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1. Introduction

For m > 3 odd, we consider the following initial value problem

1 - 1
deu+ 9Y'u + Eax(uz) +(1-92) "o |:u2 + 5(axu)z] =0, (11)
ux,0)=px), teR, xeR. (1.2)

Note that Eq. (1.1) without the dispersive term d7'u is the nonlocal form of the well-known Camassa-
Holm equation, which was derived by Camassa and Holm [5] as a model of water waves (see also
Fuchssteiner and Fokas [7]).
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Himonas and Misiotek show in [9] that the periodic initial value problem for Eq. (1.1) is locally
well posed for sufficiently small initial data in the Sobolev space H*(T), s > (5 — m)/4, by modifying
techniques developed by Bourgain (see [1]) to prove well posedness for the periodic initial value
problem for the KdV equation for initial data in HS(T), s > 0. Large data for the case m =3 was
considered in [10]. Kenig, Ponce, and Vega (see [11,12]) further developed the techniques introduced
by Bourgain, proving local well posedness for the KdV equation for initial data in H*(T), s > —1/2,
in the periodic case, and in H*(R), s > —3/4, in the non-periodic case. Each motivated by the work
of Kenig, Ponce, and Vega, Byers shows in [3] that the non-periodic initial value problem for Eq. (1.1)
with m =3 is locally well posed in H*(R) for s > 1/4, and Gorsky shows in [8] local well posedness
of the corresponding periodic problem in H*(T) for s > 1/2. All of the aforementioned works make
use of so-called Bourgain spaces. In this work, we will use the following Bourgain spaces.

Definition 1.1. For any s, b € R, X5 denotes the completion of the Schwartz space S(R?) with respect
to the norm

1/2
|||u|||s,b:(/f(1+\5|)25(1+|r—sml)z"lﬁ(s,nlzdsdr) .
R R

Next, we state the main result of this paper.

m?—3m+1
m2—3m+-2

that the initial value problem (1.1)-(1.2) has a unique local solution in the space Xsb,

Theorem 1.2. Let m > 3 be an odd integer. If s > % . and ¢ € H*(R), then there exists b > % such

Note that by the nature of our proof of Theorem 1.2 (a contraction mapping argument), we also
will have Lipschitz dependence on initial data, thus establishing local well posedness (stronger than

in the sense of Hadamard) for the initial value problem (1.1)~(1.2) in H*(R), s > 1 - % In the

case m = 3, Wang and Cui have shown in [14] that the initial value problem (1.1)-(1.2) is globally well
posed in H’(R), s > WT”O, using the I-method of Colliander, Keel, Staffilani, Takaoka, and Tao (see,
e.g., [6]); it is of interest to see what global well posedness results can be shown using this method
for m > 3 odd.

It is not known whether or not the initial value problem (1.1)-(1.2) is locally well posed for any

2 ) ) o ) .
s< 1 %m Byers showed in [3] that, in the case m = 3, the bilinear estimate upon which the
proof of Theorem 1.2 relies does not hold for any s < 1/4; it remains to be seen whether or not the
. ) . 2
bilinear estimate fails for s < § - Z=3m+] when m > 3 odd.
m*—3m+2

Finally, for some results concerning the periodic and non-periodic initial value problems for equa-
tions of the form

dru +8,'(nu+F(u,8xu,...,8,’("_1u) =0

with certain restrictions on F, see [2] and [13]. Note that Eq. (1.1) does not fall into the classes of
equations addressed in [2] and [13] due to its nonlocal nonlinearity. In fact, studying the interaction
between dispersion and nonlocal nonlinearities has been part of our motivation for this work.

This paper is structured as follows. In Section 2, we prove Theorem 1.2 by reformulating the initial
value problem (1.1)-(1.2) as an integral equation and then showing that this integral equation defines
a contraction on one of the X*? spaces using the corresponding bilinear estimate. Finally, in Section 3
we prove this bilinear estimate using techniques from harmonic analysis.

