
(

1 − γ

η

)η cothη − 1

η2
. (2.31)

Clearly, 0 < θ∗ < 1. By using (2.8) and (2.28), we immediately get that: (i) If σ̃ /σ̄ > θ∗, then 
equation (2.6) has no positive solution; (ii) If σ̃ /σ̄ = θ∗, then equation (2.6) has a unique positive 
solution Rs = η∗; (iii) If 0 < σ̃/σ̄ < θ∗, then equation (2.6) has two positive solutions R1

s and 
R2

s satisfying γ < R1
s < η∗ < R2

s .
Finally, by Lemma 2.1, we complete the proof. �

3. Linearization and eigenvalues

In this section we study linearization of problem (1.1)–(1.5) at radial stationary solution 
(σs, ps, �s) with radius Rs and compute its eigenvalues by employing spherical harmonics and 
modified Bessel functions.
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Denote r = |x| and ω = x/|x| for x ∈ R
3. Let

⎧⎪⎨
⎪⎩

σ(x) = σs(r) + ε φ(r,ω),

p(x) = ps(r) + ε ψ(r,ω),

� = {r < Rs + ε ζ(ω)},
(3.1)

where ε is a small parameter, and φ, ψ and ζ are new unknown functions. Denote �ω by the 
Laplace–Beltrami operator on the unit sphere S2, then

� = ∂2

∂r2
+ 2

r

∂

∂r
+ 1

r2
�ω.

On boundary ∂� = {r = Rs +εζ(ω)}, the mean curvature κ can be expressed as (cf. Theorem 8.1 
of [17])

κ = 1

Rs

− ε

R2
s

[ζ(ω) + 1

2
�ωζ(ω)] + o(ε).

Recall that for the simplicity of notations, we always let λ ≡ 1. Then by substituting (3.1) into 
(1.1)–(1.4), using (2.1) and collecting all ε-order terms, we easily obtain the linearized equations:

∂2φ

∂r2
+ 2

r

∂φ

∂r
+ 1

r2
�ωφ = φ, (3.2)

∂2ψ

∂r2
+ 2

r

∂ψ

∂r
+ 1

r2
�ωψ = −μφ, (3.3)

φ(Rs,ω) + σ ′
s(Rs)ζ(ω) = σ̄ γ

R2
s

[
ζ(ω) + 1

2
�ωζ(ω)

]
, (3.4)

ψ(Rs,ω) = 0. (3.5)

Finally, we compute

∂np =
[
∇p · n

]
r=Rs+εζ

=
[∂p

∂r
ω + 1

r
∇ωp

]
r=Rs+εζ

·
[
ω + O(ε)

]

= ε
[∂ψ

∂r
(Rs,ω) + p′′

s (Rs)ζ(ω)
]

+ o(ε).

Here we used the relations ω · ∇ω = 0 and p′
s(Rs) = 0. By (2.1) we also have

p′′
s (Rs) = −μ

[
σ̄ (1 − γ

Rs

) − σ̃
]
,

it follows that the linearization of (1.5) is given by

∂ψ
(Rs,ω) − μ

[
σ̄ (1 − γ

) − σ̃
]
ζ(ω) = 0. (3.6)
∂r Rs
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Next we compute eigenvalues of the linearized problem (3.2)–(3.6). By the classical theory of 
elliptic partial differential equations, we see that the solutions φ and ψ of (3.2)–(3.6) belong to 
C∞(�s) ⊆ C∞([0, Rs], C∞(S2)), and the solution ζ belongs to C∞(S2). Thus we can write

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(r,ω) =
∞∑

k=0

k∑
l=−k

akl(r)Yk,l(ω),

ψ(r,ω) =
∞∑

k=0

k∑
l=−k

bkl(r)Yk,l(ω),

ζ(ω) =
∞∑

k=0

k∑
l=−k

cklYk,l(ω),

(3.7)

where Yk,l(ω) (k ≥ 0, −k ≤ l ≤ k) denotes the spherical harmonic of order (k, l), and akl(r), 
bkl(r) and ckl and are rapidly decreasing in k. It is well-known that

�ωYk,l(ω) = −(k2 + k)Yk,l(ω) for k ≥ 0.

