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1. Introduction

Consideration here is the issue of wave-breaking phenomena for the general nonlocal 
Whitham-type equation, namely,

{
ut + uux + ∫

R
K(x − ξ)Q(u,ux)(t, ξ)dξ = 0,

u(0, x) = u0(x),
t > 0, x ∈R, or S. (1.1)

Wave-breaking phenomena, that means wave profile remains bounded while its slope becomes 
infinite in finite time, usually appeared in water waves. It is natural to know what kind of nonlin-
ear model equations can prescribe wave breaking phenomena. This is one of the most intriguing 
long-standing problems in water-wave theory [35]. To understand this issue, Whitham suggested 
to consider the model equation (1.1) with the functional Q(u, ux) = ux and the singular kernel

K(x) = 1

2π

∫
R

(
tanh ξ

ξ

) 1
2

eixξ dξ, (1.2)

and conjectured that this model in (1.1) with the kernel (1.2) can describe wave-breaking phe-
nomena [35]. It is noted that some integrable models in water waves, including the Camassa–
Holm equation and its μ-version, Degasperis–Procesi equation and its μ-version, can be rewrit-
ten as the form of the Whitham-type equation in (1.1). Indeed, these model equations can describe 
wave breaking phenomena, see the refs. [5,9,12,14,15,18,22,27,29], for instance.

It is known that the Korteweg–de Vries (KdV) equation

ut + uxxx + 6uux = 0, (1.3)

is the simplest integrable equation and can be used to model the unidirectional propagation of 
long waves in shallow water. One important feature of the KdV equation (1.3) is that it has the 
smooth solitons, that is, the solitary waves keep their shape and height after interaction. However, 
the KdV equation can not describe wave breaking phenomena but permanent waves only [23].

On the other hand, the Camassa–Holm (CH) equation [5,21], which is closely related to the 
KdV equation [20,21,34], defined in the following form

yt + 2yux + uyx + γ ux = 0, y = u − uxx (1.4)

can be rewritten as the form of the Whitham-type equation in (1.1) with the function

Q(u,ux) = u2 + 1

2
u2

x + γ u (1.5)

and the kernel K given by

K(x) = −1
e−|x| sgn(x), (1.6)
2
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where

sgn(x) =
{

1, x > 0,

−1, x < 0.
(1.7)

The CH equation was derived as a model for the unidirectional propagation of the shallow water 
wave over a flat bottom, with u(t, x) representing the water’s free surface or velocity in non-
dimensional variable [5,14]. It was also found earlier by using the method of recursion operator 
due to Fuchssteiner and Fokas [21]. Interestingly, it can also be derived by the tri-Hamiltonian 
duality approach due to Olver and Rosenau [34]. The CH equation admits two remarkable prop-
erties, which are not admitted by the KdV equation, one is existence of peakons [1,5], and another 
one is description of wave breaking phenomena [7–15]. The CH equation has a nonlocal version, 
that is the so-called μ-CH equation [24]

yt + 2yux + uyx + γ ux = 0, y = μ(u) − uxx, (1.8)

where μ(u) = ∫ 1
0 udx.

The μ-CH equation is also integrable and possesses the Lax pair and bi-Hamiltonian structure. 
It describes the propagation of weakly nonlinear orientation waves in a massive nematic liquid 
crystal with external magnetic field and self-interaction, where the solution u(t, x) of the μ-CH 
equation is the direct field of a nematic liquid crystal, x is a space variable in a reference frame 
moving with the linearized wave velocities [24]. Both the periodic CH equation and the μ-CH 
equation describe the geodesic flow on the diffeomorphism group D(S) over S.

Another important integrable equation similar to the CH equation is the Degasperis–Procesi 
(DP) equation

yt + 3yux + uyx + γ ux = 0, y = u − uxx, (1.9)

which belongs to the Whitham-type equation (1.1) with the function

Q(u,ux) = 3

2
u2 + γ u (1.10)

and the kernel K given in (1.6). The DP equation can also be derived from the governing equa-
tions for water waves [14]. More interestingly, it admits the shock peakons [18]. The μ-version 
of the DP equation was introduced in [25] by Lenells, Misiołek and Tiğlay, which takes the form 
(1.9) with y = μ(u) − uxx . Note that both of the μ-CH and μ-DP equations can be rewritten as 
the Whitham-type equations in (1.1) with the function [25]

Q(u,ux) = λμ(u)u + 3 − λ

2
u2

x + γ u (1.11)

and the kernel K defined by [24]

K(x) =
{

0, x = 0,

x − 1
2 , 0 < x < 1.

(1.12)

The choices of λ = 2 and λ = 3 yield the μ-CH and μ-DP equations, respectively.
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The wave-breaking of the CH equation, μ-CH equation, DP equation, μ-DP equation and the 
modified CH equation have been studied extensively, see the references [2–4,6–13,18,19,22,24,
25,27–33,35], for instance. In particular, a variety of interesting results on the wave breaking of 
the CH equation has been obtained within two decades. The early result was shown by Constantin 
and Escher [9] that if the slope of the initial data is less than −(1/

√
2)‖u0‖H 1(R), then the wave 

breaking for the CH equation occurs in finite time. In [31], Mckean proved that the wave breaking 
happens for solutions of the CH equation if and only if some portion of the positive part of 
the initial momentum density y0 = u0 − ∂2

xu0 lies to the left of some portion of its negative 
part. Recently, Brandolese [2] derived a local-in-space blow-up result. Precisely, it was shown 
in [2] that if the initial value u0 satisfies u′

0(x0) + |u0(x0)| < 0 at some point x0 ∈ R, then the 
wave-breaking occurs. This result asserts that local perturbation of data around that point does 
not prevent the singularity formation. For the μ-CH equation, it was shown in [24] that the 
solutions break down in the case of the zero-mean initial data. While in the case of the nonzero 
mean initial data, if the initial data satisfies |μ0| ≤ 1

4‖u′
0‖L2(S), then the wave breaks down in 

finite time. These results are extended in [19] with some weaker initial conditions.
The nonlinear evolution equation

ut − uxxt + 3uux − λ(2uxuxx + uuxxx) + γ ux = 0 (1.13)

was derived by Dai [17] from a compressible hyperelastic material, where the constant λ depends 
on the prestress and the material parameters, γ is a constant. When λ = 1, it reduces to the 
celebrated CH equations. The wave breaking for the compressible hyperelastic rod equation was 
also studied extensively, a number of results have been obtained (see [2–4,16], for instance). Note 
that equation (1.13) can be rewritten as the form of the Whitham-type equation in (1.1) with the 
function