2. Proof of Theorem 1.2

m®—3m+1 1

7 3me2’ 7). Specifically,

In this section, we establish Theorem 1.2, focusing on the case of s € (% .
we prove the following.
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. 2_ .
Theorem 2.1. Let m > 3 be an odd integer. If s € (% . %, %), then there exist b > % and r > 0 such that

the initial value problem (1.1)-(1.2) has a unique local solution in the ball B(0, r) C X5b. The value of r can be
made arbitrarily large by seeking a solution with a sufficiently small existence time.

We first reformulate the initial value problem (1.1)-(1.2) as an integral equation. Then, we derive
the estimate that will be used to show that this integral equation defines a contraction on one of the
X5b spaces. Using that estimate we prove Lemma 2.6, thereby completing the proof of Theorem 1.2.

Integral equation. Defining

w= %ax(uz) +(1-92) "o [uz + %(axu)2:|, (2.1)

the initial value problem (1.1)-(1.2) can be recast as the integral equation
t
u(x, t)=W(t)<p(x)—/W(t—t’)w(x, tdt', (2.2)
0

where W (D@ (x) := [, §(§)e!€*+£"D dg. Notice that (2.2) can be written in the form

u(x,t) = / @(E)ei@)‘_‘—smt) dé + l// ﬁ[ei(éx‘*”) _ ei(§x+§mt)]w(€__’ T)dédr. (2.3)
R R R

Also note that

v (642 Voviens ot gieaa
wE, )= 82 <§ + 1+$2)u *Uu,v)+ 8§71 182 Oxtl * OxU(E, T). (2.4)

A priori estimate. In the sequel, let ¥ =y () € Cg°(—1,1) be a cut-off function with 0 < ¢ <1 and
Yt =1 for |t] < 1/2.

Proposition 2.2. Let T be the map defined by
t
Tulx,t) =y OW®)eKx) — I/I(t)/W(t —thw(x, t")dt',
0

where
_l 2 a2\l 2 1 2
W‘za“(” )+ (1-07) ox|u +5@aw? |

Givense(%-%m,%),ifbe(%,%—f—ﬂ],b’e[%—ﬁ,%),andb—f—b’g1,Whereﬁ:/3(s) is as in

Theorem 3.1, then there is a c > 0 such that
ITullsp < C(IIIUIII?,br + ll@llus) (2.5)
forallu e X5Y'.

The proof of Proposition 2.2 relies on the bilinear estimate (Theorem 3.1) and on the following
proposition:
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Proposition 2.3. If b > 1/2, then there exists ¢ > 0 such that

< cfiwlls,p—1-
s,b

t
Ay Tr—
0

The proof of Proposition 2.3 in the case m = 3 appears in [4]. The general case can be handled in
the same fashion.

Proof of Proposition 2.2. For the estimate on the X5?-norm of the linear term

F@ D=y OW D@ =¥ () / P(E)eExFE"D g,
R

note that fX(£,t) =y ()@(€)e"t, thus
Fe. 1 =96 / PO dt = Ge)P (T — £M).
R

Therefore,

Ivowopwll, = [ [+ 0+ —e")” @@ d(r - P dear
R R
— [+ P [(-+]r—en)* |7 - Paras
R R

=cyllolls.

For the Duhamel term, we apply the bilinear estimate (Theorem 3.1) and Proposition 2.3, yielding

2
S Mwlllsp—1 < Mulls s

t
H‘t/f(t)/ W(t—-1t)wkx, t)dt
0

s,b
which completes the proof of Proposition 2.2. O
Since b’ < b, Proposition 2.2 implies that
ITulls.s < c(lullZ, + l@lHs) (2.6)

for all u € X5, Using estimate (2.6), one can show that there exists an r > 0 such that, if loll s
is sufficiently small, then T is a contraction on the closed ball B(0,r) C X*P. Then an application
of the contraction mapping theorem almost establishes Theorem 2.1 for small initial data. Note that
uniqueness of the fixed point of T is only established on the ball B(0,r). To complete the proof of
the theorem, that is, to remove the restriction on the size of the initial data and to show uniqueness
on balls of arbitrarily large radii, we will appropriately shrink the existence time of the solutions that
we seek. To this end, for 0 < § < 1, define
t
Yst) =y (3)
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and define

