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1. Introduction

Let £2 C R be a nonempty bounded open set and 1 < p < co. Then a boundary point xg € 952 is
regular if

olim Pf(y)= f(xo) (11)
2yY—>Xo

for all f € C(0$2), where Pf is the Perron solution of the Dirichlet problem for p-harmonic functions.
(See Section 2 for notation and definitions.)

If xo is regular, then it is fairly easy to see that (1.1) holds for all bounded resolutive f:0d$ — R
which are continuous at xp. This means that Pf near xo (essentially) only depends on f near xg, as
long as f is continuous at xp. It is natural to ask if the requirement that f is continuous at xgp is
essential. Which leads us to the following question.

Open problem 1.1. Let xo € 02 be regular. Assume that f,h: 9 — R are bounded and resolutive and
that f =h in B(xg,8) N 352. (Here the ball B(xg, 8) := {x € R%: |x — xo| < 8}.) Does it then follow that

lim (Pf(y) ~ Ph(y)) =07

0

If the answer is positive, then a simple approximation argument makes it possible to replace the
requirement that f =h in B(xg, §) N d£2 by the assumption that

lim (f(x) —h®)=0. (1.2)

0823X—Xo

If xo is not regular then, by definition, we can find f continuous and h constant so that (1.2) fails,
and thus it is essential to require xp to be regular.

In the linear case, p = 2, the conclusion follows directly: just observe that Pf — Ph = P(f —h) and
that f — h is continuous at xg.

In the nonlinear case this question is much harder. In this paper we make a first attempt at
answering this question by looking at functions f with jump discontinuities, see Sections 4-7 for the
precise statements of our result. (The most general results are Theorems 6.1 and 7.2.) This question
is just as relevant for p-harmonic functions on weighted R" and more generally on metric spaces,
however the technique used here only works in unweighted R".

As a particular application we obtain the following result.

Theorem 1.2. Let 1 < p < oo and let 2 = D be the unit disc in the complex plane. Let G C 9D be the union of
m open arcs. Then

@a,p(G) = wq,p(G) forallaeD.

Here wq,p(G) := Pxc(a) denotes the p-harmonic measure. Recall that for p # 2 the p-harmonic
measure, being a nonlinear analogue of the harmonic measure, is not a measure in the usual sense.

Baernstein [3, p. 548] asked if Theorem 1.2 holds. (Strictly speaking he states this question for the
case m = 2.) For the linear case p = 2 the positive answer is well known and easy to obtain. In Bjorn-
Bjorn-Shanmugalingam [14], Baernstein’s problem was answered, in the affirmative, for 1 < p <2 and
also for m=1 when p > 2.

Using the results on jump discontinuities we are now able to give a positive answer to Baernstein’s
problem for all 1 < p < oo, see Section 8 for the proof and similar results for more general sets 2.
For other similar results in various situations see Bjorn-Bjorn-Shanmugalingam [14,15].



A. Bjorn /]. Differential Equations 249 (2010) 1-36 3

In the results on jump discontinuities it turns out that the actual value of the boundary function f
at the jump point plays no role. We exploit this to give some perturbation results with perturbations
on countable sets which are new for p > n. In particular we obtain the following result, which is new
for p > n. Recall that for p > n the capacity of singleton sets is positive. An important part of the
theorem below is that h is resolutive, which is far from obvious and again was not known for p > n
earlier. Note also that we do not require h to be continuous on 952 \ E.

Theorem 1.3. Let 2 C R" be a nonempty bounded open setand 1 < p < oc. Let further f € C(3§2) andh = f
on 382 \ E, where E is a finite or countable set of points with exterior rays (see Definition 5.3). Then Ph = Pf.

Example 6.4 shows that some geometric condition on the points in E is needed, and it also shows
that one cannot replace the exterior ray condition by assuming that all points in E are regular.

Theorem 2.9 below (due to Heinonen-Kilpeldinen—-Martio [20]) shows that all bounded semicon-
tinuous functions are resolutive if 2 is regular, a result which we generalize both for regular and
semiregular sets in Section 3. In Theorem 7.3 we show that a large number of semicontinuous func-
tions with jump discontinuities are resolutive also on irregular sets. In Section 8 we also obtain new
resolutivity results for characteristic functions on irregular sets in connection with the Baernstein
problem.

The outline of the paper is as follows. In Section 2 we give some background on p-harmonic
functions and Perron solutions. In Section 3 we improve upon the comparison principle between sub-
and superharmonic functions. We also take the opportunity to give an alternative definition of Perron
solutions and prove some results for it. (Note that the results in Section 3 as well as Lemma 2.10 hold
also in metric spaces under the usual assumptions.) In Sections 4 and 5 we study Perron solutions for
functions with jump discontinuities at a corner point and at an asymptotic corner point, respectively.
These results make it possible to also treat certain perturbations and we pursue this in Sections 6
and 7, where we also obtain some new resolutivity and uniqueness results. In Section 8 we turn to
the Baernstein problem, and generalizations of it, whereas in Section 9 we look at generalizations
to higher dimensions and metric spaces. We also show that the asymptotic corner condition can be
replaced by an asymptotic logarithmic spiral condition, and similarly the exterior ray condition can
be replaced by an exterior logarithmic spiral condition.

While this paper was close to be finished the author became aware of the fact that Kim [24] inde-
pendently has obtained some of the results in this paper, including Theorem 1.2. After this paper was
originally submitted, Kim [25] continued his studies and, in particular, answered Open problem 9.8 in
the affirmative for unweighted R". His probabilistic-game theoretic proof uses the connection between
p-harmonicity and tug-of-war with noise discovered by Peres-Sheffield [30].

2. Preliminaries and notation

Let now £2 C R" be a nonempty bounded open set. A continuous function u : 2 — R is p-harmonic
on £2 if

/|Vu|p‘2Vu-Vg0dX=0 for all ¢ € C5°(82),
2

where Vu is the distributional gradient of u, and dx is Lebesgue measure.
If f belongs to the Sobolev space WP (£2), then there is a unique p-harmonic function Hf = Hg f
on £2 such that f — Hf € Wé"’(g). Recall also that E € §2 if E is a compact subset of £2.

Definition 2.1. A function u : 2 — (—o00, co] is superharmonic in £2 if

(i) u is lower semicontinuous;
(ii) u is not identically co in any component of £2;
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(iii) for every nonempty open set £2’ € £2 and all functions v € Lip(R"), we have Hov < u in £’
whenever v < u on 9£2’.

A function u : 2 — (—o0, o0] is hyperharmonic in §2 if (i) and (iii) are satisfied.
Moreover, u : 2 — [—o00, 00) is subharmonic if —u is superharmonic, and hypoharmonic if —u is
hyperharmonic.

This definition of superharmonicity is the one usually used in metric space papers on p-harmonic
functions, and, by Theorem 6.1 in Bjorn [4], it is equivalent to the definition used, e.g., in Heinonen-
Kilpeldinen-Martio [20].

Now we are ready to define Perron solutions.

Definition 2.2. Let V C R be a nonempty bounded open set. Given a function f:3V — R, let I (V)
be the set of all superharmonic functions u on V bounded from below such that

liminfu(y) > f(x) forallxedV.
Voy—x
Define the upper Perron solution of f by
Pyf(x)= inf u(x), xeV.
ueldp (V)
Similarly, let £7(V) be the set of all subharmonic functions u on V bounded from above such that

limsupu(y) < f(x) forallxeodV,

Vaoy—x

and define the lower Perron solution of f by

P,f(x)= sup u(x), xeV.
uelys(V)

If Py f =P, f, then we let Py f:= Py f and f is said to be resolutive.
If V = £ we usually drop V from the notation and write, e.g., Pf.

It follows from the comparison principle, Theorem 7.6 in Heinonen-Kilpeldinen-Martio [20] (or
Theorem 3.1 below) that always Pf > Pf. It is also important to observe that P f is p-harmonic
unless it is identically o0 in some component, see Theorem 9.2 in [20]. Furthermore we have the
following result.

Theorem 2.3. (See Bjorn-Bjorn-Shanmugalingam [13].) Assume that f € C(382) and h = f q.e. Then f and h
are resolutive and

Pf = Ph.

Moreover U = Pf is the unique bounded p-harmonic function such that

lim U(y)=f(x) forqge xeds2.
25y—x
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Here and below, quasieverywhere (q.e.) means with the exception of a set of C,-capacity zero,
where C, denotes the Sobolev capacity associated with the Sobolev space WLP_ It is important to
observe that points have zero capacity in (unweighted) R" if and only if 1 < p < n. Moreover, the
capacity Cj is countably subadditive so that countable sets have capacity zero if 1 < p <n. (Note that
if p > n then the requirement h = f q.e. is nothing but requiring that h = f.)

We will also need the Newtonian space N:P(R") which is the set of all quasicontinuous functions
f e WLP(R") (defined everywhere). A function f is quasicontinuous if for every & > 0 there is an
open set U with Cp(U) < & such that f|gm\y is continuous. Note that if f e NP@R") and h = f
g.e., then h € N1.P(R"). See, e.g., Bjorn-Bjérn-Shanmugalingam [13] or Bjérn-Bjérn [11] for the usual
definition of N'P and [11] for this characterization, which is a consequence of the main results in
Kilpeldinen [21] and Bjérn-Bjérn-Shanmugalingam [16].

The following result will be of use to us.

Theorem 2.4. (See Bjorn-Bjorn-Shanmugalingam [13].) Assume that f € NVP(R") and h = f q.e. Then f
and h are resolutive and

Pf = Hf = Ph = Hh.

Note that it is important to work with NI-P(R"). If we merely assume that f € W1-P(R") and the
Lebesgue measure of 962 is zero, then we can define f arbitrarily on 9£2. While Hf is independent
of the representative of f, Pf is highly dependent thereon. If f is required to belong to NP (R") we
have less freedom, and no more than that Pf remains independent of the choice of representative,
by the theorem above.

As already mentioned, xg € 952 is regular if

lim Pf(y)= f(xo) forall f e C(3£2).
235y—Xg

The set £2 is regular if all its boundary points are regular.
The following fact is important.

Theorem 2.5 (The Kellogg property). The set of all irregular points on 052 has capacity zero.

See Theorem 9.11 in Heinonen-Kilpeldinen-Martio [20] or Theorem 3.9 in Bjérn-Bjorn-
Shanmugalingam [12] for a proof (the latter in metric spaces).

We will also need the Wiener criterion, which was obtained by Maz'ya [29] and Kilpeldinen-
Maly [22] (for unweighted R").

Theorem 2.6 (The Wiener criterion). The point xo € 952 is regular if and only if

< Q.

