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Abstract

We study the large time behavior of nonnegative solutions to the Cauchy problem for a fast diffusion 
equation with critical zero order absorption

∂tu − �um + uq = 0 in (0,∞) ×R
N ,

with mc := (N − 2)+/N < m < 1 and q = m + 2/N . Given an initial condition u0 decaying arbitrarily fast 
at infinity, we show that the asymptotic behavior of the corresponding solution u is given by a Barenblatt 
profile with a logarithmic scaling, thereby extending a previous result requiring a specific algebraic lower 
bound on u0. A by-product of our analysis is the derivation of sharp gradient estimates and a universal 
lower bound, which have their own interest and hold true for general exponents q > 1.
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1. Introduction and main results

In this paper, we deal with the large time behavior of a fast diffusion equation with absorption, 
in a special case when the exponent of the absorption term is critical. More precisely, we consider 
the following Cauchy problem

∂tu − �um + uq = 0 in (0,∞) ×R
N, (1.1)

with initial condition

u(0, x) = u0(x), x ∈R
N, (1.2)

where N ≥ 1,

u0 ∈ L1(RN) ∩ L∞(RN), u0 ≥ 0, u0 �≡ 0, (1.3)

and the parameters m and q satisfy

mc := (N − 2)+
N

< m < 1, q = q∗ := m + 2

N
. (1.4)

Degenerate and singular parabolic equations with absorption such as (1.1) have been the sub-
ject of intensive research during the last decades. In (1.1), the main feature is the competition 
between the diffusion �um and the absorption −uq which turns out to depend heavily on the 
exponents m > 0 and q > 0. More precisely, a critical exponent q∗ = m + 2/N has been uncov-
ered which separates different dynamics and the large time behavior for non-critical exponents 
q �= q∗ is now well understood. Indeed, for the semilinear case m = 1 and the slow diffusion 
case m > 1, it has been shown that, when q > q∗, the effect of the absorption is negligible, and 
the large time behavior is given by the diffusion alone, leading to either Gaussian or Barenblatt 
profiles [9,14,15,18,19,21].

A more interesting case turns out to be the intermediate range of the absorption exponent 
q ∈ (m, q∗), where the competition of the two effects is balanced. For m ≥ 1, the study of this 
range has led to the discovery of some special self-similar solutions called very singular solutions
which play an important role in the description of the large time behavior, see [3,6,9,15,19–21,
26] for instance. This was an important improvement, as the existence of very singular solutions 
has been later established for many other different equations.

The study of the fast diffusion case 0 < m < 1 was performed later, but restricted to the 
range of exponents mc < m < 1, as the singular phenomenon of finite time extinction occurs 
when m ∈ (0, mc). When m ∈ (mc, 1), the asymptotic behavior has been also identified for any 
q �= q∗, q > 1, and again very singular solutions play an important role [25,27,28]. Later, also 
the extinction case when q ranges in (0, 1) has been studied [7,8], although there are still many 
open problems in these ranges, as most of the results are valid only in dimension N = 1.

In this paper we focus on the critical absorption exponent q = q∗ which is the limiting case 
above which the effect of the absorption term is negligible in the large time dynamics. That the 
diffusion is almost governing the asymptotic behavior is revealed by the fact that the asymptotic 
profile is given by the diffusion, but the scaling is modified as a result of the influence of the 
absorption term and additional logarithmic factors come into play. More precisely, the solutions 
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converge to a Gaussian or Barenblatt type profile, subject to corrections in x and u of type pow-
ers of log t . The semilinear case m = 1 and q = q∗ is investigated in [4,9,14,15] in any space 
dimension. For slow diffusion m > 1, still considering the case q = q∗, the asymptotic behavior 
of nonnegative solutions to (1.1)–(1.2) is investigated in [11] (and previously [10] in dimension 
N = 1), where a new dynamical systems approach, well-known nowadays as the S-theorem, is 
introduced to deal with small asymptotic non-autonomous perturbations of autonomous equa-
tions. This approach became then common when dealing with critical exponents, and a survey of 
it can be found in the book [12]. The precise identification of the large time limit is however only 
achieved for compactly supported solutions in [11] and this restriction is successfully removed 
in [30], extending the result to the wider class of solutions emanating from initial data decaying 
more rapidly than |x|−N as |x| → ∞. While the final step of the proof performed in [30] relies on 
the stability technique developed in [11] the main novelty is the construction of a non-compactly 
supported supersolution with the expected temporal decay and a spatial decay complying with 
that of the initial condition.

Main results. However, in spite of the general interest in literature, the problem of studying 
the asymptotic behavior for the fast diffusion case mc < m < 1 with critical exponent q = q∗
and establishing an analogous result as the one by Galaktionov and Vázquez [11] still remains 
open for a wide class of non-negative initial data u0, including in particular compactly supported 
ones, at least for N ≥ 2, see [8, Section 11.1] for a sketch of proof when N = 1. The main 
difficulty to be overcome seems to be the following: due to the infinite speed of propagation, 
a property which contrasts markedly with the range m > 1, and to the nonlinearity of the diffusion 
which is the main difference with the semilinear case m = 1, a suitable control of the tail as 
|x| → ∞ of u(t, x) is needed for positive times. Of particular importance is the derivation of a 
sharp lower bound which allows one to exclude the convergence to zero in the scaling variables. 
This difficulty is by-passed in [31] by establishing the required sharp lower bound as soon as 
the initial condition u0(x) behaves as C|x|−l as |x| → ∞ for some C > 0 and l < 2/(1 − m). 
This is done by constructing a subsolution having the right temporal behavior [31]. However 
the above decay assumption clearly excludes a broad class of “classical” initial data, including 
compactly supported ones, and our aim in this paper is to get rid of such a decay assumption. 
An intermediate step is to figure out how does the solution u to the Cauchy problem (1.1)–(1.2)
behave as |x| → ∞ for positive times t > 0 if it starts from a, say, compactly supported initial 
condition u0.

We actually provide an answer to this question, in the form of a sharp lower bound for solu-
tions to (1.1)–(1.2), which is valid for any q > 1:

Theorem 1.1. Consider an initial condition u0 satisfying (1.3), m ∈ (mc, 1), q > 1, and let u be 
the corresponding solution to (1.1)–(1.2). Then

u(t, x) ≥ �u(t) (1 + |x|)−2/(1−m) , (t, x) ∈ (0,∞) ×R
N , (1.5)

with

�u(t) :=
[
u(m−1)/2(t,0) +√B0

(
1 +√(3 − m − 2q)+‖u0‖(q−1)/2∞

√
t
)

t−1/2
]2/(m−1)

,

and
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B0 := 1 − m

2m(mN − N + 2)
> 0 . (1.6)

Note that �u depends on u and converges to zero as t → 0 and t → ∞ since m < 1, the latter 
being a consequence of the decay to zero of ‖u(t)‖∞ as t → ∞, see (2.3) below. Moreover, note 
also that the space dependence of this lower bound is sharp. Indeed, it says: whatever the initial 
condition is, during the later evolution, the solution to the Cauchy problem has a spatial decay at 
infinity slower than the decay of a Barenblatt self-similar profile, a property which is inherited 
from the fast diffusion equation [16, Theorem 2.4]. In particular, let us point out a curious jump 
of the tails: if u0 is compactly supported (no tail at all), or decays as |x| → ∞ with a tail of the 
form |x|−l , l > 2/(1 − m), then its tail jumps immediately to a slower decaying one for positive 
times. This peculiar property does not seem to have been noticed in [31] where it is rather shown 
that (1.5) holds true provided u0 does not decay too fast as |x| → ∞, namely u0(x) ∼ C|x|−l as 
|x| → ∞ for some C > 0 and l < 2/(1 − m).