Tsu = ysT(Ysu). (2.7)

To obtain the desired estimate on [|Tsullsp, we will use the following two lemmas. (See [4] for
proofs.)

Lemma 2.4. Ifs € R and b > 1/2, then there is a ¢ > 0 such that for any u € X5P and 6 =0(t) € HY(R)
lloullls.p < cllOll o llells,p-

Lemma 2.5. Let b > % 0 < b’ < bands e R. Then there exists ¢ > 0 such that foranyu € XSb and 0 =0(t) €
HP(R)

1-b'/b b’ /b
Plon®/

loulls,p < clléll o Mulls,b-

By (2.5) and the above two lemmas,

ITstlls < sl || T @Wsw]

S sl (Isull? y + llellas)
2(1-b'/b) 20 /b

S sl (sl sl Nl + @ las).-
To complete the estimate of || Tsu/|s », note @(1’) = 8@(81’), so that

sl :/(1+r2)b|5$(3r)|2dz:51—2b/(32+?2)b|$(?)|2d?
R R

<82y,
Thus [|ysl1Z, = 1¥sl1%0 <8l¥ |7, and

2(1-b’/b) 2b’/b 1—b'/b 2(1=b'/b) c(1—2b)b’ /b 2b’/b
s tZs =P sl 2,7 < 8170 ey 251 E /P s =2000 by 2
—2b’ 2
<82y )3,

So there exists ¢ =c(s, b, ¥) > 0 such that
1_ _9p
ITsullss < c82 728" lull2, + llgllns) (2.8)

for all u e X5 for s, b, and b’ as in Theorem 3.1. Choosing b’ = % — B, where g is as in Theorem 3.1,
estimate (2.8) becomes

1_
ITsullss <827 (82 1ullZ, + l@lns)- (2.9)

We now will use estimate (2.9) to complete the proof of Theorem 2.1 by proving the following
lemma.
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Lemma 2.6. Let ¢ > 0 be the constant in (2.9). Choose § € (0, 1] such that

1 1)\ 1-2b+28
s — . 2.10
lplns < 2o (8) (210)
Let
171 1-b+2p
r=—|(- . (2.11)
4c\ §

Then Ts is a contraction on the closed ball B(0, 1) = {u € X5?: Mulls,p <7}

Remark. Note that since b can be chosen so that b < % + B, by choosing § in the above lemma small
enough, we can ensure not only that (2.10) holds but also that r is as large as we like.

Proof of Lemma 2.6. By estimate (2.9) and the choice of §, for all u € B(0, 1),

1\E 1\ 1 1\ g g1
Tsu <c| = - < s
I Tsulls < (6) ((a) 16C2<5> +1662<8) )

1

1 71\ 2D+
-5:(3)

so that Ts:B(0,r) — B(O0, ).
To estimate [|Tsu — TsV]|sp, first note that, as in the estimate of [|Tsullls, above,

ITsu = Tsvillsp = [[vs (T(Wsw) = TWs») |,
SO Wsw) = TWsv) -

Next note that

t
T(Ysu) — T(Ysv) = =y (t) f W (t —t) (Wysu(x, ') — Wy, (x, ) dt’
0

t
=—w(t)/W(t—t/)wfg(x, thdt',
0

where f =ys(u+v) and g = ¥s(u — v). Then, following the proof of Proposition 2.2, we can show
that

IT@Wsw) =TV, S ls @+ v llws @ =l -

Finally, as in the estimate of || Tsulls, above,

s @+l llws@ =l p <872 M+ Vil pllu = vilsp.
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Putting all of the above together with, again, b’ = 2 — B, where B is as in Theorem 3.1, we have

1 b2
ITsu — Tsvllsp <c827(8 Fllu+ Vllispllu — viisp).-

Thus, for all u, v € B(0, ), we have

1 _py2
ITsu — Tsvilsp < 2cr82 2B flu — vis

1
= 5l =Vl

completing the proof of the lemma, which in turn completes the proof of Theorem 2.1.

