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Abstract

In this paper, we study the Wong—Zakai approximations given by a stationary process via the Wiener shift
and their associated dynamics of the stochastic differential equation driven by a /-dimensional Brownian
motion. We prove that the solutions of Wong—Zakai approximations converge in the mean square to the
solutions of the Stratonovich stochastic differential equation. We also show that for a simple multiplica-
tive noise, the center-manifold of the Wong—Zakai approximations converges to the center-manifold of the
Stratonovich stochastic differential equation.
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1. Introduction

In this paper, we study the Wong—Zakai approximations given by a stationary process via
the Wiener shift and their associated dynamics of the following stochastic differential equation
in R":
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du= f(u)dt+ow)odW, (1.1

where f:R" — R" and o : R" — R"*! are nonlinear functions, W (t, w) is a [-dimensional
Brownian motion, and o d W (¢, ) denotes the Stratonovich differential.
Let (22, F, P) be the classical Wiener probability space, where

Q=CoR,R):={we CR,R): w(0)=0}

with the open compact topology, F is its Borel o-algebra, and PP is the Wiener measure. The
Brownian motion has the form W (¢, w) = w(t). Consider the Wiener shift 6, defined on the
probability space (€2, F, P) by

o) =w(t+ ) —w(t).

It is known that the probability measure [P is an ergodic invariant measure for 6;. (2, F, P,
(6¢)cr) forms a metric dynamical system, see Arnold [2].
Foreach§ > 0,let G5 : Q — R’ denote the random variable

1
Gs(w) = —w(8).
)
Then we have
1
G5 (Orw) = E(w(t +68) —w(@)). (1.2)

From the properties of Brownian motions, it follows that Gs(6;w) is a stationary stochastic pro-
cess with a normal distribution and is unbounded in ¢ for almost all . Gs(6;w) may be viewed
as an approximation of white noise in the sense

t
lim sup /gg(ésa))ds —w()|=0,a.s.
8—>0% 1[0, 7]
0
for each T > 0, which will be proved in Section 3.
We consider the following Wong—Zakai approximation of equation (1.1) driven by a multi-
plicative noise of Gs(6;w):

s = f(us) + o (us)Gs (6, ). (1.3)

Note that the above equation is a random differential equation driven by the stationary stochas-
tic process G5 (6;w). As a consequence, its solutions generate a random dynamical system. Thus
one can study its sample-wise (or pathwise) dynamical properties.

In current paper, we first study the limit behavior of solutions of equation (1.3) as § — 0T
and show that us converges in the mean square to a solution of equation (1.1). Then, to illustrate
that the dynamics of this Wong—Zakai approximations converge to ones of the stochastic equa-
tion (1.3), we show that for a simple multiplicative noise, the center-manifold of (1.3) converges
to the center-manifold of stochastic equation (1.1).
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Our first result is about the mean square convergence of solutions of Wong—Zakai approxima-
tions.

Theorem A. Let u(t, w,x) and us(t, w, x) be solut;’ons of equations (].l) and (1.3) with the
initial data x at t = 0, respectively. Assume that ' € Cg R") and o' € Ci(R”) for all i =
1,---,nand j=1,---,1. Then, for every T > 0 we have

lim E| sup |u(;(t,a),x)—u(t,a),x)|2 =0,
§—>0F 1€[0,T]

where C ]l; (R") is the usual space of C* smooth functions from R" to R with bounded derivatives
up to order k € N.

Our second result is on the convergence of approximations of center manifolds. We consider
the stochastic differential equation of form

du=Au+ f(w)dt+uodW (1.4)
and its Wong—Zakai approximation
us = Aug + f(us) +usGs(60). (1.5)

Here A is a n x n matrix and f is a high order term. Note that in this case, # = 0 is a stationary
solution.

Theorem B. Assume that A is a partially hyperbolic n x n matrix and f is globally Lipschitz
continuous with f(0) = 0. Then, there exists €9 > 0 such that if the Lipschitz constant of f
Lip(f) < €o, then both equation (1.4) and equation (1.5) have global center manifolds, and the
center manifold of equation (1.5) converges pathwise to that of equation (1.4).

The study of approximations of stochastic differential equations by using pathwise determin-
istic differential equations dates back to Wong and Zakai [41,42] in which they studied a scalar
stochastic differential equation

du= f(u,t)dt +ou,t)odW (1.6)
and its approximation
duy = f(up,t)dt +o(uy, ) dWy, (L.7)

where f and o are scalar functions, W is a 1-dimensional Brownian motion and W, is its ap-
proximation. In [41], they proved that under the conditions that %U(x, t) is continuous in (x, 1)

and f(x,t), o(x,1), %az(x, t) are continuous in ¢ and Lipschitz in x, if W, (¢, w) is a con-
tinuous piecewise linear approximation of the Brownian motion W (¢, w), then solution u, of
equation (1.7) converges in the mean square to solution « of equation (1.6). In another paper [42],
Wong and Zakai studied the piecewise smooth approximations W, (¢, w) of the 1-dimensional

Brownian motion W (¢, w) and proved that solution u, (¢, ) of equation (1.7) converges almost
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surely to solution u(¢, w) of equation (1.6) under additional assumptions on o (x, t), which are
o(x,t)>B>0(ro(x,t) <—8<0)and |%0| <Ko?. Generally, Wong—Zakai’s results for
piecewise smooth approximations of a Brownian motion with dimension d > 2 may not hold.
In [23], McShane gave a counter example to show that Wong—Zakai’s result does not hold for a
2-dimensional Brownian motion approximated by smooth functions.

Stroock and Varadhan [36] studied Wong—Zakai’s piecewise linear (polygonal) approxima-
tions for high-dimensional Brownian motions and proved that the stochastic process determined
by the corresponding approximated integral equation converges in law and used it to determine
the support of diffusion processes.

In [37,38], Sussmann extended Wong—Zakai’s results to high dimensional stochastic dif-
ferential equations driven by 1-dimensional noise and studied C' smooth approximations of
1-dimensional Brownian motion. Assuming that the drift term is locally Lipschitz and satisfies a
linear growth condition, the diffusion term is C! and its partial derivatives are locally Lipschitz
and are uniformly bounded, Sussmann proved that the solutions of the approximated equation
converge almost surely to the ones of the stochastic differential equation uniformly on compact
time intervals. He gave an example to show that when the noise is high dimensional, his result
does not hold. He also gave a counter example to show the assumption that the partial derivatives
of o are uniformly bounded cannot be replaced.

Ikeda, Nakao and Yamato [15] studied the Wong—Zakai approximations of high-dimensional
Brownian motion by incorporating the shift operator 6;w(-) = @ (¢t + -) into approximations.
They considered the piecewise smooth approximations Ws(f, w) of a d-dimensional Brown-
ian motion W (¢, w) which satisfy a set of conditions including at each partition point k3,
Ws(k$, w) = W (kS, w), and at its shift point # + k8, Ws(t + kS, w) = W (¢, Oxsw). They proved
thatif o € C,% (Rd, Rdxd ), then there exists a sequence 8, — 0 such that the solutions us, of

dus, = o (us,) dWs,
converge to solutions of
du=ocWw)dW + S xo(u)dt,
for each ¢ € [0, T'], where S is a d x d matrix depending on the choice of approximation Ws.
Later, Ikeda and Watanabe [ 14] continued to study the Wong—Zakai approximations of a high-
dimensional Brownian motion by incorporating the Wiener shift operator 6,0 (-) = w(t + ) —
w(t) into the piecewise smooth approximations. A major change is that at each partition point k3,
Ws(t + k6, w) = Ws(t, Oksw) + W (kS, ). They considered the stochastic differential equation
du= f(u)dt+ou)odW, (1.8)
and proved that if f € Cg (R and o € Ci(Rd, R4y, then solution ug of
dus = f(us) dt + o (us) dWs

converges to solution u of

du=f(u)dt+ow)dW + S *o(u)dt,
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in the mean square uniformly in [0, T] as § — 0. Here again S is a [ x / matrix depending on
the choice of approximation Ws. We note that this limit equation is not the original Stratonovich
stochastic differential equation (1.8).

Recently, Kelly and Melbourne [18] studied a class of smooth approximations given by

nt
1
W,(t) = ﬁ/voabs ds
0

where ¢, is a C? uniformly hyperbolic flow on a compact manifold and v is a smooth observable
function. They proved that W, (¢) and its second level W, (¢) converge weakly to a Brownian
motion W (¢) and its second level, respectively. They considered the stochastic differential equa-
tion

du= f(u)dt+ou)odW. (1.9)
Using the rough path theory, they showed that solutions of
du, = f(uy) dt +o(u,) dw,
converge weakly to solutions of the following stochastic differential equation
du= f(u)dt+ow)«dw, (1.10)

where o (1) *d W depends on the observable function v and the hyperbolic dynamical system ¢,
and the limit equation (1.10) is not the original Stratonovich equation (1.9).

The study of the Wong—Zakai approximations has also been extended to stochastic differential
equations driven by martingales and semimartingales, see for example, Nakao—Yamato [27],
Konecny [16], Protter [31], Nakao [26], and Kurtz—Protter [19,20]. Recently, there are works on
the Wong—Zakai approximations of solutions to reflecting stochastic differential equations, see,
Pettersson [29], Evans—Stroock [10], Aida—Sasaki [1], Zhang [43], Slominski [35], Ren—Wu [32]
and their references therein.

In current paper, we use the stationary process G(6;w) = (w(t 4+ 8) — w(t)) /S to approximate
the white noise of high dimension in the sense

t
lim sup /QS(OSw)ds—W(t,a)) =0,a.s.
8—0%1¢[0,7] ;

for each T' > 0. The approximation of W (¢, w) is
t

Ws(t, w) = / Gs(Os;w)ds.
0

An advantage of such approximations is that the corresponding approximated equation (1.3) gen-
erates a random dynamical system and the solutions of the approximated equation (1.3) converge
to the solutions of the original Stratonovich stochastic differential equation (1.1).
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We note that the approximation Ws(t, @) we study here is different from the ones studied by
Ikeda, Nakao and Yamato in [15] and Ikeda and Watanabe in [14] since at each partition point
ké, it does not satisfy neither Ws(kd, w) = W (k§, w) in [15] nor Ws(t + k8, w) = Ws(t, ksw) +
W (k$, w) in [14].

