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Abstract

Linear elliptic equations in composite media with anisotropic fibres are concerned. The media consist
of a periodic set of anisotropic fibres with low conductivity, included in a connected matrix with high
conductivity. Inside the anisotropic fibres, the conductivity in the longitudinal direction is relatively high
compared with that in the transverse directions. The coefficients of the elliptic equations depend on the
conductivity. This work is to derive the Holder and the gradient L? estimates (uniformly in the period size
of the set of anisotropic fibres as well as in the conductivity ratio of the fibres in the transverse directions
to the connected matrix) for the solutions of the elliptic equations. Furthermore, it is shown that, inside the
fibres, the solutions have higher regularity along the fibres than in the transverse directions.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

This work presents uniform estimate for the solutions of linear elliptic equations in compos-
ite media with anisotropic fibres. The media contain a periodic set of anisotropic fibres with low
conductivity, included in a connected matrix with high conductivity. Inside the anisotropic fibres,
the conductivity in the longitudinal direction is relatively high compared with that in the trans-
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verse directions. The diffusion coefficients of the elliptic equations depend on the conductivity
of the media. Due to the conductivity, the equations are non-uniform elliptic equations.

Q denotes a bounded domain in R" for n > 2, 9Q is the boundary of 2, € € (0, 1],
QQe) ={y € Q|dist(y,02) > 2¢}, Y =[0, 1)" consists of a smooth sub-domain Y, com-
pletely surrounded by another connected sub-domain Yy (=Y \ Y, €Y + j) = {yly =
(€@ 4 j0), - €@+ jn))s @1, 20) € Yo, J = (oo )} Qp ={yly €€+ Jj) C
Q(2¢) for some j € Z"} is a disconnected subset of €2, Q; (= Q\ L2f,) represents a connected
sub-region of Q. Let D = Q x (0, L) denote the composite media, Dj, = Qf, x (0, L) the periodic
set of anisotropic fibres, and D; = Qef x (0, L) the connected matrix. Set x = (x/, x,11) € R+

x" € R" and define a (n + 1) x (n + 1) matrix function Eg; . as

K(o)1 for (x', xu+1) € D,

ES (D=1 f .,
’ K(%) diag(w®, -+, 0%, ")  for (X', x,41) € Dy,

where w € (0, 1], T € [0,2], K is a positive periodic function in R" with period Y, [ is the

(n + 1) x (n + 1) identity matrix, and diag(a)z, -~-,a)2,a)f) isa(n+1) x (n+ 1) diagonal

matrix with w? in the first n entries and w? in the (n 4+ 1)-entry. The elliptic equations are

{—V-(E&EVU):F in D, (1
U=0 on 0D,
where w, € € (0, 1], € [0, 2], and F is a given function.

The problem has applications in oil recovering industry, photonic crystal fibers, the stress in
composite materials, and so on (see [3,8,9,15,16] and references therein). For t = 0 and w? = €2,
(1.1) was used to describe the Darcy’s velocity for two-phase flows in fractured reservoirs [9]. If
F is bounded in D, a solution of (1.1) in Hilbert space H L(D) exists uniquely for each w (= €).
In addition that F is small in D, the L? norm of the gradient of the solution of (1.1) in the
connected matrix D¢ is bounded uniformly in w, €. However, this is not for the solutions in the
anisotropic fibres Dj,. Furthermore, the homogenized limit of (1.1) as € — 0 exhibits a non-
locality due to the conductivity of the media [7]. For 7 = 2 and @?* =0 (that is, a perforated
domain case), the homogenization problem of (1.1) was considered in [8]. For 7 =2 and o =e,
the homogenized limit and convergence of the solution of (1.1) were proved in [3]. For T =2 and
w? = €2, the homogenization of two-phase immiscible flows was studied in [16]. The homoge-
nization of a diffusion equation corresponding to (1.1) with 7 =2, w = €%, « > 0 was obtained
in [18].

Concerning the regularity of the solution, the Holder estimate of the solution of (1.1) for each
fixed w, €, T can be obtained by the De Giorgi—-Nash—Moser Theorem [11]. The article [6] study
equation (I.1) fort =2=n,0<e <1< ®? < 0o case. Under the assumptions a)lefn| ~1
and |D;,| < €, uniform W1 bound and uniform C!¢ convergence estimate of the solutions

were obtained in an interior region of D;. There are some other works related to our problem.

For example, uniform estimates under C%%, W7, W2 and W!* norms for uniform elliptic
equations with periodic oscillatory coefficients were considered in [5,17]. For non-uniform ellip-
tic equations with smooth periodic coefficients, existence of C>¢ solution could be found in [12].
Uniform gradient L? estimate for non-uniform elliptic equations with discontinuous coefficients
was shown in [20].
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Problem (1.1) is a non-uniform elliptic equation. Uniform bound of the solution of (1.1) is
related to the shape of the anisotropic fibres and the conductivity of the composite media. By
separation of variables, the (n 4 1)-dimensional problem (1.1) can be reduced to n-dimensional
Helmholtz-type equations with simpler conductivity ratios in periodic domains. A three-step
compactness argument [5] is employed to study the uniform regularity of the reduced equations.
Finally we obtain the uniform Holder and uniform gradient L? estimates in w, €, T for the solu-
tion of problem (1.1) by applying the Holder inequality to the uniform estimates of the solutions
of the reduced equations. Inside the fibres D, , it is shown that the solution has higher regularity
along the fibres than in the transverse directions. However, the estimates here may not be opti-
mal here. Different from [6], our uniform estimates in w, €, t for the solution of (1.1) hold in
the whole composite media. Also constraints on the parameters , € and the size of Dy, (that is,
a)2|Dfn| ~ 1 and |D;,| < €) are not required here.

The rest of this work is organized as follows: Notation and main results are stated in sec-
tion 2. The main results are proved in section 3. To prove the main results, we reduce the
(n + 1)-dimensional problem (1.1) to n-dimensional Helmholtz-type equations. Uniform esti-
mates for the solution of (1.1) are based on the uniform estimates for these reduced problems
(see Lemma 3.1 and Lemma 3.3). In section 4, some a priori estimates for interface problems are
derived. In section 5, uniform Holder estimate for reduced Helmholtz-type transmission equa-
tions (that is, Lemma 3.1) is shown. Section 6 gives the proof of uniform gradient L? estimate
for the reduced problems (that is, Lemma 3.3).

2. Notation and main result

cke, Lp, wkr LkP and £P are used for the Holder space, Lebesgue space, the Sobolev

space, Morrey space, and Campanato space respectively [19]. C;‘;,(R”) is the space of in-

finitely differentiable Y-periodic functions in R”, H;];er R™) (resp. C},’g (R™)) is the closure

of Co,(R") under H! (resp. C9) norm. OY, = Ujezn V¥ + j) and O =R" \ Oy, for

v>0. (& —2); =max{1 —2,0}. Let [l¢1,---, pmllB, = ll@1llB, + -+ llgnlB,, llelB,uB, =

lels, +lelB,y, y = (v1,3) € R, B-(2) = {y e R"| ||y —zll <7}, Bf (2) ={y € B,(2)| y1 > 0},

B (z) ={y € B/ (2)| y1 <0}. For any set S, S is the closure of S, 35 is the boundary of S, |S] is

the volume of §, X’ is the characteristic function on S, and %S =S/r={ylryeS}. [(p]c();oz %)

G X D) =0 1) o
flx" =yl

means sup
X',y €Q% i xp11€[0,L]

tive function, we define, for y = (y1, y) € R",

. Similar definition for [¢] oo

(D) If A is a posi-

@)ern = / Ap()de / / A@)dE, @.1)
B, (z) B, (z)
/ Ap(E)de / / A@)dE if y1 >0,

B (2) B (2)

@), 4=
/ Ap(€)ds / / A@)E ify) <0,

By (2) B, (2)

(2.2)
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If fiy is an outward normal vector on dY},, we define, for any function ¢ in Y and y € 9Y;,,
¢¢QOE}@%w@ﬂﬂﬁﬂ, le](M) =@+ —@.—(). (2.3)
—
Define, for w € [0, 1] and v, r € (0, 00),

Ko (¢, x1) = K(35) (Xoy (8) + 0y, (x),
Ko (s xn1) = K30 (Xay/r (2) + o Xy, 1 (1), 24
Eov (&', xn41) = K(E) (X0 () + 0 Xy, (x)).

¢ denotes the extension operator in Theorem 2.1 [1] and H€<I>|Q;_ is the extension function of
CD|Q} in Q.
Our main results are

Theorem 2.1. Suppose

Al. Q is a bounded smooth domain in R" forn > 2,

A2. Y, is a smooth simply-connected sub-domain of Y,

A3. 0<KeCha(RY), w, e € (0,1],

A4, Tt €e[l,2],

A5.0e2-1,11,8>0, u=7253-pn—5>04<u, ;1 +1=1,

any solution of (1.1) satisfies

(Ul comrs ) + @ [U] o ey + 1Koeip eBx,y UllLr )

e¢]

1/s
= C( Z (”KwU*Z,eFk s () + Hk)s ) ) 2.5)

k=1

where c is a constant independent of w, €. See (2.4) for K, . Here Fy : Q@ — R for k € N are the
Fourier sine coefficients of F defined as

o0
. km
F(x', xp11) :];Iﬁ‘k(x/) sm(Txn_H) (2.6)

and

(2 ifn=2 = 0 ifn=2
P12 ifn>3" k= ||Kw_r(2';+2),EFk”L”2Tnz(Q) ifn>3"

Because of the requirement 3 — u — % > 0, the possible dimensions that Theorem 2.1 holds
are 2,3, 4, 5. Theorem 2.1 implies that the Holder norm of the solution of (1.1) in D¥ is bounded
independent of w, €, T if the right hand side of (2.5) is bounded. In general, this is not for the
solution in the anisotropic fibres Dy, . In the special case T = 2 and o = 0, the Holder norm of the
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solution of (1.1) in the horizontal directions is bounded uniformly in w, €, T in the whole domain
D if the right hand side of (2.5) is bounded.

Theorem 2.2. Suppose A1-A3, T € [0, 2], and
A6 2<g<p<oo, P =p re(O 1), ra>11+1=1,

any solution of (1.1) satisfies
Ox,. UllLr(py

i1
w? e

00 1/s
< C(Z IK 1o EFkllsL,,(Q)> , 2.7
k=1 ’

”K z(l,1)+2 8X/U||L4(D) + ”K
w P €

where c is a constant independent of w, €, T. See (2.4) for K, , and (2.6) for F.