3. Bilinear estimate

In this section, we state and prove the bilinear estimate used in the proof of Theorem 2.1.

Theorem 3.1. Givens € (3 - m?=3m+1 1) thore exists B > O such that if b € G.1+BLb el

m2—3m+2° 2
b+ b’ < 1, then there exists ¢ > 0 such that for all f, g € X* b’

llw sells.o—1 < cll fllspllglls,brs

where w s satisfies

~ 2
ng(é,f)z(éJr]sz)f*g(E Dt "3 g2 * BEE.T).

2
|§|\g +3| < 3|&], so the estimates for the term

Notice that |& + i

1+é2|

2 _
(E+1+Ez)f*g($,f)

— B, 1), and

(3.1)

(3.2)

(3.3)

can be handled as in [1]. So, to establish Theorem 3.1, we will prove the following proposition.

Proposition 3.2. Given s € (5 - m?=3m+1 1) there exists > O such that if b Q. 1+B1Lb €

m2—3m+2° 2
and b + b’ < 1, then there exists ¢ > 0 such that for all f, g € X* b’

lw rglls.o—1 < clll fllls.orllglls.bs
where w ¢, satisfies
Wig(€. D157 S axf*3xg($ 7).
Proof. Define

aEn=0+8)" 1+t —e) [aE, o).

%_ﬂv%)

(3.4)

(3.5)
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Observe that

172
|||u|||s,br=( f / cu@,r)Z) = eu&. ) 212
R R

‘// 81— 80T — T - TR, T e dn

By (3.6),

W rg (&, 0

%”\

o

/ 2;:_1@(5 — &1, T — T1)0xg (&1, T1) dé1 dTy
R

o

N

R R
// £11E — &1l
S @ DA+E-aDIA+ e}

o gE—&t-T) b T)
A+t —n—E-&)"D" A+u -

d& dt.

We want to show that
lwgglls,p—1 S M llsprlglls,ers

that is, we want to show that

12
( / / (1+52)S(1+|r—sm|)2(b‘”\vvfg(s,r)lzder) <N lswlglss-
R R

Notice that the left-hand side of (3.9) is

H (14827 [Wee(E,7)|
(1+ |t —gm)i-b

)
1212

so, by (3.7), what we want to show is that

<|c 272|C 272.
- N” f||]_r]_§|| g”LrLg

H 1+ )3 W (€, )
1212

(14T —gmp=b

Let
D={¢. t.6.1) eRY [T -1 — ¢ — &)™ < | — &'}

Note that

//X(RLD)(?T,ELH)SZ%@(E—51,T—T1)@(El,fl)d$1 dry
R R

=//XD<s,r,sl,rngzi]a’x?(a,n)ﬁgé(s—51,r—r1>dsldn.
R R

Thus, in proving (3.10) we can restrict our attention to the set D.