The proof of Theorem 1.1 is based on some sharp gradient estimates for well-chosen negative 
powers of u which have their own interest and are given in Theorem 2.2 below.

This universal lower bound allows for a comparison from below of general solutions with 
suitable constructed subsolutions. This is the main technical tool that enables us to establish the 
asymptotic behavior of solutions for a very general class of initial data. More precisely, our main 
result is:

Theorem 1.2. Consider an initial condition u0 satisfying (1.3), m ∈ (mc, 1), q = q∗ = m + 2/N , 
and assume further that u0 satisfies

u0(x) ≤ K|x|−k , x ∈R
N , with k := N + mN(mN − N + 2)

2[2 − m + mN(1 − m)] , (1.7)

for some K > 0. Let u be the solution to the Cauchy problem (1.1)–(1.2). Then

lim
t→∞(t log t)1/(q−1)

∣∣∣∣u(t, x) − 1

(t log t)1/(q−1)
σA∗

(
x

t1/N(q−1)(log t)(1−m)/2(q−1)

)∣∣∣∣= 0,

(1.8)

uniformly in RN , where

σA(y) =
(
A + B0|y|2

)1/(m−1)

, B0 = 1 − m

2m(mN − N + 2)
, A > 0,

and A∗ is uniquely determined and given by

A∗ :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2

∞∫
0

(1 + r)q∗/(m−1)r(N−2)/2 dr

N

∞∫
0

(1 + r)1/(m−1)r(N−2)/2 dr

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

N(1−m)/(2(Nm+2−N))

.
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The first step towards the proof of Theorem 1.2 is to establish that the temporal decay of the 
solution u to (1.1)–(1.2) is the expected one, see (1.8). To this end the usual approach is to con-
struct suitable subsolutions and supersolutions with the expected temporal decay to which u can 
be compared. This is in particular the approach used in [31] and the construction of the super-
solution performed therein requires the upper bound (1.7) on the initial condition u0 while that 
of the subsolution requires the already mentioned lower bound u0(x) ≥ C|x|−l as |x| → ∞ for 
some k ≤ l < 2/(1 − m). To get rid of this last assumption we take another route and exploit the 
following property described in Theorem 1.1: whatever the initial condition the corresponding 
solution u to (1.1)–(1.2) is bounded from below by C(t)|x|−2/(1−m) as |x| → ∞ for all posi-
tive times t . It is worth emphasizing that this feature of the equation not only dispenses us from 
assuming an algebraic lower bound but also provides a lower bound matching that of the Baren-
blatt profile and allows us to construct subsolutions which are simpler than the ones from [31]. 
Concerning the supersolution we use the one constructed in [31] which requires the upper bound 
(1.7) and point out that extending Theorem 1.2 to any k > N seems to be an open problem. The 
final step of the proof relies on the stability technique developed in [11] but we set it up in a 
slightly different way from [31].

Remarks. (i) We point out that the profile σA is the well-known Barenblatt profile from the 
theory of the standard fast diffusion equation

∂tϕ = �ϕm in (0,∞) ×R
N (1.9)

in the supercritical range m ∈ (mc, 1), see [32] for more information.

(ii) As already mentioned, Shi & Wang prove Theorem 1.2 in [31] under more restrictive condi-
tions on the initial data u0. More precisely, they assume the initial condition to satisfy:

lim|x|→∞|x|lu0(x) = C > 0 for k ≤ l <
2

1 − m
,

where k defined in (1.7) satisfies k ∈ (N,2/(1 − m)), since (N −2)+/N < m < 1. This condition 
works well in view of comparison from below with rescaled Barenblatt-type profiles, but it has 
the drawback of not allowing some natural choices of initial data to be considered: in particular, 
initial data u0 with compact support, or fast decay at infinity, or even with the same decay at 
infinity as the Barenblatt profiles (that is, with l = 2/(1 − m) in the condition above) fail to enter 
the framework of [31]. Our analysis removes the previous condition and allows us to consider 
all these ranges of initial data. However, we will use (and recall when necessary) some of the 
technical steps and results in [31], especially those concerning the use of the general stability 
technique to show the convergence part of the proof of Theorem 1.2.

(iii) Let us finally mention that less results seem to be available for the p-Laplacian equation 
with critical absorption

∂tu − �pu + u(p(N+1)−N)/N = 0 in (0,∞) ×R
N ,

the parameter p ranging in (2N/(N + 1), ∞). As far as we know, a result similar to The-
orem 1.2 is shown in [11] for compactly supported solutions when p > 2 while the case 
p ∈ (2N/(N + 1), 2) is considered in [5] without identifying the limit. When the absorption 
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exponent is not critical the large time behavior of non-negative solutions to the p-Laplacian 
equation with absorption is studied in [5,22,24,33].

Organization of the paper. In Section 2, we prove some sharp gradient estimates for (1.1), which 
are valid for any q > 1; this result is new and interesting by itself, and it is stated in Theorem 2.2. 
We next prove Theorem 1.1, which turns out to be a rather simple consequence of Theorem 2.2. 
In Section 3, we construct suitable subsolutions that can be used for comparison from below, in 
view of the previous lower bound. This is the most involved part of the work, from the technical 
point of view, since the approach of [31] does not seem to work. Let us emphasize here that our 
construction relies on the fact that the solution u to (1.1)–(1.2) enjoys suitable decay properties 
after waiting for some time, as a consequence of Theorem 1.1. Finally, we prove Theorem 1.2 in 
Section 4, as a consequence of the previous analysis and of techniques from [11,12,31].

2. Gradient estimates and lower bound

In this section we consider m ∈ (mc, 1), q > 1, and an initial condition u0 satisfying (1.3). 
By [27, Theorem 2.1] the Cauchy problem (1.1)–(1.2) has a unique non-negative solution u ∈
BC((0, ∞) × R

N) and classical arguments entail that u ∈ C([0, ∞); L1(RN)). In addition u
enjoys the same positivity property as the solutions to the fast diffusion equation (1.9).