By substituting (3.7) into (3.2)–(3.6), and comparing coefficients of each Yk,l(ω), we have

a′′
kl(r) + 2

r
a′
kl(r) − k2 + k

r2
akl(r) = akl(r), (3.8)

b′′
kl(r) + 2

r
b′
kl(r) − k2 + k

r2
bkl(r) = −μakl(r), (3.9)

akl(Rs) + σ ′
s(Rs) ckl = σ̄ γ

R2
s

[1 − 1

2
(k2 + k)]ckl, (3.10)

bkl(Rs) = 0, (3.11)

b′
kl(Rs) − μ[σ̄ (1 − γ

Rs

) − σ̃ ]ckl = 0. (3.12)

To solve the above problem we recall the modified Bessel function (cf. [21])

Im(r) =
∞∑

k=0

(r/2)m+2k

k!�(m + k + 1)
for m ≥ 0, (3.13)

which satisfies

⎧⎨
⎩ I ′′

m(r) + 1

r
I ′
m(r) − (1 + m2

r2
) Im(r) = 0 for r > 0,

Im(r) bounded at r ∼ 0,

(3.14)

and there hold the following properties:
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I1/2(r) =
√

2

πr
sinh r, (3.15)

I ′
m(r) + m

r
Im(r) = Im−1(r) for m ≥ 1, (3.16)

I ′
m(r) − m

r
Im(r) = Im+1(r) for m ≥ 0, (3.17)

Im(r) =
√

1

2πr
er

[
1 − 4m2 − 1

8r
+ O(r−2)

]
as r → +∞, (3.18)

Im(r) =
√

1

2πm
(

er

2m
)m

(
1 + O(

1

m
)

)
as m → +∞. (3.19)

One can easily verify that (2.2) and (2.6) can be rewritten as

σs(r) = σ̄ (1 − γ

Rs

)
R

1/2
s I1/2(r)

r1/2I1/2(Rs)
, (3.20)

σ̄ (1 − γ

Rs

)
I3/2(Rs)

RsI1/2(Rs)
= 1

3
σ̃ . (3.21)

Then we have

σ ′
s(Rs) = σ̄ (1 − γ

Rs

)
I3/2(Rs)

I1/2(Rs)
= 1

3
σ̃Rs. (3.22)

By substituting (3.22) into (3.10), and using (3.14) we get the solution of problem (3.8) and 
(3.10) is given by

akl(r) = ckl

[ σ̄ γ

R2
s

(1 − 1

2
(k2 + k)) − 1

3
σ̃Rs

] R
1
2
s I

k+ 1
2
(r)

r
1
2 I

k+ 1
2
(Rs)

. (3.23)

Similarly, by solving problem (3.9) and (3.11), we obtain

bkl(r) = −μckl

[ σ̄ γ

R2
s

(1 − 1

2
(k2 + k)) − 1

3
σ̃Rs

][ R
1
2
s I

k+ 1
2
(r)

r
1
2 I

k+ 1
2
(Rs)

− rk

Rk
s

]
. (3.24)

By (3.17) and (3.21) we compute

b′
kl(Rs) − μckl

[
σ̄ (1 − γ

Rs

) − σ̃
]

= −μckl

{[ σ̄ γ

R2
s

(1 − 1

2
(k2 + k)) − 1

3
σ̃Rs

]I
k+ 3

2
(Rs)

I
k+ 1

2
(Rs)

+ σ̄ (1 − γ

Rs

) − σ̃
}

= μσ̄
ckl

[
γ (hk + jk) − jkRs

]
, (3.25)
Rs
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where

hk = (
k2 + k

2
− 1)