Q(u,ux) = 3 − λ

2
u2 + λ

2
u2

x + γ u (1.14)

and the kernel K defined in (1.6).
The aim of the present paper is to investigate the wave-breaking phenomena for various 

models of the Whitham-type equation in (1.1). Our study is motivated from the work by Con-
stantin and Escher in a study of wave-breaking phenomena to a Whitham-type equation [9]. 
Wave-breaking for the Whitham-type with Q = ux and a regular kernel K which is symmetric 
and monotonically decreasing on R+ was first studied in [32]. A rigorous argument was then 
given by Constantin and Escher in [9]. To understand the latter, let m(t) = infx∈R{ux(t, x)}, 
M(t) = supx∈R{ux(t, x)}. Then it can be attained at some points x1(t) and x2(t), respectively. 
By differentiating (1.1) with respect to x and evaluating the resulting equation at x1(t) and x2(t), 
the wave breaking result can be obtained from the following Riccati-type differential inequalities, 
namely,

{
m′(t) ≤ −m2(t) + K(0)

(
M(t) − m(t)

)
,

M ′(t) ≤ −M2(t) + K(0)
(
M(t) − m(t)

)
,

a.e. in t ∈ [0, T ). (1.15)

The wave-breaking then occurs at finite time if the initial condition

m(0) + M(0) < −2K(0) (1.16)
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is satisfied. It is of great interest to investigate whether or not the condition on the initial extremes 
in (1.16) is optimal, or a lower threshold for the breakdown of the solutions can be induced 
from the information in (1.16). On the other hand, it is observed from the above discussions 
that many of model equations in the water-wave theory can be rewritten as the Whitham-type 
equations [32]. To understand features of those models in a case-by-case study naturally led 
to the study of the general Whitham-type equation (1.1), which is part of work in the present 
study.

Before starting our findings, let us briefly look at our approach. Inspired from the approach 
by Constantin and Escher [9], we consider a general system of the Riccati-type differential in-
equalities for infimum m(t) and supremum M(t) of the slopes ux to the solutions of the problem 
(1.1), that is

{
m′(t) ≤ −am2(t) + b(M(t) − m(t)) + c,

M ′(t) ≤ −aM2(t) + b(M(t) − m(t)) + c,
a.e. in t ∈ [0, T ), (1.17)

where a > 0, b, c ≥ 0 are generic constants. Wave breaks down in finite time T is then under-
stood in the sense that lim inft→T − m(t) = −∞. To prevent the occurrence of the breaking wave, 
one challenge issue is how to balance between the lower bound of m(t) and the upper bound 
of M(t). One possible approach is to use the continuity and monotonicity properties, we could 
find that wave breaks down with m → −∞ at the finite time before M → +∞. In the other 
words, if m(t) is bounded below then M(t) must be bounded above. This led to our main result, 
Theorem 2.1, in the next section.

And yet there were some questions that remained open to us. For instance, due to the specific 
structure of the DP equation (in particular, the solution is not uniformly bounded, because of the 
lower regularity of the conservation laws), we can not deal with the DP equation directly by using 
the approach on the abstract form (1.15). This issue prompted us to examine the more general 
system of the Riccati-type differential inequalities

m′(t) ≤ −am2(t) + b(M(t) − m(t)) + f (t),

M ′(t) ≤ −aM2(t) + b(M(t) − m(t)) + f (t),
(1.18)

where a > 0 and b > 0 are constants, and f (t) is a positive, continuous and nondecreasing 
function. Notice that in the case of the DP equation, the function f (t) is a linear function of t . 
Since we consider that the wave breaks at a finite time T , one could dominate this non-decreasing 
continuous function f (t) bounded in a larger bounded domain of time t ∈ [0, T0), T0 > T with 
a careful choice of the initial condition on m(t) and M(t). This thus implies that f (t) can be 
replaced by its upper constant bound in some sense. A partially nice feature of this observation is 
that with some necessarily delicate analysis, it is possible to apply the first wave breaking result 
to study the problem associated with (2.18) and the result will be presented in Theorem 2.2.

It is noted that the results obtained in present paper illustrate the fact that the wave-breaking 
results of these model equations mentioned above can be improved substantially by applying the 
optimal conditions of wave-breaking from the general Whitham-type equation in (1.1).

The remainder of the paper is organized as follows. In Section 2, the principal result on 
the wave-breaking for the functions m(t) and M(t) associated with two different Riccati-type 
differential evolution systems is described, and proof of the result is then followed in details. 
As applications of the result, wave-breaking phenomena for the Whitham-type equation, μ-CH 
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equation, DP equation and μ-DP equations as well as the compressible hyperelastic rod equation 
are further investigated, respectively, in Sections 3, 4, 5 and 6.

Notation. Throughout the paper, given a Banach space X, we denote its norm by ‖ · ‖X . If there 
is no ambiguity, we omit the domain of function spaces.

2. The Riccati-type differential inequalities

In this, the primary section of the paper, we will investigate wave-breaking conditions on the 
extremal functions m(t) and M(t), where both m(t) and M(t) satisfy the Riccati-type differ-
ential inequalities (1.17) and (1.18). The corresponding wave-breaking results will be used in 
subsequent sections.

Our main result of the present paper may now be enunciated.

Theorem 2.1. Let m(t) and M(t) be two continuous and almost everywhere differentiable func-
tions defined in t ∈ [0, T ) with T ≤ ∞ satisfying

{
m′(t) ≤ −am2(t) + b(M(t) − m(t)) + c,

M ′(t) ≤ −aM2(t) + b(M(t) − m(t)) + c,
a.e. in t ∈ [0, T ), (2.1)

where a is a positive constant, b and c are non-negative constants, and M(t) is a nonnegative 
function of t . Suppose that the initial data m0 = m(0) and M0 = M(0) satisfy

m0 < min

{
−1

a

(
b +

√
b2 + ac

)
, − 1

2a

(
b +

√
b2 + 4a(bM0 + c)

)}
. (2.2)

Then m(t) is monotonically decreasing and breaks down in the finite time T0 with

T0 ≤ t∗ = am2
0 + bm0 − c

a(am2
0 + 2bm0 − c)

√
a(am2

0 − b(M0 − m0) − c)

, (2.3)

in the sense that

lim inf
t→T −

0

m(t) = −∞.

In the case of T0 = t∗, the wave-breaking rate can be estimated by

m(t) ≤ am2
0 + bm0 − c

am2
0 + 2bm0 − c

1

t − t∗
.

Furthermore, if m(t) is bounded below by some negative constant ml , i.e. m(t) ≥ ml , then M(t)

is bounded by

M(t) ≤ max

{
M0,

b +√b2 + 4a(c − bml)

2a

}
. (2.4)
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Proof. For convenience, we denote B = b/a, C = c/a and

β(t) := m2(t) − B
(
M(t) − m(t)

)− C. (2.5)

First we claim that the following two inequalities

2m(t) + B < 0, (2.6)

and

m2(t) + 2Bm(t) − C > 0 (2.7)

hold for t ∈ [0, T ). The proof is approached by a contrary argument. Let

t∗ = sup
{
t ∈ [0, T ); 2m(t) + B < 0, m2(t) + 2Bm(t) − C > 0

}
.