Lemma 2.1. Consider q > 1 and an initial condition u0 satisfying (1.3). Then the corresponding 
solution u to (1.1)–(1.2) satisfies u(t, x) > 0 for all (t, x) ∈ (0, ∞) ×R

N .

Proof. Let σ be the solution to the fast diffusion equation

∂tσ − �σm = 0 , (t, x) ∈ (0,∞) ×R
N ,

σ (0) = u0 , x ∈R
N .

We set a := ‖u0‖q−1∞ > 0 and

λ(t) := e−at , s(t) := e(1−m)at − 1

(1 − m)a
, �(t, x) := λ(t)σ (s(t), x)

for (t, x) ∈ (0, ∞) ×R
N . Introducing the parabolic operator

Lz := ∂t z − �zm + a z ,

we infer from (1.1), the non-negativity of u, and the comparison principle that

Lu =
(
‖u0‖q−1∞ − uq−1

)
u ≥ 0 in (0,∞) ×R

N .

Next, for (t, x) ∈ (0, ∞) ×R
N ,

L�(t, x) = (λ′ + aλ)(t)σ (s(t), x) + (λs′ − λm
)
(t)∂tσ (s(t), x) = 0 .
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Since u(0, x) = u0(x) = σ(0, x) = �(0, x) for x ∈ R
N , the comparison principle entails that 

u ≥ � in (0, ∞) ×R
N . Owing to [1, Théorème 3], the function σ is positive in (0, ∞) ×R

N and 
so are � and u. �

An immediate consequence of Lemma 2.1 and classical parabolic regularity is that u ∈
C∞((0, ∞) ×R

N).
We next turn to estimates on the gradient of solutions to (1.1)–(1.2).

Theorem 2.2. Consider an initial condition u0 satisfying (1.3) and let u be the corresponding 
solution to (1.1)–(1.2). Then

∣∣∣∇u(m−1)/2(t, x)

∣∣∣≤√(3 − m − 2q)+B0 ‖u0‖(q−1)/2∞ +
√

B0

t
(2.1)

for (t, x) ∈ (0, ∞) ×R
N , the constant B0 being defined in (1.6). In addition,

0 < u(t, x) ≤
(
‖u0‖1−q∞ + (q − 1)t

)−1/(q−1)

, (t, x) ∈ (0,∞) ×R
N . (2.2)

Remark 2.3. According to [23, Theorem A] and [25, Theorem 1] there are self-similar solu-
tions U to (1.1) for every q ∈ (1, m + (2/N)) which read

U(t, x) = t−1/(q−1)φ
(
|x|t−(q−m)/2(q−1)

)
, (t, x) ∈ (0,∞) ×R

N .

The analysis performed in [23, Proposition 2.3] reveals that 
(
φ(m−1)/2

)′
(r) has a positive limit λ

as r → ∞ so that

∣∣∣∇U(m−1)/2(t, x)

∣∣∣= t−1/2
∣∣∣∣(φ(m−1)/2

)′ (|x|t−(q−m)/2(q−1)
)∣∣∣∣∼ λt−1/2 as |x| → ∞ ,

thereby indicating that (2.1) is optimal (at least for q ≥ (3 − m)/2).

Proof. The proof of Theorem 2.2 relies on a modified Bernstein technique and the nonlinear 
diffusion is handled as in [2], see also [34] for positive solutions.

Step 1. We first assume that u0 ∈ W 1,∞(RN) and there is ε > 0 such that u0 ≥ ε in RN . The 
comparison principle then provides the following lower and upper bounds

0 <
(
ε1−q + (q − 1)t

)−1/(q−1) ≤ u(t, x) ≤
(
‖u0‖1−q∞ + (q − 1)t

)−1/(q−1) ≤ ‖u0‖∞ (2.3)

for (t, x) ∈ (0, ∞) ×R
N .

Let ϕ ∈ C2(0, ∞) be a positive and monotone function and set u := ϕ(v) and w := |∇v|2. We 
infer from (1.1) that

∂tv = (ϕm)′

ϕ′ (v) �v + (ϕm)′′

ϕ′ (v) w − ϕq

ϕ′ (v) , (t, x) ∈ (0,∞) ×R
N . (2.4)
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We next recall that

�w = 2
N∑

i,j=1

(
∂i∂j v

)2 + 2∇v · ∇�v . (2.5)

It then follows from (2.4) and (2.5) that

∂tw = 2 ∇v ·
[

(ϕm)′

ϕ′ (v) ∇�v +
(

(ϕm)′

ϕ′

)′
(v) �v ∇v + (ϕm)′′

ϕ′ (v) ∇w

]

+ 2

(
(ϕm)′′

ϕ′

)′
(v) w2 − 2

(
ϕq

ϕ′

)′
(v) w

or equivalently

∂tw = (ϕm)′

ϕ′ (v)

⎡
⎣�w − 2

N∑
i,j=1

(
∂i∂j v

)2⎤⎦+ 2

(
(ϕm)′

ϕ′

)′
(v) w �v

+ 2
(ϕm)′′

ϕ′ (v) ∇v · ∇w + 2

(
(ϕm)′′

ϕ′

)′
(v) w2 − 2

(
ϕq

ϕ′

)′
(v) w .

It also reads

∂tw − (ϕm)′

ϕ′ (v)�w −
[

2
(ϕm)′′

ϕ′ +
(

(ϕm)′

ϕ′

)′]
(v) ∇v · ∇w

+ S − 2

(
(ϕm)′′

ϕ′

)′
(v) w2 + 2

(
ϕq

ϕ′

)′
(v) w = 0 , (2.6)

where

S := 2
(ϕm)′

ϕ′ (v)

N∑
i,j=1

(
∂i∂j v

)2 + 2

(
(ϕm)′

ϕ′

)′
(v)

[
1

2
∇v · ∇w − w�v

]
.

We now use Bénilan’s trick [2] to obtain

S = 2mϕm−1(v)

N∑
i,j=1

(
∂i∂j v

)2 + 2m(m − 1)
(
ϕm−2ϕ′) (v)

⎡
⎣ N∑

i,j=1

∂iv ∂j v ∂i∂j v − w

N∑
i=1

∂2
i v

⎤
⎦

= 2mϕm−1(v)

N∑
i=1

[(
∂2
i v
)2 + (m − 1)

ϕ′

ϕ
(v)
(
(∂iv)2 − w

)
∂2
i v

]

+ 2mϕm−1(v)
∑[(

∂i∂j v
)2 + (m − 1)

ϕ′

ϕ
(v) ∂iv ∂j v ∂i∂j v

]
.

i �=j
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We further estimate S as follows

S = 2mϕm−1(v)

N∑
i=1

[
∂2
i v + m − 1

2

ϕ′

ϕ
(v)
(
(∂iv)2 − w

)]2

− 2mϕm−1(v)

N∑
i=1

(m − 1)2

4

(
ϕ′

ϕ

)2

(v)
(
(∂iv)2 − w

)2

+ 2mϕm−1(v)
∑
i �=j

[
∂i∂j v + m − 1

2

ϕ′

ϕ
(v) ∂iv ∂j v

]2

− 2mϕm−1(v)
∑
i �=j

(m − 1)2

4

(
ϕ′

ϕ

)2

(v) (∂iv)2 (∂j v
)2

≥ −m(m − 1)2

2

(
ϕm−3(ϕ′)2

)
(v)(N − 1) w2 .