Instead of white noise, for each § > 0, our random driving force Gs(6;w) is a stationary
Gaussian process and for almost all sample path w € €2, it is an unbounded function in ¢ € R.
Furthermore, unlike Brownian motion W (¢, w), the approximation Ws(t, w) = fot Gs(6sw)ds has
a short term memory of range §. But this property is sufficient for us to establish our main result.

In [21], Lu and Wang studied equation (1.3) in 2-dimension driven by a 1-dimensional noise.
Assuming the equation with only drift term has a homoclinic orbit to a saddle fixed point, they
proved that if the diffusion term o is not completely tangent to the homoclinic orbit, then for
almost all sample pathes of the Brownian motion, the forced equation (1.3) admits a topological
horseshoe of infinitely many branches, thus is chaotic. They also applied the result to the ran-
domly forced Duffing equation and the pendulum equation. Later, their work was extended to the
system with a heterclinic loop in Shen-Lu—Zhang [34].

The theory of invariant manifolds is a fundamental tool for describing and understand-
ing nonlinear dynamical systems. They are widely used to investigate the qualitative behavior
of the flows, bifurcation characteristics and linearization, etc. The study of invariant man-
ifolds dates back to Hadamard [11], Lyapunov [22] and Perron [28]. Since then, there is
an extensive literature on invariant manifolds, included the stable, unstable, center, center-
stable and center-unstable manifolds for finite or infinite deterministic dynamical systems, see
for example, on center-manifolds, Pliss [30], Kelley [17], Hale [12], Henry [13], Carr [4],
Vanderbauwhede—Van Gils [39], Chow—Lu [6,7], Bates—Jones [3]. The works on invariant man-
ifolds for random dynamical systems can be founded, for example, in Wanner [40], Arnold [2],
Mohammed-Scheutzow [24], Schmalfuss [33], Duan-Lu—Schmalfuss [8,9], and Mohammed—
Zhang—Zhao [25]. In this paper, we show that when the noise is linear multiplicative, both
equations (1.1) and (1.3) have center manifolds, and the center manifold of the approximated
equation (1.3) converges to the center manifold of the original Stratonovich stochastic differen-
tial equation (1.1).

We organize this paper as follows. In section 2, we study equations (1.1) and (1.3) and es-
tablish the convergence of Wong—Zakai approximations. In section 3, we prove the existence of
center manifolds of equation (1.5) and equation (1.4) and that the center manifolds of equation
(1.5) converge pathwisely to ones of equation (1.4) as § — 0F.

2. Wong-Zakai approximations of SDEs
In this section, we study the Wong—Zakai approximations of stochastic differential equation
du= fw)dt+ou)odW, ugp=x, x eRR" 2.1
of the form
its = f(us) + o (us) GOw), us(0) =x, x eR", (22)
where G(6;w) is given by (1.2).

Throughout of this section, we assume that f and o are Lipschitz continuous functions, i.e.,
there is a constant L > 0 such that for all u, v € R”

Please cite this article in press as: J. Shen, K. Lu, Wong—Zakai approximations and center manifolds of stochastic
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|f ) = f)]+ o) —o@)| < Llu—vl. (2.3)

For the classical Wiener_space (22, F,P), from the law of logarithms, it follows that there
exists a 9;-invariant subset 2 of Q2 of full measure with sublinear growth:

fim 2Ol
s—>+oo |s|

Let

C, = sup lw(s)] ’
seQ ls]+1

where Q is the set of raEional numbers. Since for each s, w(s) : € — R! is measurable and
supremum is finite, C,, : Q2 — RT is a measurable function and

lo(s)| < Co(ls| +1)
for all s € R. Recall that 6;w(s) = w(s +t) — w(t), it then follows that
Cow <2C,([t]+1).

Thus

1Gs(O:w)| < KsCo(|t] + 1), (2.4)
where Kj := %(8 + 1). This estimate plays a key role in the proof of well-posedness of equa-

tion (2.2).
We now replace F by

F={QNA, AcF}.

The probability measure on  is the restriction of the Wiener measure to this new o -algebra,
which is also denoted by P. We will restrict our study in this probability space (2, F,P). For
simplicity, we denote this space again by (€2, F, P). Without loss of generality, we may assume
that F is complete. Let

E = VsSt./_':‘l, VieR
with
.7-"5 =o0(w(p)—w(g):s<p<qg<t)VNVs<t,

where o (w(p) —w(q) : s < p < g <t) is the smallest o-algebra generated by the random vari-
able w(p) — w(q) fors < p <g <t and NV is a null set of F. By Arnold [2, p. 91], we have

Fit =y F=FL, Fl_i=Nyes Fl = F!

and 9;1]:51 — ]-‘f_tﬁ for s <t.Hence (2, F, (6;)rer, (Fi)s<¢) is a filtered dynamical system.

Please cite this article in press as: J. Shen, K. Lu, Wong—Zakai approximations and center manifolds of stochastic
differential equations, J. Differential Equations (2017), http://dx.doi.org/10.1016/j.jde.2017.06.005




YJDEQ:8862

8 J. Shen, K. Lu/ J. Differential Equations eee (esee) eee—eee

We first note that condition (2.3) guarantees the existence and uniqueness of solutions of
stochastic differential equation (2.1). It together with (2.4) also give the existence and unique-
ness of solution of equation (2.2) and their properties, which we summarize in the following
proposition.

Proposition 2.1. Assume (2.3) holds. Then, for each § > 0 we have the following

(1) equation (2.2) has a unique solution us(t, w, x) defined for all 0 <t < +o00;
(i) us(t, w, x) is Lipschitz continuous in x;
(1) wug(t, -, x)is ]:6"'3 measurable;
@Gv) ugs(-,-,-) is B([0, +00)) @ F ® B(R™) measurable;
(v) us(t, w, x) generates a random dynamical system.

We point out that unlike the solutions of equation (2.1), the solution u;(¢, @, x) is not adapted
to the filtration ;. Since the proof of this proposition follows from the standard arguments, we
omit it.

Let

Gs(t,w) = (Gs(t,w1), Gs(t, w2), ..., Gs(t, wy)),

where foreach 1 <i </,

t
Gs(t, w;) :zfga(eswi)ds.
0

Then random differential equation (2.2) can be written as

its = f(us) + 0 (us)Gs(t, w), us(0) =x, x e R". (2.5)

For any T > 0, in what follows, we shall show that the solutions of equation (2.5) converge in
mean square to the solutions of equation (2.1) uniformly on [0, T] as § — 0.

For simplicity, in this section we let K denote a generic constant whose value may change
from line to line, but does not depend on §.

The following lemma is a summary of basic properties of the approximations of a Brownian
motion.

Lemma 2.1. For every 1 <i <1, we have

(1) Gs(t + k8, w;) = Gs(t, bgsw;) + Gs(kS, w;) Yk € N;
(2) G500, ;) =0;

. 6
3) E(f,jg‘“)‘S |G5(s,a)i)|ds) < K83 VkeN;
@4) foranyiy,....,ine{l,....1},if p1.p2, -, pm=1land p1 + p2+---+ pm <6,

(k+1)8 PL/ (k+1)8 P2 (k+1)8 Pm
E f (G, o )Ids / (Ga(s, wr)lds | - / 1Ga(s. i, )lds
ké ké ké
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< Kg%(p1+p2+"-+pm) Vk € N;

(5) for any iy, ...,im €{1,...,1l} and ny,no, ..., ny e N, if p1,p2, -+, pm > 1 and p1 +
P2+"'+Pm§6,

) Pl 1,8 P2 nd Pm
E /|Gg(s,w,»l>|ds /|Ga(s,wiz>|ds /|Ga<s,wim>|ds
0 0 0

1
< anlngz . .n’l;lmaz(m-l-[?z-i- +pm)

Proof. Itis obvious that Property (1) and (2) hold. Property (4) follows from the Holder inequal-
ity and Property (3). To show Property (3), we first use Property (1) and the invariance of the
probability measure P under 6; to have

(k+1)8 6 5 6
E / |Gs(s,wi)lds | =E /|G3(s,wi)|ds
ké 0

Then, by the Holder inequality, Fubini’s theorem, and the Brownian scaling property, we obtain

6 5 s

S
E /|Ga<s,wi)|ds 58—1/E|wi(s+a>—w,-(s>|6ds58—1/E|wi<5)|6ds=1<53,
0 0 0
where K = E|w,~(1)|6. Similarly, for each j =1,..., m, we have
[§)

ﬂjS
E /|G5(s,w,~j)|ds < Kn$8’,
0

which together with the Holder inequality yield that Property (5) holds. This completes the proof
of the lemma. O

From Lemma 2.1(1), we see that our approximated noise Gs(¢, w) is different from Ikeda and
Watanabe’s condition Gs(t + k8, w) = Gs(t, Orsw) + W (kS, w).
The next lemma is on the moments of the approximations.

Lemma 2.2. For each 1 <i <1, EGs(0, w))? = —38 + 0 forallo > 8, EG5(0,w)* < K (o +
8)2, and E[Gs(o, wj)Gs(8, wi)] = 2 for all o > 26.

Please cite this article in press as: J. Shen, K. Lu, Wong—Zakai approximations and center manifolds of stochastic
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Proof. We first compute

EGs(0, w;)*
1
= 3 ff {E[a)i(S +8)w;(§ +7r)] — E[w; (6 + s)w;(r)]
[0,0]1%[0,0]
— Elwi(s)w; (6 +1)] + Elw; (s)w; (r)]}drds
1
/f G+s)AN@G+r)drds — 2 // (6 +s)Ardrds
[OUJXOUJ [0,0]%[0,0]
// sA(5+r)drds+ // s Ardrds
[0 o]x[0,0] [0 a]x[0,0]
02(04+38) 203483 +3028—-308> —308>+20°+8>+350% o3
352 652 652 352
16 +
=—= o.
3

To get the estimate of Gs(o, w;), we rewrite Gs(o, w;) as

8 o+6
Gs(o,w;) = —/ a)l(s(S)dS + f (1)18(5) ds.
0 o

By the Holder inequality, Fubini’s theorem and the Brownian scaling property, we obtain

8 4 o+48 4
EGs(o,w)* <KE /wl(s(s)ds +KE / w’;s)ds
0 o

) ' 4 o+8 ' 4
5K53/E(—“’18(S)> ds + K& f E(—‘”’é”) ds
0

o

<K8*+K(o+8)><K(o+98)>.

