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Abstract

This paper is devoted to study the dynamical properties and stationary patterns of a diffusive Leslie–
Gower prey–predator model with strong Allee effect in the prey population. We first analyze the non-
negative constant equilibrium solutions and their stabilities, and then study the dynamical properties of 
time-dependent solutions. Moreover, we investigate the stationary patterns induced by diffusions (Turing 
pattern). Our results show that the impact of the strong Allee effect essentially increases the system spatio-
temporal complexity.
© 2016 Published by Elsevier Inc.
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1. Introduction

The understanding of mechanisms and patterns of spatial dispersal of interacting species is 
a central problem in biology and ecology, and biochemical reactions. The interaction between 
different species will exhibit the diversity and complexity, and generate the complex network 
of biological species. The spatial dispersal makes the dynamics of the organisms even more 
complicated. A typical type of interaction is the one between the prey and predator.
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In most works for prey–predator models, the prey is assumed to grow at a logistic pattern. 
But in recent years it was recognized that the prey species may have a growth rate of Allee ef-
fect, as a result of mate limitation, cooperative defense, cooperative feeding, and environmental 
conditioning [13,30]. The Allee effect named after W.C. Allee [1], has significant contribution 
to population dynamics. Allee effects are mainly classified into two ways: strong and weak 
Allee effect [2,6,31,32,34]. The biological invasion dynamics of reaction–diffusion models with 
Allee effect has been considered in [12,14,29,34], and the spatiotemporal pattern formation of 
reaction–diffusion prey–predator models with Allee effect has been studied in [7,19,26,27,33].

In [20], we studied the dynamical properties of the following Leslie–Gower prey–predator 
model with strong Allee effect in prey:

{
u′ = u(1 − u)(u/b − 1) − βuv, t > 0,

v′ = μv(1 − v/u), t > 0,

where b ∈ (0, 1) represents Allee threshold value, β and μ are positive constants.
Taking into account the inhomogeneous distribution of the prey and predator in different spa-

tial locations within a fixed domain � at any given time, and the natural tendency of each species 
to diffuse to areas of smaller population concentration, we are naturally led to the following 
initial and boundary value problem of the corresponding reaction diffusion system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut − d1�u = u(1 − u)(u/b − 1) − βuv, x ∈ �, t > 0,

vt − d2�v = μv(1 − v/u), x > �, t > 0,

∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂�, t ≥ 0,

u(x,0) = u0(x) > 0, v(x,0) = v0(x) ≥, �≡ 0, x ∈ �̄,

(1.1)

where the positive constants d1 and d2 are the diffusion coefficients corresponding to u and v, 
respectively, � ⊂ R

N is a smooth and bounded domain, ν is the outward unit normal vector 
over ∂�. The homogeneous Neumann boundary condition indicates that this system is self-
contained with zero population flux across the boundary. The initial data u0, v0 are continuous 
functions.

The main purpose of this paper is to investigate the dynamical properties and stationary 
patterns of (1.1). In particular, under some certain conditions, we prove that both prey and preda-
tor will extinct if the initial population of predator is larger than that of prey, which is called 
overexploitation [31,32] and it is a character of many prey–predator systems with strong Allee 
effect.

Here we mention that the system (1.1) (without initial data) admits a singularity at (0, 0) and 
one or two possible positive constant equilibria (see the discussion of §2), so it may have bistable 
structure between (0, 0) and one positive equilibrium.

On the other hand, because of the reaction term

[
u(1 − u)(u/b − 1) − βuv

]
(x, t) < 0

for 0 < u(x, t) < b and v(x, t) > 0, the component u(x, t) may tend to zero and thus the term 
v(x, t)/u(x, t) may be unbounded. Such a bad structure will bring a lot of difficulties to us in the 
study of (1.1).
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The paper is organized as follows. In section 2, we analyze the nonnegative constant equilib-
rium solutions and their stabilities. In section 3, we prove the global existence and uniqueness, 
and give some estimates of solutions of the problem (1.1). Section 4 is devoted to study the dy-
namical properties of solutions of (1.1). Section 5 concerns with the stationary patterns deriving 
by diffusions.

Before ending this section, we mention that the classical diffusive Leslie–Gower prey–
predator model (without Allee effect) is of the form:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ut = d1�u + u(1 − u) − βuv, x ∈ �, t > 0,

vt = d2�v + μv(1 − v/u), x ∈ �, t > 0,

∂u

∂ν
= ∂v

∂ν
= 0, x ∈ ∂�, t ≥ 0,

u(x,0) = u0(x) > 0, v(x,0) = v0(x) ≥, �≡ 0, x ∈ �̄.

(1.2)

The dynamical properties, Hopf bifurcation and pattern formation of (1.2) and the diffusive 
Holling–Tanner prey–predator model (without Allee effect) have been studied widely by many 
authors, please refer to, for instance, [3–5,8–10,15,18,23–25,28,36] and the references cited 
therein.

2. Nonnegative constant equilibrium solutions and their stabilities

Obviously, (b, 0) and (1, 0) are nonnegative constant equilibrium solutions of (1.1). On the 
other hand, the positive constant equilibrium solution of (1.1) has the form (ũ, ũ), where ũ satis-
fies

ũ2 + (βb − 1 − b)ũ + b = 0.

The following results concerning with positive equilibrium solutions are obvious:

(i) If βb > (1 − √
b)2, then (1.1) has no positive constant equilibrium solution;

(ii) If βb < (1 −√
b)2, then (1.1) has two positive constant equilibrium solutions: ũ1 = (ũ1, ũ1), 

ũ2 = (ũ2, ũ2) with

ũ1 = 1

2

(
1 + b − βb −

√
(1 + b − βb)2 − 4b

)
,

ũ2 = 1

2

(
1 + b − βb +

√
(1 + b − βb)2 − 4b

)
.

(iii) If βb = (1 − √
b)2, then (1.1) has a unique positive constant equilibrium solution ũ3 =

(ũ3, ũ3) with ũ3 = √
b.

For the simplicity of notations, we denote u = (u, v) and

G(u) =
(

f (u, v)

g(u, v)

)
=
(

u(1 − u)(u/b − 1) − βuv

μv(1 − v/u)

)
.
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The linearization of G(u) at ũ = (ũ, ṽ) is

Gu(ũ) =
(

2(1 + 1/b)ũ − 3ũ2/b − 1 − βṽ −βũ

μṽ2/ũ2 μ − 2μṽ/ũ

)
. (2.1)

Denote

Ai = (1 + 1/b)ũi − 2ũ2
i /b,

then we get

Gu(ũi ) =
(

Ai −βũi

μ −μ

)
, (2.2)

and

A1 > βũ1, A2 < βũ2, A3 = βũ3.

In the following we discuss the local stability of the constant equilibrium solutions (b, 0), 
(1, 0), ũ1, ũ2 and ũ3.

Let 0 = μ0 < μ1 < · · · < μi < · · · be the complete set of eigenvalues of the operator −� in 
� with the homogeneous Neumann boundary condition, and E(μi) be the subspace generated 
by the eigenfunctions corresponding to μi . Let mi be the algebraic multiplicity of μi , i.e., mi =
dimE(μi), and {φij }mi

j=1 be a basis of E(μi), i.e., {φij }mi

j=1 constitute a complete set of linearly 
independent eigenfunctions corresponding to μi . Define

Xij = {c φij : c ∈ R
2}, Xi =

mi⊕
j=1

Xij ,

X =
{
(u, v) ∈ [C1(�̄)]2 : ∂u

∂ν
= ∂v

∂ν
= 0 on ∂�

}
. (2.3)

Then

X =
∞⊕
i=0

Xi .

The stationary problem of (1.1) is the following elliptic boundary value problem

⎧⎪⎪⎨
⎪⎪⎩

−d1�u = u(1 − u)(u/b − 1) − βuv, x ∈ �,

−d2�v = μv(1 − v/u), x ∈ �,

∂u = ∂v = 0, x ∈ ∂�.

(2.4)
∂ν ∂ν
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And the linearization of (2.4) at ũ is⎧⎨
⎩

−D�u = Gu(ũ)u, x ∈ �,

∂u
∂ν

= 0, x ∈ ∂�,

where

D =
(

d1 0
0 d2

)
.

Theorem 2.1. (i) For all d1, d2, μ > 0, the constant equilibrium solutions (1, 0), (b, 0) and 
(ũ1, ũ1) are unstable.

(ii) For all d1, d2 > 0, the constant equilibrium solution (ũ2, ũ2) is locally asymptotically 
stable when μ > max {A2,

d2
d1

A2}, and is unstable when μ < A2.
(iii) For all d1, d2 > 0, the constant equilibrium solution (ũ3, ũ3) is unstable if μ < A3.