Different from Theorem 2.1, Theorem 2.2 holds for p € (2, 00), n > 2, and 7 € [0, 2]. Similar
to Theorem 2.1, Theorem 2.2 implies that the gradient L? estimate of the solution of (1.1) in D;
is bounded independently of w, €, 7 if the right hand side of (2.7) is bounded. But this is not the
case for the solution in the anisotropic fibres Dj,. Also note that the solution in the anisotropic
fibres has higher regularity along the fibres than in the transverse directions.

By Sobolev imbedding Theorem [11] and Theorem 2.2, we see

Corollary 2.1. Besides the assumptions of Theorem 2.2, if
Al.n<q p=1-1,

any solution of (1.1) satisfies

00 1/s
(L -1)+2
[U]CO'“(D_;-) +w P [U]CO'“('D—;’) < C<Z ”wa(%,l) eFk ”SLP(Q)> s
k=1 ’

where c is a constant independent of w, €, T. See (2.4) for K, , and (2.6) for F.

Corollary 2.1 holds for p € (2,00), n > 2 and t € [0, 2] but it does not guarantee that the
Holder norm of the solution of (1.1) in D, is bounded uniformly in w, €, T even when 7 =2
case. By Theorem 2.2 and a limiting argument, we also obtain the following result for problems
in perforated domains:

Corollary 2.2. Suppose A1-A3 and A6, any solution of
-V (Ko VU)=F in D;

KO,GVU-ﬁG =0 on 3'D?\3'D
U=0 on E)’Df‘-ﬂaD
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satisfies
00 1/s
195 Ullza(Ds) + 12,5, Ullo(os) < c(Z ||Fk||2p(gef)) :
k=1

where c is a constant independent of €. D¢ is the unit vector normal to SD;, see (2.4) for K, v,
and see (2.6) for Fy.

Next we give a uniform gradient L? estimate for the elliptic solution of (1.1). The estimate
holds in the whole domain and in all dimensions n > 2.

Theorem 2.3. Suppose AI-A3, T =2, and

ap <2 ifn=2

2(1=A
A8. 2<qg<p<oo, are(0,1), {2_,,: 2(1—a)p ifn>3 (27(1)3‘1 =p (@+r—Dt>1,
n—2 2—ap =
1,1
rty=1
any solution of (1.1) satisfies
00 1/s
182Ul La (D) + 195, UllLr (D) < c(Z ||Kw-z,€IFk||i,,(9)> : (2.8)
k=1

where c is a constant independent of w, €. See (2.4) for K, and (2.6) for Fy.

In Theorem 2.3, the number ¢ in (2.8) can not be large. When dimension n becomes large, ¢
becomes small and is closer to 2.

3. Proof of the main result
First we give some auxiliary lemmas.

Lemma 3.1. Assume AI-A4, 0 €[2—1,1],6,A €(0,00), 3 —u — % > 0. Any solution of

{—V{KM£VQH40KM£®=C;inQ 3.1
®=0 on 99

satisfies
nmxn,AH“}Q¢Lﬁ#M&g)+aﬂ[¢kuWﬂ§§QfﬂiHwazeGHuwam-%H%

where c is independent of w, €, A. See (2.4) for K, ,,. Here u = n‘sﬂ and
0 ifn=2,
H=1IK o Gl o ifn>3.
w 2n L€ Ln-2(Q)
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Proof of Lemma 3.1 is given in section 5.

Lemma 3.2. Assume AI-A3, © € [0,2], 0 € [1 — %,oo), A € (0,00), G € LP(Q), and
p € [2, 00). Any solution of (3.1) satisfies

p_q||2/P
[Koavelnzel S| 1K A0l <elK o Glue, o
| AKye VO, Asz%wfl’eq)”H(Q) = C”Kw—%’EG, Kwo—%—l’eG”Lz(Q)a

where c is independent of w, €, T, 0, A, p.

Remark 3.1. Assume A1-A3, 1 =2, 0 =0, and A € (0, 00). Poincaré inequality and (3.2),
imply

IAV®, A’D, APl 2 = cliKy-2 Gl ) (3.3)
(3.3) implies, by Sobolev imbedding Theorem [11],

[AD;2.q) < cmin{l, A~}K 2 Gl ;20
1Pl ) 50A’1||Kw_zqéG||Lz(Q) foranyr >2ifn=2, (3.4)
”@”L%(Q) <cA MK, Gllzg, — ifn>3.

ap <2 ifn=2
Leta € (0,1)and p > 2 suchthat { 2, _ 2(0-a)p ifn>3" Then, by (3.4),
n—2 " 2—ap -

_ 1—
[iacor = [iaerret-or < jaoy ol
L 2 (@)

Q Q
<cmin{A™?, ACTIPYIK, 2 (GII7y g -
So we obtain | A2® | Lr(@) < cmin{A, A} K, Gl 12q)-

Proof. (3.2) is proved by multiplying (3.1) by |A2®|P~2A2® as well as employing integration
by parts and Holder inequality. Next we consider the following equation:

—V- (K2 VD) + A’Kyr @ =G in Q.
=T Plg on 9Q¢,.

See section 2 for the extension function Hed>|9;. Letp=® — HGCI>|Q; in Q¢ , then

—V- (K2 Vo + K2 Ve ®lo) + AKor e ¢
=G — AZwa,Sne%ef in Q¢,,
=0 on 9€2¢,.
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Multiply above by A2¢ to get, by energy method and extension theorem [1],
IAV®, 02 A2 2ge ) < (@3N IG 20 + IAVE, 0T T AP 200 ).
Together with (3.2)1, we get (3.2),. O

Lemma 3.3. Under AI-A3, 0 € [0,2], p e (1,00), Q € LP(Q), and G € W~ P(Q), a WP (Q)
solution of

{—V~(sz’€VCI>—|— o)=G inQ
d=0 on 092

exists uniquely and satisfies

IKoo /e,e @, Koo e VO Lr(2) < c(IKyo-2 OllLr(s)

+||G||w*l,p(9) + 60072||G||W*1v17(§z;n)) lfwe—“ <1,
[, Kyo e VO Lr(@) < c(IKyo—2QllLr (o)
+HIGllw-1.r@) + @ 2IGlw-1rqe ) i< > 1,

where c is a constant independent of w, €, 0. See (2.4) for K,, .
Proof of Lemma 3.3 is given in section 6.

Lemma 3.4. Assume AI-A3, T €[0,2], A € (0,00), 2 <g < p < 00, % =p, Ae(0,1),
and G € LP(R2). Any solution of (3.1) satisfies

IK

B

s A 1-x
NVlLie <clK 3 GK 103 Gliag) K 10, Gl

1
ot
where c is independent of w, €, T, A.

Proof. Let ¢ denote a constant independent of w, €, 7, A. By (3.2) of Lemma 3.2,

||Kw%’€A2<D||LP(Q) < Clle,(%,D eGllLP(Q), 35)
IAK 3 e VOl <K 5 G K 13 Gl .
We write (3.1) as
{ V(K2 VP) =G — A2Kyr (@ in Q,
=0 on 0%2.
By Lemma 3.3 and (3.5),
||wa(;_1>+z €V¢||LP(Q) =< CIIKw,(%_D €G||LP(SZ)~ (3.6)

Since A + %qqk) =1, we see, by (3.5), and (3.6),
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A _ A (1=2)
/'wa‘%‘”“,eA V<I>|‘1dx_/|Kwr<%_1)+276AV<D|‘1 |Kwr(%_1)+276V<D| Tdx
q(1
SC”Kwr(%—mz AVq)”LZ(Q)”K r(,l,—l>+2 Vq)”LP(Q)
q(1-2)

S c”Kaf%,eG’ Kwr<%7%)+l G”LZ(Q)”wa(%fl)’eG”LP(Q) N
The lemma follows from the above inequality. 0O
Lemma 3.5. Assume AI-A3, T =2, A € (0,00), 2 <q < p < o0, 2(2‘ M4 — b oa ke (0,1),

ap <2 ifn=2
and 2(1— . . Any solution of (3.1) satisfies
2= Woap ey 30 AT f (3.1) satisfi

IA*V®lLa(@) < c(IK,-2 GllLr) +min{A, A'HK, 2 Gll20).
where c is independent of w, €, A.

Proof. Let ¢ denote a constant independent of w, €, A. By (3.2); of Lemma 3.2,
AVl 2q) < clKy,—2 Gl q)- (3.7)
By Remark 3.1,
IA2®] (@) < cmin{A, A'}K,-2 Gl 2q)- (3.8)

We write (3.1) as

-V (K2 V®)=G—-AK,2 ® ingQ,
=0 on 9L2.

By Lemma 3.3 and (3.8),
IV®lLr) < c(IKy-2 Gl +min{A, ATHK -2 Gl 2q)- (3.9

Since 2 < g < p and A + 2242 = 1, we obtain, by (3.7) and (3.9),

vty

/|A*Vc1>|‘fdx—/|AWI>|‘M|WI>|<1 Mgy < || A\VD|? o)

LX)

<Ky 2 Gl o (IKy2Glirre +min{A, A"™}K, 2 Gl 207" .

LZ(Q)

Which implies the lemma. 0O
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To study the uniform estimate of equation (1.1), we reduce (1.1) to n-dimensional problems
by representing functions in terms of sine functions. Write

oo
k
UG x) = Y2 U sin (Sox),

k=1
> km
FO xng1) = ) Tl sin (——xnp1).
k=1
Then equation (1.1) implies, for any k € N,
2.2 .
{ =V (K2 . VU) + kL—gKaﬂ,eUk =F; ing, (3.10)
U =0 on 0¥2.