Since a Brownian motion has independent increments, for o > 2§ we have that

/ GOsw)ds and f Gbsw) ds

are independent. Thus,

E[Gs(0, wi)Gs(8, wi)] = E[Gs(25, w))G5(8, wi)].

Please cite this article in press as: J. Shen, K. Lu, Wong—Zakai approximations and center manifolds of stochastic
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A similar calculation to EGjs(o, w;)? yields E[Gs(268, w;i)Gs(6, w;i)] = %. The proof of
Lemma 2.2 is complete. O

We write equation (2.5) and equation (2.1) in terms of coordinates and their integral forms.
We have for equation (2.5)

ug(t w) — x* —/f (us(s, a)))ds—}—Z/ /(ug(s w))Gg(s wj)ds, (2.6)

j=1y

and for equation (2.1) using Ito integral

ul (t,w) —x' = /f (u(s, a)))ds+Z/ U (us, w))dw;
1
o @7

n t

1 S
+§Z /(aajaaolj)(u(s,a)))ds Vi=1,---,n,
j=la=1}

where 0,0 =

Theorem 2.1. Assume that f' € C}(R") and o'/ € C}(R") foralli=1,--- ,nand j=1,--- 1.
For every T > 0 we have

lim E [ sup |us(t, w) — u(t,a))|2:| =0.
80 | 1€[0,T]

The proof of this theorem consists of four main parts on estimates of difference of solutions
of equations (2.6) and (2.7) over various time intervals. We formulate them in the following four
lemmas.

As in [14], we choose an integer function 7 : (0, 1] — N that satisfies n(8)*8 | 0 and n(8) 1
+ooasd | 0.Letd:=n(8)s. Forany s € Rt,if k§ <5 < (k+ 1), we define [s7(8) := (k+ 1)8
and |s| (5) = kS, respectively. Set m(s) := |5 (S) / §. We divide the interval [0, +00) into equal
subintervals of length § by using partition points:

O=fy<ti<Bh<--<fp<---,
where 7 = k8.

Foreachi =1,...,n, using (2.6) and (2.7), we write the difference ug(t, w) — ui(t, w) as a
sum of four terms, i.e.,

ub(t, ) —u' (t, 0) = A(t) + T1(0, 8) + T1(3, ] (8)) + T1([] (), 1),

where
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t t
At) = / fl(us(s, w))ds — / Fiu(s, w))ds,
0 0

[1(t1, 2) :=T1(t1, 12) + T2 (21, 12) + [3(21, 12), (2.8)
[
M) i= Y [ ot as(s, 0)Gis(s. 0))ds,
j=ltl
;-
Mot i== Y [ o uts. odu;
jzlzl
1 r R
Ma(r1,1) == —> ZIZI / (0% 8407 (u(s, ®))ds
J=lo= n

for0 <t <n.
First, for A(?), it is clear that we have for s; € [0, T']

Lemma 2.3. There is a constant K > 0 such that for each s1 € [0, T']

S1
E| sup |A()] 5K/E|u5(s,w)—u(s,a))|2ds.
t€(0,s1] o

Next, we estimate T1(|7](8), t) and have the following lemma.

Lemma 2.4. As § — 07, we have

te[0,T]

E{ sup |H(m<5),r>|2} =o(1).

Proof. Recall from (2.8) that

TL(L£](5), 1) = T11 (Lt 1 (8), 1) + Mo (2] (8), 1) + TT3(L] (8), ).

For I1;(|7](8), 1), using the Holder inequality, we have

E|: sup IHl(LIJ(S)J)|2:|

te[0,T]
2
I t
<K) E sup /|G§(S,wj)|ds
j=1 te[0,T] -
13)
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1
4\ 2
I
<KY | E| sup / 1G5 (s, w;)|ds (2.9)
i tel[0,T]
J=! 116)
_ 1
; k+1)5 412
=K E max Gs(s, w))|ds
; o max / |Gis(s, ;)]
- k8

m(T) (k+1)
S £| [ 1Gss0pids

ko

IA
>
.MN

~
I
MR

By Lemma 2.1 (1) and (5) and the invariance of probability measure P, we have that
(k+1)§
) 4
E( / 1Gs (s, a)j)lds)
k8

8

- E(/ 1Gs(s +k5,w,~)|ds)4

;
_ (/|G5(s 95w1)|ds)4
0

5
- (/|G5(s a)J)|ds) < Kn(8)*s2.
0
Thus, from (2.9), we have
E[ sup |n1<m<5>,r>|2}
t€[0,T]
< K[m(T)n(8)*s%]> (2.10)

4922
<K ["r(l‘z;)i T = Kn3(5)8)% — 0as 8 — 0+

For I»([7](8), 1), we split it into two parts.

1 1
Ma([t](8), ) ==Y Tau([t]8). 1) = Y M ([t](5). 1),

Jj=1 j=1

Please cite this article in press as: J. Shen, K. Lu, Wong—Zakai approximations and center manifolds of stochastic
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where

Mo (1£](8), 1) := 0 (u([t](8), w)[w; (1) — w; (1] (8))],

t
Maa(Lr)@), 1) = / [0 uts, @) = o (5] G), @) | dw; (s).
HIO)

For I; (1] (8), 1), we obtain

E|: sup |H21<m(5),r>|2}
te[0,7T]

<KE[ sup |o;(t) —w;([t]()I*]
te(0,7T]

_ 1

2
<K|[E max sup |w;(t +k8) — wj(k5)|4:|
0<k<m(T) <

L 0<r<$
['m(r) 2
<K |3 Eloj(k+18) — w;k8)*
k=0

l ~
<K [m(T)SZ]2 <K3? > 0ass— 0",

where the third inequality follows from martingale inequality and the fourth one follows from
w;j((k 4+ 1)8) — w;(k§) has the same distribution as w; () and the Brownian scaling property.
For 2 (|2](8), ) we get that

E[ sup Isz(LtJ(S),t)IZ}

te[0,7T]

~ 2
ké+t

<E{ sup sup /[ofj(u(s,co))—ai/(u(LSJ(S),w))]dWJ(S)
0<k<m(T) ;[0,5] i3

m(T) k8+1 2
< Z E { sup / [0 (u(s, w)) — o (u(ls] (), w))]dw;(s)
k=0 1e[0,8] | 7.
k8
m(T) (k+1)8 2
<K) E / [0 (u(s, ) — 0 (u(ls](8), @) ldw; (s)
k=0 ks

Please cite this article in press as: J. Shen, K. Lu, Wong—Zakai approximations and center manifolds of stochastic
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Here the martingale inequality is used to get the last estimate. Then, using the It6 isometry, we
obtain

m(T) (k+1)8 2
> E [0 (u(s, ) — o (u(Ls](8), @) Idw,(s)
k=0 <
ké
m(T) (k+1)s 5
- E f (o s, 0) = 0T w(ls) B, ) | ds
k=0 IS

m(T) (k+1)8

:];~

ké

E[o wts. @) — 0% w(ls @), )] ds.

Since f € C,l and o € CZ, using (2.7) and the Itd isometry, we have that for t > s

¢ 2

1 t
Elu'(t,0) —u' (s, w)|* < KE /f"(u(r, w)dr| +KE Z/aij(u(r, w))dw;(r)
j=1

2

N

2

I n !
+K %ZZ / (0% 340 (u(r, w))dr

j=la=l1%
<KW(t—$)2+@—s) Vi=1,---,n.
Hence,
m(T) (k+1)8

> E[eTwe o) - o us)®), w))]zds
k=045

<Km(T)8*G+1)< K383 +1)—0ass— 0T,

Therefore, we have

E[ sup Isz(LtJ(S),t)IZ] =o(l) as §—0".
te[0,T]

Since o has bounded derivatives, we have

@2.11)

te(0,7T]

E[ sup |n3(m(5),t)|2] < K32 2.12)

Combining (2.8), (2.10) and (2.11)—(2.12), we have
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E |: sup |1'I(LtJ((§), t)|{| =o(l)asé — 0.
1€[0,T]

This completes the proof of the lemma. 0O
Since |T1(0, 8)|? < sup, (o, 71 ITI(12](8), )], we have
Lemma 2.5. The following holds

E [|1‘[(0, S)|2] —o(1) as§ — 0%

Finally, we estimate T1(8, [7](8)). Recall from (2.8) that

(3, L£](8) =1 (3, L£](5)) + a8, [£](8)) + M58, ] (3)).

where
FERIG)
Mm@, L) =) / o (us(s, 0))Gs(s, w))ds,
Jj=1 5
; ®
Mo, [1](8) == / o'l (u(s, w)dwj,
j=1 %
)
Ll 0!
M5(3, [7)(5)) :=—§ZZ f (0% 3,0 ) (u(s, w))ds.
j=la=1 %

We first rewrite I1; (8, |£](5)) and use integration by parts to have

I m(—1 (k+1)8
MG, N =->_ > / o' (us(s, 0)d(Gs ((k + 1)8, w)) — Gs(s, @)

i=1 k=1 ~
J k3

l ) n
= TG, L)+ YY) M, [t1(G)),
j=1

j=la=1

where

m(t)—1

M@ @)= Y. 0" wskd, o) (Gs((k+ D3 0)) = Gs (6, 0))),
k=1

Please cite this article in press as: J. Shen, K. Lu, Wong—Zakai approximations and center manifolds of stochastic
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m(t)—1 (k+1)8

M@, 1))=Y / Bac™ (s (s, ) (£ (s (5. )

=1 ~
k ké

l
+ Y up s (5. ) G (s, 09) ) (G (k + D3, ;) = Gis(s, ) ) ds.

p=1
Note that
LTJ(S) m(t)—1
oV (us(ls)(B) = 8, ) dwj(s) = > oV (us(ks -3, a)))(a)j((k + 18— w,-(ké)).
~ k=1
)

We then write Iy (3 , L2 (S)) as a sum of three parts.