4161

(3.7)

(3.8)

(3.9)

(3.10)
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By (3.8),

‘a+s%ﬂwm@wn

A+ |z —gmpt->b 1212

< ”// 1 R 3

~ (1+ |7 —gmpi-b (14152
R R
_ cfE—&,7—11) o g dé dr;
A+t -t —E-E)™Y A+lr —&"DY 1212

L%Lg

:H[fcz(s,r,sl,n)cf(s—sl,r_fl)cg(g],,l)d&drl
R R

where Q = Q (¢, 7, &1, T1) is given by

- E11E — &1l
T+ IED2SA+ T =™ + 11 — DY (L + |7 — 71 — (§ =&)D"

Q

Thus what we want to show is

H//XD@,T7§1,T1)Q(§7T7517T1)Cf(§—517T—T1)Cg(€1,f1)d€1dt1
R R

1212
Slieslizizlicalizz.
which we will write as
H//XD -Q -crE =&, T —T)cg(Er, T dE1 ATy - S ||Cf||LgL§||Cg||L:;L§- (3.11)
121
R R e

To prove (3.11), we will first show it for s =1 so that we can make a simplifying assumption in

2
the proof for s e (5 - mzzgmg 7). If s=1, then

€]

¢= A+IEDA+ 1T = MDA + |71 —&"DY' (A + |7 — 71 — (6 —6)™DP"

so that, in this case (3.11) follows from Lemma 3.6. Otherwise, notice that if |&1] <1 or |§ —&| <1,
then

E-&"Eal 1
(I+1gED2s  ~(a+gD’

which reduces establishing (3.11) to establishing it for the case s =1. So to proceed we define sets
ACD and BCD as follows:

A={E 1.6,1)eD: |1y - < |t —&"
B:{($7r1§1vfl)ep: |T1_$‘{n’>"’:_$m

Clal =1 g &> 1),
el =1, s &l >1).
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By the above discussion, to show (3.11) it suffices to show

H//XA -Q -cpE =&, T —T)cg 51, T dE1dTy < ||Cf||L2L2 ||Cg||L2L2 (3.12)
g 1212
and
H//XB -Q cp(E—&1, T —T1)Cg (81, T dET AT , < ||Cf||1_§1_§ IICgIIL%Lg- (3.13)
LsL
R R vl

For (3.12), first apply Holder’s inequality:

L%Lg

H//XA'Q-Cf(é—fl,f—Tl)Cg(«‘El,Tl)dSldfl
R R

< ” ”X.A . Q”L;L%] ”Cf(é - Slv T— fl)cg@], Tl)”"gll‘%] HL%L?

1/2
<s§up||XA~QIILéLgl(////cf(é—Sur—r1)2cg(§1,r1)2d51dnd%dr)

R R R R
=su . 22 lIcrllyzpzlicgll 2. 314
plxa- Qliz i, lepllizizleslizng (314)

For (3.13), first note that

H//XB -Q -cr6 — &1, T —T1)cg (81, T dE1dTy
R R

L%Lg

ld¢z. r)HLsz =1

////XB Q -d(§, T)cp(§ — &1, T — T)eg(§1, ) dérdry dé dT

< ////XB Q- d(E D)c; (¢ —E1. T — T)Cg(Er, 1) dEy dry dE dT,
ldee, r)uLsz =1

R R R
de, r)>0

then apply Hdlder's inequality:

////XB‘Q'd(gsf)cf(f_flvf_Tl)cg(flsfl)déldfldéfdf

R RRR

LE L%, lesté. =l LG L,

< //XB-Q~d($,f)Cf($—$1,T—Tl)dEdT
R R

172
<swp e Qg ([ [ [ [aeoiese e -midaandedr) ey

1,1
R RRR

;Up lxs - Q”LZLZ ||d||]_21_2 HCf”]_Z]_Z ”CgH]_ZLZ,
1,71

so that
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H//XB'Q cCf(E =&, T —T)cgEr, T) dErdTy
R R

1212
<sup xB-Q ”[_21_2 ||Cf”,_2L2 ”Cg”]_2[_2 . (3.15)
Elvrl 5 T 5 T g T

By (3.14) and (3.15), to show (3.12) and (3.13) it suffices to show:

suplixa-Qllz 2 <oo (3.16)

ET s
and

sup || xB - Q”]_?L% < Q. (317)

51,1

Lemmas 3.7 and 3.8 below establish (3.16) and (3.17), respectively, completing the proof of Propo-
sition 3.2. O

Finally, we prove the three lemmas used in the above proof of the bilinear estimate. The proofs
rely on Lemmas 3.3-3.5, the proofs of which are omitted.