Proof of Theorem 2.1. Under the assumptions of Theorem 2.1, the solution of (3.10) satisfies,
by Lemma 3.1 and Lemma 3.2,
K (U o ey + @ WU con @) + K2 1K e Ukl o)

< C(”Ka)"*z,ng ||L"+5(Q) + Hk),

where c is independent of w, €, 7, 0, k. See Theorem 2.1 for o, , 8, p, Hk, t, s. Since 4 < ut
and % + % =1,

[U]CO;u/ét(Dﬁf) + o’ [U]Co;u/zt(p—in) + 1K ye/p ¢ 0x, 0 UllLr (D)

o0
< (Utlconssary + " W conrsag) + kI Ky UellLre)
k=1 ’

o0
<c Y KMHIK o2 Fll s oy + Ha)
k=1

00 1/t , 00 1/s
E C(Zk_'ut/4> (Z (”KwafZ’E]Fk”Ln-f-S(Q) + Hk)v> .

k=1 k=1

Which implies Theorem 2.1. O

Proof of Theorem 2.2. Under the assumptions of Theorem 2.2, the solution of (3.10) satisfies,
by Lemmas 3.2, 3.4,

A 2
k ||Kwr(%_1>+2’€VUk”Lq(Q) +KIK 5 Ukller@ SC”Kw,(%_])’e]Fk”LP(Q)y

where k € N and ¢ is independent of w, €, 7, k. See Theorem 2.2 for A, p,q,t,s. If 1 < At and
1,1

41 = 1’

t s
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”Kwr(%fl)JrZ eax’U”Lq(D) + ”K ax,,+1 U”L/’(’D)

z
w? e

o0
< ; IK tse VUklla@ +KIK 5 Ukllir
o
<c) kK
<c) k7 w,(%,l)’eFk”LP(Q)
k=1
0 1/t , o© 1/s
5c<2k‘“> (ZIIKwﬁ;l)e]Fkllst(m) : (3.11)
k=1 k=1 ’

Theorem 2.2 follows from (3.11). O

Proof of Theorem 2.3. Under the assumptions of Theorem 2.3, the solution of (3.10) satisfies,
by Remark 3.1 and Lemma 3.5,

KV Ukl o) + K10kl Lr@) < c(IKgp-2 FellLr@) + k' 1K -2 Frell 120

where ¢ is independent of w, €, 7, k. See Theorem 2.3 for X, p, g, ¢, s, «. Since we know (o +
A—Dt>land 4+ 1=1,

105 UllLapy + 110x, UllLr (D)

o0 o
<D IVUklLaq@) + kllUkllLe@y < ¢ Yk~ VK, Fellr
k=1 k=1
1/s

o0 1/t e}
5c<2k<°‘+“>f> (Z ||Kw2,€Fk||SL,,(Q)> ) (3.12)
k=1 k=1
Theorem 2.3 follows from (3.12). O
4. A priori estimates
In this section, we study the regularity of the solutions of some interface problems. Two main
results are obtained. The first one is a Holder estimate for a Helmholtz-type interface problem

(i.e., Lemma 4.7) and the second one is a gradient Holder estimate for a Poisson interface prob-
lem (i.e., Remark 4.2). Let r > 0, Z,(z) ={y = (31, y) € B, (z)|y1 =0}, and

Ay ify; >0,

a)A2 if Vi < 0, (4'1)

Ta)(y) = {
where w € (0, 1] and A1, A, are positive definite constant matrices.
Lemma4.1. Let w,r € (0,1], T €[0,2], 0 €[1 — % 2], A € [0, 00). The solution of

{ ~V - (T, 2V +Q) + AT =G in B,(0)
¢=0 on 3B, (0)
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satisfies
ITewr Ve, AT oi310l1208,0) =€ (||Twaf2Q||L2(B,(o)) +3G). 4.2)
where c is a constant independent of w, T, o, r, A. Here G is one of the following expressions:

ITer2Gll 15 0)y0r-1(87 0
g = r||’]I‘aigsz||Lz(Br(0)), (43)
IATT ,-51Gll2s0)  #FA>0.

Proof. Let ¢ denote a constant independent of w, 7,0, r, A. First we consider the case Q €
Hy (B, (0)) U H} (B, (0)). We find a n € H} (B; (0)) U Hj (B (0)) such that

—V (T 2Vn+Q) +A’Ten=G  in B} (0)UB(0).
By energy method,
[Tee Vn, ATQ}H%—H’/”B(S) =c (||Twrf—2Q||L2(3r(o)) + g) s 4.4

where G is defined in (4.3) and S = B," (0) or B, (0). Suppose ¥ = ¢ — 1, then

—V (T2 V) + A2Tyep =0 in B (0) U B (0),
v =0 on B, (0), “5)
[¥]1=0 on B, (0) NZ(0), '

T2V -€1] =—|T,2Vn-e1]=¢  on B,(0) NZ;(0),
where ¢, is the unit normal vector on Z(0). See (2.3) for [y]. Let 1; denote the even extension

function of ¥/ 5+ () withrespect to y; = 0 in B, (0). Multiply (4.5)1 by ¥ — ¥ and use integration
by parts to get

Twe Vi, AT o tv/2-1 1/f”LZ(B,(o)) =clVy, Al[’”Lz(Bj(o))
=cliglz-128, 0Ny (0))- (4.6)

In (4.6), we use trace theorem and Poincaré inequality [11]. (4.4) and (4.6) imply (4.2). For
general Q € L2(B,(0)) case, (4.2) is proved by a limiting argument. O

Lemmad4.2. Letwe (0,1], T €[0,2],0 €[1 — %,2], O<r< L= (0,00), z€Zy3(0), i eN.
There is a constant c independent of w, T, 0,1, A, z such that any solution of

—V (T2 V®) 4+ A2Tyr® =0 in By (0) 4.7)

satisfies
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ITar VO, AT 05111205, ) < ENTar @l 205 01

IATwo VO, AT iz 1 ®ll2es, ) < 351 Twr PllL2s, -

IT o41-587®, Tor VP, AT o151k Pll12(5, () = 371 Ter Pll2(8,, (o))
IV @I 25 ) = 75T 1T @28y, 01

(4.8)

where k € {2, - - -, n} and 05 means the partial derivative in the s-th direction.

Proof. Let ¢ denote a constant independent of w, t,0,r, A, z. Let n € C(‘)’O(Bzr (2)) be a bell-
shaped function satisfying n € [0, 1] and n = 1 in B,(z). Multiply (4.7) by n and employ (4.3);
of Lemma 4.1 to get (4.8)1 2.

Differentiate (4.7) with respect to the variable y; for k € {2, - - -, n} and employ (4.8); to get

c
[Tee 0 VO, ATwaJr%—lakq)”LZ(Br(z)) = ;”Tw" %Pl L2(By () (4.9)

By (4.7), (4.8)2, and (4.9),

2 C
1T r=5+19T Pll2(8, ) = 7 1T Pllz2(8,, -
So we get (4.8)3. (4.8)4 is proved by induction and a similar argument as (4.8)3. O

Lemma 4.3. Let w € (0,1], T €[0,2], 0 <r < % A €(0,00), z€15/3(0), i e NU {0}, oz =
@7, (0)- Any solution @ of (4.7) satisfies

0 / |a;;<1>1|2d95c|§|” / IT,20.®2dy  forO<p<1, (4.10)
7,0 B

where c is independent of w, T, A,r,z, p. Here k€ {2,---,n} and y = (y1, ).

r

Proof. We fix 0 < p < 5 and m is the smallest integer satisfying 2m > n — 1. By (4.8)4 of
Lemma 4.2,

p / |72 < c(n)p" ||<I>z||%oo@% (o =, r)p"ucbzni,m@% @
Zp(z)

<cnp" Y Nof@l2ag, ) <P Y ||a£<1>||21(3+/2(z))
z r,

B<m B<m

<c(n,r,m)p" IITqu’”iZ(Br(z»’

where 8,’3 means the S-th tangential derivative. By a similarity transformation, we find
cn,r,m) < r% So we prove (4.10) for i = 0 case. For i > 0 case, (4.10) is proved in a sim-

ilar way. O
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Lemma 44.Let » € (0,1], 1 €[0,2], 0 €R, 0 <p <r <L A €[0,00), z€Ly0),
d7 = ®|7,(0). Any solution O of (4.7) satisfies

/ (|1rwavq>|2+ |A1rwa+%,ld>|2) dy
Sp

SC|§|"/(|’]I‘on<I>|2+|A’H‘wa+%_]q>|2> dy
S/

b [ (ar VOIP +IAT o5 02 dy. @.11)
S,

where ¢ is independent of w, T, 0, p, r, A, z. Here (S,, ;) = (B (2), B, (2)) or (B, (2), B, (2)).

Proof. Suppose c is independent of w, 7,0, p,r, A,z. Let y = (y1, y) € R" and set ¥ (y1, y) =
®(y1, §) — D7(0, ). For any ¢ € Hy (B;(0)),

/ (Twszv; + Aszzwg> dy = — / (Tchva; + AT, @I;) dy. (412
BO) BO)

We find a ¢ € H'(B;}(z)) such that

{ —V (T, 2V¢) + ATyep =0 in B (2),

d=1vy on 3Bt (2). “.13)

By a similar argument as Theorem 6.2.4 [19] and Poincaré inequality, the solution of (4.13)
satisfies

/(|V¢|2+|A¢|2)dy5c|§|" /(|V¢|2+|A¢|2>dy forp<r.  (4.14)

B (2) B (2)

Take ¢ = (Y — ¢)XBr+(z) in (4.12) as well as multiply (4.13); by ¢ and employ integration by
parts to see

/(|V;|2+|A¢|2>dy5c / (VOrP + Ay,
B (2) Bt (2)
/(|V¢|2+|A¢|2)dysc / (VY + Ay P)dy.

B (2) Bt (2)

(4.15)

Equations (4.14)—(4.15) imply, forO < p <r,
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/ (VY + Ay P)dy < / (IVO* +1Ad1* +IVC* + 1AL )y
Bj (2) BY (2)

o
5c|7|” /<|vw|2+|Aw|2>dy+c / (VD7 + |ADZ)dy.

B (2) B (@)

So we obtain the estimate (4.11) in the upper domain. The estimate (4.11) in the lower domain is

proved in a similar way as above. O

The following is a Campanato-type estimate for the solution & of (4.7).

Lemma 4.5. Let » € (0,1], 1 €[0,2], 0 € [1 = 5,2, 0 < p <7 < 1 A €(0,00), and

2 € I53(0). Any solution ® of (4.7) satisfies, for 0 < e < 1,

[ (T 9OR +1AT g 0Pray

B,(2)
P n—
<c|Z"° /(|1rwavq>|2+|AT o131 PPy,
r w
By (2)

where c is independent of w, t,0, p,1, A\, z, €.

Proof. We first consider 0 < p <t < % case. By Lemma 4.3,

t
/(|3kq)I|2+|A‘1’I|2)dy§C0|;|n /(|Tw23kcb|2+|ATw2<D|2)dy,
B:(2) B, (2)

where k = {2, - -+, n} and ¢ is independent of w, 7, A, t, r, z. We introduce the notation

M, = cor e /(l’H‘sz)kCI>|2+|ATwz<I>|2)dy for0 <e< 1.