Lt1(5)
6, 11](8) = f o us(Ls](8) — 8, w)) dwj(s) + 11 3, 1] (8)) + I}, (5, L£1(5)),

o

where

M1, [1](5))
m()—1
=y (aij(u(;(kg, ) — o (us (k& — 5, a)))) (Ga((k + 18, w;) — Gs(kS, wj)),
k=1
116, L11(8))
m(t)—1
= Z o (ug(k§ — 8, a)))(Gg((k + 18, w)) — Gs(ké, ;) — (wj ((k + 1)§) — wj(kS))).
k=1

Since G5(t, ;) has no independent increments, we split IT}, (8, 7](8)) into

16, 111(8) = 112G, [1](8)) + 113G, 1] (),

where
) y m(t)—1 - . .
MG, 116 = Y. o' (us (k8 — 8, ) A 5 ..
k=1 '
3 ~ m(t)—1 3 . - =~
MG, 1) = 37 0% s kS — 8,00 Gtk + D5 0)) = Gk + DI —5,))).
k=1
A;{,s,s = Gs((k+1)§ =8, ) — G5 (k§, w)) — (w; ((k + 1)8) — @, (k3)).

Please cite this article in press as: J. Shen, K. Lu, Wong—Zakai approximations and center manifolds of stochastic
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Then Iy (5, L] (S)) can be rewritten as

1t](5)
M, [1](8) = / o (us([s](8) — 8, w))dw;(s) + 1115, [£](5)) + M112(8, [£](5))
5
+1113(3, 1] (8)).

Hence, we can write 1'[(5, Lz] (S)) as

l

NG @) = 2 (6, 1)@ + M6, @) + M6, () + Mz B, L) 3)

j=1

+ ZT{’“(S, L] (5))), (2.13)
a=1
where

L1)(8)
G0 = [ (07 s(1s16) ~ 5,00 — 0 uts. 00) du 5.

5
| [£1 ()
TG, 111@)) := 12 (3, LtJ(S))—E / (0% 8,0 ) (u(s, @))ds.
5

Next, we estimate each term on the right hand of equation (2.13), respectively. We first summa-
rize them as follows.

Lemma 2.6. We have the following estimates as § — 0

51

E[ sup |7/, LIJ(S))|2]5K/E|u3(s,a))—u(s,a))|2ds+0(l), (2.14)
-1€[0,s1]
0
E[ sup 1M, 1t1G)P| =0, (2.15)
-tel0,T] -
E[ sup M@, 1G)PR] = o0(D), 2.16)
-1€[0,T] -
E[ sup 113G, t1G)P| =0, 2.17)
-tel0,T] -
- —_ Sl
E| sup |T2j’“(<§, L11(3)? 5K/E|u3(s,a))—u(s,a))|2ds+0(l). (2.18)
-1€[0,s1] -
0
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Proof. We prove the lemma in the order of list above.

(I) Estimate of T/ (5, |1](5))
By using the martingale inequality and the Itd isometry, we obtain

Ls1] ()
E[ sup |77 (5, m(é))ﬂ}g K / E\ug(LsJ(S)—a,w)—u(s,w)yzds
tel0,s1]

51
K/E|u5(s,a))—u(s,a))|2ds
0

IA

Ls11(3)
+K f Elus(|s] () — 8, ) — us(s, )|*ds.

o

From (2.6), we have

R[]
(s, @) —uf(Ls]B) =8, )| < K | §+5+) / |Gs(r, wa)ldr

=1 1G)-s

Then, changing variable r to r + |5 (S) — 4 in the integral, and using Lemma 2.1 (1) and (5) and
the 6;-invariance of P, we have

E|: sup |75, m(S))F} < K/E|u5(s,w)—u(s,w)|2ds

1€[0,51] J
T I [516)
. 5 ) 2
+K/[(8+8) +ZE( / |Ga(r,wd)|dr) ]ds
H =1 Ls1(8)—8

IA

S1
K/E|u5(s,w) — u(s, )| ’ds + K[ +8)* + (n(8) + 1)?]
0

S

= K/E|u5(s,w)—u(s,a))|2ds+0(l).
0

This completes the proof of property (2.14).
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(IT) Estimate of 11 (3, [#](3))
Recall that

113, 1£](8))
mt)—l .. ..

=Y (o’/(ug(kg,a)))—G’J(ug(kS—S,w)))(Ga((k—i-1)S,a)j)—G(g(kg,a)j)).
k=1

Using the Cauchy inequality, we have

m(T)—1

E{ 3 (a"i (s (kB, ) — o7 (us (k8 — 5, a))))2
k=1

IA

E|: sup |11 (3, UJ(S))|2:|

t€[0,T]

m(T)—1

< 3 (Gs((k+1)S,w,~)—65(k§,w‘,~))2}
k=1

m(T)—1 n

< K{m(T) S S EubkS, w) — uh k8 — 8, w)|*
k=1 i=1
m(T)—1 a3
xm(T) Y E(Gs(tk+1d,0)) = GskF, ) } .
k=1
From (2.6), we get
;K
uh05.0) 5~ s. ) <K [0+ Y [ 1GsGs.wnlds
d=1

k§—5

Thus, by using Lemma 2.1(1) and the 6;-invariance of P, we have that

m(T)—1 i kb 4
E| sup |TIi11(, 1118 sK{m(T)[ S +) E f|c}' (s, wq)lds }
[’G[O’T] v } 1; ( d=1 ( ' ‘ ))

k§—8
|

2

x m(T)zEGg(S,a)j)4}

Then, changing variable s to s + k5 — & and using Lemma 2.1 (1) and (5) and the 6;-invariance
of P, we have that

KIm(T)*(6* + %) x m(T)*EG (3, wj)‘*]%

IA

E|: sup [Ty11 (3, LtJ(S))Iz}

t€l0,T]

K[m(T)2(8* + 8Hm(T)252]2 < Kn(8)~' = 0as s — 07,

IA
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where in the second inequality Lemma 2.2 is used, and the fact m(T)S <Tand$ = n(8)8 are
also used. This completes the proof of property (2.15).

(I1I) Estimate of I1;12(5, [7](5))

Note that
m(r)—1 .
1208, [1](9) = Z o' (us (k6 =3, w))A}’( 5.5
k=1

where Ai’g’a = Gs((k+ 15 =8, 0)) — Gs(k§, 0)) — (0 ((k + 1)) — ; (k3)).

In order to estimate H]]z(g , L] (3)), we set

n
Ma(@) =) 0" (us(ké =8, 0)A; ; .
k=1
Put 7y = }-én-s—l)é' Since o/ (us(ké — 8, w)) is ]—'(])‘g-measurable by Proposition 2.1 (iii) and

A]i 5s is fgﬂ)s-measurable, M, (w) is a J,-martingale. In fact, we have

E[My41(0)|Tn] = My (@) + E[0V (us((n + 1)§ -, a)))A,{H,S’S

| Tn]

= M, (@) 4+ 07 (us((n + 1)8 — 8, ) E[A’ _ |7,]

n+1,8,8
= My(@) + 0" s ((n+ D3 =8, 0)EIA] | < 1= My ().
Hence, by the martingale inequality we obtain
E[ sup |26, LtJ(S))IZ] < KE[IMy(r)-1 )]
1€[0,T]
mD-1 y . 2, . 0N\2
=K Z E [(011 (us (ks — S,a)))) (AIJ( 5 5) ] (2.19)
k=1
m(T)—1
IR
=K kX: E|Ak,5,5| ’
=1

where the equality follows from the fact for each 1 <kj <ky <m(T) — 1,

Elo" (us(kié -, “)))Azl,s,s x 0" (us(kad =3, w))Aljcz,S,S]

— E[0" (us (k8 — 6, a)))Ail,g’S x o (ug (kyd — 8, a)))]E[A']iz’S’a] —0.

For each 1 < j <[, by an elementary calculation, we have that
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ké+8 05 (k+1)8 Y
i wj —wj(s wj(s) —w;j((k+
na :/ j (k3) J()ds+ / j(s) —w;i(( ))ds.
k,8,8 S S
k3 (k+1)3—8
Hence,
ioo2
E|Ak,£§,5| <KS§,

which together with (2.19) implies that
E [ sup |IT112(3, 1] (S))d <Km(T)§ <Kn(@®) ' —>0ass— 0%,
t€[0,T]

This completes the proof of property (2.16).
(IV) Estimate of IT;,3(3, |7](5))

Since
B _ m(t)—1 N _ ~ ~
M@ @)= Y2 o' sk —8,0)(Ga(tk+ D3, 0)) = Gs(k + DE = 58,0)),
k=1

we consider

n
Nu(@) =0 (us(kd — 8, 0))[Gs((k + 15, ;) — G5((k + 1)§ — 8, ;)]
k=1
and set C,, 1= ]-"é"H)SH. Since o (us(ké — 8, w)) is F(])‘S-measurable by Proposition 2.1 (iii)

and Gs((k + 1)4, w;) — Gs((k+ 1) —38, wj) is f((:::;g:ga-measurable, we have

E[Nyt1(@)|Kn]
= Nu(@) + E{o" (us((n + 1)8 — 8, 0))[Gs((n + 2)8, wj) — G5((n +2)5 — 8, 01|}
= Nu(@) + 67 (us((n + 1)8 — 8, w)) E[Gs((n +2)8, 0j) — G5((n +2)5 — 8, )| K]
= Ny(w) + 0 (us((n +1)5 — 8, 0) E[G5((n +2)8, w;) — Gs((n +2)6 — 8, w))]
= N, (w).

Here we use the fact n(8) > 2 for small §. Thus, N,(w) is a K, martingale. By the martingale
inequality, Lemma 2.1 (1) and (5), and the 6;-invariance of P, we have that

A

KE[INn(r)-1@)]
tel0,T]

E|: sup |IT113(8, UJ(S))|{|

m(T)—1

=K ) E{[Uij(ua(kg —5.w)P
k=1
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x[Gs((k+ )8, w;) — Gs((k + 1)8 —3,wj)]2}

3 2
m(T)—1 (k+1)8

<K )Y E / |Gs(s, w))|ds
k=1 k+1)8—8

< Km(T)§ <Kn(®) ' > 0ass—07.

Here the last equality follows from the fact foreach 1 <k; <k, <m(T) — 1,
E{o"f(ua(klé— 8, o)[Gs((ki + 18, )) — Gs((k1 +1)8 — 8, )]

xo (us(kad — 8, 0)[Gs((ky + 18, 0)) — Gs((ky + 1)5 =8, wj)]}

—E {a"f (us (k18 — 8, w))[Gs (k1 + 18, wj) — G (k1 + 18 — 8, wj)] x 0" (us(kad — 6, a)))}
X E[Gs((ky +1)8, wj) — Gs((ka + 1)8 — 8, ;)] = 0.