Consequently, inserting the previous lower bound in (2.6), we find

Hw ≤ 0 , (t, x) ∈ (0,∞) ×R
N , (2.7)

the parabolic operator H being defined by

Hz := ∂t z − mϕm−1(v)�z −
[

2
(ϕm)′′

ϕ′ +
(

(ϕm)′

ϕ′

)′]
(v) ∇v · ∇z +R1(v) z2 +R2(v) z,

with

R1 := −2

(
(ϕm)′′

ϕ′

)′
− m(m − 1)2(N − 1)

2
ϕm−3(ϕ′)2 , (2.8)

R2 := 2

(
ϕq

ϕ′

)′
. (2.9)

We now choose ϕ(r) = r2/(m−1), r > 0. Then

(
(ϕm)′′

ϕ′

)
(r) = m(m + 1)

m − 1
r ,

(
ϕm−3(ϕ′)2

)
(r) = 4

(m − 1)2
,

so that

R1(v) = 2m

1 − m
(mN + 2 − N) , R2(v) = (2q + m − 3) v2(q−1)/(m−1) .

Observe that mN + 2 − N > 0 due to m > (N − 2)+/N so that R1(v) > 0.



S. Benachour et al. / J. Differential Equations 260 (2016) 8000–8024 8009
We next divide the analysis into two cases depending on the sign of 2q + m − 3.

(a) If q ≥ (3 −m)/2, it follows that R2(v) ≥ 0. Recalling that the constant B0 is defined in (1.6), 
the function

W1(t) := B0

t
, t > 0 ,

clearly satisfies

HW1 ≥ 0 in (0,∞) ×R
N with W1(0) = ∞ .

We infer from (2.7) and the comparison principle that

∣∣∣∇u(m−1)/2(t, x)

∣∣∣≤
√

B0

t
, (t, x) ∈ (0,∞) ×R

N ,

recalling that u(m−1)/2 is well-defined since u > 0 by (2.3). We have thus proved (2.1) in that 
case.

(b) In the complementary case q ∈ (1, (3 − m)/2), set

A := (3 − m − 2q)‖u0‖q−1∞ B0 > 0 and W2(t) := A + B0

t
, t > 0 ,

the constant B0 being defined in (1.6). We infer from (2.3) and the definition of v that

HW2 = −B0

t2
+ 1

B0

(
A + B0

t

)2

− (3 − m − 2q)

(
A + B0

t

)
u(t, x)q−1

≥ A2

B0
+ 2A

t
− (3 − m − 2q)

(
A + B0

t

)
‖u0‖q−1∞

≥ A

B0

(
A − (3 − m − 2q)‖u0‖q−1∞ B0

)
+ 2

t

(
A − (3 − m − 2q)B0

2
‖u0‖q−1∞

)
≥ 0 .

Thus

HW2 ≥ 0 in (0,∞) ×R
N with W2(0) = ∞ .

The comparison principle and (2.7) imply that

w(t, x) ≤ W2(t) , (t, x) ∈ (0,∞) ×R
N .

Combining this estimate with the subadditivity of the square root gives (2.1).

Step 2. We now consider u0 satisfying (1.3) and denote the corresponding solution to (1.1)–(1.2)
by u. For ε > 0, classical approximation arguments allow us to construct a family of func-
tions (u0,ε)ε such that ε < u0,ε < ‖u0‖∞ + 2ε, u0,ε ∈ W 1,∞(RN), and (u0,ε)ε converges a.e. 
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in RN towards u0 as ε → 0. Denoting the corresponding solution to (1.1)–(1.2) with initial con-
dition u0,ε by uε , it follows from Step 1 that uε satisfies (2.1). Classical stability results and 
[28, Theorem 2.1] guarantee that (uε)ε converges towards u uniformly on compacts subsets of 
(0, ∞) ×R

N as ε → 0. Since u > 0 in (0, ∞) ×R
N by Lemma 2.1, the validity of the estimate 

(2.1) for u is a consequence of the estimate (2.1) for uε and the upper bound on ‖u0,ε‖∞.

Finally, the bounds (2.2) readily follow from Lemma 2.1 and (2.3). �
Thanks to the just established gradient estimate, we can improve the positivity statement of 

Lemma 2.1 and prove Theorem 1.1, which is now a simple consequence of Lemma 2.1.

Proof of Theorem 1.1. We infer from the positivity of u (see Lemma 2.1) and (2.1) that, for 
(t, x) ∈ (0, ∞) ×R

N ,

u(m−1)/2(t, x) ≤ u(m−1)/2(t,0) +
∥∥∥∇u(m−1)/2(t)

∥∥∥∞ |x|

≤ u(m−1)/2(t,0) +√B0

(√
(3 − m − 2q)+‖u0‖(q−1)/2∞ + t−1/2

)
|x|

≤ �u(t)
(m−1)/2(1 + |x|) .

We thus obtain the estimate (1.5) in Theorem 1.1, since m < 1. �
We end up this section by reporting a further consequence of Theorem 2.2, which is a some-

what less precise version of Theorem 1.1 but will be needed in the sequel.

Proposition 2.4. Consider q > 1 and an initial condition u0 satisfying (1.3) and let u be the cor-
responding solution to (1.1)–(1.2). Given ε ∈ (0, 1), there are τε ≥ 1/ε and κε ≥ 1/ε depending 
on N , m, q , u0, and ε such that

um−1(τε, x) ≤ κε + ε|x|2 , x ∈ R
N . (2.10)

Proof. Let (t, x) ∈ (0, ∞) × R
N . We infer from (2.1), (2.2), and the positivity of u established 

in Lemma 2.1 that

u(m−1)/2(t, x) ≤ u(m−1)/2(t,0) + ‖∇u(m−1)/2(t)‖∞|x|

≤ u(m−1)/2(t,0) + C1

[∥∥∥∥u
(

t

2

)∥∥∥∥
(q−1)/2

∞
+
√

2

t

]
|x|

≤ u(m−1)/2(t,0) + C1

[√
2

(q − 1)t
+
√

2

t

]
|x|,

for some C1 > 0 depending only on N , m, and q , hence

um−1(t, x) ≤ 2um−1(t,0) + 4C2
1

[
2

(q − 1)t
+ 2

t

]
|x|2

≤ 2um−1(t,0) + 8qC2
1 |x|2 .
(q − 1)t
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It follows from the previous estimate that there is tε > 1/ε depending only on N , m, q , and ε
such that

um−1(t, x) ≤ 2um−1(t,0) + ε|x|2 , (t, x) ∈ (tε,∞) ×R
N .