Remark 2.1. In Theorem 2.1(ii) there is a gap between the stability and instability of (ũ2, ũ2). 
For the values of parameters in this gap, the stability depends on d1, d2. Indeed, in this gap the 
Turing instability could occur (stable for ODE but can be unstable for some d1, d2). Please refer 
to [20, Theorem 3.2] and the arguments of §5.3.

Proof of Theorem 2.1. (i) For ũ = (1, 0). Taking advantage of (2.1) it follows that

Gu(ũ) =
(

1 − 1/b −β

0 μ

)
.

As 0 < b < 1, we have μ + 1/b > 1. It is easy to verify that μ is an eigenvalue of Gu(ũ) and the 
corresponding eigenvector is ( β

1−μ−1/b
, 1). Therefore, (1, 0) is unstable.

For ũ = (b, 0), we have

Gu(ũ) =
(

1 − b −βb

0 μ

)
.

We can verify that μ is an eigenvalue of Gu(ũ) with eigenvector (φ, h): (φ, h) = (
βb

1−b−μ
, 1)

when b + μ �= 1, while (φ, h) = (1, 0) when b + μ = 1. Hence (b, 0) is unstable.
For the cases ũi = (ui, ui), i = 1, 2, 3. Denote

L = D� + Gu(ũi ).

Then for each j ∈ {0, 1, 2, . . .}, Xj is invariant under the operator L, and ξ is an eigenvalue of L
on Xj if and only if ξ is an eigenvalue of the matrix

Qij = −μjD + Gu(ũi ) =
(

−μjd1 + Ai −βũi

μ −μjd2 − μ

)

where Gu(ũi ) is given by (2.2). The direct calculation gives



JID:YJDEQ AID:8419 /FLA [m1+; v1.232; Prn:30/06/2016; 17:18] P.6 (1-31)

6 W. Ni, M. Wang / J. Differential Equations ••• (••••) •••–•••
Tr Qij = Ai − μ − (d1 + d2)μj ,

detQij = d1d2μ
2
j + (μd1 − d2Ai)μj + μβũi − μAi.

For i = 1 and j = 0, we have

|ξI − Q10| = ξ2 − (A1 − μ)ξ + μβũ1 − μA1.

Since βũ1 − A1 < 0, the two eigenvalues ξ−
0 and ξ+

0 of Q10 satisfy ξ−
0 < 0 < ξ+

0 , which implies 
that (ũ1, ũ1) is unstable.

Similarly, if μ < A2, then (ũ2, ũ2) is unstable.
For i = 3, owning to μ < A3 and βũ3 = A3, the two eigenvalues ξ−

0 and ξ+
0 of Q30 satisfy

ξ−
0 + ξ+

0 = Tr Q30 = A3 − μ > 0,

ξ−
0 ξ+

0 = detQ30 = μβũ3 − μA3 = 0.

Hence 0 = ξ−
0 < ξ+

0 , which implies that (ũ3, ũ3) is unstable.

Finally, we show that if μ > max{A2, 
d2
d1

A2}, then (ũ2, ũ2) is locally asymptotically stable. In 

fact, since βũ2 > A2, the two eigenvalues ξ−
j and ξ+

j of Q2j satisfy

ξ−
j + ξ+

j = Tr Q2j = A2 − μ − (d2 + d1)μj < 0,

ξ−
j ξ+

j = detQ2j = μj (μjd1d2 + μd1 − d2A2) + μβũ2 − μA2 > 0.

Thus ξ−
j and ξ+

j have negative real parts. Actually

Re ξ−
j = Re

{
1

2

(
TrQ2j −

√
(TrQ2j )2 − 4 detQ2j

)}
≤ TrQ2j

2
≤ A2 − μ

2
< 0, (2.5)

and when (TrQ2j )
2 − 4 detQ2j ≤ 0,

Re ξ+
j = Re

{
1

2

(
TrQ2j +

√
(TrQ2j )2 − 4 detQ2j

)}
= TrQ2j

2
≤ A2 − μ

2
< 0. (2.6)

For the case (TrQ2j )
2 − 4 detQ2j > 0, we have

Re ξ+
j = 1

2

(
TrQ2j +

√
(TrQ2j )2 − 4 detQ2j

)

= 2 detQ2j

TrQ2j −
√

(TrQ2j )2 − 4 detQ2j

< 0,

and Re ξ+
j → −∞ as j → ∞. Hence, there exists a constant σ > 0 such that

Re ξ+ < −σ, ∀ j ∈ {0,1,2, . . .}. (2.7)
j
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Inequalities (2.5), (2.6) and (2.7) imply that

Re ξ−
j , Re ξ+

j ≤ −min{σ,
−A2 + μ

2
} =: −ε < 0, ∀ j ∈ {0,1,2, . . .}.

Consequently, the spectrum of L, which consists of eigenvalues, lies in {Reξ ≤ −ε}, and local 
stability of (ũ2, ũ2) is followed from [11, Theorem 5.1.1]. The proof is complete. �
3. Global existence, uniqueness and estimates of the solutions

In this section, we provide the global existence, uniqueness and estimates of solutions of the 
problem (1.1).

Theorem 3.1. (i) The problem (1.1) has a unique global solution (u(x, t), v(x, t)) satisfying 
u(x, t) > 0, v(x, t) ≥ 0 for (x, t) ∈ �̄ × [0, ∞), and

lim sup
t→∞

max
�̄

u(x, t) ≤ 1, lim sup
t→∞

max
�̄

v(x, t) ≤ 1. (3.1)

(ii) There exists a constant M > 0 such that

‖u(·, t)‖C1(�̄) ≤ M, ∀ t ≥ 1. (3.2)

Proof. (i) It is easy to see that, in the domain {u > 0, v ≥ 0}, the problem (1.1) is a mixed quasi-
monotone system. Take v(x, t) = 0 and (ū(x, t), v̄(x, t)) = (u∗(t), v∗(t)), where (u∗(t), v∗(t))
is the unique solution of

⎧⎪⎨
⎪⎩

u′ = u(1 − u)(u/b − 1), t > 0,

v′ = μv(1 − v/u), t > 0,

u(0) = u∗, v(0) = v∗,

with u∗ = maxx∈�̄ u0(x) > 0 and v∗ = maxx∈�̄ v0(x) > 0. Let u(x, t) be the unique positive 
solution of

⎧⎪⎪⎨
⎪⎪⎩

ut = d1�u + u(1 − u)(u/b − 1) − βuv̄, x ∈ �, t > 0,

∂u

∂ν
= 0, x ∈ ∂�, t ≥ 0,

u(x,0) ≡ u∗, x ∈ �,

where u∗ = minx∈�̄ u0(x) > 0. Then (ū(x, t), v̄(x, t)) and (u(x, t), v(x, t)) are the coupled or-
dered upper and lower solutions of the problem (1.1). Hence (1.1) has a unique global solution 
(u(x, t), v(x, t)) satisfying

0 < u(x, t) ≤ u(x, t) ≤ u∗(t), 0 ≤ v(x, t) ≤ v∗(t), ∀ x ∈ �̄, t ≥ 0.

Moreover, by the strong maximum principle we also have v(x, t) > 0 for x ∈ �̄ and t > 0.
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In the following we prove that (u, v) satisfies (3.1). Clearly, u satisfies

⎧⎪⎪⎨
⎪⎪⎩

ut ≤ d1�u + u(1 − u)(u/b − 1), x ∈ �, t > 0,

∂u

∂ν
= 0, x ∈ ∂�, t ≥ 0,

u(x,0) = u0(x) > 0, x ∈ �.

(3.3)

It is deduced by the comparison principle that u(x, t) ≤ ϕ(t), where ϕ(t) is the unique solution 
of

ϕ′ = ϕ(1 − ϕ)(ϕ/b − 1), t > 0; ϕ(0) = u∗, (3.4)

with u∗ = maxx∈�̄ u0(x) > 0. Evidently, lim
t→∞ϕ(t) < 1, this implies lim sup

t→∞
max

�̄

u(x, t) ≤ 1. For 

any given ε > 0, there is T > 0 such that

u(x, t) < 1 + ε, x ∈ �̄, t ≥ T .