/]<Gipp(8(xo,t)\Q,B(xo,2t))>1/<p—1>E
cap, (B(xo, t), B(xo, 2t)) ¢

Here cap,, is the variational capacity defined on p. 27 in Heinonen-Kilpeldinen-Martio [20].
The irregular boundary points can be divided into two types.

Definition 2.7. An irregular boundary point xg € 32 is semiregular if

lim Pf(y) existsforall f e C(352),

23y—Xg
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and strongly irregular if for every f € C(952) there is a sequence {yj}j?oz1 in £ such that

yj—x and Pf(y;)— f(xo), asj— oo.
The set £2 is semiregular if all its boundary points are regular or semiregular.

In Bjorn [8, Theorem 2.1] it was shown that an irregular boundary point is either semiregular or
strongly irregular. It was also shown in [8] that the set S of semiregular points is the largest relatively
open subset of 3£2 with zero capacity.

Note that in view of the Kellogg property (Theorem 2.5) most boundary points are regular. How-
ever, Theorem 4.1 in [8] shows that the sets of semiregular and of strongly irregular points can be
quite large.

We will use the following result implicitly several times. It does not seem to have been recorded
before in the nonlinear literature.

Proposition 2.8. Let S be the set of semiregular boundary points with respect to §2, and let xo € 352 \ S. Then
Xo is regular with respect to §2 if and only if it is regular with respect to £2 U S.

This is a straightforward consequence of the Wiener criterion (and the fact that Cp(S) = 0), but
we would like to provide a proof not depending on the Wiener criterion. Our proof has the advantage
that it is valid also for arbitrary metric spaces (under the usual assumptions, see Section 9.5), for
which we do not know if the Wiener criterion holds true, see however J. Bjérn [19].

Our proof can also be easily modified to show the same consequence for regularity for quasimin-
imizers. Note that semiregularity and semiregularity for quasiminimizers coincide, by Bjorn [8]. For
more on boundary regularity for quasiminimizers see Ziemer [31], J. Bjérn [18], Martio [28], Bjorn [5,
8,9], Bjorn-Bjoérn [10] and Bjorn-Martio [17].

Proof of Proposition 2.8. By Bjorn [8], 2 := £2 NS is open and Cp(S)=0.
Let f € C(3£2) and let f be any continuous extension of f to 22. Let further u = Ps fle. Then

lim u(y)= _lim Psf(y)=Ff®=f(® (2.1)

25y—>x 2oy—x

for qe. x € 382. As Cp(S) =0, (2.1) holds for g.e. x € 9£2. Hence, by Corollary 6.2 in Bjérn-Bjérn-
Shanmugalingam [13], u = Pf, or in other words

Pf=Psflo.

If xo is regular with respect to £2, then

lim  Psfle(y) = lim PF(y) = fx0) = f(x0)

235y—Xo

for all f € C(382), and thus xg is regular with respect to Q.
Conversely, if xg is regular with respect to §2, then

lim Pf(y)= _lim Pgfla(y) = f(x0)= f(x0)

25y—Xo 23y—x0
for all f € C(842), showing that xg is regular with respect to 2. O

Let us also recall the following result.
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Theorem 2.9. Assume that §2 is regular. Then all bounded semicontinuous functions are resolutive.

This is Proposition 9.31 in Heinonen-Kilpeldinen-Martio [20]. We generalize this both for regular
and semiregular sets in Proposition 3.6 and Corollary 3.7.

Lemma 2.10. Let xo € 92 be a regular boundary point. Let further f,h: 32 — R be such that f = h q.e.
Then the following are true:

(a) If f is lower semicontinuous at Xy and bounded from below on 052, then
liminf Ph(y) > f(xo).
235y—Xo

(b) If f is continuous at xo and bounded on 352, then

lim  Ph(y) zgaliyrgx0 Ph(y) = f(x0).

25y—Xo

This is very slight, but sometimes useful, improvement upon Proposition 7.1 and Corollary 7.2 in
Bjorn-Bjorn-Shanmugalingam [13].

Proof of Lemma 2.10. (a) We can find a continuous function k : 8£2 — R such that k < f and k(xg) =
f(x0). Let further k' = min{k, h}. Then k' =k q.e. By Theorem 2.3, Pk’ = Pk. As xq is regular we have
that

liminf Ph(y) > liminf Pk'(y) = liminf Pk(y) = f(xo).
25y—Xo 25y—Xo 235y—Xp

(b) This follows by applying (a) to both h and —h, and using the fact that Ph < Ph. O

3. Comparison lemmas

We will need an improvement of the comparison principle in Theorem 7.6 in Heinonen-
Kilpeldinen-Martio [20].

Theorem 3.1. Let S be the set of semiregular boundary points with respect to §2. Assume that u is superhar-
monic and that v is subharmonic in $2. Assume further that u is locally bounded from below and that v is
locally bounded from above in Q= US, in the sense that ifGe 2, then u is bounded from below and
v from above in G N $2. If

liminf (u(y) —v(y)) >0 forallxeds2\S, (3.1)
25y—Xx
in particular if
oo #Zlimsupv(y) < liminfu(y) # —oo forallxe€ds2\ S, (3.2)
25y—x 25y—x

thenv <uin 2.
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Assuming that the inequality (3.2) holds for all x € 352, this result is Theorem 7.6 in Heinonen-
Kilpeldinen-Martio [20] (in metric spaces it was obtained by Kinnunen-Martio [26, Theorem 7.2]).
Their proof also covers the case when (3.1) holds for all x € 3§2 (this is true also for the metric space
version).

In Bjérn-Bjorn-Shanmugalingam [13, Section 10] it was asked if v < u in §£2 whenever u and v
are bounded super- and subharmonic functions, respectively, and (3.2) holds for some set S with
zero capacity. We do not know the answer to that question, but at least our theorem is some slight
progress in this direction.

Observe that the boundedness assumptions for u and v on S are necessary: Let £2 = B(0,1) \
{0} cR% and 1 < p < 2. Then S = {0}. Let u(x) = |x|?~2/(P—D and v(x) = 1. Then u is p-harmonic and
in particular subharmonic in §2, see Example 7.47 in [20], whereas v is p-harmonic and in particular
superharmonic in 2, giving a counterexample to Theorem 3.1 without the boundedness assumptions.

Proof of Theorem 3.1. By the comments after Theorem 3.1 in Bjérn [8], C5(S) =0 and Qis open. Let,
for x € £2,

u(x) = ess 11m 1nfu(y) and V(x) =esslimsupv(y).
25y—>x

Theorem 6.3 in Bjorn [6] shows that i is superharmonic in G for any open G & £, from which it
follows that i is superharmonic in £2. Similarly ¥ is subharmonic in £2.
It follows immediately that

liminf (@I(y) — ¥(y)) >0 forallxe 9%2.
25y—x

The rest of the proof is the same as the proof of Theorem 7.2 in Kinnunen-Martio [26], for the reader’s
convenience we repeat it here (slightly modified).

let 21 EHE - ER = Uk £2¢ and let &€ > 0. Then there is k > 1/¢ such that ¥ < {i+¢& on 9.
As V is upper semicontinuous (and does not take the value co) there is a decreasing sequence {¢ ]} 2
Qj € Lip(2y), such that @j— Vin 2.

Since il + € is lower semicontinuous, the compactness of 32, shows that there is i so that ¢; <
U + & on 082 By (iii) in the definition of superharmonicity, Ho/¢; < il + & in §2. Similarly v <
Hopi <t+e¢in $2.

Letting € — 0 (and hence k — oo) completes the proof. O

We can now define an alternative Perron solution.

Definition 3.2. Let V C R" be a nonempty bounded open set and S be the set of semiregular boundary
points in V. Given a function f :9V — R, let U (V) be the set of all superharmonic functions u on V
bounded from below such that

liminfu(y) > f(x) forallxeoV\S.
Voy—x
Define

Rvf(x)= inf u(x), xeV.
uetly (V)

Similarly, let fo(V) be the set of all subharmonic functions u on V bounded from above such that
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limsupu(y) < f(x) forallxedV\S,

Voy—x
and define

Ryf(x)= sup u(x), xeV.
uely(V)

If Ry f =Ry f, then we let Ry f := Ry f and f is said to be R-resolutive.
If V = £ we usually drop V from the notation and write, e.g., Rf.

It follows directly from Theorem 3.1 that
Rf <Rf (33)

for arbitrary functions f. We also trivially have Pf < Rf < Rf < Pf. In particular f is R-resolutive
if f is resolutive. Moreover R f is p-harmonic unless it is identically oo in some component, the
proof of this being similar to the proof of Theorem 9.2 in Heinonen-Kilpeldinen-Martio [20].

In fact, if u € Uy then u has a unique superharmonic extension U to the open set £ US, by
Theorem 6.3 in Bjorn [6], and U € Uy ($2 U S). Conversely if U € Uy(£2 U S), then Ulg eZ:if. Thus
Rf =(Pous f)le from which (3.3) and the p-harmonicity of R f also follows.

Note that in the linear case P = Q = R, where the Q-Perron solutions were defined in Bjorn-
Bjorn-Shanmugalingam [13, Definition 10.1]. We do not know if this is true in the nonlinear case, see
however the discussion in Section 10 in [13].

Proposition 3.3. If f and h are resolutive and f =h on 352 \ S, where S is the set of semiregular boundary
points with respect to $2, then Pf = Ph.

Proof. We have Pf =Rf =Rh=Ph. O

Proposition 3.4. Let S be the set of semiregular boundary points in $2. The following are equivalent:

(a) Pf = Phforall f and h such that f =hon 82\ S;

(b) Pf =Rf forall functions f;

(c) Pf = Ph for all nonnegative f and h such that f =hon 382\ S;
(d) Pf =Rf for all nonnegative functions f.

ol ol

We do not know if the corresponding statements for bounded f and h are equivalent. That would
however follow from a positive answer to the following problem, which was stated as Problem 10.7
in Bjorn-Bjorn-Shanmugalingam [13].

Open problem 3.5. Is it true that P f = limy,_, o, P min{f,m} for all functions f?

In the proof below and later on we use the notation f, :=max{f,0}.

Proof of Proposition 3.4. (a) = (c) This is trivial. _

(c) = (d) Let h = fxse\s and let u e Uy. As 0 € L we have u > 0 and hence u € Uy. Taking
infimum over all such u we see that P f = Ph < Rf. The converse inequality is trivial. 5

—(b) = —(d) There is f and z € £2 such that P f(z) > Rf(2). In particular there is u € Uy such
that u(z) < Pf(2). Let M = infou > —oo and h = (f — M), Then u — M € U4}, and Rh(z) <u(z) =M <
Pf(z) — M < Ph(2).