It is easy to see from the assumption (2.2) that (2.6) and (2.7) hold at t = 0. We now claim that 
t∗ = T . Indeed, if not, then there exists t0 satisfying t∗ ≤ t0 < T such that

2m(t0) + B = 0 or m2(t0) + 2Bm(t0) − C = 0, (2.8)

and both (2.6) and (2.7) hold in [0, t0). Owing to (2.1), (2.6), (2.7) and (2.8), we deduce that

β ′(t) =
(
m2 − B(M − m)

)′

= (2m + B)m′ − BM ′

≥ a(2m + B)
(− m2 + B(M − m) + C

)− aB
(− M2 + B(M − m) + C

)
= −2am(m2 + 2Bm − C) + aB(M + m)2

> 0, a.e. in [0, t0).

(2.9)

It follows readily from (2.1) and the assumption (2.2) that

m′(t) ≤ −aβ(t) ≤ −aβ(0) < 0 a.e. in [0, t0). (2.10)

Hence we have

(2m + B)′ < 0 a.e. in [0, t0). (2.11)

Again from (2.2) m(0) + B < 0, we also have

m(t) + B ≤ m(0) + B < 0, t ∈ [0, t0).

This thus implies the following inequality

(m2(t) + 2Bm(t) − C)′ = 2m′(t)(m(t) + B) > 0 a.e. in [0, t0), (2.12)
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which is inferred that

m2(t) + 2Bm(t) − C ≥ m2(0)2 + 2Bm(0) − C, t ∈ [0, t0). (2.13)

It then follows from (2.2) that

2m(0) + B < 0, m2(0) + 2Bm(0) − C > 0. (2.14)

In view of the continuity of the functions m, this together with (2.11) and (2.13) contradicts with 
(2.8). Consequently, this completes the proof of the claim.

Now on account of (2.2), we have β(0) > 0. This in turn implies that

β(t) ≥ β(0) > 0, t ∈ [0, T ). (2.15)

Based on the argument, we are now ready to prove that β(t) breaks down in finite time. By the 
definition of β(t), we first have

m2(t) = β(t) + B(M − m) + C ≥ β(t),

which implies for sure that

−m(t) ≥ β
1
2 (t) a.e. in [0, t0).

Using again (2.10) we obtain

β ′(t) ≥ −2am(t)(m2(t) + 2Bm(t) − C) ≥ 2aβ
1
2 (t)(m2 + 2Bm − C)

= 2a
m2 + 2Bm − C

m2 − B(M − m) − C
β

3
2 (t).

By (2.12) and (2.15) with the conditions that B ≥ 0 and M ≥ 0, we arrive at

m2 + 2Bm − C

m2 − B(M − m) − C
≥ m2 + 2Bm − C

m2 + Bm − C
> 0.

A straightforward computation then shows that

(
m2 + 2Bm − C

m2 + Bm − C

)′
(t) =

(
Bm

m2 + Bm − C

)′
(t)

= − B(m2 + C)m′(t)
(m2 + Bm − C)2

> 0 a.e. in [0, T ).

It follows that

m2 + 2Bm − C

m2 + Bm − C
>

m2
0 + 2Bm0 − C

m2 + Bm − C
.

0 0
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Hence

β ′(t) ≥ 2a
m2

0 + 2Bm0 − C

m2
0 + Bm0 − C

β
3
2 (t) a.e. in [0, T ).

Denote δ = a(m2
0+2Bm0−C)

m2
0+Bm0−C

. It thus transpires that δ > 0 and

(
β− 1

2

)′
(t) = −1

2
β− 3

2 β ′(t) ≤ −δ a.e. in [0, T ).

Integrating it from 0 to t yields

β− 1
2 (t) ≤ β

1
2 (0) − δt. (2.16)

Since β(t) > 0 for any t ≥ 0, then β(t) and m(t) break down at the finite time

T0 ≤ t∗ := 1

δβ(0)
1
2

= m2
0 + Bm0 − C

a(m2
0 + 2Bm0 − C)

√
m2

0 − B(M0 − m0) − C

.

In the case of T0 = t∗, in view of (2.5) and (2.16), we have

m(t) ≤ −β
1
2 (t) ≤ 1

δ(t − t∗)
. (2.17)

Consequently, this completes the proof of (2.3). For the case that m(t) is bounded below, it is 
adduced that

M ′(t) ≤ −aM2(t) + b(M(t) − m(t)) + c ≤ −aM2(t) + b(M(t) − ml) + c

= −a

(
M − b −√b2 + 4a(c − bml)

2a

)(
M − b +√b2 + 4a(c − bml)

2a

)
.

Note that M ′(t) < 0 when M(t) > b+
√

b2+4a(c−bml)
2a

for all t ∈ [0, T ). This implies (2.4) and the 
proof of the theorem is complete. �
Remark 2.1. The wave-breaking time t∗ in Theorem 2.1 could be optimized by more delicate 
estimate, which can be obtained from replacing m2(t) = β(t) + B(M(t) − m(t)) + C ≥ β(t) by 
m2(t) ≥ β(t) + C − Bm0. By investigating the proof in Theorem 2.1, we are able to obtain a 
better estimate of upper bound on wave-breaking time by

t∗ = m2
0 + Bm0 − C

2a
√

C − Bm0(m
2
0 + 2Bm0 − C)

ln

√
m2

0 − BM0 + √
C − Bm0√

m2
0 − BM0 − √

C − Bm0

.
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As addressed in the introduction, in the applications for some equations including the DP 
equation and μ-DP equation, we can also derive the Riccati-type differential inequalities for the 
extremal values m(t) and M(t) but with a t -dependent function f (t) instead of a constant c. 
To deal with these issues, we have to reformulate the Riccati-type differential inequalities in 
Theorem 2.1 then find a balance between wave-breaking time and growing time of the function 
f (t). The corresponding result is now stated in the following.