It follows from the second equation of (1.1) that

vt < d2�v + μv
(
1 − v/(1 + ε)

)
, x > �, t > T . (3.5)

Remember the boundary condition ∂v
∂ν

= 0, it is derived by the comparison principle that 
v(x, t) ≤ φ(t) for x ∈ �̄, t ≥ T , where φ(t) is the unique solution of

φ′ = μφ
(
1 − φ/(1 + ε)

)
, t > 0; φ(T ) = max

x∈�̄

v(x,T ). (3.6)

Obviously, lim
t→∞φ(t) ≤ 1 + ε, which leads to lim sup

t→∞
max

�̄

v(x, t) ≤ 1 + ε. The arbitrariness of ε

yields lim sup
t→∞

max
�̄

v(x, t) ≤ 1.

(ii) The proof is similar to that of [35, Theorem 2.1], and we just give a brief description. For 
the integer k ≥ 0, denote uk(x, t) = u(x, t + k). Then uk satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uk
t − d1�uk = uk(1 − uk)(uk/b − 1) − βukv(x, t + k), x ∈ �, 0 < t ≤ 3,

∂uk

∂ν
= 0, x ∈ ∂�, t ≥ 0,

uk(x,0) = u(x, k) > 0, x ∈ �̄,

Noticing (3.1), it is easy to see that ‖uk‖L∞(�×(0,3]) and ‖v(x, t + k)‖L∞(�×(0,3]) are bounded 
in k. Similarly to the arguments in the proof of [35, Theorem 2.1], we can prove (3.2). �
Remark 3.1. Generally, we couldn’t get uniform estimates of v(·, t) in C1(�̄) since u may tend 
to 0 as t → ∞ and v/u may be unbounded in �̄ × [1, ∞).
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4. Dynamical properties of the solution

This section is devoted to investigate the dynamical properties of the solution (u(x, t), v(x, t))
of (1.1). We first give a general result.

Theorem 4.1. For all d1, d2, β, μ > 0, if u0(x) ≤ b and (u0(x), v0(x)) �≡ (b, 0), then
lim

t→∞u(x, t) = lim
t→∞v(x, t) = 0 uniformly on �̄.

Proof. The proof is divided into three cases.
Case 1: u0(x) < b on �̄. By (3.3), (3.4) and u0(x) < b, we obtain that lim

t→∞ϕ(t) = 0 and 

lim
t→∞u(x, t) = 0 uniformly on �̄. For any given ε > 0, there is T > 0 such that

u(x, t) < ε, ∀x ∈ �̄, t ≥ T .

Replacing 1 + ε with ε in both (3.5) and (3.6), we can obtain similarly

lim sup
t→∞

max
�̄

v(x, t) ≤ lim
t→∞φ(t) ≤ ε.

The arbitrariness of ε gives that lim
t→∞v(x, t) = 0 uniformly for x ∈ �̄.

Case 2: u0(x) ≤ b and u0(x) �≡ b. Let w = b − u. Then, by (3.3) and (3.4), we have that 
0 < u(x, t) ≤ b, 0 ≤ w(x, t) < b for x ∈ �̄, t > 0, and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wt − d1�w = w

b
(b − w)(1 − b + w) + β(b − w)v ≥ 0, x ∈ �, t > 0,

∂w

∂ν
= 0, x ∈ ∂�, t ≥ 0,

w(x,0) ≥, �≡ 0, x ∈ �.

It follows from the strong maximum principle that

w(x, t) > 0, ∀ x ∈ �̄, t > 0,

i.e., u(x, t) < b for x ∈ �̄, t > 0. Similarly to the case 1, we have

lim
t→∞u(x, t) = lim

t→∞v(x, t) = 0

uniformly for x ∈ �̄.
Case 3: u0 ≡ b and v0(x) �≡ 0 for x ∈ �̄. In view of (3.3) and (3.4), it is easy to see that 

u(x, t) ≤ b for x ∈ �̄, t ≥ 0. If u(x, t) ≡ b, we obtain a contradiction since v(x, t) > 0 for x ∈ �̄, 
t > 0. Hence there exists t0 > 0 such that 0 < u(x, t0) ≤ b and u(x, t0) �≡ b. Similar to the case 2,

lim
t→∞u(x, t) = lim

t→∞v(x, t) = 0

uniformly for x ∈ �̄. The proof is complete. �
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Let (u(x, t), v(x, t)) be the unique solution of (1.1) and

s(t) = min
x∈�̄

v(x, t)

u(x, t)
, t ≥ 0. (4.1)

For the positive constant λ, we denote

Rλ := {(u, v) : u > 0, v ≥ λu}.

We call that Rλ is an invariant region of (1.1) if (u0(x), v0(x)) ∈ Rλ for all x ∈ �̄ implies 
(u(x, t), v(x, t)) ∈ Rλ for all x ∈ �̄ and t ≥ 0.

Lemma 4.1. Suppose that d1 = d2 = d and μ > 0. Denote λ0 = (1 − √
b)2/(βb).

(i) When βb > (1 − √
b)2, the set Rλ is an invariant region of (1.1) for each λ0 ≤ λ ≤ 1. 

Moreover, s(t) is strictly increasing in t provided λ0 ≤ s(t) ≤ 1;
(ii) When βb = (1 − √

b)2, the set R1 is an invariant region of (1.1).

Proof. (i) Let (u(x, t), v(x, t)) be the unique solution of (1.1). Set w = v − λu and

h(u,w;λ) = 1

d2
g(u,w + λu) − λ

d1
f (u,w + λu). (4.2)

Since d1 = d2 = d , then w satisfies

⎧⎪⎪⎨
⎪⎪⎩

wt − d�w = dh(u,w;λ), x ∈ �, t > 0,

∂w

∂ν
= 0, x ∈ ∂�, t ≥ 0,

w(x,0) = v0(x) − λu0(x), x ∈ �,

(4.3)

and

h(u,0;λ) = 1

d
g(u,λu) − 1

d
λf (u,λu)

= 1

d

(
μλu(1 − λ) − λu(1 − u)(u/b − 1) + βλ2u2

)

= 1

d
λu[μ(1 − λ) + λβu − (1 − u)(u/b − 1)]

= 1

d
λu[(βu − μ)λ + μ − (1 − u)(u/b − 1)]

with u = u(x, t). Set

k(u,λ) = (βu − μ)λ + μ − (1 − u)(u/b − 1).
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Notice λ0 < 1 when βb > (1 − √
b)2. Owing to u > 0, we have

k(u,λ0) = (1 − λ0)μ + βλ0u − (1 − u)(u/b − 1) > 0.

k(u,1) = βu − (1 − u)(u/b − 1) > 0.

Therefore, k(u, λ) > 0 for all λ0 ≤ λ ≤ 1 and u > 0, which leads to

h(u,0;λ) > 0, ∀ x ∈ �̄, t ≥ 0. (4.4)

If (u0(x), v0(x)) ∈ Rλ for all x ∈ �̄, then w(x, 0) ≥ 0 in �̄. Noticing (4.4), we can apply the 
strong maximum principle and Hopf boundary lemma to (4.3) and derive that for λ0 ≤ λ ≤ 1,

w(x, t) > 0, i.e., v(x, t) > λu(x, t), ∀ x ∈ �̄, t > 0. (4.5)

Hence Rλ is an invariant region for each λ0 ≤ λ ≤ 1.
The conclusion (4.5) also suggests that if λ0 ≤ s(0) ≤ 1 then

v(x, t) > s(0)u(x, t), ∀ x ∈ �̄, t > 0,

i.e., s(t) > s(0) for all t > 0. Similarly, it can be shown that if s(t1) ≤ 1 for some t1 > 0, then 
s(t) > s(t1) for all t > t1.

(ii) The condition βb = (1 − √
b)2 implies λ0 = 1. As u > 0, we have

h(u,0, λ0) = 1

d
uk(u,1) = 1

d
u[βu − (1 − u)(u/b − 1)] = 1

bd
u(u − √

b)2 ≥ 0.

By the strong maximum principle we have that Rλ0 is an invariant region of (1.1). The proof is 
complete. �

When μ > (1 − b)2/(4b), we have

k(u,0) = μ − (1 − u)(u/b − 1) > 0.

Combining this formula and k(u, 1) ≥ 0, by the same method as in the proof of Lemma 4.1, we 
can get the following conclusion.

Corollary 4.1. Suppose that d1 = d2 = d , βb ≥ (1 − √
b)2 and μ > (1 − b)2/(4b).

(i) The set Rλ is an invariant region of (1.1) for each 0 < λ ≤ 1;
(ii) s(t) is strictly increasing in t provided 0 < s(t) < 1.