Lemma 3.3. Let m > 3 be an odd integer. If ,an] < { <1, then

/ &< e (318)
J A+ o =x"7ID5 ™ (4t mt
Lemma34.1f 3 <€ <1, then

(3.19)

/ dx < 1
J A+ x—aDA+1x— gDt~ (1+|a — 21"

Lemma 3.5. For an odd integer m > 3, let dp(§,&1) = —£™ + £]" + (€ — £)"™. Then there exist positive
constants ¢, and Cp, such that

|dm (&, &D)| = cml&11" 3|61 (6 — £1)| VE, & e R; (3.20)
|dm(E.&D)| > cmlE|™ 661 —&1)| VE. & eR; (3.21)
|dm (&, 60| < Cl&n "2 |E61 (€ — 8| ifIEI< &1 (3.22)

Lemma3.6.Ifbe (3, 1) and b’ e (g5 1), then there exists ¢ > 0 such that for all &, T € R

//' £2dgy dry <
A+ ED2A + |t —gmN2A-D (1 4 |7 — M (1 + |7 — 7y — (§ — &M~

Proof. By (3.19),

d‘E]
A+t =D A+t — 11 — =)D
< ! .
1+t — (& —&)m —EPPP'-1
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So
/f £2d& dry
A+1ED2A+ T —EmP2A-D A 4 |7y — D' A + |7 — 71 — (§ — &P
< g2 dé
YA+ EDPA 1T gD ) (= g g T
Since

£ m—1 gm
f—@—som—s{"=(l—zm*)s(sl—z) +T -
we can write

1
2" T =g - 27 - )56 - ™.

[T-E—&" &=

f dg; /
R (14t —@E—)m—gms'-1

So to estimate we make the substitution

u=[@" - RE -5, du=2[2" " - 1)E]7 ey
and apply (3.18) to yield

f d&,
J A+t — (& —&)m — g1

</ d&;
) AT g - @ - Des -6 )P

1 / du
gt | (T g T

1
<
~ 1 ap—1-_1--°
€T (14 [2m 17 — gmp 1w

Combining this with the previous estimate yields

// £2dé dyy
A+ 1ED2A+ T —gmMP2A-DA + |7y — "D A+ T — 11 — (6 —ED™DP
< £ ) 1
~ A+ EDEA + [T — Em])2A-b) |g|ﬁ(1 +2m-1g — gm|)4b’—1—ﬁ
1
< T m
(14|t — gm)20-b) (1 4 |2m-1g — gmy'—7=7
<1,

with the last inequality holding since b’ > and b<1. O

m
4(m-1)
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2 _ _ 2 _ .
Lemma3.7.Ifs (2 e gﬂﬂ 2) be (2 Zrﬁ’("m_ll) + mTZS], and b’ € [’Zm*gé”ll)l -, %), then there exists

¢ > Osuch that forall&, T € R

// (14 E) 20982181 (& — &) 2T dgy dmy .
1+t —gm2A-D (1 + |7y — MDD (A + |7 — 7y — (§ — somn%’\’

where

AG D) ={¢E. 1) eR: &> 1,

T-1—E-—&)"|<|u—&"<|t-&"}
Proof. By (3.19),

d‘L'] < 1
A+t —&MDP' A+t — 711 — (¢ —E)™D? ~ A+ |7 — (¢ — )™ — &P

Also observe that in A

T—GE—&)"—¢&|=|n—&+1—11 — E—&)"|

<lu—&+|r—nu—-E-&)"|<2|t—£M|,

so, by (3.21),
1 m m m
g1 (€ —&D)| S Wl—s +&+E— &)
_Iz &M —(t -G —-E)M -
|&1m=3
3|t — &M
Sl m3
which implies (since |&1] > 1)
(1+ 16D 2T 9215 (5 — g 2T EX|Eg (5 — &) 21Y
(14|t —Emp20-H A+ ED2TIA + [T — gm20-h