(b) = (a) We have Pf =Rf =Rh=Ph. O

We can now give a generalization of Theorem 2.9 to semiregular sets.
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Proposition 3.6. Assume that 2 is semiregular and let S be the set of semiregular boundary points. Let
f.h:952 — Rbe such that f|ye\s is upper semicontinuous and bounded from above, and h = f on 352 \ S.
Then

Ph=Pf. (3.4)
If furthermore one of the following conditions is satisfied:

(a) f is bounded;
(b) Pf(x) > —oc forall x € 2;

(c) Pf=—00in $2;
(d) £2 is connected,;
then

Rh=Rf=Ph=Pf. (3.5)

Note that for (3.5) it is necessary to have some condition on f as in (a)-(d), and this is so even in
the case when £2 is regular. If (b) fails, then we must have £; C Ly =/ and thus Pf =R f = —oc0. So
if also (c) fails, then Rf = Pf = —oco # P f, and (3.5) does not hold. That this can indeed happen is
easy to see: Let £2 consist of two components §21 and £2; with disjoint closures and let f = —coxs0;.
Then Pf =Rf = —coxp,, whereas L;=L; =¢ and Pf = Rf = —oo, showing that the conclusion
is false in this case. We can therefore conclude that for a given function f, (3.5) holds if and only if
either (b) or (c) holds.

This anomaly would not have taken place had we defined the lower Perron solutions using hypo-
harmonic functions.

Corollary 3.7. Assume that 2 is regular. Let f : 3§2 — R be upper semicontinuous and bounded from above.
Assume further that one of the following conditions is satisfied:

(a) f is bounded;

(b) Pf(x) > —oo forallx € £2;
(c) Pf=—00in $2;

(d) £2 is connected.

Then f is resolutive.

As with Proposition 3.6 we need some condition as in (a)-(d) (in fact the conclusion holds if and
only if either (b) or (c) holds). Again this anomaly would not have taken place had we defined the
lower Perron solutions using hypoharmonic functions.

Assuming (a) this is Proposition 9.31 in Heinonen-Kilpeldinen-Martio [20] (for weighted R"). As-
suming (d) it is Corollary 7.4 in Bjérn-Bjérn-Shanmugalingam [13] (in metric spaces).

Proof of Corollary 3.7. In this case we have Pf = Rf. O
Proof of Proposition 3.6. Without loss of generality we can assume that f <h on S. Hence P f < Ph.

Let us first prove (3.4). Assume that P f (xg) < Ph(xg) for some xg € £2. Then we can find a € R and
8 > 0 such that

Pf(xo) <a<a+8 < Ph(xp).

Thus there is u € Ug, s with u(xp) <a+ 6. Extend u to 952 by
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u(y) =liminfu(x), yeasf2,
25x—y

making u > f and lower semicontinuous on 952. Let further

ki(y)=influ(z) + jd(z,y): z€ 02}, ye€of, j=1,2,....

Then

C2)skj Mu, asj— oo.

As f is upper semicontinuous,

Gj={z€082: f(2) <k}

is open. Moreover 952 = Uf; Gj, since f <u on 9§2. By the compactness of 352 there is some ]|
such that 92 = G, or in other words

f<kj<u ondf.

Let k =kj 4 coxs. Then, by Theorem 2.3,
Ph(xo) < Pk(x0) = Pkj(x0) < u(x0) <a+8 < Ph(xp),

a contradiction. Hence P f = Ph, and (3.4) is proved.

Let us turn to (3.5). Observe first that (a) = (b). Also if (d) holds, then either (b) or (c) holds. Thus
we only need to consider the two cases (b) and (c).

Assume first that (b) holds. Let M = supyo\s f,

M, onof2\S,

B {f, ondf2\S,
K —=
oo, onsS.

and u= {
—00, onsS,

Since P f < Pu = M, by Theorem 2.3, we see that P f is p-harmonic in £2. As S is relatively open, k is
upper semicontinuous, and thus Lemma 2.10 shows that

limsup Pf(y) <k(x)=f(x) forxeds2\S.
023y—>x

Therefore P f € Ef showing that

]
—
N
|
—
N

=
-
N

el
—

Thus, using (3.4), we obtain that
Rh=Rf=Pf=Ph

as required.
Assume finally that (c) holds. Then

—co<Rf<RfLPf

—0Q.
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So, again using (3.4),

Rh=Rf =Pf=Ph
concluding the proof. O

4. Jump discontinuities at a corner

Our aim now is to study the boundary behaviour for p-harmonic functions with a jump at a
corner point. We start with the simplest situation in which we have a true corner and the function is
constant on both rays towards the corner, this is handled in Theorem 4.2. The next step, Theorem 4.3,
is to just allow limits at the two rays, but still keeping the true corner. In the next section we allow
for approximate corners, which we will call asymptotic corners.

Let in this section 0 < o < 27t be fixed and

2=1{re’:0<r<1and0 <6 <al}.
We use complex notation for simplicity.

Lemma 4.1. Let A € R and u(z) = u(re’?) = ii(6), 0 < 6 < «, be a p-harmonic function in §2 which is con-
stant on rays starting at the origin. Assume further that

. iy _ ~ iy _
01_1)n01+u(re )=0 and glﬁlrgiu(re )=A for0O<r<1.

Then u(rel?) = A6 /a.

For p > 2 and under the assumption that u € C2(§2), this was obtained in Aronsson [1] together
with other “quasiradial” solutions. It follows from Aronsson-Lindqvist [2, Corollary on p. 161], that
any p-harmonic function u which is constant on rays is real-analytic, which combined with the result
in [1] proves the lemma for p > 2. Here we give a more elementary proof which also generalizes to
other situations, see Sections 9.4 and 9.5.

Proof of Lemma 4.1. Let ¢ € C5°((0,@)) and ¥ € C5°((0, 1)), then @ (rel?) := @)y (r) € C3°(£2). As
u is p-harmonic, we have

/ [VulP2vVu . -vedx=0,
2

where Vu is the distributional gradient of u. Changing to polar coordinates and observing that
du/ar =0, gives

1

a 1 a
0=//|ra’(9)|"’2rﬂ/(9)r<p’(9)rdrd9 =[|ﬂ/(9)|"’2ﬁ/(9)¢’(9)d9/rP“ dr,
00 0 0

which shows that the first integral in the right-hand side must equal 0. As this holds for all
@ € C3°((0, )), it means that u is a one-dimensional p-harmonic function on (0, ) with bound-
ary values 0 and A. By the uniqueness of the solution of the Dirichlet problem (which follows from
Theorem 2.3) 1(§) = Af/a. O
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Theorem 4.2. Let A € Rand U (re'?) = A0 /o for 0 <r < 1 and0 <0 < 2. [fo = 27 we require that A = 0.
Let f : 982 — R be bounded and such that f(t) =0 and f(te'®) = A for0 <t < 1. Then

Sim (Pf(2)—U(2) = Hlim (Pf(z)—U(2)=0. (4.1)

Moreover, we have the following radial limits
. iy e s s AB
lim Pf(te’”)= lim Pf(te’’)=— for0<p<a. (4.2)
t—0+ t—0+ o

Proof. Let us first observe that (4.2) follows from (4.1) as U has the same radial limits.
Let M =sup,q | f| < oo and u = Ph, where

0, ifg =0and0 <r <1,
h(re®) =14, ifo=aand0<r<1,
—-M, ifr=0o0orr=1.

Let further 0 < p <1 and
v(z) = liminf u(pw), ze£.
25w—2z

As u is continuous on £2 we have v(z) = u(pz) for z = re, 0 <0 <o, 0 <r < 1. Moreover,
Lemma 2.10 yields that v(t) =0 and v(te'®) = A for 0 <t < 1.

By the definition of v we have v €U, so that Pv < v. Moreover for any ¢ € Ly, let $(z) = ¢(p2).
Then ¢ € Ly, and hence Pv > sup(;&: v. Thus, v is resolutive and v = Pv. As v > h on 92 (by the
maximum principle), we have v > u in £2. Also since U € U, we have U > u in £2 and hence, as U is
constant on rays starting at the origin, U > v in £2.

As u(pz) =v(z) > u(z), ze £2, for all 0 < p < 1, we see that r —~ u(rei?y is a decreasing function,
and the limit lim_ o u(tei) exists for 0 <6 < a.

Let for nonnegative integers j, v;(z) = u(27iz), z € 2. As we have seen, vj is an increasing
sequence of p-harmonic functions, which obviously is bounded by M. It follows from Harnack’s con-
vergence theorem (see Theorem 6.14 in Heinonen-Kilpeldinen-Martio [20]) that V =1lim;_ v; is a
p-harmonic function, and moreover v; — V locally uniformly (see the proof of Theorem 6.14 in [20]).
Since u < V < U, we have

glirgl V(re?)=0 and lim V(re?)=A for0<r<1. (4.3)
—0+

0—a—

As V (rei?) = lim;_,q4 u(te'?) is independent of r, for 0 <6 < o, Lemma 4.1 shows that V = U.
Let now 0 < ¢ < 1. Then we can find 0 < 8 < ear/max{|A|[, 1} such that

u(lei(;)
2

Since u < v; < U it follows that

1 .
Vj(ien?)

<g for0<6<pB and

1.
u(5819>—A‘<8 foroe. — <0 <a.

<¢g for0<h<pB and

1.
vj<§e‘9)—A’<e foro —B<0<a (4.4)

for all j.
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As vj — U locally uniformly in £, we can find ] such that v; > U —¢ on {%eiez B<O<a—p}.

Together with (4.4) this shows that U —& <v; <U on {%eie: 0<6<al.

As > u(re'?) is a decreasing function, for each 6, this shows that U(re?) — ¢ <u(re'®) < U(rei?)

for 0 <r <2~U+D and 0 < 6 < «. Hence
liminf (P f(z) — U(z)) > liminf (u(z) — U(2)) > —e.
iming (272~ @) > fming (a2~ U12)
Letting & > 0 shows that
liminf (P f(z) — U(2)) > 0.
25z—0 (_f( ) ( ))
Similarly one obtains that

limsup (P f(z) — U(2)) 0.

235z—0

As Pf < Pf, (41) follows. O

Let us next weaken the assumptions by allowing for two different limits along the two rays instead
of constant values along them. In Theorem 5.2 we improve upon this (without referring to Theo-
rem 4.3) and we could therefore have omitted Theorem 4.3. However, when generalizing to higher
dimensions, in Section 9.4, we can directly generalize Theorem 4.3 and its proof, but for Theorem 5.2
it is not at all clear how to approximate asymptotic cones with cones getting the necessary estimates

working.