I
k+ 3

2
(Rs)

RsIk+ 1
2
(Rs)

, jk = 1 −
I 3

2
(Rs)Ik+ 3

2
(Rs)

I 1
2
(Rs)Ik+ 1

2
(Rs)

−
3I 3

2
(Rs)

RsI 1
2
(Rs)

. (3.26)

By (4.46) of [22] we have

j0 < 0, j1 = 0 and jk > 0 for k ≥ 2. (3.27)

We introduce a sequence

γk = jk

hk + jk

Rs for k ≥ 2. (3.28)

Thus by (3.25) we see that equation (3.12) is equivalent to

(γ − γk)ckl = 0 for k ≥ 2. (3.29)

We summarize:

Lemma 3.1. If γ = γk for some k ≥ 2, then problem (3.8)–(3.12) has nontrivial solutions.

Remark 3.2. If k = 1, we see that (3.12) holds for any γ > 0, and problem (3.8)–(3.12) has 
nontrivial solutions. It is due to the fact that problem (1.1)–(1.5) is translation invariant of tumor’s 
region �.

Remark 3.3. If k = 0, recall that f (η) = (1 − γ

η
)

I3/2(η)

ηI1/2(η)
, by using (3.16) and (3.17), a direct 

calculation shows that

f ′(Rs) = − 1

R2
s

[
γ (h0 + j0) − j0Rs

]
. (3.30)

By the proof of Theorem 1.1, we see in case 0 < σ̃/σ̄ < θ∗, there always holds f ′(Rs) �= 0, then 
by (3.25) and (3.30), we see that problem (3.8)–(3.12) has only trivial solution for any γ > 0.

Next we study the sequence {γk}k≥2 and we have

Lemma 3.4. (i) γk > 0 for k ≥ 2 and lim
k→+∞γk = 0;

(ii) There exists k∗ ∈ N such that γk is monotone decreasing and distinct for k ≥ k∗.

Proof. (i) By (3.26) and (3.27), we have

hk > 0 and 0 < jk < 1 for k ≥ 2.

Then by the definition (3.28), we see that γk > 0 for each k ≥ 2.
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By using (3.19), we obtain

I
k+ 3

2
(r)

I
k+ 1

2
(r)

= er
(2k + 1)k+1

(2k + 3)k+2

(
1 + O

(1

k

))
= r

2k
+ O

( 1

k2

)
as k → +∞, (3.31)

it implies that

hk = (
k2 + k

2
− 1)

I
k+ 3

2
(Rs)

RsIk+ 1
2
(Rs)

= k

4
+ O(1) as k → +∞. (3.32)

Since 0 < jk < 1, we have

0 < γk = jkRs

hk + jk

<
Rs

hk + 1
.

Thus we get lim
k→+∞γk = 0.

(ii) By (3.31) and (3.32),

lim
k→+∞ jk = 1 − 3I3/2(Rs)

RsI1/2(Rs)
≡ � > 0,

and

lim
k→+∞ kγk = lim

k→+∞ jkRs

k

hk + jk

= lim
k→+∞ 4jkRs = 4�Rs > 0, (3.33)

we have

γk+1 − γk = −4�Rs

k2
+ O(

1

k3
) as k → +∞. (3.34)

Thus the assertions (ii) follows. The proof is complete. �
4. Non-radial stationary solutions

In this section we take cell-to-cell adhesiveness γ as a bifurcation parameter and reduce the 
free boundary problem (1.1)–(1.5) to a bifurcation problem, then by using Crandall–Rabinowitz 
bifurcation theorem we study existence of non-radial stationary solutions.

Since a tumor region � nearby �s = {x ∈ R
3, r < Rs} can be written as

� := �ρ = {x ∈R
3 : r < Rs + ρ(ω)} for some ρ ∈ C(S2),

we rewrite the solution (σ, p, �) as (σ, p, ρ), and radial stationary solution (σs, ps, �s) as 
(σs, ps, 0).