Using once more (2.2) together with m < 1 gives the existence of τε > tε such that κε :=
2um−1(τε, 0) > 1/ε and completes the proof. �
3. Subsolutions and supersolutions

We restrict our analysis to the critical case q = q∗ from now on. Consider an initial condition 
u0 satisfying (1.3) and let u be the corresponding solution to the Cauchy problem (1.1)–(1.2). 
Fix T > 0. We perform the change to self-similar variables

⎧⎪⎪⎨
⎪⎪⎩

v(s, y) := [(T + t) log(T + t)
]1/(q−1)

u(t, x),

y := x

(T + t)1/N(q−1)(log(T + t))(1−m)/2(q−1)
, s := log(T + t),

(3.1)

and notice that (1.1) implies that v solves

∂sv −Lv = 0 in (logT ,∞) ×R
N , (3.2)

with

v(logT ,y) = (T logT )1/(q−1)u0

(
yT 1/N(q−1)(logT )(1−m)/2(q−1)

)
, y ∈ R

N ,

where L is the following nonlinear differential operator:

Lz := �zm + 1

N(q − 1)
(Nz + y · ∇z)

+ 1

(q − 1)s

(
z + 1 − m

2
y · ∇z

)
− zq

s
, (3.3)

with q = q∗ = m + 2/N .
The aim of this section is to construct subsolutions and supersolutions to (3.2) having the 

correct time scale and a form similar to the expected asymptotic profile.

Construction of subsolutions. We recall that the Barenblatt profiles are defined by

σA(y) =
(
A + B0|y|2

)1/(m−1)

, B0 = 1 − m

2m(Nm − N + 2)
, (3.4)

where A > 0 is a free parameter (to be chosen later according to our aims) and B0 > 0, since 
mc < m < 1. With the above notations, we have the following result:
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Lemma 3.1. There is Asub > 0 depending only on N and m such that:

(i) If m ∈ [(N − 1)/N, 1), then

wA(s, y) := σA(y) , (s, y) ∈ (0,∞) ×R
N ,

is a subsolution to (3.2) in (0, ∞) ×R
N for any A ≥ Asub.

(ii) If mc < m < (N − 1)/N , the function

wA(s, y) := σA(y)
(

1 − γ

s

)
, (s, y) ∈ (0,∞) ×R

N , γ := 1

2(1 − m)
> 0, (3.5)

is a subsolution to (3.2) in (s0, ∞) ×R
N for A ≥ Asub and

s0 := max

{
4q

1 − m
,

2m+2q

q − 1

}
.

Proof. (i) It is easy to check that

�σm
A (y) = 4B0m

(m − 1)2

B0|y|2
A + B0|y|2 σA(y) + 2NB0m

m − 1
σA(y)

=
[

4B0m

(m − 1)2
+ 2NB0m

m − 1

]
σA(y) − 4B0m

(m − 1)2

A

A + B0|y|2 σA(y) ,

and

1

N(q − 1)
(NσA(y) + y · ∇σA(y)) = −σA(y)

1 − m
+ 2σA(y)

(1 − m)(mN − N + 2)

A

A + B0|y|2 ,

and moreover

σA(y) + 1 − m

2
y · ∇σA(y) = A

A + B0|y|2 σA(y) .

Consequently, by direct calculation, we find that

1

σA(y)
(∂sσA −LσA) (y)

= 1

1 − m
− 2B0m(mN − N + 2)

(1 − m)2

+ 2

mN − N + 2

[
− 1

1 − m
+ 2B0m(mN − N + 2)

(1 − m)2

]
A

A + B0|y|2

+ 1

(q − 1)s

1

A + B0|y|2
[
(q − 1)

(
A + B0|y|2

)(q−1)/(m−1)+1 − A

]

= 1 1
2

[
(q − 1)

(
A + B0|y|2

)(q−1)/(m−1)+1 − A

]
,

(q − 1)s A + B0|y|
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after noticing that (3.4) ensures

1

1 − m
− 2B0m(mN − N + 2)

(1 − m)2
= 0 .

Since (N − 1)/N ≤ m < 1, we remark that

q − 1

m − 1
+ 1 = 2

m − 1

(
m − N − 1

N

)
≤ 0,

hence

1

σA(y)
(∂sσA −LσA) (y) ≤ 1

(q − 1)(A + B0|y|2)s
[
(q − 1)A(q+m−2)/(m−1) − A

]

= A(q+m−2)/(m−1)

(q − 1)(A + B0|y|2)s
[
(q − 1) − A(q−1)/(1−m)

]
≤ 0,

for A sufficiently large, which ends the proof of (i).

(ii) Let wA be defined in (3.5) and set ξ = B0|y|2. According to [31, Proof of Lemma 3.2], we 
have, in our notation, that

(∂swA −LwA) (s, y) = 1

N(q − 1)

[
NA + N(1 − m) − 2

1 − m
ξ

]
σA(y)

A + ξ

[(
1 − γ

s

)m −
(

1 − γ

s

)]

+
(

1 − γ

s

)q σA(y)q

s
− σA(y)

(q − 1)s

(
A

A + ξ

)(
1 − γ

s

)
+ γ σA(y)

s2
,

hence, after some easy rearranging,

s

σA(y)
(∂swA −LwA) (s, y) = s

q − 1

(
A

A + ξ

)(
1 − γ

s

)m
[

1 −
(

1 − γ

s

)1−m
]

− s

1 − m

(
ξ

A + ξ

)(
1 − γ

s

)m
[

1 −
(

1 − γ

s

)1−m
]

+
(

1 − γ

s

)q

σA(y)q−1 + γ

s

[
1 + A

(q − 1)(A + ξ)

]

− A

(q − 1)(A + ξ)
. (3.6)

We next note that

1 −
(

1 − γ

s

)1−m = (1 − m)

0∫
−γ /s

(1 + r)−m dr,

hence

(1 − m)
γ ≤ 1 −

(
1 − γ )1−m ≤ (1 − m)

(
1 − γ )−m γ

.

s s s s
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Using the previous inequalities to estimate the first two terms of (3.6) and the choice of γ , we get

s

σA(y)
(∂swA −LwA) (s, y) ≤ (1 − m)γ

q − 1

(
A

A + ξ

)
− γ

(
1 − γ

s

)m ξ

A + ξ

+ σA(y)q−1 + γ q

(q − 1)s
− 1

q − 1

(
A

A + ξ

)

= (A + ξ)(q−1)/(m−1) + γ q

(q − 1)s
− 1

2(q − 1)

(
A

A + ξ

)

− γ
(

1 − γ

s

)m ξ

A + ξ
. (3.7)

Since m ∈ (mc, (N − 1)/N), we notice that

0 <
q − 1

m − 1
+ 1 = 2 − m − q

1 − m
< 1 . (3.8)

Let R > 0 be chosen later. We split the analysis into two regions according to the relative position 
of ξ and R.