By (z)

417,00 €[l — %, 2], and Lemma 4.4 imply that

V.= [ (T VOP +IAT g 0P)y
Bp(z)
p
a2l [ (T VOP +IAT ooy 0P)y

B (2)

n—ese

+c1co / (IT,20:®|> 4 |AT, 2 ®|H)dy

B, (z)

ri’l

< Cl\?!nvl (t,z) + 1M ~¢,

(4.16)

4.17)
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where ¢ is independent of w, 7, 0, p, t,7, A, z,e. By Lemma 0.1 [4], we have
Vi za (|2 Vie 9 +Mp")  for0<p=izs, (4.18)
Ast / % we have, by (4.18),

Vitp.2) <cs| 2" Vi) for0<p<f 0<e<1. (4.19)
r

i 2 E)
An inequality of the form (4.19) for p € (%, r) is obvious. So we obtain (4.16). O

Letw >0, y=(y1,y), and

A ify; =0,

Pu(y) = {a)A ity <0 (4.20)
where A is a positive continuous function in B>(0). We consider the problem
—V - (P VO +Q)+ A*Py:® =G in By(0). 4.21)

Lemma 4.6. Let w € (0,1], 7 € [0,2], o € [1 — 5,2], A € (0,n), A € (0,00), £ € (0, 1),
0 < A € C(B2(0)). Any solution ® of (4.21) satisfies

[Por VO, AP o5 1 ®ll2ip,_0) < c(IPwe @Il 128, (0

HIPuo—2Qll 2., 0)) T ||Pwa—2G||LZ.(k72)+(32(o)))’ (4.22)
IAPur VO, AP oz @l 20,0y < ¢(IPur @Il 28509

FIAP2Q. P o5 1Q. P o 51Gllr24(8,0))

HlPuo—2Qll 28,0y + ”Pw"”G”H*l(B;(O))qul(32—(0)))» (4.23)

where c is a constant independent of w, T, o, A. See §2 for (A — 2) .
In case of . € (n — 2, n), (4.22)—(4.23) imply

[®] + 0’ [P] < the right hand side of (4.22), 4.24)

CO1 (B, 0)

A[DP]

COK(B_,(0)

+ 0’ A[D] < the right hand side of (4.23), 4.25)

CO1 (B, (0)) COR(B_,(0)

where @ =

—A_g“ and c is a constant independent of w, T, 5, A.

Proof. Step 1: Assume 0 < p <r < £ and z € Z;—,(0), and set

Az)  ifyeB/ (),

wh() ifye B (). (420

To(y) = {
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So T, is a piecewise constant function. Let v € H 1(B,(z)) be the weak solution of

4.27)

{ —V (T2 VY) + A’Tyry =0 in B, (2),
Yv=a on dB,(2).

By (4.3)3 of Lemma 4.1, the solution of (4.27) satisfies

[ (T U+ AT g w Py

Br(2)

<c / (ITur VO + AT .50y, (4.28)
B, (z)

where c is independent of w, 7,0, A, r,z. Let { = ® — . Then (4.21) and (4.27) imply

~V (T 2Ve + (P —T, )V +Q) + A’Tyr
=G 4 A*(Tyr — Por)® in B, (2),
=0 in 0B, (2).

By (4.3)2,3 of Lemma 4.1,

/ (ITor VEP +IAT o518 1)dy

Sc(nA*Pnim(B,(z)) / (|TwUV<I>|2+|ATwa+;1<1>|2>dy+M2rA), (4.29)
B (2)

where AP = (T — P)T; ', My = [|T,02Q|%,, sy T ITpr—2Gl% 5 0, (5,0 @nd € is

independent of w, 7, 0, A, r, z. By Lemma 4.5, the solution v of (4.27) satisfies, for 0 <e < 1
and0<p<r<¥,

/ (ITor Vi * + AT oi 519 P)dy
Bp(z)

0 n—
<c|2" / (Tar VYR +IAT o5y, (4.30)
B, (2)

where ¢ is independent of w, 7,0, A, p,r, z,e. Since A € C(B»(0)), (4.28)—(4.30) imply, for
O<exk1,0<p<r<¥,andr small,

Vo= [ (PaVOR+IAP, s 0Py
By(2)

0 in—
=<0 <| ~ ||AT7’||%°°(Br(z>>> Valr.2) + M 1,
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where cq is independent of w, 7,0, A, p,r, z,e. Let us fix e <n — A. By Lemma 0.1 [4], there
exists 6(co, n — e, A) such that if r is small so that ||N'P||Lw(3,(z)) <0, then

A
Va(p.2) y(\f\ Va(r.2) + My p*), (431)

for0 <e« 1land 0 < p <r < ¥, where c is independent of w, 7,0, A, p, 1, Z.
Since A € C(B,(0)), there is a r* < £/2 such that we have the inequality (4.31) for all z €
Zi—¢(0)and 0 < p < r* < £/2. That is,

1
swp [ (P VORHIAP o5 ®P)y
p<r¥*<t/2 p w

2€Z)_4(0) By (z)

< (IPur VO AP o5 1 @125 ) + M2). (4.32)
Now let r* be fixed.

Step 2: Suppose z € Z1_¢(0) x [-5, 51,0 < p < 5, Bp(2) NT1_¢(0) # 0. If y* € B,(z) N
T1-¢(0), we obtain, by (4.32),

1 2 2 2 2
[ Pvor AP0 < [P VOR HIAP g0l

By (z) Bap (y)

2
<c (”Pwa Vd>, prq+%—l <D”LZ(BI(())) + MZ) ’

where c is independent of w, 7, 0, A, p, z.

Suppose z € I*l_g*(O) X [—%, %*], 0<p <%, By(2)NZ1—¢(0) =0 orsuppose z € Z1¢(0) x
([=r*,r*I\[=5, 51,0 < p < 5, (4.32) holds by following the argument in Step 1.

Step 3: By the estimates for V,>(p, z) in Steps 1,2, we obtain the inequality (4.31) for all

*

z€ B1¢(0)and 0 < p < 5 < £. Consequence,

1
sup  — /(|7>wUV<I>|2+|A7> o131 ®P)dy
p<r¥j2 P @

z€B1_¢(0) By (2)

2
< (IPur VO AP 15 1l g, g +Ma)
Also note, by Lemma 4.1,
”owf VCD, APwUJF%,] CD||L2(B1(O)) < C”Paﬂ CD, Pwa—ZQ, Pwa—ZGHLZ(Bz(O)).

Which implies the inequality (4.22).
Step 4: To prove (4.23), we follow the above procedure in Step 1-Step 3. In the proof, (4.29)
in Step 1 is replaced by, based on (4.3)3 of Lemma 4.1,



6598 L.-M. Yeh / J. Differential Equations 266 (2019) 6580-6620
2 2 2
/ (AT VEI"+ AT o1 51817)dy
B, (z)

SC(”ATPH%OO(B,-(Z)) /(|ATanQD|2+|A2’]I‘w0+%,lq>|2)dy+M3 r)‘),
B (z)

- 2 i
where M3 = ||AT 2 Q, Tw"—%—‘G”L“(BI(O)) and c is independent of w, 7,0, A, r, z. Other

part of the proof is similar to the arguments above.
Step 5: If A € (n — 2, n), the estimates (4.24)—(4.25) follow from (4.22)—(4.23) and Morrey’s
Theorem [19]. O

Next we give a Holder estimate.
Lemma 4.7. Assume AI-A3, t €[0,2], 0 €[1 — %, 2], A € (0,n), A € (0, 00). Any solution of
V(B VO +Q +AEyr 1 ®=G inY (4.33)
satisfies

[Eye, 1 VO, AEwa+%71’ch”L2-)~(S) = C(“Ew“,l @llz2y)

+||Ewa—2’1Q||L2,x(y) + ||Ewa—2’1G||L2.(x72)+(y)), (4.34)
IAEw 1V®, AE o5 @lli2as) < c(IBor 1@l 20r)

HIAE o2, Q, Ewa—%—l’]@v ]Ewcf%—l’le 22 v)

+||Ew0’2,6Q||L2(Y) + ”Ew“’z,EG”H71(Yf)UH’l(Ym))’ (435)

where c is independent of w, t,0, A. Here Y,, CCS CCY.
In case of . € (n — 2, n), (4.34)—(4.35) imply

[Plcon@iy,) T+ @ [Pl oy, < the right hand side of (4.34), (4.36)
A[qD]COvM(S\—Y,,,) + waA[Cb]Co,,L(ﬁ) < the right hand side of (4.35), 4.37)

where @ = A%H and c is independent of w, T, 0, A. See (2.4) for E,, 1.

Proof. For any z € 3Y,,, there exists a small neighborhood A (z) of z and a C'%-mapping & so
that A/(z) can be mapped into a ball B (0) by A2. Moreover,

EN@NY)=B(0), EN@NYy) =B0), EWN(E@) NdYy) =T 0).

Under the mapping and the assumptions of Lemma 4.7, equation (4.33) is transformed into equa-
tion (4.21) as well as the assumptions of Lemma 4.6 are satisfied. So the estimates (4.34)—(4.37)
are obtained by Lemma 4.6 and partition of unity. O
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Remark 4.1. By modifying the arguments of Lemmas 4.6, 4.7, it is not difficult to see
Let w € (0, 1], 0 €[0,2], and A € (0, n). Any solution of

—V-(PpeVO®+Q)=G in By(0)
satisfies

1P V@I 25,0y = (1o Pll28y00)
HIPuo-2Qll 2580y + ”Pw"‘ansz(**zH(BZ(O)))’

where c is a constant independent of , o. See (4.20) for P,,.
Suppose A1-A3, o € [0, 2], A € (0, n). Any solution of

V- (E,p VO+Q) =G inY
satisfies

[Ewo 1 V| 1255 < C(||]Ew‘f,ld)||L2(y)
HIEpo—21Qll 22 vy + ||EwU72,1G||L2,<'A72)+(y))v (4.38)

where c is independent of w,o. Here Y,, CCS CC Y. In case of . € (n — 2, n),
[Pl cougiy,) + @ [Pleony,, < the right hand side of (4.38),
where p = )‘%ﬂ and c is independent of w, o. See (2.4) for E,, 1.
Now we begin to study the gradient Holder estimate.