We fix α ∈ (0, 1) and for given 0 < δ < min{1/4, Rs/4} sufficiently small, denote

Oδ = {ρ ∈ C4+α(S2) : ‖ρ‖C4+α(S2) < δ}. (4.1)
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The mean curvature on ∂� = {x ∈R
3 : r = Rs + ρ(ω)} is given by

κ(ρ) = 1

2

[
2r − �ωρ

r(r2 + |∇ωρ|2)1/2
+ 2r|∇ωρ|2 + ∇ω|∇ωρ|2 · ∇ωρ

2r(r2 + |∇ωρ|2)3/2

]
r=Rs+ρ(ω)

. (4.2)

It follows that

κ ∈ C∞(Oδ,C
2+α(S2)). (4.3)

For any given ρ ∈ Oδ and γ > 0, by the standard theory of elliptic partial differential equations, 
there exists a unique solution σ = U(ρ, γ ) ∈ C2+α(�) of problem (1.1) and (1.3), and then we 
get a unique solution p = V (ρ, γ ) ∈ C4+α(�) of problem (1.2) and (1.4). Thus by substituting 
V (ρ, γ ) into (1.5) and denoting

F(ρ,γ ) = ∂nV (ρ, γ )

∣∣∣
r=Rs+ρ(ω)

, (4.4)

we obtain a bifurcation problem

F(ρ,γ ) = 0. (4.5)

Obviously, F(ρ, γ ) ∈ C3+α(S2) and

F(0, γ ) ≡ 0 for γ > 0. (4.6)

Moreover, we have

Lemma 4.1. For any γ > 0, F(·, γ ) ∈ C∞(Oδ, C3+α(S2)).

Proof. Take a function χ ∈ C∞(R) such that

0 ≤ χ(t) ≤ 1, χ(t) =
{

1, for |t | ≤ δ,

0, for |t | ≥ 3δ,
0 ≤ |χ ′(t)| ≤ 2

3δ
.

For given ρ ∈Oδ , we introduce the so-called Hanzawa transformation

�ρ(x) = x + χ(r − Rs)ρ(ω)ω for x ∈ R
3. (4.7)

Clearly, �ρ(�s) = �ρ and �ρ ∈ Diff4+α(R3, R3) ∩ Diff4+α(�s, �ρ). We denote by �∗
ρ and 

(�ρ)∗ the pullback and push-forward operators induced by �ρ , respectively, i.e.,

�∗
ρu = u ◦ �ρ for u ∈ C(�ρ) and (�ρ)∗v = v ◦ �−1

ρ for v ∈ C(�s).

The Laplace operator � on �ρ can be transformed to �s by

A(ρ) = �∗
ρ ◦ � ◦ (�ρ)∗ =

3∑
a

ρ
ij ∂j (a

ρ
ik∂k), (4.8)
i,j,k=1
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where aρ
ij = [D�ρ]−1

ij for i, j = 1, 2, 3. It is easy to verify that A(ρ) is a uniformly elliptic 
operator and

A ∈ C∞(Oδ,L(C2+α(�s),C
α(�s))). (4.9)

Moreover, by Theorem 4.3.4 of [20] we have

(A(ρ),ϒ) ∈ Isom(C2+α(�s),C
α(�s) × C2+α(∂�s)), (4.10)

where ϒ denotes the trace operator on ∂�s .
Recall that we let λ ≡ 1. Denote u = �∗

ρ σ and v = �∗
ρ p, then by using (4.7) and (4.8) we see 

that problem (1.1)–(1.4) is equivalent to the following

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A(ρ)u = u in �s,

A(ρ)v = −μ(u − σ̃ ) in �s,

u = σ̄ (1 − γ κ(ρ)) on ∂�s,

v = p̄ on ∂�s.