Theorem 2.2. Assume that f (t) is a positive, continuous and nondecreasing function in [0, T ). 
Suppose that the functions m(t) and M(t) ≥ 0 satisfy

m′(t) ≤ −am2(t) + b(M(t) − m(t)) + f (t),

M ′(t) ≤ −aM2(t) + b(M(t) − m(t)) + f (t),
(2.18)

with two positive constants a and b. Then there exists a constant m1 depending on a, b and f
such that if m(0) = m0 < m1, then m(t) is decreasing and breaks down in finite time T ≤ t (m0), 
where m1 is the supremum of the set E composed by the real numbers z which guarantee the 
existence of positive solutions of the following equation for t :

t −
√

a(az2 + bz − f (t))

(az2 + 2bz − f (t))
√

az2 − b(M0 − z) − f (t)
= 0, (2.19)

and also satisfy

z ≤ min

{
−b +√b2 + af (t (z))

a
, −b +√b2 + 4a(bM0 + f (t (z)))

2a

}
, (2.20)

where t (z) is the smallest positive solution of (2.19). Furthermore, if T = t (m0), we have the 
estimate of wave-breaking rate:

m(t) ≤ am2
0 + bm0 − f (t (m0))

a(am2
0 + 2bm0 − f (t (m0)))

1

t − t (m0)
. (2.21)

Proof. First we need to show the set E is not empty. Let

F(t, z) :=
√

a(az2 + bz − f (t))

(az2 + 2bz − f (t))
√

az2 − b(M0 − z) − f (t)
, (2.22)

g(t, z) := t − F(t, z) (2.23)

and

z∗(t) := min

{
−b +√b2 + af (t)

a
, −b +√b2 + 4a(bM0 + f (t))

2a

}
. (2.24)

If z < z∗(0), it then follows from the proof of Theorem 2.1 that F(0, z) > 0. Hence, g(0, z) < 0. 
On the other hand, it’s easy to see that for any fixed t0 > 0, there exists a constant z∗(t0) depend-
ing only on t0, a, b and f such that when z < z∗(t0) we have F(t0, z) <

t0 . Consequently
2
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g(t0, z) >
t0

2
> 0.

Therefore, by the mean-value theorem on the continuous function of t , there exists a positive 
solution t∗ of (2.19), 0 < t∗ < t0 for z < min{z∗(t0), z∗(0)}. And we also deduce that if z <

min{z∗(t0), z∗(t0)}, then z satisfies (2.20), since z∗(t0) < z∗(0), and then z belongs to E. Hence, 
E is not empty.

Next, we claim that if z satisfies (2.20), then

∂F (t, z)

∂z
> 0. (2.25)

In fact, denote B = b/a, C = f (t)/a, A1 = z2 + 2Bz − C, A2 = z2 + B(z − M0) − C, and 
A3 = z2 − Bz − C. A direct computation then shows that

∂F

∂z
= A1A2(2z + B) − 2A3A2(z + B) − A1A3(z + B

2 )

aA2
1A

3
2
2

= A2B(z2 + C) − A1A3(z + B
2 )

aA2
1A

3
2
3

.

In view of (2.20), it is found that A1, A2, A3 > 0, and z + B/2 < 0. This in turn implies that 
(2.25) is valid.

Finally we show that if z1 ∈ E, then (−∞, z1) ⊂ E. Moreover if z0 < z1, it must be the case 
t (z0) < t(z1). To this end, it is found from the definition of E that

g(t (z1), z1) = t (z1) − F(t (z1), z1) = 0.

It then follows from (2.25) that

g(t (z1), z0) = t (z1) − F(t (z1), z0)

= F(t (z1), z1) − F(t (z1), z0) > 0.

Notice that g(0, z0) < 0. Applying the mean-value theorem again, positive solution of (2.19)
exists and t (z0) < t(z1). We also have that z0 < z1 ≤ z∗(t (z1)) ≤ z∗(t (z0)), hence (2.20) holds 
and then z0 ∈ E. This implies (−∞, z1) ⊂ E.

It is also found that the set E is bounded above by zero, and the existence of m1 is guaranteed. 
Now by the property of E, if m0 < m1 then m0 ∈ E and it is inferred that m0 must satisfy the 
inequality

m0 < min

{
−b +√b2 + af (t (m0))

a
, −b +√b2 + 4a(bM0 + f (t (m0)))

2a

}
, (2.26)

and m(t), M(t) satisfy (2.18). It then follows from Theorem 2.1 that the function m(t) is de-
creasing and breaks down in finite time T ≤ t (m0). In the case of T = t (m0), we have the 
wave-breaking rate estimate (2.21), thereby concluding the proof of Theorem 2.2. �
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In particular, one can choose those initial momentum potentials m0 in the theorem above 
more precisely to expect an upper bound of the wave-breaking time. This result is stated in the 
following.

Corollary 2.1. Assume that m(t) and M(t) satisfy inequality (2.18) almost everywhere for t ∈
[0, T ), where f (t) is positive and nondecreasing in [0, +∞). For any constant ε > 0, if there 
holds

m0 <
−(2 + ε)b −√(2 + ε)2b2 + 4a(f (t∗) + bM0)

2a
, (2.27)

where t∗ = 1
ε

√
2(b+ε)

(2+ε)b+√(2+ε)2b2+4abM0
, then the extremal function m(t) is decreasing and breaks 

down in finite time T0 ≤ t∗. Moreover if m(t) breaks down at T0 with T0 = t∗, then

m(t) ≤ am2
0 + bm0 − f (T0)

a(am2
0 + 2bm0 − f (T0))

· 1

t − T0
. (2.28)

Proof. Since f is nondecreasing, we have

m′(t) ≤ −am2(t) + b
(
M(t) − m(t)

)+ f (t∗),

M ′(t) ≤ −aM2(t) + b
(
M(t) − m(t)

)+ f (t∗),
(2.29)

for 0 ≤ t < t∗, where t∗ is an upper bound of the wave-breaking time, which will be determined 
later.

Let

m∗ := −(2 + ε)b −√(2 + ε)2b2 + 4a(f (t∗) + bM0)

2a
.

Then it is not hard to check that m0 < m∗ implies

m0 < min

{
−b −√b2 + af (t∗)

a
,

−b −√b2 + 4a(bM0 + f (t∗))
2a

}
.

Hence it suffices to show the upper bound of the wave-breaking time in Theorem 2.1 satisfies

T0 := am2
0 + bm0 − f (t∗)

a(am2
0 + 2bm0 − f (t∗))

√
m2

0 − b
a
(M0 − m0) − f (t∗)

a

≤ t∗.

Therefore, it remains to show that there exists a t∗ such that the above inequality holds.
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Assume m0 < m∗. Noticing that

m2∗ + 2b + ε

a
m∗ − b

a
M0 − f (t∗)

a
= 0, (2.30)

it is thereby inferred that

m2
0 + b

a
m0 − b

a
M0 − f (t∗)

a
≥ m2∗ + b

a
m∗ − b

a
M0 − f (t∗)

a

= −b + ε

a
m∗

= (b + ε)
(
(2 + ε)b +√(2 + ε)2b2 + 4a(f (t∗) + bM0)

)
2a2

≥
(b + ε)

(
(1 + ε

2 )b +
√

(1 + ε
2 )2b2 + abM0

)
a2

.

(2.31)

On the other hand, it is found that

d

dm0

(
m2

0 + b
a
m0 − f (t∗)

a

m2
0 + 2b

a
m0 − f (t∗)

a

)
≥ 0, as m0 < m∗.