Lemma 4.8. Let w € (0,1], 0 €[0,2], 0 <p <r < % z € 113(0). There is a constant c inde-
pendent of w, o, p, r, z such that any solution of

~V - (T,2V®) =0 in Bi(0) (4.39)
satisfies
P n+2
/ Typn|® = (@) 7,5, Pdy < ~|"" / Ty | D — (D) 11, I*dy.
Bp(Z) B, (2)

See (2.1) for (q))z,p,Twzo and (4.1) for T,
Proof. Let c denote a constant independent of w, o, p, r, z. We note
| Tt - @pnn Pays [ Taoie - e@Pdy

B, (2) B, (z)

<" Tur VO 75, -
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By a similar argument as (4.8), any solution of (4.39) satisfies
||Tw°v(b||%oo(30(z)) =c / Ta;ZU |D — (q))z,l,TmQU |2dy'
Bi(2)

Together with a scaling argument, we prove the lemma. 0O

+ .
Define Q*(y) = { g’ i ii i 8, where Q1, Q™ are constant vectors.

Corollary 4.1. Let w € (0,1], 0 €[0,2], 0 < p <r < % zZ € I% (0). Any solution of

—V - (T2V®+QF)=0 in B(0)

satisfies

/ T 2o |0k P — (kD). T, I*dy
Bp(Z)
P n+2
_c|7|"+ / T oo |5 — B P)z.rT o, P,
B (2)

(4.40)

where 05 means the partial derivative in the s-th direction and c is a constant independent of

w,o0,p,r,z. Here k € {2, -+, n} and see (4.1) for T,,.
Proof. 0;® is a solution of (4.39), so (4.40) follows from Lemma 4.8. O

Next is a gradient Holder estimate around the interfaces.

Lemma 4.9. Let o € (0,1], 0 €[0,2], 0 < A € C10(B(0), u e (0,1), L€ (0, 1), Qe
L2m2(BF0)) U L2"F24(B(0)), and G € L>"24=2(B(0)). There is a r* € (0, €/2) such

that any solution of

~V-(PaVO+Q) =G in Bi(0)

satisfies
sup % / P VO — (VO o 2 <cMy
p<rta<id P P20
z€B1_24(0) Bp(z)

=c <||Pwa Vo, PwaszIIiz,mzu—zwl )

1
+osup s / |73w02(@—(Q);_L,,,1)|2>,

r<r¥<t/2
2€B1_(0) B, (2)

4.41)
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where c is independent of w, o, £, p. Here I is the identity function. See (4.20) for P, and (2.2)

for (Q7F,  and (ch)jfppwzg.

Proof. Let r* € (0, %) be a number to be determined.
Step 1. For any fixed z € Z;_¢(0) and 0 < ¢ < r*, we define T,, as (4.26) and obtain ¥ (¢, -) by
solving

{ -V (Twsz(tv ) + (Q)i[’]) =0 in Bt(Z)s (442)

v, )=2 on 9B, (2),

where @ is a solution of (4.41). See the beginning of this section for Z;_,(0). If ¢(¢,-) =
Y, ) — &, (4.41) and (4.42) imply

{ -V. (’]I‘sz¢>(t, )4 (Ty2 = P2) VO + (Q)ﬁfu - Q) =-G in B (2),
¢t,)=0 on dB;(2).

By (4.3); of Lemma 4.1 and A € C'-%(B;(0)),

/ ITwr Vo (£, )* <c / |tPur VO + |Pyo—2(Q — (@7, PIF + [tP02G[?

B:(2) B, (2)

< 1" Pos VO, Por2Gl amiapa g,y + € / Pur2@Q— (@7, PP
B:(2)

< "My, (4.43)

where c is independent of w, o, z, 7.

Step 2. If z € Z1_¢(0) and 0 < p < r < r*, any solution of (4.42) with ¢t = r satisfies, by Corol-
lary 4.1,

/ T 2o [k (r, ) — OV (r, )z p. T, o P
B/)(Z)
C|§;"+2 / T 2o [k (r, ) — Ok (r, D)z, 12y,

B (z)

<

where c¢ is independent of w, o, p,r,z. Here k € {2,---,n}. By the result in Step 1 and
A e C1O(B1(0)), if r* is small, then

/ P oo |0k D — (akq))z,p,sza |2dy
B,(z2)

P n+2
;|”+ / Puo |0k ® — (D)., [Pdy + cr" My,

B, (Z)

<c|
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where c is independent of w, o, p,r, 7. For 0 < p <r < r*, by Lemma 0.1 [4],
p ) / Pue |6 ® — (D) ., I°dy
B,(z)

< cr—(rt2m / Popo |k ® = 0k P) 21, P s, Pdy + My, (4.44)

By (z)

where c is independent of w, o, p, 1, 2.
Step 3. For z € Z;_¢(0) and 0 < p < r*, any solution ¥ (p, -) of (4.42) with t = p satisfies, by
mean value theorem,

+
”ﬂ‘a)(I (al W(Py ) - (al w(p! .))Z,,O/ZsTwZa ) “ L2(Bp/2(z))
n$2 2
= cp 2 ||’]Iqa)"’V W(/% ) ||LOO(B;’/Z(Z))ULOQ(B;/Z(Z))
2
<cp 2 ||Twe Vot (o, ')||L°°(B;2(Z))UL°°(B;/2(Z))’ (4.45)

where k € {2, ---, n}. Since oY (p, ) — (akd>)z,p,qrw20 for k € {2, ---,n} is a solution of (4.39),
a similar argument as (4.8) gives

nt2
P2 I Twr V(. )l Lo (s pyur(s; 2

=c HTW (kv (p, ) — (3k‘1>)z,p,Tw2ﬂ) L2(B,(2))
I3

< ¢ (ITar kb 0. M 120 o + 1 Tor (6@ = OhP)zp o Mizisyc) . (446)

where ¢(p, ) =¥ (p, ) — ®. So, by A € C10(B{(0)), (4.43) with ¢ = p, and (4.45)—(4.46),

/ Ty 1010 — G19)E 5 P
By 2(2)

<c / To2rld1® = @ (p, DX, oy, P

Bp2(2)
sc [ Tolot o= G, Pre [ Torltoto P
B2 (2) By2(2)

¢ [ Tooln® =~ @®pn Pre [ T VoGP
Bp(z) Bp(Z)

<c / T |h® — @ @) o, P+ o™ My,

Bp (2)
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where c is independent of w, 0, z, p. For 0 < p <r < r*, by (4.44),

o
2o / Poo |1 ® = @19, p

B2 (2)
< om0 / Popo |k ® = 0k P)z, 1P 5, dy + cM, (4.47)
B, (2)
where c is independent of w, 0, z,r, p. Here k € {2, ---, n}.

Step 4. By (4.44) and (4.47), there is a r* < £/2 such that, for 0 < p < r*,

=20 / Poo VO — (VO > <My, (4.48)

Bp(z)

where c is independent of w, o, z, p. In the following argument, r* is fixed.
Step 5. Suppose z € Z1¢(0) x [-5, 5], 0 < p < 5, Bpy(2) NT1—¢(0) # 0. If z,. € By(2) N
T1-¢(0), then, by (4.48),

o~ (20 / szalvq’—(m)zi,p? 2a|2

B, (2)

< cl2p| "2 / Pl VO = (VO o, p > <My,

B (ze)

where c is independent of w, o, z, p.
r*

Suppose z € Z1—¢(0) x [, %], O<p< %, B,(z) NZ1_¢(0) =@ or suppose z € Z1_¢(0) x
([—r*, r*1\ [—%, %]), O<p< %, (4.48) holds by following the arguments in Steps 1-4 above.
So the lemma is proved. O

Remark 4.2. By Theorem 6.1.1 [19], Remark 4.1, Lemma 4.9, partition of unity, and a similar
argument as that in Lemma 4.7, we obtain,

IfAI-A3, Q € L2 T2(Y 1) U L2 H21(Y,,), G € L2"F24=2(Y), 0 €[0,2], and 1 € (0, 1),
any solution of

V- (E,VO+Q)=G inY
satisfies

[VCD]CO,M(S\T'”) + a)U[V(I)]CO_M(E) = C(”]Ew",lcb”Lz(Y)
+||]Ewa—2’1Q||£2,n+2u(xf)uﬁ2,n+2u(ym) + ||Ewn—2,1G||L2,n+2u—2(y)),

where c is independent of w, 0. Here Y,, CCS CC Y and see (2.4) for E,, 1.

Remark 4.2 for o = 0, Poincaré inequality, and energy method imply
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Corollary 4.2. If AI-A3, any solution of
V(2 V) =0 inY

satisfies ||V ®@| p=(s) < c||d>||L2(yf), where c is independent of w. Here Y,, CC S CC Y and see
(2.4) for E, 1.

Suppose w € (0, 1], ﬁy is a unit normal vector on 9Y,,, and &; (i =1, - - -, n) is the unit vector
in the i-th direction in R”. Let Xg?l €H [Ee, (R") satisfy

V(B (VXY +6)=0 inv,

/ X9, (ndy =0,
Yf

and let Xg)l € H;er((’)}) U H'(O),) satisfy

V- (Eo (VXS +€))=0 inYy,
Eo,1(VX() +&) By =0 ond¥y,
Xg) () =0 in Y,
[xh0ay=o.

Yy

Here H,le,(o}) = {1//|Olf| Ve H;E,(R")} and see (2.4) for E > ;. By Lax-Milgram Theo-
rem [11], Poincaré inequality, and energy method, the solution Xg)l for w € [0, 1] is uniquely

solvable and ||Xg)1 | 51 (yy < ¢, where c is a constant independent of @. By Theorem 6.30 [11]
and Remark 4.2,

IVXD o) <c.Yw)  forwe[0,1]. (4.49)

Define X, 1 = (X)), -+, X)) and X e (x) = €Xo,1(2) for @ € [0, 11, € € (0, 1]. Denote by

E, for w € [0,1] a n x n matrix function whose (k, i)-component is kag)l. By remark in
pages 17-19, 94-95 [13],

Ko /sz’l(l + Ew(¥))dy

7 for w € [0, 1] (4.50)
K:a)E/wa,ldy
Y
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are symmetric positive definite matrices depending only on w. Here I is the identity matrix. By
energy method and (4.49), it is not difficult to see, for w € [0, 1],

dil <K,, Ew <d,I where d1, d, are positive constants, (4.51)
K is a continuous function of w. ’

5. Proof of Lemma 3.1

We now derive the Holder estimate for the solution of (3.1). The estimate in the interior region
isin §§5.1, and the estimate around the boundary region is in §§5.2. In this section,

Notations in (2.4) are used. .D

{ Al-A4 and o € [2 — 7, 1] are assumed,
5.1. Interior estimate

For convenience we let B;(0) C Q.