(4.11)

By (4.3) and (4.10), for given ρ ∈ Oδ and γ > 0, there exists a unique solution (U(ρ, γ ),

V(ρ, γ )) ∈ C2+α(�s) ×C4+α(�s) of problem (4.11), and based on implicit function theorem in 
Banach spaces, we can furthermore prove (see Lemma 2.3 of [9] for details)

U(·, γ ) ∈ C∞(Oδ,C
2+α(�s)) and V(·, γ ) ∈ C∞(Oδ,C

4+α(�s)). (4.12)

Note that V (ρ, γ ) = (�ρ)∗ V(ρ, γ ) and ∇x = ω∂r + r−1∇ω , we have

∂nV (ρ, γ )

∣∣∣
r=Rs+ρ(ω)

=
[
(ω∂rV + r−1∇ωV ) · rω − ∇ωρ√

r2 + |∇ωρ|2
]
r=Rs+ρ(ω)

=
[ r2∂rV − ∇ωV · ∇ωρ

r
√

r2 + |∇ωρ|2
]
r=Rs+ρ(ω)

. (4.13)

Then by (4.4) and (4.12), we immediately get the desired result. The proof is complete. �
We denote DρF(0, γ ) by the Fréchet derivative of F(ρ, γ ) with respect to ρ at ρ = 0. Since 

bifurcation problem (4.5) is equivalent to free boundary problem (1.1)–(1.5), their corresponding 
linearizations at radial stationary solution are also equivalent, i.e., DρF(0, γ )ζ = 0 is equivalent 
to the linearized problem (3.2)–(3.6), and we have

DρF(0, γ )ζ = ∂ψ

∂r
(Rs,ω) − μ

[
σ̄ (1 − γ

Rs

) − σ̃
]
ζ(ω), (4.14)

where ψ(r, ω) is the solution of (3.2)–(3.5) for given ζ(ω) ∈ C∞(S2).
Hence, by the deduction in Section 3 and (3.25)–(3.30) we have
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Lemma 4.2. For any ζ ∈ C∞(S2) with expansion ζ =
∞∑

k=0

k∑
l=−k

cklYk,l(ω), there holds

DρF(0, γ )ζ =
∞∑

k=0

k∑
l=−k

λk(γ )cklYk,l(ω), (4.15)

where

λ0(γ ) = −μσ̄Rsf
′(Rs), λ1(γ ) = 0, (4.16)

and

λk(γ ) = μσ̄

Rs

(hk + jk)(γ − γk) for k ≥ 2, (4.17)

with hk , jk and γk given by (3.26) and (3.28).

Next we study bifurcation solutions and give a proof of our main result Theorem 1.2 based on 
Crandall–Rabinowitz theorem (cf. [5]).

To this end we introduce two Banach spaces

X = the closure of the span{Yk,0(ω), k = 0,2,4, · · ·} in C4+α(S2),

Y = the closure of the span{Yk,0(ω), k = 0,2,4, · · ·} in C3+α(S2).

Recall that in the spherical coordinates (θ, ϕ), 0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2π , the spherical harmonics

Yk,l(θ, ϕ) = (−1)l

√
(2k + 1)(k − l)!

2(k + l)! P l
k(cos θ)

eilϕ

√
2π

,

where

P l
k(z) = 1

2kk! (1 − z2)
l
2

dk+l

dzk+l
(z2 − 1)k.

It is easy to verify that for k ≥ 0 even, Yk,0(θ, ϕ) is independent of ϕ and satisfies Yk,0(θ) =
Yk,0(π − θ). Hence, for any function ρ ∈ X, ρ is independent of ϕ and ρ(θ) = ρ(π − θ). Using 
this fact and Lemma 4.1, we can verify that (cf. [7,13])

F(·, γ ) ∈ C∞(Oδ ∩ X,Y) for γ > 0. (4.18)

Next we denote the restriction of F(·, γ ) on X by FX(·, γ ).