This completes the proof of property (2.17).

(V) Estimate of YJ“ (8, 1] (5))
We first recall that

114
o - - - 1 ) .
T4, [11(8)) = M2 (8, LtJ(é))—E / (0™ 3,0")(u(s, w))ds,
5
where

m)—1 k+1)8
MG G) = Y f Bac™ (s (s, ) (£ (s (5, )
k=1 <
ké
l
+ Y up s (5. 0) G (s, 0p) ) (G ((k + D, ;) = Gis(s, ) ) ds.
p=1

To estimate T{ * (S , 2] (S)), we rewrite it as

1
Y346, H18) =) 157G 111 B) + Y37 (5. [11(8)) + 133" (5. L11(8)) + T3, (5. 111 5)),
p=1

where
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' m(t)—1 (k-H)g
GG = Y [ (a0 - @ etk 0))Git. o

=1 ~
k ké

x(Gs(tk + D3, 0)) = Gy (s, ) )ds,

. m(t)—1 (k+1)s
N RIESS / (F*8a0 ") (s (s, ) (G5 ((k + D, @) = Gs(s, ) )ds,

k=1 P

. I m@)—1 (k+1)8
TG, @) =) Y f (o“ﬂaao"fd(ua(k&w)){Gs(s,w,e)

p=1 k=1 %

i 1
x(G,g((k + 18, w;) — Gs(s. w,»)) — Eaﬂj}ds,

. m(t)—1 (k+1)8
LG =5 [ (0 0wskd o) - @ et ))ds,
=G

where 84, is Kronecker delta. As for szia (S , L] (S)), we have

/ m(T)—1 (k+1)8
E[ sup |15;%(, LtJ(S))IZ}S KZE{ > (s, ) — u§ (k8 0)[|G5(s, wp)lds
tel0,T] i=1 k=1 -
ko
(k+1)8 5
x f |G5(s,wj)|ds} ) (2.20)
1%
Recall (2.6). We have
;o G+DS
.0~k o <K [543 [ (G waiar
d=1 ~
kd

Then by (2.20) and Lemma 2.1(5) we get that

m(T)—1 / (k+1)8

E| sup [T5°G. [JG)P | < KE{ I EEDD / |G (r, wa)ldr
t€0.7] k=1 d=1 =
ké
(k+1)8 (k+1)8 5
x f |Gs (s, wg)|ds / |Gs(s, w))|ds
ks ké
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- 2
m(T)—1 / (k+1)8
< Km(T)E{ RS / |Gs(r, q)|dr
k=1 d=1 P
(k+1)8 2 (k+1)5 2
X / |Gs(s, wp)lds / |Gs(s, ))lds }
k8 k8

< Km(T)*[8%*n(8)*8 + n(8)%8%] < Kn(8)*s > 0as s — 0.

For Y45 (5, 111 (3)), by Lemma 2.1(4) we find

m(T)—1 (k+1)8 2
E| sup [T35"G.[tJG)I* | < KEE| Y |Gs(s, w))ds
1€[0,T] =l g
ké
- 2
m(T)—1 (k+1)8
< K&8m(T) Z E f |Gs(s, w))|ds
k=1 ks

K& m(T)*n(8)*8 < Kn(8)*s — 0as § — 0.

IA

For 14" (3, [¢](8)) we have that

S
E{ sup |15, 3, LtJ(S))Iz} <K / E|(0% 350" (us (5] (8), w)) — (0% 80 ) (u(s, ))|*ds
tel0,s1]
0

< K/E|u(s,a))—u,g(LsJ(S),a))|2ds
0
S1
K/E|u(s,a))—u5(s,a))|2ds
0

IA

51

+K / Elus(s, w) — us(Ls](3), w)|*ds.
0

Using (2.6), Lemma 2.1 (1) and (5), and the 6;-invariance of P, we have for each 1 <i <n

- 2
RO

Elui(s, ) —ul(ls](8), w)* <KE S+§ /|G5(s,wd)|ds < K (8% +n(8)%s).
d=1 ~
s](5)
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Hence, we have

51
E{ sup |15, G, LtJ(S))IZ} < K/Ew(s,w)—us(s,wnzds

t€l0,s1] 0
+K (8% +n(8)%5).

Finally we will prove E [sup,e[oﬂ T4 3, 1t (S))|2] —o(1) as § — 0. We write

1 I
Y376, 11 @B) ==Y Y16 ]G + Y TG, [11() + Y356, L] (5)),

p=1 p=1
where
. m()—1 k8+3
TG G = Y f (GaﬁBaa”)(ua(k(S,a))){Gg(s,a)ﬁ)
k=1 ~
kS

3 1
X(G(;((k + 18, ;) — Gs (s, w,-)) — Eaﬁj}ds,

m(t)—1 (k+1)8

> / (o“ﬂaaol'-’xua(k&w)){G'a<s,w,s)

k=1

TG, 11)G5)) :

k5+8

i .
X(G(s((k-i- 18, w;) — G(s(s,a)j)> n (88(8 5 - E)aﬁj}ds,
m(6)—1

THG6. 16D = =28 x Y (@0 (us(k5, ).
k=1

For T3 3, 111 (3)), we find

E|: sup Y257, m@nz}
te[0,T]

m(T)—1 k6+3 )
sKE[ > /|Gg(S,wﬁ)|X|G5((k+1)g,a)j)—G,s(S,a)j)|ds:| + Km(T)%82
k=1 ~
ké

)
2
< Km(T)zE[/ 1Gs(s, wp)||Gs(8, wj) — Gs(s, a)j)|ds] + Km(T)*8>.
0

‘We continue to estimate the last term above.
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§
2
Km(T)zE[f |Gs(s, 0p)||1Gs (8, wj) — Gg(s,wj)|ds] + Km(T)*8>
0

S
2
< Km(T)z{E[/ 1Gs(s, 0p)||Gs(8, w;) — Gs(s, a)j)|ds:|

)
2
—l—E[/ 1Gs(s, wp)||Gs (8, wj) — Gg(é,wj)|ds:| }+Km(T)252
0

8 2 g 2
5Km(T)Z{E|:</|Gg(s,w,3)|ds> (/IGg(s,wj)|ds> }
0 0

)
2
+E|:(/|Gg(s,w,3)|ds> <|G5(<§,a)j)|2+|Gg(5,wj)|2)“+Km(T)282
0
< Km(T)2(282 + 55) + Km(T)26% = 0as § — 0.

Here in the second inequality we use the 6;-invariance of P and in the last one we use
Lemma 2.1 (4), the Holder inequality, and Lemma 2.2.

For T2]3; 6, 1£1(5)), similarly to 1112(8, [7](8)), foreach B =1, --- , [ we consider

kDS

Ry:=) / (0 050"7) (us (K3, w)){Ga(S,wﬂ)[Ga((k + 15, w)) = Gs(s, ;)]

k=1 5hs

FIL8G =8 — 215y L

—8(6 — — =183, tds.

6 2 Bij

We note that (6%f 3,0 (us kS, w)) is ]-'(])‘g""s-measurable by Proposition 2.1 (iii) and
Gs(s, 0p)[Gs((k+ 18, ) — Gs(s, )]

is FEFDITS 1 easurable for any kS+8<s< (k + l)g. Then we have

ké+8
(n+2)8
E(Ry+11Ky) =Ry + E f (0P 3y ) (us((n + 1)8, w))[Ga(S, wg)
(n+1)8+8

; 1 I
% (Gs((n+2)8.0) = Gss. ) + (36 =)' - 5)5ﬂj}ds

K|
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(n+2)8
=Rn+(a“ﬂaao"f)<ua<(n+1>S,w)>E{ / [Ga(&wﬂ)

(n+1)8+38

. I 1
x(Gg((n +2)5, w;) — Gs(s, wj)) + <88(8 . E)aﬂj]ds

K }
By the property of conditional expectation, we further get

(n42)8
E(Rn+l|’Cn)=Rn‘i‘(Uaﬁaagij)(ua((l’l-F1)5760)){E f [Ga(s,wﬁ)

(n+1)8+8
. 1 - 1
x[Gs((n+2)8, ;) — Gs(s, a)j)]]ds - 5(3 — &) dp; + 85 5,3j}.
Clearly, as 8 # j, E(Ry+11Kn) = R,. As B = j, set

(n+2)8
© = f Gg(s,wj)(Gg((n+2)(§,wj)—G(g(s,a)j))ds.

(n+1)5+8
Changing variable s to s + (n + 1)§ in the integration and using Lemma 2.1(1) we have

8

0= / G505, 011150) (G5B 011501 — G (5. 81y 1)50)) ).
8

Integrating by parts, we further obtain
0= —(Ga(s, Ors1)50)) — G5 (3, 9(n+l)gw,))c;5(a, Ors )5
1 3 2 2
+ 2 (G5(5’ 9(n+1)5“)j) —G5(3, 9(n+1)5“’j) )
Thus, using the 6;-invariance of P and Lemma 2.2, we have
- 1 -
EO = —E([Gs(5,0)) = Gs(5,0)1GsB, )} + S[EGs (6, 0))° = EG5(3,0))’]
= 15 + ! (6 —19)
6 2 ’

Hence, we have that E (R, 11]/C,;) = R, for 8 = j. So, R, is a ,,-martingale. Consequently, for
each =1, ---,1l, by the martingale inequality we have
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o w —
E| sup [Y535, [1](5))]
te[0,T]

< KE[IRn()-1 ()]

m(T)—1 (k+1)§
=K Y E{(U“ﬁaaaij)z(ug(kg,w)){ / [Ga(s,wﬁ)
k=1 s
ké+6

. 1 - 1 2
x (Go(k+ 15,07 = Gs(s,0) + (286 -8 - 5)5ﬁj]ds} }

on

-8

<K(m(T)— I)E{ [Gg(s, wp) x (G5(8 = 8,0)) = Gss, wj))}ds

S

+(18 LG )4 ’

6 2 prf

Here the first equality follows from the fact that for each 1 <k; <k, <m(T) — 1,
E [(a""3 800 ) (s (k1 8, )T (k1) x (678,07 (us (kad, )T’ (kz)]