Case 1. If ξ ∈ [0, R], then we infer from (3.7) that

s

σA(y)
(∂swA −LwA) (s, y) ≤ 1

A + ξ

[
(A + ξ)(2−m−q)/(1−m) − A

2(q − 1)

]
+ γ q

(q − 1)s

≤ 1

A + ξ

[
(A + R)(2−m−q)/(1−m) − A

2(q − 1)

]
+ γ q

(q − 1)s
.

Taking into account (3.8), we realize that, if A is large enough, we can choose R such that

(A + R)(2−m−q)/(1−m) ≤ A

4(q − 1)
. (3.9)

With such a choice of R, we deduce

s

σA(y)
(∂swA −LwA) (s, y) ≤ − A

4(q − 1)(A + ξ)
+ γ q

(q − 1)s

≤ γ q

(q − 1)s
− A

4(q − 1)(A + R)
≤ 0,

provided

s ≥ 4qγ
A + R

A
. (3.10)
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Case 2. If ξ ≥ R and s ≥ 2γ , then (1 − γ /s)m ≥ 2−m and we infer from (3.7) and (3.8) that

s

σA(y)
(∂swA −LwA) (s, y)

≤ (A + ξ)(q−1)/(m−1) + γ q

(q − 1)s
− γ

(
1 − γ

s

)m ξ

A + ξ

≤ (A + ξ)(2−m−q)/(1−m)

A + ξ
+ γ q

(q − 1)s
− γ

2m

ξ

A + ξ

≤ 1

A + ξ

[
(A + ξ)(2−m−q)/(1−m) − γ

2m+1
ξ
]

+ γ q

(q − 1)s
− γ ξ

2m+1(A + ξ)

≤ 1

A + ξ

[
A(2−m−q)/(1−m) + ξ (2−m−q)/(1−m) − γ

2m+1
ξ
]

+ γ q

(q − 1)s
− γR

2m+1(A + R)

≤ 1

A + ξ

[
A(2−m−q)/(1−m) +

(
R(q−1)/(m−1) − γ

2m+1

)
ξ
]

+ γ

[
q

(q − 1)s
− R

2m+1(A + R)

]
. (3.11)

Choosing now R > 0 and s such that

R(q−1)/(m−1) ≤ γ

2m+2
and

2m+1q(A + R)

(q − 1)R
≤ s , (3.12)

we derive from (3.11) that

s

σA(y)
(∂swA −LwA) (s, y) ≤ 1

A + ξ

[
A(2−m−q)/(1−m) − γ

2m+2
ξ
]

≤ 1

A + ξ

[
A(2−m−q)/(1−m) − γ

2m+2
R
]

≤ 0,

if

A(2−m−q)/(1−m) ≤ 2−(m+2)γR . (3.13)

Gathering the two cases, we have thus shown that (∂swA − LwA)(s, y) ≤ 0 for y ∈ R
N pro-

vided the conditions (3.9), (3.10), (3.12), (3.13), and s ≥ 2γ are satisfied simultaneously by R, 
A, and s. We now let R = A, so that these conditions become

(2A)(2−m−q)/(1−m) ≤ A
, A(q−1)/(m−1) ≤ γ

m+2
4(q − 1) 2
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or equivalently

A(q−1)/(m−1) ≤ min

{
2(m+q−2)/(1−m)

4(q − 1)
,

γ

2m+2

}
, (3.14)

and

s ≥ s0 := max

{
8γ q,2γ,

2m+2q

q − 1

}
.

Since (q − 1)/(m − 1) < 0, we notice that (3.14) is satisfied provided A is sufficiently large. We 
have thereby shown that wA is a subsolution to (3.2) in (s0, ∞) ×R

N for A large enough. �
Comparison with subsolutions. We show now that the subsolutions constructed above are in-
deed useful to investigate the large time asymptotics of (1.1)–(1.2). Let u be the solution to the 
Cauchy problem (1.1)–(1.2) with initial condition u0 satisfying (1.3) and exponents (m, q) given 
by (1.4). Then the rescaled function v obtained from u via the transformation (3.1) enjoys the 
following property:

Proposition 3.2. Let u0 be an initial condition satisfying (1.3) and denote the corresponding 
solution to (1.1)–(1.2) by u. Let v be its rescaled version defined by (3.1) and consider T ≥ es0 . 
There are AT ≥ Asub, sT > 0, and γT > 0 depending only on N , m, u0, and T such that

v(s, y) ≥
(

1 − γT

s

)(
1 − γT e−s

)1/(1−m)
wAT

(s, y) , (s, y) ∈ (sT ,∞) ×R
N , (3.15)

where wAT
is defined in Lemma 3.1.

Proof. For t ≥ 1 we define

at := (t log t)1/(q−1) , bt := t1/N(q−1)(log t)(1−m)/2(q−1),

and

ct :=

⎧⎪⎪⎨
⎪⎪⎩

1 if m ∈
[
N − 1

N
,1

)
,

1 − 1

2(1 − m) log t
if m ∈

(
N − 2

N
,
N − 1

N

)
.

Fix εT ∈ (0, B0c
m−1
T /T ) such that c1−m

T am−1
T ≥ εT Asub. According to Proposition 2.4 there are 

τT ≥ 1/εT and κT ≥ 1/εT such that

um−1(τT , x) ≤ κT + εT |x|2 , x ∈ R
N . (3.16)

Define now the function V by

V (log(T + t), y) := aT +t u(t + τT , ybT +t ) , (t, y) ∈ [0,∞) ×R
N .
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Note that V is defined by (3.1) with u(· + τT ) instead of u and thus satisfies

∂sV −LV = 0 in (logT ,∞) ×R
N (3.17)

with V (logT , y) = aT u(τT , ybT ) for y ∈R
N . Moreover, thanks to (3.16),

V m−1(logT ,y) = am−1
T um−1(τT , ybT ) ≤ am−1

T κT + εT am−1
T b2

T |y|2 .

Since am−1
T b2

T = T and εT c1−m
T T ≤ B0, we obtain

V m−1(logT ,y) ≤ cm−1
T

(
c1−m
T am−1

T κT + εT c1−m
T T |y|2

)
≤ cm−1

T

(
c1−m
T am−1

T κT + B0|y|2
)

.

Recalling that wAT
(logT , y) = cT σAT

(y) and m < 1, we end up with

V (logT ,y) ≥ wAT
(logT ,y) , y ∈ R

N , with AT := c1−m
T am−1

T κT .