EZSI‘L' _ %-m |2(175)
© A+ 1EDATI A+ |7 —gmATD)

_EB QT — gm0
(1 +15)20=9

Thus

f/ A+ [ED298216 ¢ — &P der dy
A+t =MD A+ |1 —MD?' A+ |1 — 71— (§ — &)™

< 525(1 + |T _ Sml)Z(b—s) d%‘]
A e L

d&y
—E)m—gM])’ -1

Estimating fR =G as in the proof of Lemma 3.6 yields
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/ / A+ EN2T98218 (¢ — &2 dir dy
JJ Ao —gmP2AD A+ m = D2 A+ o -7 = ¢ = 5"

S EBAH T MO 1
- (1 +16p201=9 &7 (14 |2m—17 — gm )y —1=7

__1_
_ £ 27T (1 + g2
(1+ |7 — EM2—D) (1 4 [2m—17 — gm0 5"

_2m-1
< (1+ g%~ m=t
(14 |1 — Em)26=b)(1 4 [2m=17 — gm) 'l

4s _ _2m—1
(141§~ A=
(T M2 (A 4 2mTr — gmpa
<c,

by the assumptions on s, b, and b’. O

Lemma 38. If s € (3 - mi:gmi; D.beG. 3 +BL b els—B3) and b+ b <1, where p =
2

% min{% —s, Bozs — m}, then there exists ¢ > 0 such that for all &1, Ty € R with |&1] > 1

// (1+ 16D 9E2 6 (6 — &) P! déde cc
R R e e el L

where

)

B, ) ={¢EDeR: E—&>1, [t —11— ¢ —&)"| < |11 — &

T-&" < |n—g)

Proof. By the assumption b+ b’ <1 and (3.19),

dt
A+t —&m)20-DA 4|t — 11 — (§ — )P
<f dt
S A+ =g A+ T — 1 — (- &M

< 1
A4+ E g -

Observe that in B
I+ E—&)" €=t " - (t -1 — ¢ - &E)")]
=M+t —n—E-&)" <2ln —&7.
On the other hand
[T+ E =&)D" — ™| =|11 — &' +dm(E, &),

where dp (§,§1) = —§" +&]" + (6 — &)™,
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Thus, in B,
|dn (€. 60| <3|T1 — &) (323)
so, by (3.20),

11 — &'
|g1|m=3 ~

lEe1¢6 —&)| (3.24)

which implies

ElaE-sP  glEaE - P
(1+ [£)H20=9) [E20=9(1 + |£])2(0-9

. <|n—s;"|>2<“’
YA EDTEN '

Therefore

/ / A +1EN2TI82 16 (¢ — &) P19 dE dT
A L e e L e T G 10 Vi

o (Ut ln g2 / de
G PSR+ [+ 6 - ) — gD

=1(B)),
where

B =B m)={§eR: [§-&I>1,

dm (&, &)] <3|t — &}

To proceed, we split B’ into subsets B; and By, where
1
B1= {5 €B’: |dn(§.61)| < 5|T1 —5{“}}
and
. ’ 1 m
By = {S €B: 5‘T1 - &' < ’dm(évél)’}
1

= {5 €B": i\ﬁ — & < |dm(&. 61| <3| —5{"!}-

In B; we have

[T+ E - &) =& = |11 — & +dm (&, &)

1
> |1 — & = [dn (&, 60| > S | - &'
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and, by (3.24), since |£1] > 1 and |£ — &1| > 1,