Hence it is deduced from m0 < m∗ that

m2
0 + b

a
m0 − f (t∗)

a

m2
0 + 2b

a
m0 − f (t∗)

a

≤ (m∗)2 + b
a
m∗ − f (t∗)

a

(m∗)2 + 2b
a

m∗ − f (t∗)
a

=
b
a
M0 − b+ε

a
m∗

b
a
M0 − ε

a
m∗

≤ b + ε

ε
, (2.32)

which together with (2.31) implies

T0 ≤ 1

ε

√
2(b + ε)

(2 + ε)b +√(2 + ε)2b2 + 4abM0

.

The result is thus derived by choosing t∗ = t∗ = 1
ε

√
2(b+ε)

(2+ε)b+
√

(2+ε)2b2+4abM0
and applying Theo-

rem 2.1. �
3. The Whitham-type equations

We now turn our attention to applications of wave-breaking for the Riccati-type equations in 
Theorem 2.1. In particular, we focus on the Whitham-type equation in this section, namely,{

ut + uux + ∫
R

K(x − ξ)uξ (t, ξ)dξ = 0, t > 0, x ∈R,

u(0, x) = u0(x), x ∈R.
(3.1)

The following wave-breaking result was obtained in an intriguing paper due to Constantin and 
Escher [9].
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Proposition 3.1. Assume that K(x) ∈ C(R) ∩L1(R) is symmetric and monotonically decreasing 
on R+, K 
= 0. A sufficiently asymptotic initial profile yields wave breaking. More precisely, if 
u0 ∈ H∞(R) satisfies

inf
x∈R{u′

0(x)} + sup
x∈R

{u′
0(x)} ≤ −2K(0) < 0, (3.2)

then for the solution of (3.1) with initial data u0 we observe wave breaking.

It is noted that there are also several models such as the collective motion of cells and traffic 
flows with Arrhenius look-ahead dynamics where the kernel K is non-symmetric and not mono-
tonic [26]. It is thus quite natural to consider the more generic kernel K(x) in (3.1). Indeed, in 
the same spirit as Theorem 2.1, we enable to establish the following result with more general 
kernel K so that the condition on initial data can be improved.

Theorem 3.1. Let u ∈ C∞([0, T ); H∞(R)) be a solution of (3.1) before breaking. If K(x) in 
(3.1) is regular (continuous and integrable over R). Assume that the kernel K(x) has the or-
dered extreme points (xi, Ki), i ∈ Jm,n, Jm,n := {−m, −m + 1, · · · , 0, · · · , n − 1, n}, m, n ∈
{0} ∪ Z+ ∪ {+∞}, Ki = K(xi), and 

∑
i∈Jm,n

|Ki | is bounded. Then m(t) := inf
x∈Rux(t, x) and 

M(t) := sup
x∈R

ux(t, x) satisfy the following inequalities

m′(t) ≤ −m2(t) +
∑

i∈Jm,n

|Ki |
(
M(t) − m(t)

)
,

M ′(t) ≤ −M2(t) +
∑

i∈Jm,n

|Ki |
(
M(t) − m(t)

)
.

(3.3)

If the initial data m0 = m(0) and M0 = M(0) satisfy

m0 < min

{
−2K̃,−1

2

(
K̃ +

√
K̃2 + 4K̃M0

)}
, (3.4)

where K̃ =∑i∈Jm,n
|Ki |, then m(t) is monotonically decreasing and blows up in finite time T0

with an estimate as

T0 ≤ t∗ = m0 + K̃

(m0 + 2K̃)

√
m2

0 − K̃(M0 − m0)

.

Proof. Define two functions m(t) and M(t) by

m(t) = inf
x∈Rux(t, x) = ux(t, ξ(t)),

M(t) = sup ux(t, x) = ux(t, η(t)),
(3.5)
x∈R
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where ξ(t) and η(t) are some points in R. Differentiating equation (3.1) with respect to x and 
evaluating the resulting equation respectively at x = ξ(t) and η(t), we obtain

{
m′(t) + m2(t) + ∫

R
K(z)uxx(t, ξ(t) − z)dz = 0,

M ′(t) + M2(t) + ∫
R

K(z)uxx(t, η(t) − z)dz = 0,
a.e. on [0, T ).

Using the second mean-value theorem, there exists αi ∈ [xi−1, xi] such that

∣∣∣∣∣∣∣
xi∫

xi−1

K(z)uxx(t, ξ(t) − z)dz

∣∣∣∣∣∣∣
= |K(xi−1)

αi∫
xi−1

uxx(t, ξ(t) − z)dz + K(xi)

xi∫
αi

uxx(t, ξ(t) − y)dy|

= |−Ki−1[ux(t, ξ(t) − αi) − ux(t, ξ(t) − xi−1)]
− Ki[ux(t, ξ(t) − xi) − ux(t, ξ(t) − αi)]|

≤ (|Ki−1| + |Ki |)(M − m).

In the same way, it is then deduced with some αi ∈ [xi−1, xi] and βi ∈ [xi, xi+1] that

∣∣∣∣∣∣∣
xi+1∫

xi−1

K(z)uxx(t, ξ(t) − z)dz

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
⎛
⎜⎝

xi∫
xi−1

+
xi+1∫
xi

⎞
⎟⎠K(z)uxx(t, ξ(t) − z)dz

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣K(xi−1)

αi∫
xi−1

uxx(t, ξ(t) − z)dz + K(xi)

xi∫
αi

uxx(t, ξ(t) − z)dz

+ K(xi)

βi∫
xi

uxx(t, ξ(t) − z)dz + K(xi+1)

xi+1∫
βi

uxx(t, ξ(t) − z)dz

∣∣∣∣∣∣∣
= |−Ki−1[ux(t, ξ(t) − αi) − ux(t, ξ(t) − xi−1)] − Ki[ux(t, ξ(t) − xi) − ux(t, ξ(t) − αi)]

− Ki[ux(t, ξ(t) − βi) − ux(t, ξ(t) − xi)] − Ki+1[ux(t, ξ(t) − xi+1) − ux(t, ξ(t) − βi)]|
= |−Ki−1[ux(t, ξ(t) − αi) − ux(t, ξ(t) − xi−1)] − Ki[ux(t, ξ(t) − βi) − ux(t, ξ(t) − αi)]

− Ki+1[ux(t, ξ(t) − xi+1) − ux(t, ξ(t) − βi)]|
≤ (|K | + |K | + |K |)(M − m),
i−1 i i+1
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where and hereafter Kj = K(xj ), j = 1, 2, · · · . Hence we deduce that

∣∣∣∣∣∣
xn∫

−xm

K(z)uxx(t, ξ(t) − z)dz

∣∣∣∣∣∣

=

∣∣∣∣∣∣∣
( x−m+1∫

x−m

+· · · +
x0∫

x−1

+
x1∫

x0

+
x2∫

x1

+· · · +
xn∫

xn−1

)
K(z)uxx(t, ξ(t) − z)dz

∣∣∣∣∣∣∣
≤ K̃(M − m).