Remark 4.1. Under these assumptions of Corollary 4.1 when we have a more restrictive condi-
tion on μ (μ > (1 − b)2/(4b)), it can be shown that the problem (1.1) has neither nonconstant 
positive time-period solution (see Proposition 4.1) nor nonconstant positive steady states (see 
Theorem 5.4).
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Theorem 4.2. Assume d1 = d2 = d , βb > (1 − √
b)2 and μ > 0. If the initial data (u0, v0)

satisfies λ0u0(x) ≤ v0(x) on �̄, then lim
t→∞(u(x, t), v(x, t)) = (0, 0) uniformly on �̄.

Proof. If λ0u0(x) ≤ v0(x) on �̄, thanks to the conclusion Lemma 4.1(i), it follows that 
λ0u(x, t) < v(x, t) for all x ∈ �̄ and t > 0, and there exist λ0 < λ1 < 1, t0 > 0 such that

λ1u(x, t) ≤ v(x, t), ∀ x ∈ �̄, t ≥ t0.

Consequently, u satisfies

ut − d�u = u(1 − u)(u/b − 1) − βuv

≤ u[(1 − u)(u/b − 1) − λ1βu]
≤ ku, ∀ x ∈ �̄, t ≥ t0,

where k = maxy≥0[(1 −y)(y/b−1) −λ1βy] < 0. This leads to lim
t→∞u(x, t) = 0 uniformly on �̄. 

In the same way as in the proof of Theorem 4.1, it can be deduced that lim
t→∞v(x, t) = 0 uniformly 

on �̄. �
Theorem 4.3. Assume d1 = d2 = d , βb = (1 − √

b)2 and μ > 0.

(i) If u0(x) ≤ √
b and (u0(x), v0(x)) �≡ (

√
b, 

√
b), then lim

t→∞(u(x, t), v(x, t)) = (0, 0) uni-

formly on �̄.
(ii) If u0(x) ≤ v0(x) on �̄, then lim

t→∞(u(x, t), v(x, t)) = (0, 0) or (
√

b, 
√

b) uniformly on �̄.

Proof. (i) By Lemma 4.1(ii), we obtain that R1 is an invariant region of (1.1) and v(x, t) ≥
u(x, t) for x ∈ �̄, t ≥ 0.

Case 1: u0(x) ≤ v0(x) and u0(x) ≤, �≡ √
b on �̄. Setting ϕ = √

b − u, we have

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕt − d�ϕ ≥ (
√

b − ϕ)[(√b − ϕ − 1)(

√
b − ϕ

b
− 1) + β(

√
b − ϕ)] ≥ 0, x ∈ �, t > 0,

∂ϕ

∂ν
= 0, x ∈ ∂�, t ≥ 0,

ϕ(x,0) ≥, �≡ 0, x ∈ �.

The strong maximum principle and Hopf boundary lemma yield

ϕ(x, t) > 0, i.e., u(x, t) <
√

b, ∀ x ∈ �̄, t > 0.

Set c = maxx∈�̄ u(x, t0) <
√

b for a fixed t0 > 0. We can prove similarly

u(x, t) ≤ c, ∀ x ∈ �̄, t ≥ t0.

Because, in the current situation, 
√

b is the unique root of (1 − y)(y/b − 1) − βy = 0, we see 
that γ := (1 − c)(c/b − 1) − βc < 0 and (1 − y)(y/b − 1) − βy < γ for all y < c. Therefore,
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(1 − u(x, t))(u(x, t)/b − 1) − βu(x, t) ≤ γ < 0, ∀ x ∈ �̄, t ≥ t0,

and

ut − d�u ≤ u[(1 − u)(u/b − 1) − βu] ≤ γ u, ∀ x ∈ �, t > t0.

Similarly to the proof of Theorem 4.2, it can be deduced that lim
t→∞u(x, t) = lim

t→∞v(x, t) = 0

uniformly on �̄.
Case 2: u0(x) ≡ √

b ≤ v0(x) and (u0(x), v0(x)) �≡ (
√

b, 
√

b) on �̄. Similarly to Case 1, 
we derive that u(x, t) ≤ √

b for x ∈ �̄, t ≥ 0. If u(x, t) ≡ √
b, we get a contradiction since 

v(x, t) > 0 for x ∈ �̄, t > 0. Therefore, there exists a T > 0 such that u(x, T ) ≤ v(x, T )

and u(x, T ) ≤, �≡ √
b on �̄. Using the conclusion of Case 1, we have that lim

t→∞u(x, t) =
lim

t→∞v(x, t) = 0 uniformly on �̄.

(ii) Using Lemma 4.1(ii) again, we have

v(x, t) ≥ u(x, t), x ∈ �̄, t ≥ 0. (4.6)

Taking advantage of (4.6) and the first equation of (1.1), we get

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut − d�u ≤ −1

b
u(u − √

b)2, x ∈ �, t > 0,

∂u

∂ν
= 0, x ∈ ∂�, t > 0,

u(x,0) = u0(x), x ∈ �.

It follows that

lim sup
t→∞

max
x∈�̄

u(x, t) ≤ √
b. (4.7)

According to (4.7), we conclude that either

max
x∈�̄

u(x,T0) ≤ √
b for some T0 ≥ 0, (4.8)

or

lim
t→∞ max

x∈�̄

u(x, t) = √
b, max

x∈�̄

u(x, t) >
√

b, ∀ t ≥ 0. (4.9)

When (4.8) holds, making use of (4.6) and the conclusion (i), we have that either
(u(x, t), v(x, t)) ≡ (

√
b, 

√
b) in �̄ × [T0, ∞) or

lim
t→∞(u(x, t), v(x, t)) = (0,0) uniformly on �̄.

When (4.9) holds, we shall divide the proof into two steps.



JID:YJDEQ AID:8419 /FLA [m1+; v1.232; Prn:30/06/2016; 17:18] P.14 (1-31)

14 W. Ni, M. Wang / J. Differential Equations ••• (••••) •••–•••
Step 1. We first show that lim
t→∞u(x, t) = √

b uniformly on �̄. Denote

ū(t) = 1

|�|
∫
�

u(x, t)dx, ϕp(t) =
∫
�

up(x, t)dx, p ≥ 2.

Then

ū′(t) ≤ − 1

b|�|
∫
�

u(u − √
b)2dx ≤ 0, (4.10)

ϕ′
p(t) = p

∫
�

(
up−1[d�u + u(1 − u)(

u

b
− 1) − βuv]

)
dx

≤ p

∫
�

(
dup−1�u − 1

b
up(u − √

b)2
)

dx

= −p

∫
�

(
d(p − 1)up−2|∇u|2 + 1

b
up(u − √

b)2
)

dx

≤ 0. (4.11)

Hence E := lim
t→∞ ū(t) ≤ √

b and lim
t→∞ϕp(t) ≥ 0, and so the limit lim

t→∞

∫
�

u(u − √
b)2dx exists. 

Based on (4.10), it is easy to see that

lim
t→∞

∫
�

u(u − √
b)2dx = 0. (4.12)

Using (4.7), (4.12), Fatou Lemma and Hölder inequality, we have

0 ≤
∫
�

lim inf
t→∞ u(

√
b − u)dx ≤ lim inf

t→∞

∫
�

u(
√

b − u)dx ≤ lim sup
t→∞

∫
�

u(
√

b − u)dx

≤ lim
t→∞

⎛
⎝∫

�

udx

⎞
⎠

1
2
⎛
⎝∫

�

u(u − √
b)2dx

⎞
⎠

1
2

= 0,

which implies lim
t→∞

∫
�

u(
√

b − u)dx = 0. Direct computation yields

0 = lim
t→∞

∫
�

u(
√

b − u)dx = lim
t→∞

∫
�

(√
bu − (u − ū + ū)2

)
dx

= lim
t→∞

∫ (√
bu − (u − ū)2 − ū2

)
dx.
�
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That is,

k := lim
t→∞

∫
�

(u − ū)2dx = |�|E(
√

b − E) ≥ 0. (4.13)

By virtue of the Poincaré inequality, there exists a constant C > 0 such that

∫
�

(u − ū)2dx ≤ C

∫
�

|∇u|2dx, ∀ t > 0. (4.14)

We claim that E = lim
t→∞ ū(t) = √

b. If this is not true, then

E <
√

b, k > 0. (4.15)

Take p = 2. It follows from (4.11), (4.14) and (4.15) that

ϕ′
2(t) ≤ −2

∫
�

(
d|∇u|2 + 1

b
u2(u − √

b)2
)

dx ≤ −2
∫
�

d|∇u|2dx

≤ −2
∫
�

d

C
(u − ū)2dx → −2dk

C
< 0 as t → ∞,

which leads to lim
t→∞ϕ2(t) = −∞. This is a contradiction since ϕ2(t) ≥ 0 for all t ≥ 0. Thus 

E = √
b, and upon using (4.13),

lim
t→∞

∫
�

(u − √
b)2dx = 0. (4.16)

Thanks to (3.2), we see that the set {u(·, t) : t ≥ 2} is relatively compact in C(�̄). Assume that

‖u(x, tk) − u∞(x)‖C(�̄) → 0 as tk → ∞

for some u∞(x) ∈ C(�̄). In view of (4.16) and the uniqueness of limit, it follows that u∞(x) ≡√
b. Combining this and the relatively compactness of {u(·, t) : t ≥ 2} in C(�̄), we deduce

lim
t→∞‖u(·, t) − √

b‖C(�̄) = 0. (4.17)

Step 2. Now we prove lim
t→∞‖v(·, t) − √

b‖C(�̄) = 0. It follows from (4.6) that

lim infv(x, t) ≥ lim infu(x, t) ≡ √
b.
t→∞ t→∞



JID:YJDEQ AID:8419 /FLA [m1+; v1.232; Prn:30/06/2016; 17:18] P.16 (1-31)

16 W. Ni, M. Wang / J. Differential Equations ••• (••••) •••–•••
Remember (4.17), then similar to the proof of Theorem 3.1(i) we have lim sup
t→∞

v(x, t) ≤ √
b. 