1
El < IENIENIE —&11 S Wlﬁ — .

Hence
1By = (LI — gn|)2(-9-2 / dt
b &1 [2(=9)m=3) J A+ END>HBA+ |11 4 (& — )M —Em1-48
1
2(1—s)—2b'+4B—1
o (Ut |m —gp2i-o—2r+ap dé
~ 61 P93 (A+[g)>5
ITy—€7
IEIle] ‘ml3
2(1—s)—2b'+4p—1 dg
<(+|n—en f %
( | 1— & |) (1 +|E])2%
1S T =67
S (_l + |T1 - %_{,1|)2(1—S)—2b +48—-1 (_l + |T‘1 _ &_{n|)4s—1
_ (_l + |T1 _ %_{n|)25—2b +48
< (_l + |T1 —§{n|)23_1+6ﬂ
1

N

with the last inequality holding by the assumption on 8.
To bound I(B3), we will use the following:

1+ |7 — &

— 1 <14 min{|e™|,
T4 12m Ty — g ~ L

7). (3.25)

To establish (3.25), let
C = max{1, Cp},

where Cp, is the constant in Lemma 3.5.
If |&1] < 2™~ 1C|&|, then |E] < minf|€™], [&1]}. So for (3.25) to hold in this case, it suffices for the
left-hand side of (3.25) to be bounded by 14 |&*|, which it is since

T4 [o — | <1+ 2" Mo — g+ 27 - 1)[e]|
S+ 2" o — £ + &

<+ —gr) (1 + &)
On the other hand, if || > 2™~ 1C||, then
m—1
€11 > 1€] and |&1] > 2" Cmlé].

Then, since 3|71 — &"| < |dm(&,£1)| in B, and by (3.22),
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227y — 1| <2 d (&, &)
2™ CnlE1 M3 881 (6 — &)

<1+2m 1C>|sl|m.

Thus

- 2" +1
2" 1|r1—€{"|<( = 2c>'51' —mz "

So

2" — g > 2" =) g7 - 2" - &

> 2111—1 2m—1 '2m—2 m zm—l m
> - )Wh—éﬂ— L
4
g| — &
since m > 3. Thus
Itm-gl

)

T+ 2m—1g — £~

which completes the proof of (3.25).

By (3.25)
1 [1 +12m g —S{“T“”/’” B A T
A+ENFS L 141t & T (| g@EAm
hence
1B )_<1+|n—§{"|>2“-5>—2b’/ de
LT e pTomy A+ EDFH( + |11 + (6 — g™ — M4
2
B G L2 D € Bl A Bt < dg
&1 21-9m=3) (U lz — &P (1 |r 4+ 6 = &)™ —gmp1=
1/m d&

2(1—s)—2b'—(2—4s)/m (

<(+[n-¢") 1+ 2" n — )

(1 + 171 + (€ — &)™ —gmpI=48~
2

J &
By (Tt 4@ & &)

To estimate notice that, as in the proof of Lemma 3.6,

M = — (2" - 1)E 28 — &

o+ E -8 =" = |

then make the substitution

u=[(2™"- 1)5@#(25 —&),  du=2[(2"' - 1)51]ﬁ de
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and apply (3.18) to yield

/ ¥
J I+t +E —g)m —gmpi=4
2

< / ds
NR (T +2m 1y =& = @M1 = 1)E1 (26 — gm-1P=4F

1 /‘ du
&1 |ﬁ A+ 2m 1 — gt —um-11-48
R

1

1
1 m—2
|&1]m=1 (1 + [2m=T7q — g [ym=1 4
< — —
(1 + g™ (1 4 [2m=1gy — gM|ym=1 47

A

Combining this with the above estimate gives

1By - (1 + |'L'] _ ${n|)2(175)72b’7(274s)/m

! 2_3m+1
(1 + [EM) T (14 [2m—1 gy — gm)) w46

1+ |T1 _ E{n‘)2ﬁ+(l—%)(l_25)

X

1 m2—3m+1
(14 (&1 D (14 [2m=17; — gft]) Ty 4

<,
by the assumptions on s and 8. O
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