Since K is integrable, then lim
n→∞|Kn| = 0 and (3.3) is satisfied. Utilizing Theorem 2.1 and re-

placing b by K̃ with a = 1 and c = 0 in (2.1), we get the corresponding result. This completes 
the proof of Theorem 3.1. �

When K(x) fulfills the same condition as in Proposition 3.1, we can get a more general result, 
which is a direct conclusion of Theorem 2.1.

Corollary 3.1. If K(x) in (3.1) is a regular (continuous and integrable over R) and positive 
symmetric kernel, which decreases monotonically over R. Let u(t, x) be a solution of (3.1) with 
initial data u0(x) ∈ H∞(R) satisfying

m0 := inf
x∈Rux(0, x) < min

{
−2K(0),

−K(0) −√K(0)2 + 4K(0)M0

2

}
, (3.6)

where M0 = sup
x∈R

ux(0, x). Then m(t) := inf
x∈Rux(t, x) is monotonically decreasing and blows up 

in finite time T0 with an estimate

T0 ≤ t∗ = m0 + K(0)

(m0 + 2K(0))

√
m2

0 − K(0)(M0 − m0)

.

Furthermore, in the case of T0 = t∗, we have the blowup rate estimate

m(t) ≤ m0 + K(0)

m0 + 2K(0)

1

t − t∗
. (3.7)

Proof. Applying the result in [9], we have

m′(t) ≤ −m2(t) + K(0)(M(t) − m(t)),

M ′(t) ≤ −M2(t) + K(0)(M(t) − m(t)).

The results then can be obtained from Theorem 2.1 by setting a = 1, b = K(0) and c = 0. �
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Remark 3.1. It is observed that the blowup condition in Proposition 3.1 by Constantin and Escher 
[9] can be improved by that in the above corollary. Indeed, it is easy to derive (3.6) from (3.2). 
On the other hand, the asymptotical property of conditions between (3.6) and (3.2) as M0 tends 
to infinite is different: |m0| � M0 as M0 → +∞ from (3.2), while |m0| � √

M0 as M0 → +∞
from (3.6).

If the kernel K is symmetric, then L2-norm of solution of the Whitham-type equation (3.1) is 
conserved [32]. In this case, we have a wave-breaking result in the following.

Theorem 3.2. Let u0 ∈ Hs(R), s ≥ 2. Assume that the kernel K ∈ L1(R) is symmetric and the 
second derivative of the kernel K ′′ ∈ L2(R). Suppose that there exists x0 ∈ R such that

u′
0(x0) < −√‖K ′′‖L2‖u0‖L2 .

Then the corresponding solution of (3.1) blows up in finite time T0

T0 ≤ − 1

u′
0(x0) +

√
−u′

0(x0)(‖K ′′‖L2‖u0‖L2)
1
4

.

Proof. Differentiating (3.1) with respect to x yields

utx + uuxx = −u2
x −

∫
R

K ′(x − ξ)ux(t, ξ)dξ. (3.8)

Let V (t) = ux(t, q(t, x0)), where q(t, x) is governed by the flow

dq(t, x)

dt
= u(t, x),q(0, x) = x.

It follows from (3.8) that V (t) satisfies

dV

dt
= −V 2 −

∫
R

K ′′(q(t, x0) − ξ)u(t, ξ)dξ. (3.9)

Applying the Cauchy inequality yields the following estimate

∣∣∣∣∣∣
∫
R

K ′′(q(t, x0) − ξ)u(t, ξ)dξ

∣∣∣∣∣∣≤ ‖K ′′‖L2‖u‖L2 = ‖K ′′‖L2‖u0‖L2,

which together with (3.9) implies

dV = −V 2 + ‖K ′′‖L2‖u0‖L2 .

dt
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If V (0) < −(‖K ′′‖L2‖u0‖L2)
1
2 , then V (t) satisfies

dV

dt
= −(V 2 − V 2(0)).

Hence V (t) → −∞ as t → T0 < ∞. Consequently, inf
x∈Rux(t, x) ≤ V (t) → −∞ as t → T0. This 

completes the proof of Theorem 3.2. �
4. The μ-CH equation

In this section, we turn now to consideration of wave-breaking for the μ-CH equation. Con-
sider the following initial-value problem,

⎧⎪⎨
⎪⎩

yt + 2yux + uyx + γ ux = 0, t > 0, x ∈R,

u(0, x) = u0(x), x ∈R,

u(t, x + 1) = u(t, x), t ≥ 0, x ∈R,

(4.1)

where y = μ(u) − uxx , μ(u) = ∫ 1
0 u(t, x)dx, and γ 
= 0 is a constant. The following local-

wellposedness result for problem (4.1) can be established by the method as in [24].

Proposition 4.1. Let u0 ∈ Hs(S), s > 3/2. Then there exist a maximal life span T > 0 and 
a unique solution u(t, x) to (4.1) such that u(t, x) ∈ C([0, T ); Hs(S)) ∩ C1([0, T ); Hs−1(S)), 
which depends continuously on the initial data u0(x).

Note that the Cauchy problem (4.1) can be rewritten as the following form

⎧⎪⎨
⎪⎩

ut + uux + ∂xK ∗ (2μ(u)u + 1
2u2

x + γ u
)= 0, t > 0, x ∈ R,

u(0, x) = u0(x), x ∈R,

u(t, x + 1) = u(t, x), t ≥ 0, x ∈ R,

(4.2)

where K(x) is given by (1.12), and v = K ∗ w is determined explicitly by [24,25]

v(x) = 1

2

(
x2 − x + 13

6

)
μ(w) +

(
x − 1

2

) 1∫
0

y∫
0

w(z)dzdy

−
x∫

0

y∫
0

w(z)dzdy +
1∫

0

x∫
0

y∫
0

w(z)dzdydx.

(4.3)

It can be seen that the conservation laws are often useful in the investigation on the wave-breaking 
of solutions.

Lemma 4.1. [19] Suppose u0 ∈ Hs , s ≥ 2, and let T be the maximum existence time of the 
solution u(t, x) to the problem (4.1) with initial data u0(x). Then we have
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μ(u) = μ(u0), E(t) =
⎛
⎝∫

S

u2
xdx

⎞
⎠

1
2

=
⎛
⎝∫

S

u2
0,xdx

⎞
⎠

1
2

.

Furthermore, we have the estimate

‖u − μ(u0)‖L∞ ≤
√

3

6
E(0). (4.4)

We now consider x1, x2 ∈ S to be such that

u0,x(x1) = inf
x∈Su0,x(x), u0,x(x2) = sup

x∈S
u0,x(x).

Let us denote that

m(t) = inf
x∈Sux(t, x), M(t) = sup

x∈S
ux(t, x).