Now the properties of κT and εT ensure that AT ≥ c1−m
T am−1

T /εT ≥ Asub, so that wAT
is a sub-

solution to (3.2) in (logT , ∞) ×R
N by Lemma 3.1. Taking into account (3.17), the comparison 

principle entails that

V (s, y) ≥ wAT
(s, y) , (s, y) ∈ [logT ,∞) ×R

N .

Equivalently

u(t + τT , x) ≥ cT +t

aT +t

(
AT + B0

|x|2
b2
T +t

)1/(m−1)

, (t, x) ∈ [0,∞) ×R
N .

Recalling that am−1
T +t b2

T +t = T + t and m < 1 we realize that

u(t + τT , x) ≥ cT +t

b
2/(1−m)
T +t

aT +t

(
AT b2

T +t + B0|x|2
)1/(m−1)

≥ cT +t (T + t)1/(1−m)
(
AT b2

T +τT +t + B0|x|2
)1/(m−1)

≥ cT +t

(
T + t

T + τT + t

)1/(1−m) b
2/(1−m)
T +τT +t

aT +τT +t

(
AT b2

T +τT +t + B0|x|2
)1/(m−1)

≥ cT +t

(
T + t

T + τT + t

)1/(1−m) 1

aT +τT +t

wAT

(
log(T + τT + t),

x

bT +τT +t

)
.

Since

cT +t ≥ 1 − 1

2(1 − m) log(T + t)
≥ 1 − log(T + τT )

2(1 − m) log(T )

1

log(T + τT + t)
, t ≥ 0 ,

and
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T + t

T + τT + t
= 1 − τT

T + τT + t
, t ≥ 0 ,

we end up with

u(t, x) ≥
(

1 − γT

log(T + t)

)(
1 − γT

T + t

)1/(1−m) 1

aT +t

wAT

(
log(T + t),

x

bT +t

)

for (t, x) ∈ (τT , ∞) ×R
N , where

γT := max

{
τT ,

2 log(T + τT )

(1 − m) logT

}
.

The inequality (3.15) then readily follows after setting sT := log(T + τT ) and using (3.1). �
Construction of supersolutions. A class of supersolutions to (3.2) is identified in [31]. Us-
ing our notation, we recall in the next result the outcome of the construction performed in [31, 
Lemma 3.2].

Lemma 3.3. Define

zA(s, y) := σA(y)

[
1 + 1

s
(A + B0|y|2)δ

]
, (s, y) ∈ (0,∞) ×R

N , (3.18)

where A > 0 and δ := 1/(1 − m) − (k/2), the parameter k being defined in (1.7) and σA and B0
in (3.4). There are s1 > 0 and Asup ∈ (0, 1) depending only on N and m such that zA is a 
supersolution to (3.2) in (s1, ∞) ×R

N for A ∈ (0, Asup).

The statement given in [31, Lemma 3.2] is somewhat less precise with respect to the depen-
dence of s1, but a careful inspection of the proof allows one to check that it does not depend on 
A ∈ (0, 1).

Proposition 3.4. Let u0 be an initial condition satisfying (1.3) and (1.7) and denote the corre-
sponding solution to (1.1)–(1.2) by u. Let v be its rescaled version defined by (3.1). There exists 
T (K) > es1 depending only on N , m, and K , with K given in (1.7), such that, given T ≥ T (K), 
there is A′

T ∈ (0, Asup) depending only on N , m, u0, and T such that

v(s, y) ≤ zA′
T
(s, y) , (s, y) ∈ (logT ,∞) ×R

N . (3.19)

Proof. Let T (K) ≥ es1 be such that

(2B0)
k/2K ≤ T (k−N)/N(q−1)(logT )(k(1−m)−2q)/2(q−1) for all T ≥ T (K) , (3.20)

the existence of T (K) being guaranteed by the inequality k > N . Consider T ≥ T (K) and let 
A > 0 be specified later. On the one hand, if y ∈ R

N satisfies |y|2 ≥ A/B0, we deduce from (1.7), 
(3.18), and (3.20) that
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zA(logT ,y) ≥
(
A + B0|y|2)−k/2

logT
≥ (2B0)

−k/2

logT
|y|−k

≥ KaT (|y|bT )−k ≥ aT u0(ybT ) = v(logT ,y) ,

where

aT = (T logT )1/(q−1) , bT = T 1/N(q−1)(logT )(1−m)/2(q−1) .

On the other hand, if y ∈ R
N satisfies |y|2 < A/B0, then

v(logT ,y) ≤ aT ‖u0‖∞ and zA(logT ,y) ≥
(
A + B0|y|2

)1/(m−1) ≥ (2A)1/(m−1) .

Therefore, if A ≤ (aT ‖u0‖∞)m−1 /2, then

v(logT ,y) ≤ zA(logT ,y) , y ∈ B√
A/B0

(0) .

We have thus shown that, if T ≥ T (K) and A ≤ (aT ‖u0‖∞)m−1 /2, then

v(logT ,y) ≤ zA(logT ,y) , y ∈ R
N .

Pick now A′
T ∈ (0, Asup) ∩

(
0, (aT ‖u0‖∞)m−1 /2

]
. The above analysis guarantees that v(logT ) ≤

zA′
T
(logT ) in RN , while v and zA′

T
are a solution and a supersolution to (3.2), respectively, 

by (3.2) and Lemma 3.3. Applying the comparison principle completes the proof of Proposi-
tion 3.4. �
4. Convergence

The convergence (1.8) is now a consequence of the previous analysis and the stability tech-
nique developed in [11,12], the latter having already been used in [31] for (1.1)–(1.2). We briefly 
recall it for the sake of completeness in the Appendix and sketch its application in our framework 
below.

We fix an initial condition u0 satisfying (1.3) and (1.7) and T ≥ 1 + es0 + T (K), the param-
eters s0 and T (K) being defined in Lemma 3.1 and Proposition 3.4, respectively. We denote 
the corresponding solution to (1.1)–(1.2) by u and define its rescaled version v by (3.1). We set 
A1 := AT ≥ Asub and A2 := A′

T ∈ (0, Asup) where AT and A′
T are defined in Proposition 3.2

and Proposition 3.4, respectively, and consider the complete metric space

X :=
{
ϑ0 ∈ L1(RN) : wA1(logT ,y) ≤ ϑ0(y) ≤ zA2(logT ,y) , y ∈R

N
}

(4.1)

endowed with the distance induced by the L1-norm. Recall that wA1 and zA2 are defined in 
Lemma 3.1 and (3.18), respectively.