Theorem4.3.Let A € Rand U(rei®) = A6/ for0 <r < 1and 0 < 6 < 2. If o = 27T we require that A = 0.

Let f : 352 — R be bounded and such that lim;_, o f(t) = 0 and lim;_, o4 f(te'®) = A. Then
li Pf(z)—U(2))= li Pf(z) —U(z))=0.
Sim (Pf(2)-U@)=lim (Pf(2)-U@®)
Moreover, we have the following radial limits

. ; .= : AB
i iBy —
tlu&Pf(te )_tllr&Pf(te )= " for0< B <a.

Proof. Let us first observe that (4.6) follows from (4.5) as U has the same radial limits.

Let &£ > 0. Then there is r > 0 such that

f®)<e and f(te)<A+e forO<t<r.
Let M =sup,pn | f| < oo, £2; =782 and

0, ife=0andO0<p<r,
h(pe’) =1 A, ifd=aand0<p<r,
M, ifp=0orp=r.

Let u € Up(£2;) and

(4.5)

(4.6)
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i min{u, M}, in £y,
M, in 2\ 2,

which is superharmonic in §2 by the pasting Lemma 7.28 in Heinonen-Kilpeldinen-Martio [20]. Then
v+ e eUs(£2) and in particular u +¢ > v +¢& > Pf in £2,. Taking infimum over all u € U, (£2;) we
see that Po,h+¢& > Pf in ..

By Theorem 4.2 (applied to z+> h(z/r)), we have

limsup (P f(z) — U(2)) <limsup(Po.h(z2) —U(2)) + € =¢.
0

25z—0 252—

Letting € — 0 shows that

limsup (P f(z) — U(2)) <0.

25z—0

The proof that
liminf (Pf(z) —U(2)) >0
(552%1 O( f( ) ( ))

is similar (or follows by applying the above to —f). The inequality Pf < Pf now completes the
proof. O

5. Asymptotic corners
We now want to generalize Theorem 4.3 to boundary points which are locally asymptotically
corners. Let us make the following definition. Assume in Sections 5-8 that £2 C R% is a nonempty

bounded open set.

Definition 5.1. A boundary point zg € 9§2 is an asymptotic corner point with directions « and g if
B <a < B+ 2m and for every & > 0 there is § > 0 so that

[zo+pe?:0<p<sandf+e<0<a—¢}
C2NB(z0,8) Clzo+pe?: 0<p<fandp—e <0 <o +¢}. (5.1)

We also say that a function f has a jump at zg with limits ae R and A e R if

lim Z)=a and lim 2)=A,
3952»;0 f( ) B.Qaz»go f( )
larg(z—z0)e | <y larg(z—z)e "% |<y

where y = ; min{fa — 8,27 + B —a}.

Note that if the boundary 852 is C! at zo € 852, then zg is an asymptotic corner point (with angle
o — B = ). Note also that we allow jumps to have zero height, so f being continuous at zp is
considered as a jump (of zero height).

Theorem 5.2. Let 0 < o < 27 and A € R. Assume that 0 € 852 is an asymptotic corner point with directions 0
and «. Let f : 352 — R be a bounded function which has a jump at 0 with limits 0 and A. Let further U (re?) =
Ab/aforr>0and —y <0 <a + y,wherey = }lmin{a, 2w — a}. Then
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lim (Pf(z)—U@®)= lim (Pf(z) —U(2)=0. 5.2
Jim (Pf(2)~U@)=lim (Pf(2)~U() (52)
Moreover, we have the following radial limits
. iy s g AP
lim Pf(te’”)= lim Pf(te’’)=— for0<p<a. (5.3)
t—0+ t—0+ o

Proof. Let us first observe that (5.3) follows from (5.2) as U has the same radial limits.

We may assume that A > 0. Let M =sup,g, | f|. If M =0 then f =0 and the theorem is trivial. We
may thus assume that M > 0.

Let 0 <& <min{y, M/(1+2A/a)} and let § > 0 be so small that (5.1) holds,

|f(@)| <& forz=pe? €32 with0O<p <sand|d]| <y

and
|f(2)—A| <e forz=pe'? 92 with0 < p <sand |0 — | < y.
Let further 2 = {re': 0<r <8 and —& <6 <« + ¢} and

A—¢, if0<r<éandd=ua +¢,
h(reie)z —a, if0<r<é8and @ = —¢,
—M, ifr=0o0rr=3,,
where a = ¢ + 2A¢/a. Let also G(reie):A(H—g)/a—s for0<r<d and —€ <6 <o + €. Here we

have chosenNﬁ and a so that ﬁ(re“?) =—¢and U(re™®) = —a for 0 <r <4, and U < f on 2Nnan.
Let v € £L,(£2) and

G { max{v, —M}, in§2,
=M, inR\ 2,
which is subharmonic in QU £2 by the pasting Lemma 7.28 in Heinonen-Kilpeldinen-Martio [20]. As
U eZ/{h(.Q) we have that v < U in £2. Hence v e Lf(£2) and in particular v < P f in £2.
Let V = P_Qh_supvel: @ V<Pfin 2ne. By Theorem 4.2,

lim (V(2)-U(2)=
A, V@ - 0@)

It follows that

llmmf(Pf(z) U(2) > gming(V(z) ~U@+U@ - U(2) = —% —&.

25z—0

Letting € — 0, we obtain that

liminf (Pf(2) - U(2) >0

Similarly

gragglg(Pf(Z) - U(2)) <0

As Pf < Pf this completes the proof. O
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The reader may have noticed that in Theorems 4.2, 4.3 and 5.2, the actual value f(0) played no
role in the conclusion. We want to exploit this fact. So far we have assumed f to be bounded, but in
fact for f(0) this is not essential. Theorems 4.2, 4.3 and 5.2 are local in nature, but we may of course
apply them at several different boundary points. For this reason we want to, and can, allow f to be
unbounded on a countable set of jump points, without changing the conclusion. Combining this with
Lemma 2.10 we can in fact also allow for an exceptional set of capacity zero. Thus we are in quite
different situations when p > 2 and p < 2: In the former case, p > 2, we allow for an exceptional set
(where f is allowed to be infinite) which is countable and thus of positive capacity (unless empty). In
the latter case, p < 2, we allow for a set of capacity zero, which in particular includes any countable
set. We formulate such results in Sections 6 and 7, respectively.

Such perturbation results are of interest also when the jump is zero, i.e. when the boundary values
are continuous apart from the value at the boundary point under consideration. In such situations
our approximation arguments become simpler and we can be more general by not requiring the
boundary point to be an asymptotic corner, it is enough to have an exterior ray at the point. We now
formulate this for one boundary point and a bounded function f, corresponding to the situation in
Theorem 5.2. In the next two sections we extend this to unbounded perturbations and combine it
with perturbations at jump points.

Note that if p < 2, when points have zero capacity, then Theorem 5.4 below follows from
Lemma 2.10. Thus the interest lies primarily in the case when p > 2. This result is also the essential
ingredient in the proof of Theorem 1.3 (for n = 2).

Definition 5.3. A boundary point zp € §2 is an exterior ray point with direction « if there is § > 0
such that

[zo+1e®: 0<r <8} CR?\ £2. (5.4)
Theorem 5.4. Assume that 0 is an exterior ray point. Let f : 352 — R be a bounded function satisfying
lim z) =0.
3(232—>0f( )
Then
lim Pf(z)= lim Pf(z)=0. 5.5
Qaz—>0_f( ) 23z—0 f( ) ( )

Proof. Let M =sup,p, |f|. If M =0 then f =0 and the theorem is trivial. We may thus assume that
M > 0 and may also assume that 0 is an exterior ray point with direction 0.
Let 0 <& < M and let § > 0 be so small that (5.4) holds and

|f(2)| <& forzed2n(B(0,)\{0}).
Let 2 ={pe': 0<p <8 and 0 <6 <27} and

h(rei9)={_8’ if0<r<é§andb =0,

—M, ifr=0orr=>54.
Let also U = —&. Let v € Eh(ﬁ) and

o {max{v, —M}, inf2,

M, in2\ 2,
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which is subharmonic in 2 U £ by the pasting Lemma 7.28 in Heinonen-Kilpeldinen-Martio [20]. As
U € Un(£2) we have that v < U in £2. Hence v € L7(£2) and in particular V< Pf in £2.
Let V=Pgh= SUPyer, () V S Pf in £2. By Theorem 4.2,

lim (V(2)-U(2)=0.

25z—0

It follows that

liminf P f (z) > liminf (V (2) — U(2) + U(2)) = —e.
25z—0 23z—0

Letting € — 0, we obtain that

mingﬂf(z) > 0.

li
252—

Similarly

limsup P f(z) 0.

25z—0
As Pf < Pf this completes the proof. O
6. Perturbations, the case2 < p < ©

As already mentioned our aim now is to improve upon Theorem 5.2 by allowing the boundary
function to be unbounded or even infinite on a countable set. The cases p > 2 and p < 2 are quite
different and in this section we concentrate on the former case, leaving the latter case to the next
section. We therefore assume that 2 < p < oo in this section. In particular all points have positive
capacity and are thus regular, by the Kellogg property (Theorem 2.5).

Theorem 6.1. Let 0 < o < 27 and A € R. Assume that 0 € 352 is an asymptotic corner point with directions 0
and «. Let f : 352 — R be a bounded function which has a jump at 0 with limits 0 and A. Let further U (re?) =
Ab/aforr>0and —y <0 <a + y,wherey = }1 min{o, 2 — a}.

Let E C 952 be afinite or countable set of exterior ray points, and h be a function such thath = f on 352 \ E.
Then

lim (Ph(z) —U(2)) = Sim (Ph(z) — U(2)) =0. (6.1)

25z—

Moreover, we have the following radial limits

) _ : A
lim Ph(te'’) = lim Ph(te'f) = AP for0< B <a. (6.2)
t—0+ t—0+ o

Note that in general it is not known if P f = limy_, o P min{f, m}, see Open problem 3.5, which
makes it necessary to use the induction in the proof below.

Proof of Theorem 6.1. As before the radial limits (6.2) follow from the limits (6.1).

Let € > 0 be small enough. Then we can find a function k > f on 9£2 such that k is continuous on
052 \ {0} and has a jump at O with limits 0 and A, and max{A, 0} < k(0) < co. Note in particular that
k is upper semicontinuous at 0.
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Let zg € £2, let Z > zg be a set containing one point from each component of §2, and let zg € Zy C
Zi1C---CZ= U;’-il Z; be an increasing sequence of finite sets. Let also {Xj}j'io be a sequence of
points in E U {0} such that each point in E U {0} appears infinitely many times.