Then there exist ξ(t), η(t) ∈ S such that [9]

m(t) = ux(t, ξ(t)) = inf
x∈Sux(t, x), t ∈ (0, T ),

M(t) = ux(t, η(t)) = sup
x∈S

ux(t, x), t ∈ (0, T ),
(4.5)

where we can choose ξ(0) = x1, η(0) = x2. Differentiating (4.2) with respect to x leads to

utx + uuxx + u2
x + ∂2

xK ∗ (2μ(u)u + 1

2
u2

x + γ u
)= 0. (4.6)

A direct computation then gives

utx + uuxx + 1

2
u2

x − 2μ(u)u + a + γ ∂xK ∗ ux = 0, (4.7)

where

a = 1

2

∫
S

u2
xdx + 2μ2(u) = 1

2
E2(0) + 2μ2(u).

Furthermore, it is inferred from (4.3) that

∂xK ∗ ux =
(

x − 1

2

) 1∫
0

(ux(y) − ux(0))dy −
x∫

0

(ux(y) − ux(0))dy

+
1∫ y∫

(ux(z) − ux(0))dzdy.

(4.8)
0 0
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In view of the inequality (4.4), plugging (4.8) into (4.6), we arrive at

utx + 1

2
u2

x + uuxx ≤
√

3

3
|μ(u0)|E(0) − 1

2
E2(0)

− γ

⎡
⎣(x − 1

2

) 1∫
0

(ux(y) − ux(0))dy −
x∫

0

(ux(y) − ux(0))dy

+
1∫

0

y∫
0

(ux(z) − ux(0))dzdy

⎤
⎦ .

(4.9)

Setting x = ξ(t) and x = η(t) respectively in (4.9), we deduce that

m′(t) ≤ −1

2
m2(t) + 5

2
|γ |(M(t) − m(t)) +

√
3

3
|μ(u0)|E(0) − 1

2
E2(0),

M ′(t) ≤ −1

2
M2(t) + 5

2
|γ |(M(t) − m(t)) +

√
3

3
|μ(u0)|E(0) − 1

2
E2(0).

(4.10)

Using Theorem 2.1, we get the following wave-breaking result for solutions of (4.1).

Theorem 4.1. Assume that u ∈ C([0, T ); Hs(S)) ∩ C1([0, T ); Hs−1(S)), s ≥ 2 is a solution of 
the Cauchy problem (4.1) with the initial value u0 ∈ Hs(S). Suppose that

m0 < min

{
−5|γ | −

√
25γ 2 + 2C, −5

2
|γ | −

√
25

4
γ 2 + 5|γ |M0 + 2C

}
,

where C = max{0, 
√

3
3 |μ(u0)|E(0) − 1

2E2(0)}. Then the solution of (4.1) blows up in finite time

T0 ≤ t∗ = 4(m2
0 + 5|γ |m0 − 2C)

(m2
0 + 10|γ |m0 − 2C)

√
m2

0 − 5|γ |(M0 − m0) − 2C

.

Remark 4.1. It was shown in [19] that if the initial data u0(x) satisfies |μ0| ≥ π√
3
μ1, μ1 =

(
∫
S
u2

0,xdx)
1
2 and there exists a point x0 such that u′

0(x0) < −
√

2
√

3
3 |μ0|μ1 − μ2

1, then the wave 
breaking occurs. It is obvious that this result is now improved by Theorem 4.1.

5. The DP and μ-DP equations

We now turn our attention to the DP and μ-DP equations. As is known that the solutions 
for DP and μ-DP equations are uniformly bounded but growing linearly in time t , one can not 
apply Theorem 2.1 directly but possibly formate it to the case suitable in Theorem 2.2. We first 
consider the Cauchy problem of the DP equation in the following,
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{
ut + uux + ∂xK ∗ ( 3

2u2 + γ u) = 0, t > 0, x ∈R,

u(0, x) = u0(x), x ∈R,
(5.1)

where K(x) is given in (1.6).
The following local well-posedness result was established in [29].

Lemma 5.1. [29] Assume u0 ∈ Hs(R), s > 3/2, there exists a T = T (u0) > 0 and a unique 
strong solution u(t, x) ∈ C([0, T ); Hs(R)) ∩ C1([0, T ); Hs−1(R)) to the problem (5.1) depend-
ing continuously on u0. Moreover, there are the following three conserved densities

E1(u) =
∫
R

(u2 + u2
x)dx, E2(u) =

∫
R

yvdx, E3(u) =
∫
R

u3dx, (5.2)

where y = (1 − ∂2
x )u and v = (4 − ∂2

x )−1u.

To construct the Riccati-type differential inequalities (2.18), we differentiate DP equation 
(5.1) with respect to x to get

uxt + uuxx + u2
x = 3

2
u2 − 3

2
K ∗ u2 − γ ∂xK ∗ ux. (5.3)

In view of the result in [29], we have the upper bound for solutions of (5.1)

‖u‖L∞ ≤ 3‖u0‖2
L2 t + ‖u0‖L∞ . (5.4)

It follows from (5.3) and (5.4) that m(t) and M(t) defined by (3.5) satisfy

m′ ≤ −m2 + |γ |(M − m) + 3

2
J 2(t),

M ′ ≤ −M2 + |γ |(M − m) + 3

2
J 2(t),

where J (t) = 3‖u0‖2
L2(R)

t + ‖u0‖L∞(R).
Applying Corollary 2.1 this time, we should have the following result.

Theorem 5.1. Assume that u ∈ C([0, T ); Hs(R)) ∩ C1([0, T ); Hs−1(R)), s > 3/2 is a solution 
of the Cauchy problem (5.1) with the initial value u0 ∈ Hs(R). For any constant ε > 0, if there 
holds

m0 < −(1 + ε

2
)|γ | −

√
(1 + ε

2
)2γ 2 + 3

2
J 2(t∗) + |γ |M0, (5.5)

where t∗ = 1
ε

√
2(|γ |+ε)

(2+ε)|γ |+√(2+ε)2γ 2+4|γ |M0
, then the extremal function m(t) is decreasing and 

breaks down in finite time T0 ≤ t∗.
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Next, we study the case of the μ-DP equation. Consider now the initial-value problem

⎧⎪⎨
⎪⎩

ut + uux + ∂xK ∗ (3μ(u)u + γ u
)= 0, t > 0, x ∈R,

u(0, x) = u0(x), x ∈ R,

u(x + 1, t) = u(x, t), t ≥ 0, x ∈R,

(5.6)

where K(x) is given in (1.12).
The local well-posedness was already established in [25].