=E [(o‘xﬂ 30 ) (us (k1 8, 0))TF (y) x (6% g0 ) (w5 (K2, w))} x E[T% (k)] =0

where
(k+1)8
Bi : 3 Los .
FS (k) = Ga(s,a)ﬁ) (Gg((k+l)5,a)j)—G5(S,a)j))+[65(5—8) - 5]5/3/' dS,
k548

for 1 <k <m(T) — 1. Hence,

2 /= 2

5—8 s

— S—
E[ sup RESIER m(é)ﬂs Km(T)E /|Ga(s,wﬂ>|ds f|Gs(s,wj)|ds
tel0,T]
0 0

+Km(T)8> + Km(T)5>

IA

Km(T)n(8)*8* + Km(T)8> + Km(T)s*

A

Kn@©)38+n@)'6+8) —0ass— 0",

For Y433 (5, 171(3)), we obtain
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E [ sup Y3, L1 (S))d <K8m(T)> <Kn(®)>—0ass—0t.
1€[0,T]

Summarizing above gives (2.18). O
Combining estimates (2.14)—(2.18), we have

Lemma 2.7. As § — 0™,

5]
E|: sup |H(S, |_tj((§))|2:| 5K/E|u5(s,a))—u(s,a))Izds+0(l).
tel0,s1]
0

Proof of Theorem 2.1. Using Lemma 2.3, Lemma 2.4, Lemma 2.5, and Lemma 2.7, we have
that as § — 0T,

S1
E[ sup |us(t, w) —u(t,a))|21| < K/Elug(s,a)) —u(s, w)|?ds + o(1).
tel0,s1]
0

Then, Theorem 2.1 follows from Gronwall’s inequality. O

As a consequence of this theorem, the distribution of us(-, w) converges to the distribution of
u(-,w)in Cr as § — 0.

3. Wong-Zakai approximations and center manifolds

In this section, we consider the approximations of center manifolds of stochastic differential
equation

du= (Au+ f(u)dt +uodW, @3.1)

where A is n x n matrix with zero real parts of eigenvalues, f is globally Lipschitz continuous
with f(0) =0, and Gs(6,w) and W (¢, ) are defined in section 1 for / = 1. We prove that the
center manifold of the Wong—Zakai approximation

s = Aus + f(us) + usGs(6;w) (3.2

converges to the center manifold of equation (3.1).
Before we prove our main result in this section, we first introduce several basic lemmas. The
first lemma shows that fot Gs(0sw)ds is an approximation of W (¢, w).

Lemma 3.1. For each Ty, T>» € R and T\ < T, and each continuous path w(t), we have
t
lim  sup /gg(Hsa))ds —w(®)+w(T))|=0. (3.3)

8—>0% e[y, Ty
T
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Proof. First, for each 77, 7> € R and 7T < T,, we note that

Ti+8 t+6

t
/Q(S(Qsa))ds =| - / + / wES) ds, VtelT,T,].
T] T1 t

Then, we have

p Ti+8 t+38
/ga(esa))ds—w(t)+a)(Tl) < fwds n /M“-
T T t

Thus, by using that @ is uniformly continuous on [T}, 7> + §], we complete the proof of
Lemma3.1. O

Next, we consider a linear stochastic differential equation:

dz = —zdt +dW. (3.4)

A solution of this equation is called an Ornstein—Uhlenbeck process. It follows from [8,
Lemma 2.1] that

Lemma 3.2.

(1) There exists a {6;},cr-invariant set Q1 € B(Co(R,R)) of full measure with sublinear

growth:
t
im 2O _oveeaq.
t—>to00 |t|
(2) For w € 21 the random variable
0
Z(w) = — / e w(r)dr
—0o0

exists and generates a unique stationary solution of (3.4) given by

0 0
QI xR>3(w,1) = z(6;0) = — / e'0w@)dr =— / e'w(r+t)dr +w(t).
—00 —00

The mapping t — z(0;w) is continuous.
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(3) In particular, on Q21 we have

20) _

t—+o00 ]

’

t

1
lim —/z(@rw)drzo.

t—+o0
0

Note that from the arguments of [8, Lemma 2.1], one can have 1 C Q, where Q is given in
section 2.

For each § > 0, replace the white noise in equation (3.4) with the Gaussian one Gs(6;w). We
get that the following random differential equation

25 = —25 + G5 (6, ). (3.5)
Let z(t, w, x) and z5(f, w, x) denote the solutions of equations (3.4) and (3.5) through the point
x at time ¢t = 0, respectively.

The following lemma shows that zs(¢, @, x) converges to z(t, ®, x).

Lemma 3.3. Let z(t, w, x) and z5(t, w, x) be given as above. Then for any Ty < T,, we have
lim ||z5(, @, x) —z(-, @, X)lcqry. 1)) = 0.
§—0t

Here C([T1, T»]) is the usual space of continuous functions defined on [T, T>].

Proof. We first chose a positive constant 7' such that [T, T5] C [T, T]. Note that z(f, ®, x)
and z5(f, w, x) satisfy the following, respectively

t
z(t,w,x) =x — / z(s, w, x)ds + w (1),
0

1 t

mmum:x—/mm@mw+/%@mw,
0 0

which yield

1 t
|z(g(t,a),x)—z(t,a),x)|§|/g5(9rw)dr—a)(t)|+ /|z5(s,a),x)—z(s,a),x)|ds .
0 0

By Gronwall’s inequality we get
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t

|25 (t, @, x) —z(t,0,x)| < sup | | Gs(Gw)dr —w(t)|e? Vi el0,T],
t€[0,T]
0

t
|zs(t, w,x) — z(t,w, x)| < sup I/gg(Qrw)dr —w(t)|eT Vte[-T,0].
te[-T,0]
0

Then, using Lemma 3.1, we have completed the proof of Lemma 3.3. O

Comparing with equation (3.4), equation (3.5) does not involve Itd differential. It can be in-
terpreted as a deterministic equation with random parameters. The next lemma gives a stationary
solution of equation (3.5) and shows that the stationary solution of equation (3.5) is pathwise
convergence to that of equation (3.4).

Lemma 3.4. Let z(0;w), 21, T1 and T be given as above. Then the following results hold:

(1) Foreach$ >0, on w € 2| the random variable

0

25(w) = / ¢ Gs (6, w)dr

—0o0
exists and generates a stationary solution of (3.5) given by

0
Q1 xR (w,t) > z56,0) = / e’ Gs(0, 1 w)dr.

—00

The mapping t — z5(6;w) is continuous.
(2) In particular, for each § > 0, on Q1 we have

t

6 1
G0l _ lim —/Za(@rw) dr =0,

t—+oo 2] o tS4toot
0

uniformly with respect to § € (0, 1].
(3) In addition, for w € 21,

521& lzs(0.00) — z(0.0)|lc (11, 121) = O-
Proof. We first let w € 21 be fixed. To show (1) holds, we recall (2.4), i.e.,

1Gs (Orw)| = KsCo(I7] + 1).

Thus,
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0
z5(w) = / " Gs(Orw)dr
—00

is well-defined. We note that z5(6;w) can be written as

t

zs(Orw) = / "G5 (0, w)dr.

—00

Then, z;5(6;w) satisfies equation (3.5) and is a stationary process.
(2) We write z5(0;w) as

t t+45
-5 _ 1
25Ow) = 2 g / ¢ w@r)dr + / e’_t_‘S?dr. (3.6)
—0o0 13
By Lemma 3.2 (3), we have
| t
t_l)igloo A / e w@)dr =0. 3.7
—00
Note that
t+8 8
t *
/ e 10 —a)((sr)dr = / e 7(1)08_’_ )dr = Wt +1),
t 0

where §* is in between 0 and §, which together with Lemma 3.2(1) implies that

! t+8
lim - / o182 o, (3.8)
t—+o0 t 1)
t
Combing (3.7) and (3.8), for each § > 0 we have
lim 125 (0 )| _0
t—+o00 t

uniformly with respect to § € (0, 1].
By using (3.6) and the integration by parts, we have

t t 0 t

-5 _
fzg(@,w)dr:e ! —/er_’w(r)dr+/e’w(r)dr+fw(r)dr + I3, (3.9
0

8

0 —00 —0o0

where
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148 s 148 p
e [0y [0, 00, s fo0),
t 0 S 0
We rewrite I3 as
t+6 | _5 ‘
I = /(1 o 5) ( ) /( r—§ 1)w((3r)dr+ _; /w(r)dr. 3.10)
0

For each 1 < j <1, observe that
1+

/(1 P d+/("S d—/(l ’5)—w(r+t;_w(r)

= (1= )o@ +1) — w(5")],
(3.11)

where §** is in between 0 and §. Combing (3.9), (3.10) and (3.11), we have

t t 0
fzg(@rw)drze 5 —/er_[w(r)dr—l—/e’a)(r)dr
0 —00 —00

+ (1 - eﬁ**—‘?) (a)(S** 1) — a)(S**)).
Then, using (3.7) and Lemma 3.2 (1), we have

t

) 1
hgloo " / z5(@rw)dr =0

0

uniformly with respect to § € (0, 1].
(3) By the integral transformations we rewrite zs(w) as

8 0
Za(a)):§ / ¢ Pw(r)dr — / ¢ w(rydr

Applying L'Hospital’s rule, we get that
lim zs(w) = z(w). (3.12)
§—>0t

In the end, we observe that z(6;w) and z5(0;w) satisfy respectively
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t

Z(sz)=Z(a))—/Z(9sw)ds+w(t),
0
t

t
25(6,0) = 25() — f 25(O0)ds + / Gs (6, w)dr,
0

0

which along with Gronwall’s inequality implies that

t

|zs(0r0) — 2(B;0)| < | z5(@) — z(@)| + sup | | Gs(@rw)dr —w (1) | e’ forallt €0, T,
te[0,T]
0

t
|z5(0rw) — z(Brw)| < | |zs(w) — z(w)| + sup Ifga(er)dV —w()| | e forallt € [T, 0],
te[—T,0]

0

where T is a positive constant such that [T}, T>] C [T, T]. It follows from (3.12) and (3.3) that
521& lzs(0.0) — z(@.)|lc(1y,121) = O-

This completes the proof of this Lemma. 0O

For the remainder of this section, we restrict 6; on this invariant set €21 of full measure instead
of © and work with the corresponding probability space (21, F1, P), but we still denote it by
(Q,F,P).