Let ϑ0 ∈ X and consider the solution ϑ to

∂sϑ −Lϑ = 0 in (logT ,∞) ×R
N , ϑ(logT ) = ϑ0 in R

N , (4.2)
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where L is defined in (3.3). Observe that ϑ is actually given by

ϑ(s, y) = (ses
)1/(q−1)

uϑ

(
es − T , s(1−m)/2(q−1)es/N(q−1)y

)
(4.3)

for (s, y) ∈ (logT , ∞) ×R
N , where uϑ denotes the unique solution to (1.1) with initial condition

uϑ(0, x) = 1

(T logT )1/(q−1)
ϑ0

(
x

T 1/N(q−1)(logT )(1−m)/2(q−1)

)
, x ∈ R

N ,

which exists as ϑ0 ∈ X ⊂ L1(RN) ∩L∞(RN). This formula guarantees in particular the existence 
and uniqueness of ϑ . Furthermore, ϑ enjoys several useful properties which we collect now. First, 
since T ≥ max{es0, es1} with s1 defined in Lemma 3.3, we infer from Lemma 3.1, Lemma 3.3, 
and the comparison principle that

wA1(logT ,y) ≤ wA1(s, y) ≤ ϑ(s, y) ≤ zA2(s, y) ≤ zA2(logT ,y) (4.4)

for (s, y) ∈ (logT , ∞) ×R
N . Consequently,

ϑ(s) ∈ X , s ≥ logT . (4.5)

It next follows from (4.3) and Theorem 2.2 that

∣∣∣∇ϑ(m−1)/2(s, y)

∣∣∣= es/2
∣∣∣∇u

(m−1)/2
ϑ

(
es − T , s(1−m)/2(q−1)es/N(q−1)y

)∣∣∣
≤ es/2

[√
(3 − m − 2q)+B0

∥∥∥∥uϑ

(
es

2
− T

)∥∥∥∥
(q−1)/2

∞
+
√

2B0e−s

]

≤ es/2

√
(3 − m − 2q)+B0

(s − log 2)es−log 2
‖ϑ(s − log 2)‖(q−1)/2∞ +√2B0 .

We then use (4.4) and the boundedness of zA2 to conclude that

∣∣∣∇ϑ(m−1)/2(s, y)

∣∣∣≤ C(T ) , (s, y) ∈ (logT ,∞) ×R
N , (4.6)

for some positive constant C(T ) depending only on N , m, u0, and T . Since

∇ϑ = 2

m − 1
ϑ(3−m)/2∇ϑ(m−1)/2 and ∇ϑm = 2m

m − 1
ϑ(m+1)/2∇ϑ(m−1)/2 ,

the following bounds are a straightforward consequence of (4.4), (4.6), and the boundedness 
of zA2 :

|∇ϑ(s, y)| + ∣∣∇ϑm(s, y)
∣∣≤ C(T ) , (s, y) ∈ (logT ,∞) ×R

N . (4.7)
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We then infer from [13,17,29] and (4.7) that, given R > 0, there are ζ > 0 and C(R, ζ ) > 0
depending only on N , m, and T such that, for s2 > s1 ≥ logT satisfying |s2 − s1| ≤ ζ , there 
holds:

|ϑ(s2, y) − ϑ(s1, y)| ≤ C(R, ζ )
√|s2 − s1| , y ∈ BR(0) . (4.8)

Combining the time continuity of uϑ in L1(RN) with (4.4) and (4.8) gives

ϑ ∈ C([logT ,∞);L1(RN)) . (4.9)

Collecting the information obtained so far on the solutions ϑ to (4.2) associated to initial data in 
X we realize that we are in a position to check the validity of the three assumptions (H1)–(H3)
required to apply the stability theory from [12] which are recalled in the Appendix. In our setting 
the non-autonomous operator L is defined in (3.3) with the metric space X introduced in (4.1), 
its autonomous counterpart being

Lz := �zm + 1

N(q − 1)
(Nz + y · ∇z) . (4.10)

The evolution equation

∂s� − L� = 0 in (logT ,∞) ×R
N , (4.11)

is related to the fast diffusion equation (1.9) by a (self-similar) change of variables. The bounds 
(4.4), (4.6), (4.7), and (4.8) ensure that both (H1) and (H2) are satisfied, after noticing that

|Lϑ(s, y) −Lϑ(s, y)| ≤ C

s
, (s, y) ∈ (logT ,∞) ×R

N .

As for (H3), it involves only to the fast diffusion equation (1.9) and its self-similar form (4.11)
and we refer to [12,32] for its proof.

We may thus apply Theorem A.1 below to deduce that the ω-limit set of any solution ϑ to 
(4.2) starting from an initial condition in X is a subset of

� :=
{
σA : wA1(logT ,y) ≤ σA(y) ≤ zA2(logT ,y), y ∈ R

N
}

.

Since σA is strictly decreasing with respect to A, we obtain that there are 0 < A3 < A4 such that 
σA ∈ � if and only if A ∈ [A3, A4]. The remainder of the proof proceeds along the same lines as 
in [31, Section 4] to which we refer. We nevertheless mention that the S-theorem provides only 
the convergence in L1(RN) (which is the topology of X) and a further step is needed to achieve 
the uniform convergence, see [11, Section 5] and [31, Section 4].
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Appendix A. The stability theorem

We briefly recall here for the reader’s convenience the S-theorem introduced by Galaktionov 
and Vázquez in [11,12] and used in Section 4 to complete the proof of Theorem 1.2. As a general 
framework, consider a non-autonomous evolution equation

∂sϑ = Lϑ , (A.1)

that can be seen as a small perturbation of an autonomous evolution equation with good asymp-
totic properties

∂s� = L� , (A.2)

in the sense described by the three assumptions below. There is a complete metric space (X, d)

which is positively invariant for both (A.1) and (A.2) and:

(H1) The orbit {ϑ(t)}t>0 of a solution ϑ ∈ C([0, ∞); X) to (A.1) is relatively compact in X. 
Moreover, if we let

ϑτ (t) := ϑ(t + τ) , t ≥ 0 , τ > 0,

then {ϑτ }τ>0 is relatively compact in L∞
loc([0, ∞); X).

(H2) Given a solution ϑ ∈ C([0, ∞); X) to (A.1), assume that there is a sequence of positive 
times (tk)k≥1, tk → ∞ such that ϑ(· + tk) → ϑ̃ in L∞

loc([0, ∞); X) as k → ∞. Then ϑ̃ is a 
solution to (A.2).

(H3) Define the ω-limit set � of (A.2) in X as the set of f ∈ X such that there are a solution 
� ∈ C([0, ∞); X) to (A.2) and a sequence of positive times (tk)k≥1 such that tk → ∞ and 
�(tk) −→ f in X. Then � is non-empty, compact and uniformly stable, that is: for any 
ε > 0, there exists δ > 0 such that if � is any solution to (A.2) with d(�(0), �) ≤ δ, then 
d(�(t), �) ≤ ε for any t > 0, where d is the distance in the complete metric space X.

The S-theorem then reads:

Theorem A.1. If (H1)–(H3) above are satisfied, then the ω-limit set of any solution ϑ ∈
C([0, ∞); X) to (A.1) is contained in �.

For a detailed proof we refer the reader to [11,12].
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