Lemma 5.2. [25] Assume u0 ∈ Hs(S), s > 3/2. Then there exists a T = T (u0) > 0 and a unique 
strong solution u ∈ C([0, T ); Hs(S)) ∩ u ∈ C1([0, T ); Hs−1(S)) to the problem (5.6) which de-
pends continuously on u0. Moreover, there are the following three conserved densities

F1(u) = μ(u), E2(u) =
∫
S

u2dx, E3(u) =
∫
S

(
9μ(u)(�−1∂xu)2 + u3

)
dx. (5.7)

It is also noted that [19]

|K ∗ ux | ≤ 1

2
|μ(u0)| + 2μ2(u0), (5.8)

where μ2(u) = (E2(u))
1
2 .

Along the flow

{
dq(t,x)

dt
= u(t, q(t, x)), t > 0, x ∈ S,

q(0, x) = x,

there holds for solutions of (5.6)

du

dt
= −(3μ0 + γ )K ∗ ux.

It is inferred from the above expression that

−h0t + u0(x) ≤ u(t, q(t, x)) ≤ h0t + u0(x), (5.9)

with

h0 = 3

2
μ2

0 + 6|μ0|μ2 + |γ |(1

2
|μ0| + 2μ2).

Differentiating (5.6) with respect to x leads to

uxt + uuxx + u2 = 3μ(u)(u − μ(u)) − γ ∂xK ∗ ux. (5.10)
x
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Owing to (5.8), (5.9) and (5.10), we have the following inequalities:

m′(t) ≤ −m2(t) + |γ |(M(t) − m(t)) + J (t),

M ′(t) ≤ −M2(t) + |γ |(M(t) − m(t)) + J (t),

where J (t) = 3|μ0|(h0t + ‖u0‖L∞ − μ0).
Making use of Corollary 2.1 again, we arrive at the following result.

Theorem 5.2. Assume that u ∈ C([0, T ); Hs(S)) ∩ C1([0, T ); Hs−1(S)), s > 3/2, is a solution 
of the Cauchy problem (5.6) with the initial value u0 ∈ Hs(S). For any constant ε > 0, if there 
holds

m0 < −(1 + ε

2
)|γ | −

√
(1 + ε

2
)2γ 2 + J (t∗) + |γ |M0, (5.11)

where t∗ = 1
ε

√
2(|γ |+ε)

(2+ε)|γ |+√(2+ε)2γ 2+4|γ |M0
, then the extremal function m(t) is decreasing and 

breaks down in finite time T0 ≤ t∗.

6. The hyperelastic rod equation

In the last section, our attention is paid to the hyperelastic rod equation. Consider the initial-
value problem of the hyperelastic rod equation, namely,{

ut + λuux + ∂xK ∗ ( 3−λ
2 u2 + λ

2 u2
x + γ u) = 0, t > 0, x ∈R,

u(0, x) = u0(x), x ∈R,
(6.1)

where K(x) is given by (1.6).
The following results of local well-posedness and wave-breaking criterion were established 

in [16].

Lemma 6.1. [16] Assume u0 ∈ Hs(R), s > 3/2. Then there exist a maximal time T > 0 and a 
unique solution u ∈ C([0, T ); Hs(R)) ∩ u ∈ C1([0, T ); Hs−1(R)) to the problem (6.1) depend-
ing continuously on u0(x). Moreover, there are the following two conserved densities

E(u) =
∫
R

(u2 + u2
x)dx, F (u) =

∫
R

(u3 + λuu2
x + γ u2)dx. (6.2)

Lemma 6.2. [16] Assume u0(x) ∈ Hs(R), s > 3/2. Let u(t, x) be the corresponding solution of 
(1.13) with life span T . Then

sup
x∈R,0≤t<T

|u(t, x)| ≤ C(‖u0‖H 1),

and T is bounded if and only if

lim inf inf{sgnλ ux(t, x)} = −∞.

t→T x∈S
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Again, to apply Theorem 2.1, we need the following lemma.

Lemma 6.3. [2] Let 0 < λ < 4. Assume u0(x) ∈ Hs(R), s ≥ 2. Then there holds the following 
inequality

K ∗
(

3 − λ

2
u2 + λ

2
u2

x

)
(t, ξ(t)) ≥ C1u

2(t, ξ(t)), (6.3)

where K is given in (1.6), and C1 = 1
4 (

√
λ(12 − 3λ) − λ).

Differentiating (6.1) with respect to x yields

uxt + λ

(
uuxx + 1

2
u2

x

)
+ γ ∂xK ∗ ux + K ∗

(
3 − λ

2
u2 + λ

2
u2

x

)
− 3 − λ

2
u2 = 0.

Using (6.3), we get the following estimate

uxt + λ

(
uuxx + 1

2
u2

x

)

= −γ ∂xK ∗ ux − K ∗
(

3 − λ

2
u2 + λ

2
u2

x

)
+ 3 − λ

2
u2

≤ −γ ∂xK ∗ ux +
(

3 − λ

2
− C1

)
u2

≤ −γ ∂xK ∗ ux + C2‖u0‖2
H 1,

(6.4)

where C2 = 1
2 max{ 3−λ

2 −C1, 0}. It follows from (6.4) that m(t) and M(t) defined by (3.5) satisfy

m′ ≤ −λ

2
m2 + |γ |(M − m) + C2‖u0‖2

H 1,

M ′ ≤ −λ

2
M2 + |γ |(M − m) + C2‖u0‖2

H 1 .

Applying Theorem 2.1, we arrive at the following result.

Theorem 6.1. Assume that 0 < λ < 4, and u ∈ C([0, T ); Hs(R)) ∩ C1([0, T ); Hs−1(R)), s ≥ 2
is a solution of the Cauchy problem (6.1) with the initial value u0 ∈ Hs(R). Suppose that

m0 < min

⎧⎪⎨
⎪⎩−

2
(|γ | +

√
γ 2 + λ

2 C2‖u0‖2
H 1

)
λ

, −
|γ | +

√
γ 2 + 2λ(λM0 + C2‖u0‖2

H 1)

λ

⎫⎪⎬
⎪⎭ .

Then the corresponding solution of (6.1) breaks down in finite time T0 with an estimate as

T0 ≤ t∗ = 4(λm2
0 + 2|γ |m0 − 2C2‖u0‖2

H 1)

λ(λm2
0 + 4|γ |m0 − 2C2‖u0‖2

H 1)

√
λ(λm2

0 − 2γ (M0 − m0) − 2C2‖u0‖2
H 1)

.
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Remark 6.1. The local-in-space criterion for the wave-breaking of solutions to the hyperelastic 
rod equation (6.1) was given in [2] by a delicate analysis. It was shown in [2] that the wave-
breaking occurs if 1 ≤ λ ≤ 4 and there exists x0 ∈ R such that the initial data u0(x) satisfies 

u′
0(x0) < −βλ

∣∣∣u0(x0) + γ
3−λ

∣∣∣, where βλ is a nonnegative constant depending on λ. However, it 
is noted that this local-in-space criterion is not valid for 0 < λ < 1.
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