Lemma 5.1. For any § > 0, there are 61,60, € (0, 1) (depending on §,K, Yy) with 61 < 922 and
there is a €y € (0, 1) (depending on 01, 6>, 8, K) such that if

—V-(K,2, V) + v’ Kur ¢ =G in B (0), (5.2)
and if
w € (0,1], v e (0,€0), 6 €[01,02], vy €(0,00),
ITLoloyllL2es 0 lopXay L2 o) <1, (5.3)
-1
€ ”G”LZ(B](O))’ ”Kw"—z,vG”LZ(B](O)) <1,
then

2
max{1, y2*} ][ ‘vaﬁlg; - (Hu¢|§z_‘;)0,0,1‘ dx <o,
By (0)

max{1, y?*} ][ P

Bo(0)NRy,

S (5:4)
& — (Mugloyos.i| dx <6,

where = n%. See (2.4) for K.\, §2 for the extension operator I1,, (2.1) for (HU¢|91%)0,9’1,
and 1 is the identity matrix. ’

Proof. Consider the following problem

—V - (KoV$)+1* Ko =0 in Bys(0), (5.5)
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where w € [0, 1], Ky, I/C\a, are defined in (4.50), and y € [0, 00). Any solution ¢ of (5.5) satisfies,
by Theorem 9.11 [11] and (4.51),

max(L, vl c1 55 < <16l 20my50-

where ¢ only depends on n, IC,,. If i satisfies u < [t < 1, Theorem 1.2 in page 70 [10] implies

max(1,y) f 16— @oasldx <% [ gax (5.6)
By (0) By/s5(0)
for sufficiently small 6 (depending on §, /C,,). Let us fix 61, 8, € (0, %) so that 0 < 922 and (5.6)
holds for any 6 € [0y, 6>].
Now we claim (5.4)1. If not, there is a sequence {w,, 6, y,, ¢, G} satisfying (5.2) and
U_)()’ wv_)w€[091]7 911_>9€[91992]7 )/v_>]/€[0,oo],
||Hv¢v|£2;||1‘2(31(0))7 vy Xap 28,0 < 1

1Ko, Goll2 0y = 1
lim |G -0, (5.7)
Lim |G Il 28, 0y

2
m v o— v 21
v 3 sYvs
max{1, y2#) ][ Moulay = (Mudulay o, | dx > 63
By, (0)

Let n € C(‘)’O(B](O)) be a bell-shaped function satisfying n € [0, 1] and n =1 in B4;5(0). We
first multiply (5.2) by ¢,n* and use integration by parts, then repeat the same process except
replacing ¢, 1> by y2¢un’ to get

max{l, y, } 1Ko, v Vy, ng/lyuyv(pv ||L2(B4/5(())) =c, (5.8)

where c is independent of v, y,,, ®,.
Suppose y = oo in (5.7)1. (5.8) implies )/1,2||Hv¢u |Q.‘;. ||L2(B4/5(0)) <c.So

2
0 <6 = Tim 67/ < lim max{1, "} ][ Mo, = Maduleyos,.i| dx =0,
Bo, (0)

which is impossible.
Suppose y < oo in (5.7)1. By (5.8), compactness principle and by tracing the proof of Theo-
rem 2.3 [2], we can extract a subsequence (same notation for subsequence) such that

Mogyloy — ¢ in L?(B45(0)) strongly,
K2 ,Vé, = K,V in L?(By/s(0)) weakly, (5.9)
VKo vdy = ¥?Ko¢  in L?(Ba5(0)) weakly.

See (4.50)—(4.51) for ICy, I/C\w Moreover, the ¢ in (5.9) satisfies (5.5). Equations (5.6)—(5.9) then
imply



L.-M. Yeh / J. Differential Equations 266 (2019) 6580-6620 6607

2
6% = lim 63/ < lim max{1, "'} ]1 [Muley, = Maduleyos,.| dx
v—0 v—0 f fom
By, (0)

= max({l1, y**} ][ ¢ — ($)o.0.11dx <O ]l ¢*dx.
By (0) By/5(0)

If 6, is small enough, then we get contradiction. Therefore we prove (5.4)1.
Set ¢ =07 (Ilvploy — (udley)oe,1) and p =677 (¢ — (Iludloy)o,e,1)- (5.2) implies, for
any ¥ € C°(v(Y + j)) with v(Yy,, + j) C Bg(0) N L)), and j € Z",

/ (p = OV - (KVy) - / (p— )y Ky

v(¥m+Jj) v(¥p+j)

- / w2Kvng+9—“(way2nv¢|Qvf—G)w. (5.10)

V(Y +j)

If + is the solution of

@’V - (KVY) =0 y?Ky = p — ¢ inv(¥y + ), 5.11)
=0 onv(dY,, + j), ’
then

=

Ccl .
j||w”L2(u(Y,,,+j)) = IVVIL20@,+j) < —3 min{v, Ho =Sz, +i)):

w2
where c1, ¢y are independent of v. (5.8), 0 +7 —2 >0, and (5.10)—(5.11) imply
@ |p — £ < c|minfv, o'~ Ty "} 0¥ |V |2

v(¥m+j) v(¥m+j)

+ 0—2/4‘]2(}‘00—4—1—2)/21—[”‘1)'9;

v(¥p+j)

24 |w"—2G|2)>. (5.12)
Summing (5.12) over all v(¥,, + j) C Bg(0) N ,, for j € Z"*, we obtain (5.4), if €y is small
enough. 0O

Lemma 5.2. For any § > 0, there are 61,0, € (0, 1) (depending on §,K, Yy) with 61 < 922 and
there is a €y > 0 (depending on 01, 02, 8, K) such that if

V- (K2 VO) + A*Kyr c®=G  in By (0), (5.13)

ifwe (0,1], € € (0,€0), 6 €[01,02], A € (0,00), 3 —u — % > 0, and if k satisfying 6/0k < €,
then
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max{1, [§*~T A]*) ]l \Hecbm;.—(ned>|g;.>o,9k,1]2dxseZk“ﬂ,
B, (0)

max{1, [0¥ A2} ][ P
By (0N,

) (5.14)
®— (necpmef)oﬁk,,‘ dx < %12

where p = 25, ] = 61_0(||n€c1>|9;_,w@XQ;nan(BI(O)) + K o2, Gl pnss o)) + H), 1 is the
identity matrix, and

~ 0 ifn=2
H=1IK —cper G| 2 ifn>3"
w 2 e Ln=2(B1(0))

Proof. Let ¢ denote a constant independent of w, €, A. Let n € C8°(B1(O)) be a bell-shaped
function satisfying 1 € [0, 1] and n = 1 in By4;5(0). We first multiply (5.13) by ®n? and use
integration by parts, then repeat the same process except replacing ®n? by A2®n? to see

max(1, A} Ko, VO, AK s @l 125,50 = cIKoe®. Ki/oeGll20p (519

Suppose n > 3 and s + 5 — 1 > 0, we multiply (5.13) by ® — I, ¢)|Q; as well as use integration
by parts, Sobolev imbedding Theorem [11], and (5.15) to see

S n < S S
1Ko ’ECDHL”ZTZ(B;;/S(O)) <clKys e P, Ky ,5V¢||L2(34/5(0))

< C”Kw’e CD, Kl/w,e G, Kea)“_z,éG”Lz(B] 0))+ (516)

Suppose n > 3 and g = ,127"2, we multiply (5.13) by |[A2®|972A%2dn? and use integration by
parts and (5.16) fors =2 — (1 — 1/q) to see

IK o A?®|La(s,50) < K 1) G Kopra-vo «PliLas o) = ceol.

wé N3
So we obtain, by Theorem 2.1 [1],

A2||H6<D|Q€_” o <cepJ if n > 3. (5.17)
F T Ln=2 (By;s5(0))

Proof of this lemma is done by induction. For k = 1, we define ¢ = %, G= % y = A. Then
they satisfy (5.2) and (5.3) with v = €. By Lemma 5.1,

2
max{1, y "} ][ ‘Hﬂblg'jz —(Hu¢>|9;)0,9,1‘ dx <o,
By (0)

max{1, >} ][ i

By ()N,

2
& — (Mloy)oo| dx <6

This implies (5.14) for k = 1. Suppose (5.14) holds for some k satisfying /6% < ey, we define
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¢(0) = J7107F(DO%x) — (TePlgs ) v 1)
Gx) = Jlgk@=1) (G(Qkx) - Aszr’E/ek(He(bm;)o,&k,l) in B, (0).
y =6kA

Then
—V (K20t VP) + Ky ot =G in By (0).
By (5.15) and (5.17),

A0 M@l ge Il 25, 5(0)) < 0 e0) ifn =2,

2 n n
ATMe®@las oot 1 =) A2k 0= T, Dlge | 2 <c0F-Deo) ifn>3.
S L7=2 (By5(0))

Which implies, by induction, small 6,, (5.1), and 3 — . — % > 0,

Y € (0, 00),
IMTLe/ox bl jorll 2By 01> l0bXag ol L2y 0)) =14

—1
”EO G"L”+5(Bl(0))’ ||Ka)‘7_2,6/0kG||L”+‘S(Bl(0)) S l

By Lemma 5.1 (take v = €/6%), we obtain

2
max{1, y*} ][ ‘He/ekff’szf/gk - (ne/9k¢|gff/9k)0,9,1‘ dx <%,
By (0)

max{1, >} ][ P

By (0)NQ, /6%

2
¢— (H6/0k¢|9;/9k)0,0,1‘ dx <6

Note, by Theorem 2.1 [1],
2
][ )He/ek(p'Q;/Gk - (H€/9k¢|g;/9k)0,0,1) dx
By (0)
[Me@lay — (Melay o[
J2 02ku

X,

Byi+1(0)

2
][ ‘¢_(He/9k¢|§z€f/9k)0,0,l‘ dx
B (0)N2S, /6%
2
| @ — (Me®lge o gr+1,1 |

= 72 g2k *

Bjq1 ()N,

Equations (5.18)—(5.19) imply the inequality (5.14) for k + 1 case. 0O

6609

(5.18)

(5.19)
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Lemma 5.3. For any § > 0, there is a €, € (0, 1) (depending on §,K, Yr) such that if w € (0, 1],
€€ (0,e4), Ae(0,00), and3 — u — % > 0, then any solution of (5.13) satisfies

2
max{1, A*/ }([¢]Co,ﬂ/z(m) + a)g[@]co,ﬂ/z(m)) <cJ, (5.20)
where c is a constant independent of w, €, A. See Lemma 5.2 for ., J.