Theorem 4.3. Assume f ′(Rs) �= 0. For k ≥ k∗ and even, (0, γk) is a bifurcation point of prob-
lem (4.5). More precisely, there exist a constant ξk > 0 and a smooth mapping ε → (ρε, γε) from 
(−ξk, ξk) to X ×R

+ of the form

ρε = εYk,0(ω) + O(ε2) and γε = γk + O(ε) for ε ∈ (−ξk, ξk), (4.19)

such that F(ρε, γε) = 0.



5892 J. Wu / J. Differential Equations 260 (2016) 5875–5893
Proof. From Lemma 4.2, we see that DρFX(0, γ )Y0,0(ω) = λ0(γ )Y0,0(ω) �= 0 for f ′(Rs) �= 0, 
and

DρFX(0, γ )Yk,0(ω) = μσ̄

Rs

(hk + jk)(γ − γk)Yk,0(ω) for k ≥ 2 even.

By Lemma 3.4 (ii), γk is monotone decreasing and distinct for k ≥ k∗, hence we have

KerDρFX(0, γk) = span{Yk,0(ω)}, (4.20)

ImDρFX(0, γk) has codimension 1 (4.21)

and

Dγ DρFX(0, γk)Yk,0(ω) = μσ̄

Rs

(hk + jk)Yk,0(ω) /∈ ImDρFX(0, γk). (4.22)

By (4.6) and (4.20)–(4.22) we see all conditions of the well-known Crandall–Rabinowitz theorem 
(see Theorem 1.7 in [5]) are satisfied, thus (0, γk) is a bifurcation point of problem FX(ρ, γ ) = 0
and the proof is complete. �
Proof of Theorem 1.2. For 0 < σ̃/σ̄ < θ∗, by Remark 3.3 we see f ′(Rs) �= 0. Then for k ≥ k∗
even, by Theorem 4.3 we see that (0, γk) is a bifurcation point of problem (4.5). Since (4.5) is 
equivalent to problem (1.1)–(1.5), we immediately get the desired assertions. �
5. Conclusion

In this paper, we study a free boundary problem modeling dormant tumors with Gibbs–
Thomson relation, which is based on the hypothesis that nutrient across tumor boundary is 
partially consumed by tumor cells for providing energy to maintain the tumor’s compactness, and 
the consumption is assumed by γ σ̄κ . As pointed out by T. Roose, S. Chapman and P. Maini [19], 
a number of interesting points are raised in this model and we find some new phenomena caused 
by Gibbs–Thomson relation.

(i) There exists a constant θ∗ ∈ (0, 1) (given by (2.31)) depending only on cell-to-cell ad-
hesiveness γ , such that for 0 < σ̃/σ̄ < θ∗, the free boundary problem has two radial stationary 
solutions; and for θ∗ < σ̃/σ̄ < 1, there exists no radial stationary solution. It is an interesting 
difference from the well-studied Hele-Shaw type tumor model (1.1)–(1.2) and (1.6)–(1.7), which 
always has a unique radial stationary solution for 0 < σ̃/σ̄ < 1.

(ii) By taking γ as a bifurcation parameter, and using bifurcation analysis we established 
the existence of non-radial stationary solutions with free boundary r = Rs + εYk,0(ω) + O(ε2)

and γ = γk + O(ε). Note that these bifurcation solutions shaped as protrusions, or ‘fingers’, 
are associated with the invasion of tumors into their surrounding stroma (cf. [13]). It implies 
that cell-to-cell adhesiveness γ plays a crucial role on tumor invasion. Our results also show 
that bifurcation point γk is independent of the proliferation rate μ, and μ cannot be taken as 
a bifurcation parameter; but in Hele-Shaw type model, the bifurcation parameter can be taken 
as μ/γ (cf. [7,10,13]). Thus γ is the key parameter in the model studied here and should be 
measured accurately in experiments.

We hope these results may be useful for tumor studies and treatment.
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