Thus

lim
t→∞v(x, t) = √

b. (4.18)

Owing to (4.17) and u(x, t) > 0 on �̄ × [0, ∞), we have inf
x∈�̄,t≥0

u(x, t) > 0, and then 

v(x, t)/u(x, t) is uniformly bounded on �̄ × [0, ∞). In the same way as in the proof of The-
orem 3.1(ii), there exists M1 = M1(b, β, μ) > 0 such that

‖v(·, t)‖C1(�̄) ≤ M1, ∀ t ≥ 2.

Using this estimate and (4.18), we can derive similarly that lim
t→∞‖v(·, t) − √

b‖C(�̄) = 0. The 

proof is complete. �
Proposition 4.1. Suppose that d1 = d2 = d and βb ≥ (1 − √

b)2. If μ > (1 − b)2/(4b), then the 
problem (1.1) has no nonconstant positive time-periodic solution.

Proof. Suppose on the contrary that (u(x, t), v(x, t)) is a nonconstant positive time-periodic 
solution of (1.1) with period T . Then we have

s(t) = s(t + T ), t ≥ 0, (4.19)

where s(t) is given by (4.1). We first prove

lim sup
t→∞

s(t) ≥ 1. (4.20)

If this is not true, then there exist ε > 0 and T0 ≥ 0 such that s(t) < 1 − ε for all t ≥ T0. By 
use of Corollary 4.1, it follows that s(t) is strictly increasing and lim

t→∞ s(t) ≤ 1 − ε. This is a 

contradiction with (4.19). Thus, (4.20) holds.
For the case βb > (1 −√

b)2, we have λ0 = (1 −√
b)2/(βb) < 1. Combining this with (4.20), 

we can find a T1 > 0 such that λ0 < s(T1), i.e., λ0 <
v(x,T1)
u(x,T1)

for all x ∈ �̄. Then, by Theorem 4.2,

lim
t→∞(u(x, t), v(x, t)) = (0,0)

uniformly on �̄. This is a contradiction because (u(x, t), v(x, t)) is a positive periodic solution.
For the case βb = (1 − √

b)2, thanks to (4.20), we have that either

s(T2) ≥ 1 for some T2 ≥ 0, (4.21)

or

lim s(t) = 1, s(t) < 1, ∀ t ≥ 0. (4.22)

t→∞
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When (4.21) holds, we have v(x,T2)
u(x,T2)

≥ s(T2) ≥ 1, i.e., v(x, T2) ≥ u(x, T2) on �̄. Take advantage 

of Theorem 4.3, lim
t→∞(u(x, t), v(x, t)) = (0, 0) or (

√
b, 

√
b) uniformly on �̄. This is a contra-

diction because (u(x, t), v(x, t)) is a nonconstant positive periodic solution. When (4.22) holds, 
by Corollary 4.1, s(t) is strictly increasing for t > 0. This contradicts with (4.19). The proof is 
complete. �
Theorem 4.4. Assume d1 = d2 = d , βb < (1 −√

b)2 and μ > 0. If u0(x) ≤ v0(x) and u0(x) < ũ1
on �̄, then the following hold:

(i) u(x, t) < ũ1 on �̄ × [0, ∞);
(ii) The function maxx∈�̄ u(x, t) is strictly decreasing in t ∈ [0, ∞);

(iii) lim
t→∞(u(x, t), v(x, t)) = (0, 0) uniformly on �̄.

Proof. The proof will be divided into three steps.
Step 1. We first show that if u(x, t) < ũ1 on �̄ × [0, T ] for some 0 < T < ∞, then 

maxx∈�̄ u(x, t) is strictly decreasing for 0 ≤ t ≤ T . It is sufficient to prove

u(x, t) < max
x∈�̄

u0(x), ∀ x ∈ �̄, 0 < t ≤ T .

Set η = max
x∈�̄, 0≤t≤T

u(x, t), then η < ũ1. Because ũ1 is the first root of

φ(y) := βy − (1 − y)(y/b − 1) = 0,

we have that φ(η) > 0 and φ(y) > φ(η) for all 0 < y < η. Therefore,

βu(x, t) − [1 − u(x, t)](u(x, t)/b − 1)

= φ(u(x, t)) ≥ φ(η) > 0, ∀ x ∈ �̄, 0 ≤ t ≤ T . (4.23)

Denote w = v − u. Then, upon using (4.23), we have

h(u,0;1) = 1

d
u(x, t){βu(x, t) − [1 − u(x, t)](u(x, t)/b − 1)} > 0, ∀ x ∈ �̄, 0 ≤ t ≤ T ,

where h(u, w; λ) is given by (4.2). Similarly to the proof of Lemma 4.1(i), it can be deduced that

v(x, t) > u(x, t), ∀ x ∈ �̄, 0 < t ≤ T .

This combined with (4.23) allows us to derive

ut − d�u < u[(1 − u)(u/b − 1) − βu] ≤ −φ(η)u < 0, ∀ x ∈ �, 0 < t ≤ T .

It follows from the strong maximum principle that

u(x, t) < maxu0(x) < ũ1, ∀ x ∈ �̄, 0 < t ≤ T .

x∈�̄
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Step 2. Noticing u0(x) < ũ1 on �̄, we can define

T1 = sup{τ : u(x, t) < ũ1, ∀x ∈ �̄, 0 ≤ t < τ }.
It will be shown that T1 = ∞. Suppose on the contrary that T1 < ∞, then there exists x0 ∈ �̄ such 
that u(x0, T1) = ũ1 and u(x, t) < ũ1 for all x ∈ �̄, 0 ≤ t < T1. Obviously, for any 0 < t2 < T1, 
there holds

u(x, t) < ũ1, ∀ x ∈ �̄, 0 ≤ t ≤ t2.

By the conclusion of Step 1, maxx∈�̄ u(x, t2) < maxx∈�̄ u(x, t1) < ũ1 for any 0 < t1 < t2. Letting 
t2 ↗ T1 and applying the continuity of maxx∈�̄ u(x, t) with respect to t , we obtain that

ũ1 = max
x∈�̄

u(x,T1) ≤ max
x∈�̄

u(x, t1) < ũ1.

This contradiction shows T1 = ∞, and so u(x, t) < ũ1 on �̄ × [0, ∞). Recalling the result of 
Step 1, we conclude that maxx∈�̄ u(x, t) is strictly decreasing in t ∈ [0, ∞). The conclusions (i) 
and (ii) are proved.

Step 3. Now we prove conclusion (iii). From the arguments in Steps 1 and 2 we can see that

v(x, t) > u(x, t), ∀ x ∈ �̄, t > 0,

and maxx∈�̄ u(x, t) is strictly decreasing in t > 0. Set m = maxx∈�̄ u0 and

−k = (1 − m)(m/b − 1) − βm.

Then m < ũ1. Similarly to Step 1, we have that k > 0 and

ut − d�u < u[(1 − u)(u/b − 1) − βu] ≤ −ku, ∀ x ∈ �, t > 0.

Hence, lim
t→∞u(x, t) = 0 uniformly on �̄. By the same way as in the proof of Theorem 4.1, it can 

be shown that lim
t→∞v(x, t) = 0 uniformly on �̄. The proof is finished. �

Remark 4.2. This theorem shows that both predator and prey will become extinct if the initial 
density of the former surpasses that of the latter and their initial densities are less than ũ1. As a 
result, (ũ1, ũ1) is unstable.