We want to construct an increasing sequence {k; }°°1 of bounded functions on 952 such that for
each nonnegative integer j,

i) ko=
(ii) kjy1 —kJ e C(082);
iii) kj <kjp1 <k;+1;
iv) Pkjt1(2) < Pkj(z) +2~ ig for z e Zj;
(v) kjr1(xj) =kj(x;) + 1.
We proceed by induction and assume that k; has been constructed for some nonnegative integer j.

(The initial step is of course to let kg =k.)
Let

kj = kj + 20
By Theorem 5.2 (applied to both k; and /Ej), we have
lim (Pk;(y) — Pkj(y)) =0
.(Zay—>0( iy j(}’))
Theorem 5.4 (applied to both k; and 12,-) yields

lim Pk](y)_ lim Pkj(y) =kj(x;), ifxj#0.
ay%xj

23y—>x;j
On the other hand, by Lemma 2.10 (applied to both k; and I~<j),

Qlaljr/er Pki(y) = Qlaljrlllelq(y) =kj(x) forallxe 0 \{0,x;}.

(Recall that all boundary points are regular.) By Theorem 3.1, Plzj = Pk;.
Hence, for ze Z; we can find u; € Z/I,;j such that

Pk;  _ pk; ©
uz(z) < Pkj(2) + 5= kj(2) + 57
Then u := Minzez; U, eu,;j as Z; is finite. Extend u to 982 by

u(x) = liminfu(y), xeds2.
25y—>x

Then u is lower semicontinuous on £2. _
As u is lower semicontinuous, k; is upper continuous, and u(x;) > kj(x;) = kj(x;) + 2, there is
0 <r <1 such that

u>kj+1 onB(xj,rNas2.

Let
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|x — x|
kit1(x) =kjx) + 1—7 , X€052.
+
Then u > kji1 on 2. Hence u € Uy, ,, and

Pkj11(2) <u(2) < Pk;(2) + 28—J forze Z;.

That the other requirements on kjq are fulfilled is clear. We have therefore completed the construc-
tion of the sequence {k}'}f‘io-

It follows directly that {ij}j?io is an increasing sequence of p-harmonic functions in 2. Let v =
limj_, o Pkj. For ze Z and j > m;:=inf{j > 0: ze Z;} we have

j—1
Pkj(2) < Pkm,(2) +& Y 277 < Pkm,(2) + 2¢,

k=m;,

and thus

V(2) < Pk, (2) + 2¢ < oo.

Harnack’s convergence theorem (see Theorem 6.14 in Heinonen-Kilpeldinen-Martio [20]) shows that
v is p-harmonic in §2. We next want to show that v € . For x € 952 \ (E U {0}) we have

liminf v(y) > liminf Pk(y) = k(x) > h(x).
23y—>x 23y—>x

On the other hand, for x € E \ {0},

liminf v(y) > lim liminf Pk;(y) = lim k;(x) = co.
25y—Xx j—o00 23y—X j—o0

Also

liminf v(y) > lim liminf Pk;(y) = lim k;(0) — k(0) + min{A, 0} = oo.
25y—0 j—o0235y—0 j—o0o

Thus v € Uy. In particular
Ph(zo) < v(z0) < Pk(zo) + 2¢.
Letting € — 0 shows that Ph(zg) < Pk(zo), and as zg € £2 was arbitrary we find that
Ph < Pk in 2. (6.3)

It follows that

limsup (Ph(z) — U(2)) < limsup (Ph(z) — U(2)) < limsup (Pk(z) — U(2)) =0,

235z—0 235z—0 235z—0

by Theorem 5.2. Applying this also to —h gives (6.1) completing the proof. O

Let us next generalize Theorem 5.4 in a similar way.
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Theorem 6.2. Assume that 0 € 352 is an exterior ray point. Let f : 3§2 — R be a bounded function which is
continuous at 0. Let E C 352 be a finite or countable set of exterior ray points, and h be a function such that
h= fonas2\E.Then

lim 0Bh(z) = leiznlo Ph(z) = f(0).

25z2—

Proof. The proof is the same as the proof of Theorem 6.1, we just need to replace the usage of
Theorem 5.2 by the use of Theorem 5.4 (twice). O

We can now obtain an invariance result for certain perturbations on finite or countable sets.

Theorem 6.3. Let E1 C 952 be a finite or countable set of asymptotic corner points and E; C 952 be a finite
or countable set of exterior ray points. Let f be a bounded function on 02 which is continuous at all points in
9£2 \ E1 and which has jumps at all points in E;.

Let further h be a function on 382 such that f =h on 982 \ (E1 U E). Then

Ph = Pf.
In particular both f and h are resolutive.
Note that we do not require h to be continuous on 92 \ (E1 U E3).

Proof of Theorem 6.3. By Theorem 5.2, we have
lim (Pf(y)—Pf(y))=0 forxeE;.
25y—Xx
On the other hand, Lemma 2.10 shows that

lim Pf(y)= lim Pf(y)=f(x) forxedf\E;.
235y—>x 235y—Xx

It thus follows from Theorem 3.1 that P f = P f and thus f is resolutive.
By Theorem 6.1, we have

lim (Pf(y)— Ph(y))=0 forxe Ej.

25y—x

Let next x € £2 \ E1. As f is continuous at x and bounded we can find a function ¢ € C(3£2) such
that ¢ > f on 982 and ¢(x) = f(x). Let also ¢ = max{¢, h}. Fix zp € £2 and let ¢ > 0. By the proof
of Theorem 6.2 (we let k = @) there is v € Uy such that v(zg) < P@(zp) + 2¢. Letting £ — 0 and
varying zg shows that Ph < Py < Po.

Lemma 2.10 shows that

limsup Ph(y) < lim Po(y) =¢@(x) = f(x)= lim Pf(y).
23y—x 235y—>x

NR3y—x

Hence Theorem 3.1 shows that Ph < P f.
Applying this also to —h and — f concludes the proof. O
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Example 6.4. Let 2 ={ze€C: 0 < |z| <1} and let f € C(3£2). Let further E C 952 \ {0} be a finite or
countable set and h = f on 92 \ E. Theorem 6.3 shows that Ph = Pf.

A natural question is if this may be true also if E = {0}. Clearly 0 is not an exterior ray point
and Theorem 6.3 is not at our disposal. The reason is that the conclusion is not true in this case. Let
f=0and h= x{0. As 0 is a regular boundary point, by the Kellogg property (Theorem 2.5), we have
limgsy—o0 Ph(y) =1, while Pf =0, showing that Pf s Ph.

The conclusion is that it is necessary to have some type of geometric condition on the points in
E1 and E; in Theorem 6.3.

As a consequence of Theorem 6.3 we have the following uniqueness result.
Theorem 6.5. Let E; C 952 be a finite or countable set of asymptotic corner points, E; C 352 be a finite or
countable set of exterior ray points, and E = E1 U E5. Let f be a bounded function on 02 which is continuous
at all points in 982 \ E1 and which has jumps at all points in E1.

Let further h be a function on 952 such that f =h on 3952 \ E. Let finally V be a bounded p-harmonic
function in §2. Then V = Ph if and only if

lim V(y)=h(&x) forxeodf2\E. (6.4)
25y—>Xx

Of course a particular application is to let h= f.

Proof of Theorem 6.5. Assume first that V = Ph. By Theorem 6.3, V = Pf. Thus Lemma 2.10 shows
that

lim V(y)=f(x) =h(kx) forxeds2\E.
25y—x

Assume conversely that (6.4) holds. Let ¢ = f —ocoxg and ¥ = f+ooxg. Then V e U, and V € Ly,
so that, by Theorem 6.3,

VLPYy=Ph=Pp<V. a
7. Perturbations, the case 1 < p <2
In this section we assume that 1 < p < 2 (apart from in the proof at the very end of this section)
and our aim is to obtain similar results to those in Section 6 for this case. In particular all points have
zero capacity. Theorems 7.2 and 7.3 are easy to obtain for p = 2 using linearity. However the proofs

given here are not valid for p =2 as Lemma 7.1 fails in this case.

Lemma 7.1. Let 0 < o < 27 and

0/, 0<O0<aandr >0,
fa(re?) = 8 a<f<2mandr>0,
r=0

Then f, € N1:P(D), where D is the unit disc in the complex plane C = R,

Proof. Let M = max{1/a,1/(2m — «)}. Then |V f,(re®)| < M/r, r > 0, from which it is easy to
see that f, € WIP(D). As falp\(oy is continuous and C,({0}) =0, fy is quasicontinuous. Hence
fa e NVP(D). O
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Theorem 7.2. Let 0 < o < 27 and A € R. Assume that 0 € 952 is an asymptotic corner point with directions 0
and o.. Let f : 9§2 — R be a bounded function which has a jump at 0 with limits 0 and A. Let further U (rei?) =
Ab/a forr>0and —y <0 <a + y, where y = —mm{a 2w —al.

Let E C 352 be a set with C,(E) =0, and h be afunctlon such thath = f on 3£2 \ E. Then

lim (gh(z) —U@2)= Hlim O(ﬁh(z) —U(2)) =0. (7.1)

25z—0

Moreover, we have the following radial limits

lim Ph(te'’) = lim Ph(te'f) = /;—’3 for0< B <a. (72)

t—0+ t—0+

Proof. As before the radial limits (7.2) follow from the limits (7.1). We may also assume that 0 € E.

Let ¢ > 0 be small enough. Then we can find a function k > f on 92 such that k is continuous on
9£2 \ {0} and has a jump at 0 with limits 0 and A, and k(0) =

It follows that k — Anfy € C(352), where f, is given by Lemma 7.1 and 7n(z) = min{2 — |z|, 1}4.
Thus there is a Lipschitz function ¢ on R?, with compact support, such that k — Anfy, < ¢ <k —
Anfy +€ on 382.

Let ¥ =@ + Anfe and ¥ = + coxg. Then k < ¢ <k+¢ on 052 and ¥ € N"P(R?). By Theo-
rem 2.4, Py = Py. Moreover ¥ > h on 9£2. We conclude that

limsup (Ph(z) — U(2)) < limsup (P (2) — U(2)) = limsup (Py (2) — U(2))
25z—0 23z—0 23z—0

<limsup (Pk(z) —U(2)) +e<¢

25z—0

where the last inequality follows from Theorem 5.2. Letting & — 0 yields

limsup (Ph(z) — U(2)) < limsup (Ph(z) — U(2)) =0

235z—0 252—0
Applying this also to —h gives (7.1), completing the proof. O

Theorem 7.3. Let E C 352 be a finite or countable set of asymptotic corner points. Let f be a bounded function
on 32 which is continuous at all points in 952 \ E and which has jumps at all points in E.
Let further h be a function on 92 such that f =h on 32 \ E, where C,,(E) = 0. Then

Ph = Pf.
In particular both f and h are resolutive.