Proof. Let 61, 0>, €9 be same as in Lemma 5.2, define €, = €p6,/2, and let € < €,. Denote by ¢
a constant independent of w, €, A. From (5.15) and (5.17) in the proof of Lemma 5.2, we know

cA26_1||H€¢|Q7||Lz(3é(0)) <ce legd ifn=2,
X 5

AZ(Te Pl )y, 2 = (5.21)

n .
A2 e Do || an <ce'"3eyd ifn>3.
f L7=2 (B4 (0))
5

Because of 6] < 922, for any r € [€/€g, 02], there are 6 € [01, 6] and k € N satisfying r = oK.
Lemma 5.2 implies, for any r € [€/€g, 6],

2
max{l, |rA|2M} ][ ‘Hecbm; — (H€¢|Qj-)0,r,1 dx < rzujz’

B, (0)

max{1, [rA|**} ][ P
B, (0)N,

) (5.22)
dx <r*J2,.

P — (Hecblsz;)o,r,l

Now we define

¢ () =T~ (D(ex) — (e Pl )o,2¢/eo.1)
Gx) =T~ 7H(Gex) — AMKyr 1 () (e @l )o,2¢/eq. 1) 11 B2/eo (0)-
y =€l

Then
V- (K2 VO + 1 Kur 1 ¢ =G in By, (0).

Take r = 2 in (5.22) and employ (5.21) to get

€0

y €(0,00),
||Kw0,1¢”L2(Bz/€0(0)) + ”Ka)”—z,]G”L"Jr‘S(Bz/EO(O)) E C.

By Lemma 4.7 and Theorem 2.2 in page 296 [14],
max{l, V}([¢]C0.M(W) + o’ [¢]CO’”(W>) <c. (5.23)

(5.23) implies that (5.22); also holds for r < €/€p. So (5.22)1 holds for r < 8,. Which implies

2
max{1, |[rA|*} ][ ‘neq>|gef—(n€q>|gef)o,,,, dx <rj? forr <6,. (5.24)

B, (0)
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Next we shift the origin of the coordinate system to any point z € By,2(0) and repeat above
argument to see that (5.24) with 0 replaced by any z € B1,2(0) also holds for r € (0, 62). Together
with Theorem 1.2 in page 70 [10], we obtain the Holder estimate of ITc® in Bj/»(0). Holder
estimate of ® in B1,2(0) N Q_fn is from (5.23). So (5.20) is proved. O

Remark 5.1. Let 8, €,, w, 7,0, A be same as in Lemma 5.3. By Lemma 4.7, we know that if
€ € [€e4, 1], any solution of (5.13) satisfies (5.20). Together with Lemma 5.3, we know that any
solution of (5.13) satisfies (5.20) if € € (0, 1].

5.2. Boundary estimate

Assume 0 € 9Q2. By Al, there exists a C10 function ¥ : R"~! — R such that

{ VO =0, (5.25)

B1(0)NQ/s =B (0)N{(y1,y) e R"| sy; > ¥(sy)} foranys € (0, 1].
Define B1(0) N Q2/s = B1(0)N{(y1,y) €eR"| y; >0} fors=0.

Lemma 5.4. For any 8 > 0, there are 61,6, € (0, 1) (depending on 8,K, Yy, 0Q) satisfying
671 < §22 and there is a €y > 0 (depending on él, 9~2, 8, K, 0R2) satisfying €y < € (€o is that in
Lemma 5.1) such that if

{ VK es V) + 7 Kores =G in Bi(0) N /s, (5.26)

¢=0 on B1(0) No2/s,

and if

w,s€(0,1], £€(0,&), 0 €[01,0,], y € (0, 00),
ITe/s@las /sl L2(m, 00> NodXeg slli2s o) <1,

1
Gl 28, 0ne/s): 1Kor—2.esGllL2B, 000/ =1

then

2
max(, ) f [ Megdlay | ar <67
By (0)NQs
max{l’ yzll’} a)20’ de < 92/1,,

By (O)NQ, /s

(5.27)

where @ = n% See (2.4) for Ky e s-

Proof. Consider the following problem

{ —V - (KuV$) + 7o ¢ =0 in Bays(0) N /1, (5.28)

¢»=0 on By5(0) N 082/t
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where 1, w € [0, 1], y € [0, 00), and /), I/C\w are defined in (4.50). Any solution ¢ of (5.28)
satisfies, by Theorem 9.13 [11] and (4.51),

max{L, y ol o1z mnarm = Nl s0ne/0 (5.29)

where ¢ is a constant depending on K, 32 but independent of ¢. If [ satisfies u < [t < 1,
by (5.29),

max{1, y2} ][ P2dx < ][ $2dx (5.30)

By (0)NS/t Byys(0)NQ/1

for sufficiently small  (depending on 8, K,, 32). Fix 61, 6, € (0, 3) such that §; < 63 and (5.30)
holds for any 6 € [6;, 6].
We claim (5.27). If not, there is a sequence {we, Sc, O, Ve, Pc, G} satisfying (5.26) and

we,se > 0,5 €[0,1], €¢€/se >0, O —0€lbr, 0], ye—yel0, 00l
||H6/A€¢e|52€ /sE 228, 0 l@ede X /s llL2(B,0)) = 1,

IK o2 5. Gell 28, 0)neys0) = 15
hm Ge ||L2(Bl(0)ﬂQ/Ye) =0, o

2
max(1, y2*} ][ ‘He/sefﬁekz}/se dx > 02",
Bs, (0)N2/s¢

Let n € C3°(B1(0)) be a bell-shaped function satisfying n € [0, 1] and n = 1 in B4/5(0). We mul-
tiply (5. 26) by ¢€r7 and use integration by parts, then repeat the same process except replacing
$en® by y2den’ to see

max{l, ye} |1 Ko, e,5. Ve, VEK(»E/Z,G,SG(PG”L2(34/5(0)ﬁ9/5e) =c, (5.32)

where c is a constant independent of €, w, ye, Se.
Suppose y = oo in (5.31);. (5.32) implies ye ||H6/YE¢€|QE /se ||Lz(B4/5(0)mQ/és) <c.So

2
0<% = lim 02 < limmax(1.y2)  f |ndelay o] dx =0,
e—0
B, (0)NS/s5¢

which is impossible.
Suppose y < oo in (5.31);. By (5.32), compactness principle and by tracing the proof of Theo-
rem 2.3 [2], we can extract a subsequence (same notation for subsequence) such that

Me/sePels js = ¢ in L2(B45(0) N 2/s) strongly,
Koz .5 v¢€ —~ KoV in L?(B4/5(0) N Q/s) weakly, (5.33)
V2Kog escbe = 7 Kod  in L2(Bays5(0) N 2/s) weakly.
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See (4.50)—(4.51) for IC,,, I/C\a,. In (5.33), function ¢ satisfies (5.28) with t = s. By (5.30)—(5.31)
and (5.33), we conclude

o = m% 62+ < nn% max{1, y2*} ][ Me/s. pe |2 /s. 2dx
€—> €—> p
By, (0)NL2/s¢
= max{l, y?*} ][ d2dx < 0% ][ $dx. (5.34)
By (0)NQ/s Ba/s(0)NQ/s

But (5.34) is impossible if we take 6, small enough. Therefore, there is a €y such that (5.27)
holds for €/s < €. Clearly, €y can be chosen so that €y < €g (see Lemma 5.1 for €p). Proof of
(5.27)7 is similar to the proof of (5.4),, so we skip it. O

Lemma 5.5. For any § > 0, there are él,éz € (0,1) (depending on 8,K, Yy, 0R2) satisfying
6, < 522 and there is a €y > 0 (depending on 61,6,,8,K,0%Q) satisfying €y < €q (€o is that in
Lemma 5.2) such that if

—V - (K2 VP)+ A*Kyr e =G in B1(0) N, (5.35)
d=0 on B1(0) N 92,
and if o € (0, 1], € € (0, &), 6 € [61, 2], A € (0,00), and k satisfying €/6* < &, then
2 ~

max{1, |0¥~1 A2 ][ ‘Hecblg; dx <67,

B, (0)NQ

ok (0) ) (5.36)

max{1, [0~ A%} @ O2dx < %12,

B (NS,

where j = %(|lned>|g2;, a)(DXan ||L2(Bl(0)) + ||Kw0*2,eG||L"+5(Bl(0)052)) and n= naﬂ

Proof. The proof is similar to that of Lemma 5.2 and is done by induction on k. For k =1,
(5.36) is deduced from Lemma 5.4 with s = 1. Suppose (5.36) holds for some k with /6% < &,
we define

d(x)=J 1o krd 0k x)
G(x) = J~19*¥C-m Gk x) in B1(0) N /6*.
y = kA

Then

{ —V (K20t VP) + ¥ Ky c ot =G in B1(0) N /6%,
$»=0 on B1(0) N 9Q/6k.

Following the argument of Lemma 5.2 and employing Lemma 5.4 with s = 6%, we obtain (5.36)
with k + 1 in place of k. O
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Lemma 5.6. For any & > 0, there is a €, € (0, 1) (depending on §,K, Yy, 0Q2) such that if o €
(0,1], e € (0, €], A € (0,00), and 3 — u — % > 0, then any solution of (5.35) satisfies

. 5
max{1, A" }([¢]Co,ﬂ/4(m) + wa[q’]co,m(m)) <cls, (5.37)

where c is independent of w, €, A. See Lemma 5.5 for . Jy is defined as

1 ~
J* = g—(||1'[6¢>|9;, a)qDXan ||L2(B|(O)) + ”Ka)"_z,eG||L”+‘S(Bl(0)ﬂQ) + H*),
k

0 ifn=2

H=VIK e Gl ifn>3-
€ Ln- Z(B](O)DQ)

Proof. Let 51, 52, €o, J be same as in Lemma 5.5, set €, = min{€0§2/3, €} where €, is the one
in Lemma 5.3, and let € < €,. Denote by ¢ a constant independent of w, €, A. Arguing as (5.15)
and (5.17) in the proof of Lemma 5.2, we see

A2”H q>|Q€ ||L2(B4/5(0)ﬂ§2) < Cg*j* ifn > 2,

AT, <D|Q€ [ <céJ, ifn>3.
L7 (ByysnQ)

(5.38)

For any x € B§2/3(0) N Q, define &(x) = |x — x0| Where xp € 0Q2 satisfying |x — xo| =
minyepq [x — y|. Then we have either case (1) §(x) > 3= S or case 2)éEx) < 360
For case (1). Because of 01 < 92, for any r € [e/eo, 92], there are 6 € [91, 92] and k e N

satisfying r = 6¥. Since &(x) € [360 %1, by Lemma 5.5,
2 2 2u 72
max{1, [r A2} Medlos ["dy <r2J
By (x0)NQ
max{l, [r A} w? ®3dy <r?J?