5. Stationary patterns—nonconstant positive solutions of (2.4)

What is of interest in the prey–predator models is whether the various species can coex-
ist. In the case where the species are homogeneously distributed, this would be indicated by a 
constant positive solution. In the spatially inhomogeneous case, the existence of nonconstant 
time-independent positive solutions, also called stationary patterns, is an indication of the dy-
namical richness of the systems.

In this section we study the existence and non-existence of nonconstant positive solutions of 
the problem (2.4).
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5.1. Estimates of positive solutions of (2.4)

To discuss the existence and nonexistence of nonconstant positive solutions of the problem 
(2.4), in this subsection we shall give a priori positive upper and lower bounds for the positive 
solutions. For this, we first state two known results.

Proposition 5.1 (Harnack inequality [16]). Let w ∈ C2(�) ∩ C1(�̄) be a positive solution 
of �w(x) + c(x)w(x) = 0, where c ∈ C(�) ∩ L∞(�), satisfying the homogeneous Neumann 
boundary condition. Then there exists a positive constant C̃ which depends only on M where 
‖c‖∞ ≤ M such that

max
�̄

w ≤ C̃ min
�̄

w.

Proposition 5.2 (Maximum principle [17]). Let g ∈ C(�̄), and bj ∈ C(�̄), j = 1, 2, . . . , N .

(i) Assume that u ∈ C1(�̄) ∩ C2(�) and satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�u +
N∑

j=1

bj (x)uxj
+ g(x) ≥ 0, x ∈ �,

∂u

∂ν
≤ 0, x ∈ ∂�.

If u(x0) = max�̄ u, then g(x0) ≥ 0.
(ii) Assume that u ∈ C1(�̄) ∩ C2(�) and satisfies

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�u +
N∑

j=1

bj (x)uxj
+ g(x) ≤ 0, x ∈ �,

∂u

∂ν
≥ 0, x ∈ ∂�.

If u(x0) = min�̄ u, then g(x0) ≤ 0.

Making use of Propositions 5.1 and 5.2, we can derive the following results.

Theorem 5.1. Let (u, v) be a positive solution of (2.4). Then

b ≤ max
�̄

u ≤ 1, 0 < min
�̄

u ≤ min
�̄

v ≤ max
�̄

v ≤ max
�̄

u ≤ 1.

Theorem 5.2. Let d∗ > 0 be a fixed constant. Then there exists a constant c∗ = c∗(d∗, b, β, �,

N) > 0 such that, for any d1 ≥ d∗, every possible positive solution (u, v) of (2.4) satisfies

0 < b ≤ max
�̄

u ≤ c∗ min
�̄

u.
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Corollary 5.1. Let d∗ > 0 be a fixed constant. Then there is a constant C = C(d∗, b, β, �,

N) > 0 such that, for any d1 ≥ d∗, every possible positive solution (u, v) of (2.4) satisfies

min
x∈�̄

u ≥ C, min
x∈�̄

v ≥ C.

The following result follows by the standard Schauder theory for elliptic equations, its proof 
will be omitted here.

Theorem 5.3. Let d0 > 0 be a fixed constant. Then there exists a positive constant C̄ =
C̄(d0, b, β, μ, �, N) such that, for all d1, d2 ≥ d0, every possible positive solution of (2.4) sat-
isfies (u, v) ∈ [C2+α(�̄)]2 and

‖u‖2+α ≤ C̄, ‖v‖2+α ≤ C̄.

5.2. Nonexistence of nonconstant positive solutions of (2.4)

In this subsection, we shall give some conditions to guarantee the nonexistence of nonconstant 
positive solutions of (2.4). We first consider the case βb ≥ (1 − √

b)2.

Theorem 5.4. Assume that βb ≥ (1 − √
b)2. If μ > d2

d1

(1−b)2

4b
, then the problem (2.4) has no 

nonconstant positive solution.

Proof. On the contrary we assume that (2.4) has a nonconstant positive solution (u, v). We claim 
that

0 < λ0 := min
x∈�̄

v(x)

u(x)
< 1. (5.1)

If (5.1) is not true, then v(x) ≥ u(x) for all x ∈ �̄. It is easy to see that v �≡ u since (u, v) is a 
nonconstant solution of (2.4). Thus, v ≥, �≡ u, i.e., v/u ≥, �≡ 1. Integrating the second equation 
of (2.4) over � we have

0 = μ

∫
�

v(1 − v/u)dx < 0.

This contradiction shows that (5.1) holds.
For 0 < λ ≤ 1, we set w(x) = v(x) − λu(x). Then

h(u,0;λ) = λu[ 1

d2
μ(1 − λ) − 1

d1
(1 − u)(u/b − 1) + 1

d1
βλu]

where h(u, w; λ) is given by (4.2). Define

K(u,λ) = 1
μ(1 − λ) − 1

(1 − u)(u/b − 1) + 1
βλu.
d2 d1 d1
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Taking advantage of μ > d2
d1

(1−b)2

4b
and βb ≥ (1 − √

b)2, we obtain that, for any u > 0,

K(u,0) = 1

d2
μ − 1

d1
(1 − u)(u/b − 1) > 0,

K(u,1) = 1

d1
βλ − 1

d1
(1 − u)(u/b − 1)u ≥ 0,

which implies K(u, λ) > 0 for all 0 < λ < 1 and u > 0. Hence

h(u,0;λ) > 0, ∀ 0 < λ < 1, x ∈ �̄. (5.2)

By (5.1), there exists x0 ∈ �̄ such that 0 < λ0 = v(x0)
u(x0)

< 1. Certainly, h(u, 0, ; λ0) > 0 by 
(5.2). Let w0(x) = v(x) − λ0u(x). Then w0(x) satisfies

⎧⎨
⎩

−�w0 = h(u,w0;λ0), x ∈ �,

∂w0

∂ν
= 0, x ∈ ∂�.

According to λ0 = v(x0)
u(x0)

and (5.1), we have

w0(x0) = 0, w0(x) ≥ 0 on �̄.

Since h(u(x0), 0; λ0) > 0, by the strong maximum principle and Hopf boundary lemma, it de-
rives that w0(x) > 0 on �̄. This contradicts to the fact that w0(x0) = 0, and so (2.4) has no 
nonconstant positive solution. �

Now we discuss the case βb < (1 − √
b)2.

Lemma 5.1. Suppose that βb < (1 − √
b)2. Let d1j ∈ (0, ∞), and (u(j), v(j)) be the positive 

solutions of (2.4) with d1 = d1j . Assume that d1j → d̂1 ∈ [0, ∞], and

(u(j), v(j)) → (u∗, v∗)

uniformly on �̄. If u∗, v∗ are positive constants, then (u∗, v∗) = (ũ1, ũ1) or (u∗, v∗) = (ũ2, ũ2).

The proof of this lemma is the same as that of [21, Lemma 2], and the details are omitted here.

Theorem 5.5. Suppose that βb < (1 − √
b)2. Then there is a positive constant d̂1 � 1 such that, 

for any d1 ≥ d̂1, the problem (2.4) has no nonconstant positive solution.

Proof. Step 1. Fix 0 < α < 1 and define

X =
⎧⎨
⎩u ∈ Cα(�̄) :

∫
udx = 0

⎫⎬
⎭ ,
�
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Y =
{
u ∈ C2+α(�̄) : ∂u

∂ν

∣∣∣∣
∂�

= 0

}
,

Z = X
⋂

Y.

Let ρ = d−1
1 , and decompose u = a + z with a ∈ R and z ∈ Z. Set

f1(ρ, a, z, v) = 1

|�|
∫
�

(
(a + z)(1 − a − z)(

a + z

b
− 1) − β(a + z)v

)
dx,

f2(ρ, a, z, v) = �z + ρ(a + z)(1 − a − z)(
a + z

b
− 1) − ρβ(a + z)v − ρf1,

f3(ρ, a, z, v) = d2�v + μv(1 − v/u),

F (ρ, a, z, v) = (f1, f2, f3)
T (ρ, a, z, v).

Then

F : R2 × Z × Y → R× X × Cα(�̄),

and for any ρ > 0, (u, v) is the solution of (2.4) if and only if F(ρ, a, z, v) = 0. It is easy to 
verify that, for all ρ, F(ρ, ũ1, 0, ũ1) = 0.

Let ψ be the Fréchet derivative of F at (0, ũ1, 0, ũ1) with respect to (a, z, v). A direct com-
putation yields

ψ(a, z, v) =

⎛
⎜⎜⎜⎝

1

|�|
∫
�

(A1a + A1z − βũ1v)dx

�z

d2�v + μ(a + z) − μv

⎞
⎟⎟⎟⎠ , with A1 = (1 + 1/b)ũ1 − 2ũ2

1/b.