Note that the boundary behaviour of Pf = Ph is described by Theorem 7.2 for xg € E. If Xg € 02\ E
then limgsyx, Pf(¥) = f(x0) if xo is regular (with respect to §2), the limit limgsy_,x, Pf(y) exists,
if xo is semiregular, and there is a sequence £2 > y; — xo such that lim;_ . Pf(y;) = f(x0), if xo is
strongly irregular. See Bjorn [9, Theorem 8.7] for a proof of a somewhat stronger statement.

Proof of Theorem 7.3. We may assume that 0 < f < 1. Fix a nonnegative integer j, and let E; C E be
the set of points at which f has a jump A of size 2791 < |A| < 27J. Then E; is a finite set, as if not
then E; would have a limit point x € 3§2 at which f would neither be continuous nor have a jump.
(We of course have the possibility that Ej =.)
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Let Xj1s -5 XjN; be the points in Ej. For each k=1,...,N; we can find a function f;(2) =
Ajifaj, (eix(z — x;jx)) such that f — fj is continuous at x;, where 27/=1 <|A; | <27/, &4 and
0k are chosen appropriately and fq;, is the function in Lemma 7.1. Let d; = min{|x — y|: x, y € E;
and x # y} if E; has at least two points, and let d; =1 otherwise. Let further

N;
: 5|z — Xj k| }

i(2) = E ik(z 2—— 17 .

@ k=1 il )mlﬂ{ dj +

Note that the terms in the sum have disjoint support and thus 0 < |f;] < 2~J, Lemma 7.1 shows that
fj € N'"P(R?) (with compact support). It is now easy to see that p := f — Zj‘io fj €C(0£2).

Let ¢ > 0. Then we can find a nonnegative integer N such that 27" < ¢. Moreover there is a
L1psch1tz function ¢ on R?, with compact support, such that p < p<p+eon a2 lety =9+
Z] ofj and U= ¥ 4 ooxg. Then ¢ — 2 < f < ¢ +2¢ and h < ¥ + 2¢. Moreover v € N''P(R?)
(with compact support).

We thus get that

Py —2e <Pf<Pf<Py+2e.

Letting & — O shows that f is resolutive.
By Theorem 2.4, Py = P+ from which we see that

< Py + 26 = Py +2¢ < Pf +4e.
Again letting ¢ — 0 shows that Ph < Pf. Applying this also to —h concludes the proof. O
We also have the following uniqueness result.

Theorem 7.4. Let E C 852 be a finite or countable set of asymptotic corner points. Let f be a bounded function
on 352 which is continuous at all points in 082 \ E and which has jumps at all points in E.

Let further h be a function on 952 such that f =h on 02 \E where Cp (E)=0. Let finally V be a bounded
p-harmonic function in §2. Then V = Ph if and only if

lim V(y)=h(x) forg.e xecas2. (7.3)
25y—>x

Of course a particular application is to let h = f.

Proof of Theorem 7.4. Assume first that V = Ph. By Theorem 7.3, V = Pf. Thus Lemma 2.10 shows
that

lim V(y)=f(x)=h(x) forxed2\ (EUE).
25y—Xx

As Cp(EU E) =0, we have shown that (7.3) holds.
Assume conversely that (7.3) holds. There is then a set E' D EU E such that Cp(E") =0 and

lim V(y)=hx) forxecdR\E.
25y—x

Let o = f —ooxp and ¥ = f + coxpr.
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Then V €Uy and V € Ly so that, by Theorem 7.3,

VL<PYy=Ph=Pp<V. O
We can now also give a proof of Theorem 1.3 when n = 2.

Proof of Theorem 1.3 when n = 2. For p > 2 this is a special case of Theorem 6.3, whereas for p <2
it is a special case of Theorem 7.3, which holds, by linearity, also for p=2. O

8. Baernstein’s problem

We are now prepared to fully answer the question of Baernstein, in the affirmative.

Proof of Theorem 1.2. Let f = x¢ and h = x¢. That f and h are resolutive follows from Theorem 2.9,
but we also obtain it directly from our proof. As Pf < Ph < Ph and Pf < Pf < Ph it is enough to
show that P f > Ph.

Lemma 2.10 shows that

lim Pf(y)= lim Ph(y)=1 forxeG,
23y—x 235y—>x
and that

lim Pf(y)= lim Ph(y)=0 forxecdD\G.
235y—Xx

25y—x

A simple application of Theorem 5.2 (with o = ) shows that

Qlai;]lx(ﬂf(y)_ Ph(y))=0 forxeG\G.

By Theorem 3.1, it follows that P f > Ph. (Note that S = in this case.) O

Theorem 8.1. Let G C 352 be relatively open and such that 3, G is a finite set consisting only of asymptotic
corner points (with respect to 2 ). Then

wa,p(G; 2) =wq p(G; 2) forallae £2.

Note that it follows that ¢ and xz are resolutive, which does not follow from Theorem 2.9 when
£2 is not regular.

The proof of Theorem 1.2 directly works also to prove this result in the case when 2 is regular,
and thus whenever p > 2. Using the full power of Theorem 3.1, the proof is easily modified to also
handle the case when £2 is semiregular.

When 2 is not semiregular we do not have a suitable comparison lemma available to give a
similar proof. Nevertheless the result is true: it is a special case of Theorem 7.3 in this case. Note that
the proof in this case is quite different.

Proof of Theorem 8.1. If p > 2, then we can either apply the proof of Theorem 1.2 or observe that
this result is a special case of Theorem 6.3.

If p <2, then this is a special case of Theorem 7.3.

For p =2 this is well known and easy to obtain using linearity. O
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9. Generalizations
9.1. Logarithmic spirals

Let ¢, ¥ : (0, 1] — R be given by

@) =alogt and Y ({t)=¢{t)+b forO<t<1,

where a e R and 0 < b < 27. Let further

2= {rem: 0<r<1landg(r) <6 <y (1)}

Then £2 is a selfsimilar spiral in the sense that

2NBO,n) ={nxe™: xe 2} for0<n<1.

Let now f :93£2 — R be a bounded function such that

~ ip(0)) _ ~ i)y _
t£r61+f(te )=0 and tg%i+f(te ) =A.

The arguments in the proofs of Theorems 4.2 and 4.3 show that P f tends to a p-harmonic func-
tion U which is independent of the radius in the sense that there is a function F : [0, b] — R such
that

U(te”) = F(8 —p(t)) for0<t<1andep(t) <6 <y (b).

This is done under the requirement that there is a unique such p-harmonic function U.

As p-harmonic functions on (unweighted) R" are Cllo’f, by Lewis [27, Theorem 1] we see that

F € C1(£2) and moreover takes the boundary values F(0) =0 and F(b) = A continuously. Furthermore,
by Aronsson-Lindqvist [2, Corollary on p. 161] the set

E={te”: VU(te”) =0, 0 <t <Tand p(t) <0 <y (1)}
={te’: F/(6 — ) =0,0<t<1landp(t) <8 <y ()}
is either discrete or all of £2, and U is real-analytic outside E. By the logarithmic symmetry we
see that E is either empty or all of £, and the latter happens only when A =0 and U = 0. Hence

U is real-analytic in £2 and F e C2(£2). Inserting the expression for U into the p-harmonic equation
div(|VU|P=2VU) = 0 and simplifying leads to the following equation for F,

(p—D(a®+1)F'(t)+(p—2)aF'(t)=0 for0O<t <b.

(For this calculation it may be helpful to use some program like Maple.) Solving this equation we see
that F'(t) = Cekt for t € (0, b), where C €R and

_ a p-—2
a2 +1p-1°

Integrating and solving for the boundary values F(0) =0 and F(b) = A shows that
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ek@—9(®) _1 .
. e D1 ifk £0,
U(te'?) = -1 (9.1)
AEOifk =0,

for 0 <t <1 and @(t) <6 < ¥ (t). Moreover U is the unique p-harmonic function with this invariance
and these boundary values.
Proceeding as in the proofs of Theorems 4.2 and 4.3 we find that

ngnlo(Pf(y) —Uy) = Qlgiyrrl)o(ﬂf(y) —U(y)=0.

It is straightforward to generalize all our other results in Sections 4-8 so that we can allow for asymp-
totic logarithmic spiral points wherever we have assumed for asymptotic corner points. Similarly we
can allow for exterior logarithmic spiral points. Note that the case a =0 corresponds to a corner and
is consistent with our earlier results.

9.2. Other selfsimilar situations

Let ¢, ¥ : (0, 1] — R be continuous functions and 0 < 7 < 1 be such that

Q) <Y (t) < @(t)+ 2, pt)=@t) and Y (zt)=vy () forO<t<1.

Let further

Q={re: 0<r<lande@®) <6 <y ()}

and f: 08 — R be a bounded function such that

i ip(t)) — ; i)y —
tgrgl+f(te )=0 and tlirgl+f(te )=A.

Then most of the arguments in the proofs of Theorems 4.2 and 4.3 can also be applied in this sit-
uation. There is only one part missing: We would need that there is a unique bounded p-harmonic
function u in £ with U(rz) = U(z), z € £2, and with boundary values 0 and A (in Perron sense) on
{rei: 0 <r<1and®=q)} and {rei’: 0 <r <1 and 6 = y(t)}, respectively. The author does not
know how to obtain such a uniqueness result. With such a result it would have been possible to show
that

lim 0(Pf(z) -U@)= Qlaiznlo(ﬁf(z) —U(2)=0.

25z2—

However, in this case it is easy to see that in general we would not have radial limits. Spiralling
versions would probably also be obtainable.

9.3. Unbounded $2

It is possible to consider similar questions in unbounded sets §2 C R?, and in particular obtaining
results when the boundary function has a jump at infinity. However, e.g., Theorems 2.3 and 2.4 have
only been obtained for bounded 2 and in order to generalize many of the results in this paper to
unbounded §2 it is necessary first to generalize Theorems 2.3 and 2.4. We leave such generalizations
to another paper.
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9.4. Higher dimensions

Let G be a nonempty open subset of the sphere $"~! = {x € R": |x| =1}, n > 3, such that
Cp(S"1\ G;S™ 1) > 0 (where Cp(-;S"") is the Sobolev capacity with respect to the space S"~1)
and

Q2={r6cR"0<r<1andfeG}.