We now are ready to study the center manifolds of equation (3.1) and Wong—Zakai approxi-
mated equation (3.2). We first show that the solution of (3.1) defines a random dynamical system.
To see this, we consider the random differential equation

d
d—l; — Av+2(6,0)v + F (6,0, v), (3.13)

where F(w, v) = e %@ £ (e2®y). Note that for each w € €, the function F has the same global
Lipschitz constant L as f. In contrast to the original stochastic differential equation, no stochas-
tic integral appears here. By the usual theorem of existence and uniqueness of solutions, this
equation has a unique solution for every w € €2. No exceptional sets appear. Hence the solution

mapping
(1, ,x) > v(t, w, x)

generates a random dynamical system, i.e., v is B(R) ® F ® B(R") measurable and forms a
cocycle:

v(0,w,x)=x, forall weQ,

v(t+s,0,x)=v(t, 0w, )ov(s,w,x), forall t,seR, we.
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Accordingly, for Wong—Zakai approximated equation (3.2), we consider

dv,
d—: — Avs + z5(0,0)vs + F5(0,0, vs), (3.14)

where Fs(w, v) = e~ 3@ f(£%(©y). The same conclusions as for equation (3.13) hold for equa-
tion (3.14), especially, the solution map

(t,w,x) = v5(t, w, x)

generates a random dynamical system.
For each x € R" and w € Q we introduce the following random transformations

Ts(w, x) = e 3@y and T(w,x):= e i@y
Clearly, for fixed w € 2 their inverse transformations are
Ts—l(w, x)= @5 and Tﬁl(a), X)= RO

respectively. For the sake of convenience, we denote zo(w) = z(w), To(w, x) =T (w, x), Fo=F
and vo(t, w, x) = v(t, w, x).

Proposition 3.1. Suppose that vs is the random dynamical system generated by equation (3.13)
(resp. (3.14)). Then

(t,w,x) > Ty G, ) o vs(t, w, Ts(w, x)) =: D5(t, w, x) (3.15)

is a random dynamical system. For any x € R" this process is a solution of equation (3.1)
(resp. (3.2)) and forms a random dynamical system.

Proof. For § =0, applying the Ito formula to To(6;w, vo(t, w, TO_1 (w, x))) gives a solution of
equation (3.13). The converse is also true, since TO_1 (B;w, x) and vy (¢, w, x) are defined for each
w € Q and Tofl is the inverse of T, and thus

(t,w,x) > Ty ' (G, vo(t, 0, To(w, x)))

gives a solution of equation (3.1) for each w € Q. It is easy to check that (3.15) defines a random
dynamical system. Since v is measurable with respect to F so is this . For § > 0, since z5(6; )
is differentiable, the proof of this lemma is straightforward. O

We write the spectrum o (A) of matrix A as
0(A)=o0,Uo.Uoasy,
where 0, ;== {A € 0 (A) | ReA > 0}, 0. :={A € 0 (A) | ReA =0} and o5 := {A € 0 (A) | ReA < 0}.

By the assumption, o, # @J. Let E*, E€ and E° denote the generalized eigenspaces corresponding
to oy, 0. and oy, respectively. Then
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R'=E"®E‘QE’
with corresponding projections P* : R" — E*, P :R" — E€and P*: R" — E’. Let
0 < B < min{|ReA| | L eo, Uoygl.

It is well-known that for each 0 < o < 8, there is a K > 1 such that

e PC| < Ke¥ll 1 e R,
e P < KeP' 1 <0, (3.16)
e PS| < Ke Pt >0.

For the remainder of this section, we will fix such «. For each y € («, 8), we define the Banach
spaces

Cys:=1{p € C(R,R")|supe V1=l 5@)dr|o1)| < 4 oo}
teR

with the norm

t
lply.s = supe V1=l 2@dr iy
teR

where C), o and | - |, o are also denoted by C,, and | - |,,. Then for all § > 0 we define
M (w) := {xo € R" | v5(-, ®, x9) € Cy 5}

We will prove that M (w) is given by the graph of a Lipschitz function for all small § > 0. To
see this, we need the following lemma.

Lemma 3.5. For each y € (a, B), xo € M§(w) if and only if there exists a function vs(-) € Cy s
with the initial value vs(0) = xo and satisfies

t
vs(1) = e Ho 2 @drg 4 / AU=IH]; 5 Cre)dr pe B o vs(s))ds

0
t

+ / eA(tfs)+f; Za(er)drqus(gsw’ vs(s))ds (3.17)

+oo
1

+ / NI SO pr Ey (6,0, v5(5))ds.

—0o0

where € = P€xy.
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Proof. Let xo € M§(w). By the variation of constants formula, for 7, € R we have that

t
t t
v3(t, 0, xg) = AT OOy (10 o) 4 / A=+ 5O By o) vs(s, w, xo))ds.

T

Taking t =0, we find

t
Pvs(t, w, xg) = eA’+f(§ w(Orw)dr pey oy / eA(tszfst 2 Or@)dr pe pe@ . w, vs(s, w, X0))ds.
0

(3.18)

Note that

AC=0)+[; 2 Or0)dr puty, (14 X0)

P"vs(t, w, x0) =e
t
+/6A(H)+f; @@r)dr pu ps (9w, vs (s, w, x0))ds.

T

(3.19)

By (3.16), for T > max{t, 0} we observe that

A(t=0)+[; 236, w)dr pu

le v5(T, w, X0)|

< Kefrth 8O =BT |5 (-, @, x0)ly.5 — 0 as T — 4-00.
Taking the limit T — +o00 in (3.19), we obtain

t
P'us(t, w, x0) = / A=+ 25608 pupg ) vs (s, . x0))ds. (3.20)

+00
Similarly, with (3.16) we have

t
Pius(t, w, xp) = / eAT=+[[ 20)dr ps B o) vs (s, w, x0))ds. (3.21)

—00

Combining (3.18), (3.20) and (3.21), we get (3.17). The converse follows from a straight-forward
computation. This completes the proof. O

The following theorem gives the existence of center manifolds for equations (3.14) and (3.13).
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Theorem 3.1. If

(Zet5y)
KL +—) <1, (3.22)
y—a B-vy

then there exists a Lipschiz center manifold for the random differential equation (3.14) as 6 > 0
(resp. (3.13) as 8 = 0) which is given by

My (w) = {& +hg5(8)|E € E°},
where h§ : EC — E" ® E* is a Lipschitz continuous mapping and satisfies h§(0) = 0.

Proof. We first prove that equation (3.17) has a unique solution v® = v%(-, w, &) in C,.s which
is Lipschitz continuous with & € E€. To see this, we replace vs(s) with v(s) on the right
hand side of equation (3.17) and denote it by J5 (v, w, &). Multiplying both sides of (3.17) by

evI=Joz @re)dr it then follows from (3.16) that

400
+'/1eﬂa—w+ym—ymds

t

'
e—}’lll—fot Za(a;-w)dr|%c(v’w’§)| <K|E|+ KL(‘/ealt—slﬂ/lsl—ylllds
0

t

n f e_ﬁ(t—s)-&-)/ls\—ymds)|v|y8

—00

1 2
SMH+KL(———+———>WV&
y—a B-vy

where L is Lipschitz constant of f. This implies that the operator Jy (-, , &) maps C,, s into
C,.s. Foreach v, v € C), 5, we have that

|T5 (v, 0,6) = T5 (0, 0,8)| <

t
/ |eAU=)FL 20 pe) B0 v(s)) — Fy By, 5(s))|ds
0

+o0
+ / |eAU—IH]L 2@ puy B9, v(s)) — Fy(Bs, 5(s))|ds
t

t
n / |eAU—H]E @ S| B9, v(s)) — Fy (Bso, 5(s))|ds,

—00

which in view of (3.16) yields

_ 2 _
|j6C('U,(1),E)—%C(U,(,(),S)ly’sSKL( +—)|U—U|y’3.
y—a p-vy
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By (3.22), we have that J{ (-, w, ) is a uniform contraction with respect to the parameter
(w, &). Using the contraction mapping principle, J5 (-, w, &) has a unique fixed point V(, w, &)
for each & € E€. Clearly, v‘s(-, w,0) =0since f(0) =0. Similarly, for all £, &y € E€ we get that

t
Wt w, &) — v (1, w, &)|e 7 V1= Jo 2 Crerdr

<K|E-&|+KL (— + —) W, @,8) = v (-, w,&)lys.
y—a B-vy

Hence we have

(S. —_ 8. K
V608 =0 . S0l < - (

Moreover, since v°(-, w, &) can be an w-wise limit of the iteration of contraction mapping
Jy starting at 0 and mapping a J-measurable function to a measurable function, V(- w, E) is
JF-measurable. On the other hand, since v8(~, w, &) is Lipschitz continuous in &, by Castaing
and Valadier |5, Lemma II1.14], v5(-, w, &) is measurable with respect to (w, §). Put hg(a), &)=
P9 (0, w, &) + PSv° (0, w, ). Then

0
0
B.£) = [ MO P 0, 5,0, 6)ds
+o00
0

0
b [ AR a0 P 6,0, 6. 0. £)ds

—00
and hg(a), 0) = 0. Taking (3.16), for any &, &y € E€ we have

2K°L
G- |1-KL (7 +5%5)]

|h§(w, &) — hs(w, §0)| < 1§ — &ol- (3.23)

Using Theorem II1.14 in Castaing and Valadier [5] again, we clearly see that A§ is measurable
with respect to (w, £). From Lemma 3.5 and the definition of h§(w, &), we find

Mg ={& 4+ hi(w,§)|& € E°}.
Next we prove M (w) is a random set, i.e., for any x € R"

> inﬂ{ Ix — (P¢y + h§(w, Py)) | (3.24)
ye n

is measurable. In fact, the right hand side of (3.24) is equal to

wr> inf |x — (Py + h§(w, Py)) |
yeQn
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which follows immediately by the continuity of #§(w, -). The measurability of any expression
under the infimum of (3.24) follows from that @ — h§(w, P€y) is measurable for any y € R".
In the end, we claim that M§(w) is invariant, i.e., for all s € R
vs (s, w, M5 (w)) = M (Osw). (3.25)
We first note that for each fixed s € R and xo € Mg (w), vs(t + s, ®, xp) is a solution of
Vs = Avs + 2(0; (6s0))vs + F5(6; (O50), vs), v5(0) = v5(s, @, x0).
Thus vs (¢, 05w, vs(s, w, xg)) = vs(t + 5, w, xp). Since
vs(-, w,x0) € Cps, Vs, Oy, vs(s, w,x0)) € Cy 5.
Therefore, vs(s, w, x9) € M§(fsw), which implies that
vs (s, w, M5 (w)) C Ms(Os0). (3.26)
Since vs (s, ) 1= vs(s, w, -) is a cocycle of homeomorphisms of R”, by (3.26) we have
Mg (w) C vs(s, a))_lMg(@Sw) = vs(—s, Os) M5 (6sw) C M (w).
Thus (3.25) holds. Then we complete the proof of Theorem 3.1. O

Theorem 3.2. A;Ig(a)) = Ts_l (w, M§(w)) is a Lipschiz center manifold of equation (3.2) as § > 0
(resp. (3.1)as § =0).