We will prove that ψ is one-to-one and surjective. It suffices to show that for any given

(a0, z0, v0) ∈R× X × Cα(�),

the equation

ψ(ρ,a, z, v) = (a0, z0, v0)

has a unique solution (a, z, v) ∈ R × Z × Y , or equivalently, the following system has a unique 
solution:

1

|�|
∫
�

(A1a + A1z − βũ1v)dx = a0, (5.3)

�z = z0, x ∈ �; ∂z

∂ν

∣∣∣
∂�

= 0;
∫

zdx = 0, (5.4)
�
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−d2�v + μv = μ(a + z) − v0, x ∈ �,

∂v

∂ν
= 0, x ∈ �.

⎫⎬
⎭ (5.5)

Since z0 ∈ X, the problem (5.4) has a unique solution z ∈ Z. Recall A1 > βũ1. Take

a = 1

A1 − βũ1

⎛
⎝a0 − βũ1

μ|�|
∫
�

v0dx

⎞
⎠ . (5.6)

Then the problem (5.5) has a unique solution v, and v satisfies

μ

∫
�

vdx = μa|�| −
∫
�

v0dx. (5.7)

Note that by (5.7) and 
∫
�

zdx = 0, it is easy to verify that such a pair (a, v) satisfies (5.3). This 
shows that the system (5.3)–(5.5) has a solution. On the other hand, any solution (a, v) of (5.3)
and (5.5) must satisfy (5.6) and (5.7), i.e., the solution of (5.3)–(5.5) is unique. In conclusion, 
ψ is a one-to-one and surjective map between two Banach spaces. Therefore, ψ−1 exists and is 
a bounded linear operator.

We note that, by the implicit function theorem, there are two constants δ1 > 0 and ε1 > 0 such 
that, for all 0 < ρ < δ1, in the neighborhood Bε1 of (ũ1, 0, ũ1), the equation F(ρ, a, z, v) = 0
admits a unique solution, which must be (ũ1, 0, ũ1). Therefore, when d1 > 1/δ1, in a small 
neighborhood of (ũ1, ũ1), the equation (2.4) has only constant solution (ũ1, ũ1).

Similarly to the above, there exists a constant δ2 > 0 such that, when d1 > 1/δ2, in a small 
neighborhood of (ũ2, ũ2), the equation (2.4) has only constant solution (ũ2, ũ2).

Step 2. We will prove the desired conclusion by contradiction. Suppose that (u(j), v(j)) are 
the nonconstant positive solutions of (2.4) with d1 = d1j and d1j → ∞. According to Theo-
rem 5.3, we may assume that (u(j), v(j)) → (u, v) in [C2(�̄)]2. By virtue of Corollary 5.1, 
u(j)(x), v(j)(x) ≥ C, and so u, v ≥ C on �̄. It is obvious that u ≡ u∗ is a positive constant, and 
v > 0 satisfies

⎧⎨
⎩

−d2�v = μv(1 − v/u∗), x ∈ �,

∂v

∂ν
= 0, x ∈ �.

Therefore, v ≡ u∗. By Lemma 5.1, we have (u, v) = (ũ1, ṽ1) or (u, v) = (ũ2, ũ2). If (u, v) =
(ũ1, ṽ1), then there exists j0 � 1 such that

d1j > max{1/δ1,1/δ2}, ‖(u(j), v(j)) − (ũ1, ṽ1)‖[C(�̄)]2 < ε1, ∀ j ≥ j0.

By the conclusion of Step 1, (u(j), v(j)) = (ũ1, ṽ1) for each j ≥ j0. This contradicts with our 
assumption. The case (u, v) = (ũ2, ũ2) is also impossible. �

Finally, we give a nonexistence result without any limitations for the coefficients b, β and μ.
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Theorem 5.6. There exists a large constant d such that the problem (2.4) has no nonconstant 
positive solution provided d1, d2 ≥ d .

Proof. Let (u, v) be a positive solution of (2.4), and denote

ū = 1

|�|
∫
�

u(x)dx, v̄ = 1

|�|
∫
�

v(x)dx.

Then, multiplying the equation of u in (2.4) by u − ū, and integrating the result over �, we have

d1

∫
�

|∇(u − ū)|2dx =
∫
�

(u − ū)u(1 − u)(u/b − 1)dx −
∫
�

β(u − ū)uvdx

≡ I1 + I2.

Recalling
∫
�
(u − ū)dx = 0 and ū ≤ 1, it yields

I1 = 1

b

∫
�

(u − ū)
{
(u − ū)[α − u2 + (1 + b − ū)u] + αū

}
dx

= 1

b

∫
�

(u − ū)2[α − u2 + (1 + b − ū)u]dx

≤ 1

b

∫
�

(u − ū)2[1

4
(1 + b − ū)2 + ū(1 + b − ū) − b

]
dx,

where α = ū(1 + b − ū) − b. By the careful calculation we can get

1

4
(1 + b − ū)2 + ū(1 + b − ū) − b ≤ 1

3
(1 + b2 − b).

Thus

I1 ≤ b2 − b + 1

3b

∫
�

(u − ū)2dx.

Applying Corollary 5.1 with d∗ = 1, it follows that

I2 = −β

∫
�

[(u − ū)2v + ū(u − ū)v]dx

≤ −β

∫
�

[C(u − ū)2 + ū(u − ū)v]dx

= −β

∫
[C(u − ū)2 + ū(u − ū)(v − v̄)]dx
�
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≤ β(1 − 2C)

2

∫
�

(u − ū)2dx + β

2

∫
�

(v − v̄)2dx.

Therefore,

d1

∫
�

|∇(u − ū)|2dx ≤
(

β(1 − 2C)

2
+ b2 − b + 1

3b

)∫
�

(u − ū)2dx + β

2

∫
�

(v − v̄)2dx.

It can be followed from Theorems 5.1 and 5.2 that

u(x) ≤ c∗v(x), u(x) ≤ c∗v̄,
v̄2

ūu(x)
≤ c2∗, ∀ x ∈ �̄.

Using this fact, similarly to the above, we have

d2

∫
�

|∇(v − v̄)|2dx =
∫
�

μv(v − v̄)(1 − v

u
)dx

= μ

∫
�

(
(v − v̄)2(1 − v

u
) + v̄(v − v̄)(1 − v

u
)
)

dx

= μ

∫
�

(
(v − v̄)2(1 − v

u
) − (v − v̄)2 v̄

u
− (v − v̄)

v̄2

u

)
dx

= μ

∫
�

(
(v − v̄)2(1 − v + v̄

u
) + (v − v̄)

v̄2

ū
− (v − v̄)

v̄2

u

)
dx

≤ μ

∫
�

(
(1 − 2

c∗
)(v − v̄)2 + (v − v̄)

v̄2

ū
− (v − v̄)

v̄2

u

)
dx

= μ

∫
�

(
(1 − 2

c∗
)(v − v̄)2 + (v − v̄)(u − ū)

v̄2

ūu

)
dx

≤ μ

(
1 − 2

c∗
+ c2∗

2

)∫
�

(v − v̄)2dx + 1

2
μc2∗

∫
�

(u − ū)2dx.

Summing up the above estimates we have

d1

∫
�

|∇(u − ū)|2dx + d2

∫
�

|∇(v − v̄)|2dx ≤ M

∫
�

[
(u − ū)2 + (v − v̄)2]dx

for some positive constant M > 0. Then, by use of the Poincaré inequality, there exists a constant 
C > 0 such that
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d1

∫
�

|∇(u − ū)|2dx + d2

∫
�

|∇(v − v̄)|2dx ≤ C

∫
�

(
|∇(u − ū)|2 + |∇(v − v̄)|2

)
dx.

It follows that, when d1, d2 � 1, ∇(u − ū) = ∇(v − v̄) = 0, i.e., u ≡ ū, v ≡ v̄. �
5.3. Existence of nonconstant positive solutions of (2.4)

In this part, we shall discuss the existence of nonconstant positive solutions of (2.4). We 
assume that βb < (1 − √

b)2. Therefore, the problem (2.4) has two positive constant solutions: 
ũ1 = (ũ1, ũ1) and ũ2 = (ũ2, ũ2).

Throughout this subsection, μj , Xj , X and Ai are given in Section 2.
The problem (2.4) can be rewritten as

⎧⎨
⎩

−D�u = G(u), x ∈ �,

∂u
∂ν

= 0, x ∈ ∂�,

where D = diag(d1, d2), or equivalently,

F(d1, d2;u) = u − (I − �)−1{D−1G(u) + u} = 0 on X, (5.8)

where (I − �)−1 is the inverse of I − � with homogeneous Neumann boundary condition. By 
direct computation, we have

DuF(d1, d2; ũi ) = I − (I − �)−1{D−1Gu(ũi ) + I } = 0, i = 1,2.