Let further ¢ € C(dg-1G) and f be a bounded function on 952 such that f(ry) = ¢(y) when
0<r<1and y € dg-1G. (We thus allow f to be arbitrary uniformly bounded on the rest of 52.) Let
further v = P¢g, i.e. the Perron solution on G when G is considered as a subspace of the sphere §"~1.
This sphere is a particular example of the metric spaces on which the theory of p-harmonic functions
has been considered. Note in particular that continuous functions are resolutive in this case, by The-
orem 2.3 (which is available). For the theory of p-harmonic functions on metric spaces we refer the
reader to Bjorn-Bjorn-Shanmugalingam [13] or Bjorn-Bjorn [11]. Let also U(r0) = ¢ (0), 0 <r < 1
and 6 € G.

Theorem 9.1. Let the notation be as above. Let h : 9§2 — R be bounded and such that

a.(ganao(f(x) —h@) =0.

Then we have the following radial limits
lim Ph(td) = lim Ph(t0) =y (0) ford eG. (9.2)
t—0+ t—0+
If G is semiregular then moreover

lim (Ph(z) —U(2)) = Sim (Ph(z) —U(2)) =0. (93)

25z—

The author does not know if (9.3) holds when G is not semiregular.

The main ideas in the proof of this result are essentially the same as those in the proofs in Sec-
tion 4. However there are some additional complications, especially when G is not a regular subset
of §™1. So let us explain how to proceed.

We first need the following lemmas.

Lemma 9.2. Let the notation be as above and let u(ro) = t(9), 0 <r < 1, 0 € G, be a bounded p-harmonic
function in §2 which is constant on rays starting at the origin. Assume further that

lim u(0)=¢(y) forge.y €dg-1G,
Ga0—y

where q.e. is taken with respect to the Cp-capacity on S 1. Thenu =U.

Proof. The proof is similar to the proof of Lemma 4.1: We change to polar coordinates, and see that
il is p-harmonic on G. By Theorem 2.3 (which is available), i is the unique bounded p-harmonic
function having boundary values ¢ q.e. on ds.-1G. As this also holds for ¥ we must have &l = ¢ and
thusu=U. O

Lemma 9.3. Let £2 C R", n > 1, be a nonempty bounded open set and 2 =0 x(0,1) c R Let further
Xo € 052 and 0 < to < 1. Then xo is regular with respect to §2 if and only if (o, to) is regular with respect
to £2.
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This lemma is well known to all experts in the field, but we have not been able to find a good
reference.

Proof of Lemma 9.3. Assume first that xp is regular. Then there exists a weak barrier u at xp,
i.e. a positive superharmonic function u in £ such that limgsy_.x, u(y) =0, by Theorem 3.1 in
Kilpeldinen-Lindqvist [23] or Theorem 1.1 in Bjorn [7]. Let now i(x,t) = u(x), x€ £2, 0 <t < 1. Then
t is a weak barrier at (xg, tp) with respect to §, and thus (xg, tp) is regular with respect to Q by
either of the above mentioned theorems.

Conversely, assume that xg is irregular. Then there is f € C(d£2) such that Pf(y) - f(xp), as
2>y — Xo. Let now

fx), ifxedf2and0<<t <1,

f(X»t)Z{pf(x), ifxeandt=0ort=1.

Let us show that
Pﬁf(x,t)sz(x) whenxe 2 and0 <t < 1. (9.4)

Let u ey and U(x,t) =u(x), x€2,0<t<1.Then i € Z/lf(ﬁ), and thus I_’ﬁf(x, t) <ux,t) =u(x),
x € £2, 0 <t < 1. Taking infimum over all u € Uy shows that I_’ﬁf’(x, t) < Pf(x) when x € £2 and

0 <t < 1. Similarly we can show that Bﬁf(x, t) > Pf(x), when x € £2 and 0 <t < 1, from which we
conclude that (9.4) holds. ~ ~

As f is continuous at (xp,tp) but Pgf(y) = f(Nxo,to), as 23 ¥y — (xo,t), we conclude from
Lemma 2.10 that (xg, to) is irregular with respect to £2. O

Proof of Theorem 9.1. Let us first consider the case h= f.
Let M =sup,q | f| < oo and

E={ry: 0<r<1andy € ds-1G is irregular with respect to G}.

Let us show that E will exactly be the set of irregular boundary points with respect to 2. First of
all, if x=0 € 352 with 6 € G, then x is regular by the cone condition, Theorem 6.31 in Heinonen-
Kilpeldinen-Martio [20] (or the Wiener criterion, Theorem 2.6). If x =ry € 92 with 0 <r <1 and
y € dG, then locally around x we can take a biLipschitz mapping to a situation as in Lemma 9.3.
Using Lemma 9.3, the Wiener criterion, that regularity is a local condition, and that the capacities are
only distorted in a bounded way by the biLipschitz mapping, we see that x is regular if and only if
y is regular with respect to G. Here we do not only need the Wiener criterion on (unweighted) R",
as given in Theorem 2.6, but we also need it on $"~! where it looks the same and is a special case
of the Wiener criterion obtained by ]. Bjorn [19, Theorem 1.1] for Cheeger p-harmonic functions on
metric spaces. Observe that on S"~! (and on R") Cheeger p-harmonic functions coincide with the
usual p-harmonic functions.
Finally a simple scaling shows that the variational capacity

capp(B(O, 8)\ §2, B(0, 28)) =C§"P, 0<8<1,

for some constant C > 0. As C, (S" 1\ G;S"1) > 0, the Kellogg property (Theorem 2.5) shows that
there is a regular point yp € G with respect to G, and hence ryp, 0 <1 < 1, is regular with respect
to £2. If C were 0, then all points in {ry: 0<r<1and y € 3G} would be semiregular (see the
discussion after Definition 2.7), a contradiction. Hence C > 0 and it follows from the Wiener criterion
(Theorem 2.6) that 0 is regular.
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The Kellogg property (Theorem 2.5) now shows that C,(E) = 0. We then let u = Pk, where

k(ry) = {qo(y) ify €9g1G\Eand0 <r <1,

M, otherwise on 952.

Let further 0 < p <1 and
v(z) = liminf u(pw), ze 2.
25w—2z

As u is continuous on 2 we have v(z) = u(pz) for z=r6, 6 € G, 0 <r < 1. Moreover, Lemma 2.10
yields that v(ry) =¢@(y) for y € 9-1G\E and 0 <1 < 1.

By the definition of v we have v €U, so that Pv < v. Moreover for any ¢ € Ly, let $(z) = ¢(p2).
Then ¢ € Ly, and hence Pv > sup;ﬁ(ﬁ: v. Thus, v is resolutive and v = Pv. As v >k on 952 (by the
maximum principle), we have v > u in £2. Also as U € U, we have U > u in £2 and hence, as U is
constant on rays starting at the origin, U > v in £2.

Since u(pz) =v(z) > u(z), z€ £, for all 0 < p < 1, we see that r — u(rf) is a decreasing function,
and the limit lim;_, o4 u(t6) exists, if 8 € G.

Let for nonnegative integers j, v;(z) = u(27Jz), z € £2. As we have seen vj is an increasing
sequence of p-harmonic functions, which obviously is bounded by M. It follows from Harnack’s con-
vergence theorem (see Theorem 6.14 in Heinonen-Kilpeldinen-Martio [20]) that V =limj_ v; is a
p-harmonic function, and moreover vj — V locally uniformly (see the proof of Theorem 6.14 in [20]).
As u <V < U, we have

lim V (19) =@(y), ify edgu-1G\E. (9.5)
G36—y 2

Since V (r0) =limj_, oo u(279r0) = limy_ o4 u(t) is independent of r, for 6 € G, Lemma 9.2 shows that
V = U. We have thus shown (9.2) for h = f.

Assume now that G is semiregular and let S be the set of semiregular points with respect to G
on S, Then S is the largest relatively open subset of dgn-1G with zero capacity, see the comments
after Definition 2.7. It follows that E is a relatively open subset of d£2. By Theorem 6.2 in Bjérn [6],
u and U have p-harmonic extensions (also called u and U) to £:=Q UE. Also let ury)=U@y) =
@(y) for0<r<1and y € d-1G\ S. Then u and U are continuous on the compact set {%6: 0 € G},
and thus uniformly continuous there, and equal on {%y: y € 0gn-1G \ S}.

Let € > 0. Then there is § > 0 such that

1 1
u<50> - U<59>’ <e¢ forf e GUS with dist(f, dg-1G \ S) < 6.

Extend now v; to 2 by Theorem 6.2 in Bjérn [6]. Harnack’s convergence theorem shows that we
still have v; — U locally uniformly in 2. We also have u < vi<U in £2. We can thus find J such
that vy > U —¢ on

1 .
59: 0 € GUS and dist(f, dgn-1G \ S) >4 ¢.

Thus U—s<v,\Uon{ 0: 0 €G}.
As r— u(ro) is a decreasmg function, for each 6 € G, this shows that U@r0) — e < u(rf) < U(0)
for 0 <r <2-U*D and 6 € G. Hence

liminf (Pf(2) - U(2) > liminf (u(z) - U(2) > -
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Letting & > 0 shows that
liminf (P f(z) — U(2)) > 0.
25z—0

Similarly one obtains that

limsup (P f(z) — U(2)) <0.

2>5z—0

As Pf < Pf, (9.3) follows for h= f.
To prove (9.2) and (9.3) for a general h we can now proceed exactly as in the proof of Theo-
rem43. O

It is not easy to formulate and prove a reasonable generalization of Theorem 5.2 to higher dimen-
sions. However for Theorem 5.4 we have the following generalization.

Theorem 94. Letn — 1 < p < oo and $2 be a bounded open subset of R". Assume that there is § > 0 so that
0€ 982 and

E:={(x1,0,...,0): 0<x <8} CR"\ 2.

Let f : 982 — R be a bounded function satisfying

lim Of(z) =0.

025z2—

Then

lim Pfz)=lim Pf(z)=0.

252—

Note that for the conclusion to hold it is necessary that 0 is a regular boundary point. Moreover,
0 is regular with respect to B(0,4) \ E if and only if p > n—1. To see this first observe that C,(E) >0
if and only if p > n — 1 by Theorems 2.26 and 2.27 in Heinonen-Kilpeldinen-Martio [20]. It thus
follows by a simple scaling argument that the variational capacity

cap, (E, B(0,28)) = C8",

where C > 0 if and only if p >n — 1. Moreover cap,(B(0, 8), B(0, 28)) = C’8"~P, where C’ > 0. Thus
the Wiener criterion (Theorem 2.6) shows that xg is regular if and only if p >n — 1.

Proof of Theorem 9.4. Observe first that Cp({1}; $"1y > 0 as p > n — 1. Thus Theorem 9.1 is at our
disposal. The proof is now the same as the proof of Theorem 5.4 except for using Theorem 9.1 instead
of Theorem 4.2. O

We can also generalize Theorem 6.2.