B, (x0)NS,

forr e [%é(x), 52].

So,forse[é(zx),%z]
2 2 2u 72
max{1, |sA >} Me®los — (Me®los)v,pr| dy < es™ 72,
Bs ()NQ
2 ~
max(1,sAP) 0?0 = (Me@lay )y < es? 2,

By ()N,

(5.39)

where [ is the identity. Next we shift the coordinate system such that x is located at the origin as
well as define
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P =T e 00 (PEY) — (Me®lgg riin.r)

G() =T 74 (GEY) — AKur /e () (Me®los o) M 1
y =£A

Then
—V K2 /ey V) + ¥ Kot ey =G in Bi(x). (5.40)
Take s = &(x) < 1 in (5.39) and use (5.38) to see
y € (0, 00),

ITe /vy Blas ey » @B X, 7600 I L2(By () + IKar 2,600 Gl Lt 5y () = €
<c when n > 3.

1K —cos2 Gl 2n
o 2 Le/E(x) Ln=2(B(x))

Apply Lemma 5.3 to (5.40) to obtain
2
max{1, y*/ }([¢]Co,u/2(lm) +o° [¢]C°-M/2(W)) <c. (5.41)

Which implies

2 ~
max{1, |sA[*} ][ ‘ngq>|g;—(n€c1>|gj_)x,s,, dy <cshJ? fors <£2. (5.42)
By (x)

For case (2). Because of 51 < 522, for any r € [€/é€y, 52], there are 6 € [51, 9~2] and k e N
satisfying r = 9¥. By Lemma 5.5,

2 ~
dy < cr2t j?

max(1, |rA]*) ][ Me®lo;
B, Gone

max{l, [rA|?*} ][ 0 ®*dy <cr?tJj?

B, (x0)N&2,

for r € [¢/&y, 62]. (5.43)

This implies, for s € [%, &,

2 ~
max{1, |sA[*) ][ Me®los — (Me®los)r,pr| dy < es™ 72,
B (x)NK2
max{1, |sA|**} ][ i
B, (x)N,

2 . (5.44)
® — (Me@lgs v, | dy < csJ2.

Again we shift the coordinate system such that x is located at the origin. Define



6616 L.-M. Yeh / J. Differential Equations 266 (2019) 6580-6620

p(y) = J—le—“(cwey) — (Me®lge )x.e/a.1)

G(y) =J;'eH(Gey) - Aszr“(y)(n Ploc ) e/z0,1) in B 1 (1) N/e.
y=€A
op=—J e “(Hecblssz)x,e/eo,l

Then these functions satisfy

=V (K2 V) + yszr,“ ¢=G inB 1 (x) N Q/e,
{¢=¢b OnBl(x)ﬂaﬂ/G

By (5.43)1, ¢ is a constant independent of w, €, A. Take s = é in (5.44) and use (5.38) to see

y € (0, 00),
||Kw“,€,€¢”LZ(Bl/gO(X)mQ/G) + ”K(u”’z,e,eG“L"+5(BI/EO(X)OQ/€>
Flepllwines s, wnese = ¢

By Lemma 4.7,
max{1, ¥ }([¢] 0. (B 7y GO 7€) + @7 [¢] o, ”(W)) (5.45)

(5.45) imply (5.44)1 holds for s < 2—

The Holder estimate of 1, ® follows from (5.39), (5 42), (5.44)1, (5.45), and Theorem 1.2
in page 70 [10]. The Holder estimate of ® in By/2(0) N an is from (5.41) and (5.45). O

Remark 5.2. Let §, €,, , 7,0, A be same as in Lemma 5.6. By Lemma 4.7, we know that if
€ € [e4, 1], any solution of (5.35) satisfies (5.37). Together with Lemma 5.6, any solution of
(5.35) satisfies (5.37) if € € (0, 1].

Lemma 3.1 follows from partition of unity, Remark 5.1, and Remark 5.2.

Finally we give another local estimate for elliptic equations. Its proof is done by employing
Remark 4.1 as well as by modifying the arguments of Lemma 3.10 [20] and Lemmas 5.1-5.6.
The proof is skipped.

Lemma 5.7. Under AI-A3, there is a constant c (independent of w, €) such that any solution of

—V (K2 VP)=0 inBi(0)NQ
d=0 on B1(0) N3

satisfies

[®leow B mna = 1K Pl one)  forany we O, 1).

In particular, if B1(0) C Q, then

IV®IlLoo(Bn0)) = cliKy2 e Pliz2ea, 0))-
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6. Proof of Lemma 3.3

This is done by modifying the argument of Theorem 2.1 [20], so we only sketch its proof.
A1-A3 are assumed and notations in (2.4) are used. By energy method, Poincaré inequality, and
duality argument, we see

Lemma 6.1. Let o € [0, 2] and Q € L*(R2). The solution of

{—V (K2 VO +0)=0 inQ
d=0 on 02

satisfies
1Kwo e VORI 120y < cliK o2  Oll12(0)-
where c is a constant independent of w, €, 0.
Next we need the notation in (5.25).

Lemma 6.2. Let 0 € [0,2], yo € @, and r € (0,1]. There is a constant ¢ independent of
w, €, 0, Yo, r such that any solution of

V- (K2 V®) =0 in Bi(yo) N ©.1)
d=0 on B1(yg) N o2 )
satisfies
1/2
| (1) — P(y)| <clt — yl“rl_o‘fz,y,a( ][ Koo, VOI* X dZ) ) (6.2)

By (y0)

wheret,y € By2(yo) N, a € (0, 1), and F; y o = max{Ky o (1), Ko e (V)}.

Proof. For case yo =0 and ¢/r > 1. If B1(0) C /r, we define ¢ (z) = ®(rz) +d ford € R.
Then (6.1) implies

V- (Ko, V¥) =0  in B(0).

See (2.4) for K Theorem 9.11 [11], Corollary 4.2, Lemma 4.9, and Remark 4.1 imply

w?,e,r-
Kwo e.r Vi ||L°°(B]/4(0)) <clKeo er¥ ”LZ(BI(())) )

where c is independent of w, €, r, 0. Since d is any number, it is easy to see

”Ka)“,e,rvd/ ||L°°(B1/4(0)) = C”Ka)",é,rvw ||L2(B2(0))» (6.3)
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where c is independent of w, €,r, 0. If 0 € 92/r, we define ¥ (z) = ®(rz). Then

V- K,2e,V¥)=0 in B(0)NQ/r,
{w:o ' in B»(0) N8/ r.
Poincaré inequality and Theorem 9.11 [11] imply that (6.3) also holds true.
For case yp =0 and €¢/r < 1. (6.2) is a direct consequence of Lemma 5.7 and Poincaré
inequality.
For case yy # 0. (6.2) can be obtained by shifting the coordinate system such that yg is the
origin of the coordinate system and then repeating the above argument. O

Next we have local L? gradient estimate for elliptic equations.

Lemma 6.3. Let 0 € [0,2], yo € 2, and r € (0,1]. There is a constant c¢ independent of
w, €, 0, Yo, 1 such that any solution of

{ =V (K2 V®)=0 in By (yo) N2

d=0 on By (yg) N 02
satisfies
1/p 1/2
( ][ Ko VOIP Xg dz> < c< ][ Ko VO Xo dz> , (6.4)
By j2(y0) Bor(y0)

where p € (2, 00).
Proof. Let c denote a constant independent of w, €, r, 0, yo.

For B, (yg) C 2 case. By translation, we assume yg = 0 € Q. Let d € R and ¥ (z) =
®(rz) +d. Then

—V - (K2, V¥) =0 in By(0).

Ife/r <1 (resp.€/r > 1), Lemma 5.7 (resp. Theorem 9.11 [11], Corollary 4.2, Lemma 4.9, and
Remark 4.1) implies

1Kwo,e.r VU Lr (B 200 < Koo e U llL28, 0 for p € (2, 00).
Since d is arbitrary, by Poincaré inequality.
||Kw<’,e,rV1/f||LP(Bl/2(0)) = C||Ka)",e,rV1/f||L2(Bz(o)) for p € (2, 00),
which implies (6.4).

For yp € 0Q2 case. If y € B,/2(yo) N £2, let £(y) denote the distance from y to the boundary
By, (yo) N dS2. Move y to 0 by translation and define ¥ (z) = ®(£(y)z) — ©(y). Then ¢ satisfies

V- (KypesyV¥) =0  inBi(y) (or in By (0)).
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If €/£(y) <1 (resp. €/&(y) > 1), Lemma 5.7 (resp. Theorem 9.13 [11] and definition of €2))
implies

IV 1(0) < C||Kw2,e,g(y)1ﬁ||L2(31/2(y))- (6.5)

By (6.5) and Lemma 6.2,

Kw"e 12
Kwa,e(y)IVCDI(y)ScJ( ][ Kw4,e(t)|<1>(t)—<1>(y)|2dt)

§(y)
Be(y)/2(¥)
fl-a 1/2 12
=c < ][ |t_y|2udt> ( ][ |Kw",evq)|2XQdZ)
()
Be(y)/2(¥) B (y0)
l-a 1/2
SC‘— ( ][ Koo, VO Xo dz) : (6.6)
§(y)

By (yo)

Let us take o € (0, 1) such that (1 —a)p < 1. It is easy to see that (6.4) follows from (5.25)
and (6.6). O

Lemma 3.3 is proved by following the argument in pages 73-74 [20] as well as by employing
Theorem 4.1 [20] and Lemmas 6.1, 6.3.
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