We note that for each Xj , ξ is an eigenvalue of DuF(d1, d2; ũi ) on Xj if and only if ξ(1 + μj )

is an eigenvalue of the matrix

Mij = μjI − D−1Gu(ũi ) =
(

μj − Ai/d1 βũi/d1
−μ/d2 μ/d2 − μj

)
.

The direct computations yield

detMij = 1

d1d2
[d1d2μ

2
j + (μd1 − d2Ai)μj + μ(βũi − Ai)],

TrMij = 2μj + 1

d2
μ − 1

d1
Ai.

Denote

Hi(d1, d2;λ) := d1d2λ
2 + (μd1 − d2Ai)λ + μ(βũi − Ai), i = 1,2, (5.9)

then Hi(d1, d2; μj ) = d1d2 detMij .
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For i = 1. Since βũ1 < A1, we see that H1(d1, d2, λ) = 0 has two real roots:

λ1−(d1, d2) = d2A1 − μd1 −√(d2A1 − μd1)2 − 4d1d2μ(βũ1 − A1)

2d1d2
< 0,

λ1+(d1, d2) = d2A1 − μd1 +√(d2A1 − μd1)2 − 4d1d2μ(βũ1 − A1)

2d1d2
> 0.

For i = 2. Notice that βũ2 > A2. If

d2A2 − μd1 > 2
√

d1d2μ(βũ2 − A2), (5.10)

then H2(d1, d2; λ) = 0 has two positive roots:

λ2−(d1, d2) = d2A2 − μd1 −√(d2A2 − μd1)2 − 4d1d2μ(βũ2 − A2)

2d1d2
,

λ2+(d1, d2) = d2A2 − μd1 +√(d2A2 − μd1)2 − 4d1d2μ(βũ2 − A2)

2d1d2
.

Here we remark that for any fixed d1 > 0, (5.10) must be true for the large d2.
Set

Sp = {μ0,μ1,μ2, . . .},
Bi(d1, d2) = {λ ≥ 0 : λ

(i)
− (d1, d2) < λ < λ

(i)
+ (d1, d2)}, i = 1,2,

and let m(μj ) be the multiplicity of μj . It is easy to see that

lim
d2→∞λi−(d1, d2) = 0, lim

d2→∞λi+(d1, d2) = Ai/d1, i = 1,2. (5.11)

Now, we state a known lemma (cf. [22, Lemma 5.1]) which gives the formula of index.

Lemma 5.2. Let i = 1 or 2. Suppose that Hi(d1, d2; μj ) �= 0 for all μj ∈ Sp . Then

index(F (d1, d2; .), ũi ) = (−1)γi ,

where

γi =
⎧⎨
⎩

∑
μj ∈Bi∩Sp

m(μj ) if Bi ∩ Sp �= ∅,

0 if Bi ∩ Sp = ∅.

In particular, if Hi(d1, d2; λ) > 0 for all λ ≥ 0, then γi = 0.
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Theorem 5.7. Let d1 > 0 be fixed and βb < (1 − √
b)2. For the integer l ≥ 1, we define σl =

l∑
i=0

m(μi). Assume that A1/d1 ∈ (μk, μk + 1), A2/d1 ∈ (μq, μq + 1) for some q ≥ 1, k ≥ 1. If 

σk + σq is odd, then there is a positive constant d∗
2 , such that for any d2 ≥ d∗

2 , the problem (2.4)
has at least one nonconstant positive solution.

Proof. Firstly, as βũ2 > A2, we can find a d̂2 � 1 such that (5.10) holds for all d2 ≥ d̂2.
According to A1/d1 ∈ (μk, μk + 1), A2/d1 ∈ (μq, μq + 1) and (5.11), there exists d0 > d̂2

such that, for all d2 ≥ d0,{
λ1−(d1, d2) < 0, μk < λ1+(d1, d2) < μk+1,

0 < λ2−(d1, d2) < μ1, μq < λ2+(d1, d2) < μq+1.
(5.12)

Taking advantage of Theorem 5.6, there exists d∗
1 > d0 such that (2.4) has no nonconstant positive 

solution for all d1, d2 ≥ d∗
1 . Moreover, we can choose d∗

1 so large that Ai/d
∗
1 < μ1, i = 1, 2. 

Applying (5.11) once again, there exists a constant d∗
2 > d∗

1 such that

λ1−(d∗
1 , d∗

2 ) < 0 < λ1+(d∗
1 , d∗

2 ) < μ1, 0 < λ2−(d∗
1 , d∗

2 ) < λ2+(d∗
1 , d∗

2 ) < μ1. (5.13)

We will prove that, for any d2 ≥ d∗
2 , (2.4) has at least one nonconstant positive solution. Suppose, 

on the contrary that, for some d2 ≥ d∗
2 , (2.4) has no nonconstant positive solution.

For these fixed d∗
1 , d∗

2 , d1 and d2, we define

D(t) =
(

td1 + (1 − t)d∗
1 0

0 td2 + (1 − t)d∗
2

)
, 0 ≤ t ≤ 1

and consider the problem

⎧⎨
⎩

−�u = D−1(t)G(u), x ∈ �,

∂u
∂ν

= 0, x ∈ �.
(5.14)

Noted that u is a nonconstant positive solution of (2.4) if and only if it is such a solution of 
(5.14) for t = 1. It is obvious that ũ1 and ũ2 are constant positive solutions of (5.14). And for any 
0 ≤ t ≤ 1, u is a nonconstant solution of (5.14) if and only if it is such a solution of the problem

�(u; t) = u − (I − �)−1{D−1(t)G(u) + u} = 0 on X,

where X is given by (2.3). It is obvious that

�(u;1) = F(d1, d2;u), �(u;0) = F(d∗
1 , d∗

2 ;u),

and

DuF(d1, d2; ũi ) = I − (I − �)−1{D−1Gu(ũi ) + I } = 0,

DuF(d∗, d∗; ũi ) = I − (I − �)−1{D̃−1Gu(ũi ) + I } = 0,
1 2
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where F(d1, d2; u) is defined by (5.8) and D = diag(d1, d2), D̃ = diag(d∗
1 , d∗

2 ). The above ar-
guments show that both equations �(u; 1) = 0 and �(u; 0) = 0 have no nonconstant positive 
solution.

It follows from (5.12) and (5.13) that

B1(d1, d2) ∩ Sp = {μ0,μ1,μ2 . . .μk}, B1(d
∗
1 , d∗

2 ) ∩ Sp = {μ0},
B2(d1, d2) ∩ Sp = {μ1,μ2, . . . ,μq}, B2(d

∗
1 , d∗

2 ) ∩ Sp = ∅.

Therefore

index(�(·;1), ũ1) = index(F (d1, d2; ·), ũ1) = (−1)σk ,

index(�(·;1), ũ2) = index(F (d1, d2; ·), ũ2) = (−1)σq−1,

index(�(·;0), ũ1) = index(F (d∗
1 , d∗

2 ; ·), ũ1) = −1,

index(�(·;0), ũ2) = index(F (d∗
1 , d∗

2 ; ·), ũ2) = 1.

Since σk + σq − 1 is even, we have

{
index(�(·;1), ũ1) + index(�(·;1), ũ2) = 2 or −2,

index(�(·;0), ũ1) + index(�(·;0), ũ2) = 0.
(5.15)

Making use of Theorem 5.1 and Corollary 5.1, there exists a positive constant C such that, for 
all 0 ≤ t ≤ 1, the positive solution (u, v) of (5.14) satisfies C < u(x), v(x) < 2 on �̄. Set

� = {u = (u, v) ∈ X : C < u(x), v(x) < 2 on �̄}.

Then �(u; t) �= 0 for all u ∈ ∂� and 0 ≤ t ≤ 1. By the homotopy invariance of the Leray–
Schauder degree,

deg(�(·;0),�,0)) = deg(�(·;1),�,0)). (5.16)

Since both equations �(u; 0) = 0 and �(u; 1) = 0 have only two positive constant solutions ũ1, 
ũ2 in �, by (5.15), we have

deg(�(·;0),�,0) = index(�(·;0); ũ1) + index(�(·;0); ũ2) = 0,

deg(�(·;1),�,0) = index(�(·;1); ũ1) + index(�(·;1); ũ2) = 2 or −2,

this contradicts with (5.16), and the proof is complete. �
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