Proof. By using Proposition 3.1 and (3.25), we have for § > 0

us(t, w, M§(w)) = T{l(e,w, vs(t, o, Ts(w, M§ (w)))) = TS_I(Q,w, vs (1, 0, M§ (w)))
=Ty O, M§ (60)) = M (6,0),

which implies that A;Ig (w) is an invariant set. Moreover
M5 (@) =Ty (@, M§ (@) = {T; (@, & + h§(@,§)|§ € E} = (2 + hj(@,§)| € E)
=(§ +e?hf(w, e E))|E € E€Y).
This implies Mg (w) is a Lipschitz center manifold. The proof is complete. O
Finally, we give our main result in this section.
Theorem 3.3. Set h := h(. Under the assumption of Theorem 3.1, for any (w, &) € Q x E€

lim+ O (w, e @ g) = 2O, eTH W),
5—0

i.e., the Lipschitz center manifold of equation (3.2) converges pathwise to that of equation (3.1).
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Proof. We first prove that
lim [0°¢, @,8) —v( 0, 6)ly =0, (3.27)
§—0t

where v(-, w, £) == 00(-, w, £).
We choose ¢ suchthate <y —4¢ <y < B and

1 2
KL( - + - ><l forall j=1,...,4.
y—Jjt—a B—y+j¢

Following the proof of Theorem 3.1, the above conditions imply that 7 is a contraction from
C(y—jo),s toitself with the contraction constant

KL( L, 2.)
y—Jjt—a B-y+j¢

for j =1,2,3, 4. This yields that v’ € C,_j 5 and v € C)_ j;. We note that the following con-
tinuous embedding:

Cy 4 CCy 3;5CC, 2 CCprsCCy,
Cy4;5CCy 3, CCysCCpCCy.
Using Lemmas 3.2 and 3.4, there exists 77 > 0 such that

t

/ (Za(erw) — z(@rw)) dr| <¢|t] and |z5(6,w) — z(B,w)| < Ct] (3.28)
0

for any |¢| > T1, § € (0, 1]. Applying Lemma 3.4(3), there exists & € (0, 1] such that

||Z3(94a)) - Z(@.a))”c([_rl’rl]) < é‘ for0 <6 < 80, (3.29)

which yields that for || < T} and 0 < § < &g, we have

t

[ (500~ 26.0) dr| < 12500) ~ z@e-rnphl <crl. (330
0

From (3.28)—(3.30), we obtain

t

fz(s(Qrw) — 20, w)dr| < 1], |z25(6i0) — 2O w)| < E(Jt] + 1) (3.31)
0

forall 0 <8 < g and ¢t € R.
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Let u’(t,w, &) = v (t, w, &) — v(t, w, &). For simplicity, we also denote u®(r) = u’(t, w, &)
and v(t) = v(t, w, £). Similarly to Lemma 3.5, we see for all r € R, u® (1) satisfies the following
integral equation

t
W (1) = / oAU=9)+[{ 256 0)dr pe
0
X <F8(9sa), u®(s) + v(s)) — F (050, v(s)) + (25 Os) — Z(GSw))v(s)>dr
t
n / A=)+ [ 256,0)dr pu
+o00
X (Fa Osw, u’(s) + v(s)) — F(0s, v(s)) + (Za (Osw) — z(GSw))v(s))dr
t
+ / eA(t—s)+f; 2(6,0)dr ps

—0o0

x (F(;(@Sa), 18 (5) + v(5)) — F(0y0, v(s)) + (25 (Bs) — z(@sw))v(s))dr.

We denote above the first, the second, and the third integrals by Is 1, /52, and Is 3, respectively.
To estimate these integrals, we first estimate

| F5 (05, 1 (5) + v(s5)) — F (650, v(5)))|

< Le—0lsI+f zg(@rw)dr(|u8(.)|y_§ L O S TS T 5). (3.32)
We first estimate /5,1. Using (3.32), we have
t
o= (=0l s50r0)dr 1| < g [ o= (=0 /ealt_sH(V_OlslH(;(s)ds 7
0
where
H(s) := |1’ (Y y—g.5 + 267 2Bl B =200 111y ()], 35
+e Xl z5(050) — 2(Bs0) [V ()] —3¢.5-
We claim that
KL s +
lsaly—cs < o=l Oly—cs +o(), - asd— 0%, (3.33)

Since Hs(s) has three terms, we estimate the corresponding three integrals. The first one is
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sup { e~ (V=01

t
) ! KL
/ K LM H0=OBI2 (), g sds| f < ————[u’ ()] —¢.5. (3.34)
teR y—¢—u

0

Next, we show

t
/ZKLeOllt—S\+(V—3Z)\S\|eza(95w)—z(9xw) — lv()|y—3c.5ds| t =o(1).
0

sup § e~ (=0l
teR

(3.35)
For any ¢ > 0, let T, > T} be large enough so that

4K Lef lv()]y—
e [v()y-a¢ =T g
y—20—a

For 0 < 6 < §p and |¢| > T3, by (3.31), we have

t
/eﬂt|t*3\+(V*3§)\S\|ezs(9sw)*2(9xw) _ 1||v(~)|y_3;,5ds
0

2K Le~r=9l

t
/ea|zfs\+<y73;>\s||e<1+|s\>c ~11ds
0

<2KL|v()ly—spe” 77O

t

< 4K Le ()], g6 @O / =S+ =20)1s] g

(-
_AKLeE WOy <3cs _cr,

y—20—«a
4K Leb ()|, —
< | ()|y 4{6_;T2<8.
y =2 —«a
For |t] < 1>,
t
2K Lo~ =0l /eﬂtlt—S\+(y—3£)\S\|ezs(9xw)—z(9;w) O, _sc.sds
0
< 2KL(8||25(aw)—z(aw)IIC([JZ.TZ]) — D) ly—3c.8 X
= 4 ) ——a
< ZKL(e”Zs(Q.w)—Z(Q.w)||C([—T2,T2]) — D@ e % 1 e

provided that § is sufficiently small since ||zs(0.0) — z(0.0)||lc((—1.1,)) — O as § — 0" by
Lemma 3.4(3). Hence (3.35) holds.
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Finally, we show that

t
/ K Le®! =300 125 (0,0) — 2(0,0) [0 () ]y 3¢ 5d5| § = 0(1).
0

sup § e~ =0l
teR

(3.36)
Note that by (3.31), |zs(05@) — z(0sw)| < (1 + |s|)¢. Let

K* =supe (1 +|2)).
teR

Choose T3 > T» large enough such that

KLtK*lv()|y—
¢ [v( )|y 4z ST c
y -2 -«

Then, for |¢| > T3, we have

t
f K Le® =S =301 250, 0) — 2(650)[|v()]y—3¢,5ds
0
_ KLEK vO)ly3es o1y
- y—20 —«
< KLQK*|U(')|)/—4§ T g
T y—2A-a

=0l

For |t| < T3, we have

t

e~ =0l f K Ll =SH 0 =30011 250, 0) — 2(650)[|v() ]y —3¢.5ds

- KLv()ly-3¢,sllz5(0.0) — z(0.0)lc((-T35,73)

y—¢{—a
< KLIv()|y-4cllzs(0.0) — z(0.0) lc (=3, 73)) e
y—¢—a

when 4§ is sufficiently small. Hence (3.36) holds. Combing (3.34), (3.35), and (3.36) gives (3.33).
In the same fashing as estimating s 1, we have

KL 5 +
[Is,2]y—¢6 < mm ly-¢,s +o(), asd—0 (3.37)
and

KL
Us3ly—c5 < ————[u()y—cs +o(1), asé—0T. (3.38)
3ly—g, B—y+¢ Y=t
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Therefore, by (3.33), (3.37) and (3.38) we have

1 n )
y—¢—a B-y+¢

WPy = KL WOl —c.5 + (D).

Since
1 2
L( + ) <1,
y—¢+a B-—y+¢
we have
|u8(')|y < Iu‘s(')ly,;,(s =o0(1), asd—0".
Namely,

lim 8 W, - Yy W, =0'
Jim )’ 0.6) —v(.0. )l
It follows from (3.27) that
lim h§(w, &) =h(w,§) V(w, &) € 2 x E. (3.39)
§—0F

Employing (3.23), we get that

1§ (w, e DE) — b (0, )|

< h§(, ™3 E) — hj (@, e8| + h§(w, e E) — h (0, e8]
- 2K%L

T B-n[1-KL(75 + 5]
+ |h§(w, e ¥ @E) — h(w, e ¥ k)|

X |73 — 7]

Together with Lemma 3.4(3) and (3.39), we have
lim_h§(w, e B@OE) = h(w, e T ) V(w, £) € Q x EF.
§—0

Using Lemmas 3.4(3) again, Theorem 3.3 is established. O

Remark. (1) The center manifolds are C! smooth. (2) The results in this section hold for stable
and unstable manifolds. (3) If f is a C' function with f(0) = 0 and Df(0) = 0, one can use
the standard procedure to modify f by using a smooth cut-off function such that the modified
function is globally Lipschitz continuous with a desired small Lipschitz constant. Thus, applying
the results obtained here, one can get the convergence of local center-manifolds of Wong—Zakai
approximations.
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