Theorem 9.5. Let n — 1 < p < oo and let $2 be a nonempty bounded open subset of R". Assume that 0 € 352
is an exterior ray point.
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Let f : 982 — R be a bounded function which is continuous at 0. Let E C 952 be a finite or countable set
consisting of exterior ray points, and h be a function such thath = f on 082 \ E. Then

lim Ph(z) = Qlim OFh(z) = f(0).
22—

235z>0"

Here exterior ray point is defined similarly to the R? case.

Note that the theorem is false for 1 < p <n — 1, or more precisely the conclusion fails whenever
0 is not regular. (If 0 is regular and 1 < p <n — 1 the conclusion follows as in the proof below for
n—1<p<n.)

Proof of Theorem 9.5. For p > n the proof is similar to the proof of Theorem 6.1 (with obvious mod-
ifications).

For n — 1 < p < n the result is a special case of Lemma 2.10, as 0 is regular by the proof of
Theorem 9.4 and all points have zero capacity. O

We are now able to prove Theorem 1.3.

Proof of Theorem 1.3. If 1 < p <n, then C,(E) =0 and the result follows from Theorem 2.3. Assume
therefore that n < p < oo. By Theorem 9.5, we have

lim Pf(y)= lim Pf(y)= lim Ph(y)= lim Ph(y)= f(x) forxeE.
23y—x 235y—>x 25y—X 23y—x
On the other hand, Lemma 2.10 shows that

lim Pf(y)= lim Pf(y)=f(x) forxe 2 \E.
235y—>x 25y—>x

Arguing as in the proof of Theorem 6.3, we see that also

lim Ph(y)= lim Ph(y)= lim Pf(y) forxe £ \E. (9.6)
25y—X 235y—>x

23y—>x

(Observe that we do not require h to be continuous on 2 \ E, and hence cannot apply Lemma 2.10
directly to obtain (9.6).) It thus follows from Theorem 3.1 that P f = P f = Ph = Ph and in particular
f and h are resolutive. O

We also have the following uniqueness result corresponding to Theorem 6.5 with E; = .

Theorem 9.6. Let $2 be a nonempty bounded open subset of R". Let also E C 952 be a finite or countable set
of exterior ray points. Let f € C(352) and let h be a function on 952 such that f =h on 952 \ E. Let finally V
be a bounded p-harmonic function. Then V = Ph if and only if

lim V(y)=h() forxeod2\E. (9.7)
235y—>x

Of course a particular application is to let h= f.
For 1 < p <n, Theorem 2.3 gives a stronger result.
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Proof of Theorem 9.6. For 1 < p < n this is a special case of Theorem 2.3, so assume that p > n.
Assume first that V = Ph. By Theorem 1.3, V = Pf. Thus Lemma 2.10 shows that

lim V(y)=f(x) =h(x) forxed2\E.
25y—x

(Recall that all points are regular as p > n.)
Assume conversely that (9.7) holds. Let ¢ = f —ooxg and ¥ = f+ooxg. Then V €Uy, and V € Ly,
so that, by Theorem 1.3,

VL<Py=Ph=Pp<V. O
9.5. Weighted R" and metric spaces

For the main results in this paper it is essential that we work with unweighted R". More generally
one can consider .A-harmonic functions on weighted R" or p-harmonic functions on complete metric
spaces equipped with doubling measures supporting weak (1, p)-Poincaré inequalities. For the neces-
sary definitions and basic theory we refer to Heinonen-Kilpeldinen-Martio [20] for weighted R", and,
e.g., to Bjorn-Bjorn-Shanmugalingam [13] or Bjorn-Bjorn [11] for metric spaces.

Our proofs of Proposition 2.8, Lemma 2.10 and the results in Section 3 work just as well in metric
spaces, and for .A-harmonic functions on weighted R".

If A and w are constant on rays from the origin at least near the origin, then it is possible to
obtain the results in Sections 4, 5 and 9.4 for .A-harmonic functions on R" weighted by w dx, but this
is a rather special situation. To solve the Baernstein problem in this case requires such an assumption
at all boundary points, or at least at all points in 95 G. We have refrained from doing this.

Let us discuss perturbation results like Theorem 1.3 in more general situations. We let §2 be a
nonempty bounded open set in (weighted) R" or a metric space X with the usual assumptions, see
the references above. (If X is bounded we need to require that Cp (X \ £2) > 0, which is automatic if X
is unbounded, as otherwise £2 has no potential-theoretic boundary.) Let us say that a boundary point
Xo € 052 is a bounded (unbounded) perturbation point if Ph = Pf whenever f € C(d52), h is bounded
(arbitrary) on 952, and h= f on 982 \ {xo}.

By Theorem 2.3 any point with zero capacity is an unbounded perturbation point. In particular,
by the Kellogg property all irregular boundary points are unbounded perturbation points. In un-
weighted R" exterior ray points are unbounded perturbation points by Theorem 1.3. On the other
hand, Example 6.4 shows that not all regular boundary points are bounded perturbation points.

In fact if we let S be the set of semiregular boundary points and xp € 952 is a regular point which
is isolated in 9£2 \ S, which holds if and only if Cp({Xo}) >0 and Cp(B \ {xo}) =0 for some ball
B = B(xp, 8), then xg is not a bounded perturbation point. (This condition can also equivalently be
formulated by requiring that xo is isolated in the set of regular boundary points, see Bjorn [8].) In
fact, let h be an arbitrary bounded function on 9£2. Then we can find a continuous function k such
that k > h on 952 \ B and k(xp) = h(xg). By Lemma 2.10 we have

limsup Ph(y) < limsup Ph(y) < k(xg) = h(xp).

25y—Xo 235y—Xp

The converse inequality is proved similarly and thus

lim Ph(y)= lim Ph(y)=h(xo).
25y—Xg

25y—Xg

Letting f =0 and h = xx,) now shows that xq is not a bounded perturbation point.
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Example 9.7. let n >3, 1<p<n—1, —n <§ < p —n and consider weighted R" with the measure
du(x) = |x|°dx and 2 = B(0,1) \ E, where E = {(x1,0,...,0) e R™: 0<x; <1}. Then Cp,({0h) >0
by Example 2.22 in Heinonen-Kilpeldinen-Martio [20]. On the other hand C,(E \ {0}) =0 by The-
orem 2.27 in [20]. Thus X is not a bounded perturbation point by the above. On the other hand
Xo is an exterior ray point. Hence exterior ray points need not be bounded perturbation points in
weighted R”, in contrast to unweighted R".

Open problem 9.8. s it true that any regular point which is not isolated among the regular boundary
points is a bounded perturbation point?

Remark 9.9. After this paper was submitted, Kim [25] answered this open problem in the affirmative
for unweighted R".

Observe that except for exterior ray points (and exterior logarithmic spiral points, see Section 9.1)
in unweighted R" we have no examples of perturbation points with positive capacity. Let us never-
theless draw some general conclusions.

Theorem 9.10. Assume that 2 C X is regular. Let E be a finite or countable set of bounded perturbation points
with respect to 2. Let further f € C(3$2) and h = f on 952 \ E. Then Ph = Pf.

In particular bounded and unbounded perturbations are the same in this case.

Proof of Theorem 9.10. The proof is fairly similar to the proof of Theorem 6.1. Just start the induction
by letting ko = f, ignore the parts treating the jump discontinuity at 0, and finish the proof after (6.3)
in the obvious way. O

In semiregular sets we have the following corresponding results for R-Perron solutions.

Theorem 9.11. Assume that 2 C X is semiregular. Let E be a finite or countable set of bounded perturbation
points with respect to 2. Let further f € C(32) and h = f on 952 \ E. Then Rh = Rf = Pf.

Proof. Again we proceed as in the proof of Theorem 6.1, starting the induction by letting kg = f
and ignoring the parts treating the jump discontinuity at 0. We let zg € £2 and € > 0. We obtain an
increasing sequence of continuous functions {kj}]‘?;’o such that v =1limj_, Pk; is p-harmonic, and
v(zg) < Pf(z0) + 2¢. _

We next want to show that v € Uj,. Let S be the set of semiregular boundary points. For x €
382\ (EUS) we have

liminf v(y) > liminf Pf (y) = f(x) = h(x).
23y—x 25y—Xx

On the other hand, for x€ E\ S,
liminf v(y) > lim liminf Pk;(y) = lim k;(x) = 0o > h(x).
25y—x jooo 23y—x j—oo

Thus v eﬁh and

Rh(z0) < v(z0) < Pf(z0) + 2¢.

Letting € — 0 shows that Rh(zp) < Pf(zo), and as zg € £2 was arbitrary we find that Rh < Pf in £2.
Similarly Rh > Pf and thus Rh =Pf =Rf. O
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Theorem 9.12. Let 2 C X be a bounded nonempty open set such that C;,(X\ £2) > 0. Let f € C(32), E1 bea

finite set of bounded perturbation points, C,(E2) =0and h: 32 — Rbesuchthath= fon 92\ (E; UEy)
and supg, |h| < co. Then Ph = Pf.

Observe that this result holds without any regularity assumption on £2. The author does not know
if Theorems 9.10 and 9.11 hold without regularity assumption, not even if E is a singleton set. Ob-
serve that in Theorem 9.12 we only consider perturbations which are bounded on E{, whereas in
Theorems 9.10 and 9.11 unbounded perturbations are considered.

Proof of Theorem 9.12. Let

k_{f, ondR\ Eq,
N h, onkE;.

Let further zo € £2 and ¢ > 0. We proceed as in the induction in the proof of Theorem 6.1, with
ko = f and E = E;. After a finite number of steps we find a function k € C(9£2) such that k <k and
Pk(zp) < Pf(zo) + 2¢. ~ ~

By Theorem 2.3, Pu = Pk, where u =k + coxg,. As u > h we have

Ph(zg) < Pu(zg) < Pf(z0) + 2¢.

Letting € — 0 shows that Ph(zg) < Pf(20). As zg € 352 was arbitrary, we have Ph < Pf in £2. Similarly
Ph > Pf and thus Ph=Pf in 2. O

If we define perturbation sets similarly, then the set S of all semiregular points is the largest
relatively open (bounded or unbounded) perturbation set, by Theorem 3.1 in Bjoérn [8].

9.6. Other equations

The methods used in this paper should be applicable also to some other elliptic equations than the
p-harmonic equation. For the method used in Section 4 it is important that the equation is invariant
under dilations, i.e. if u is a solution then also x — u(tx), 0 < t < 1, is a solution. It is also important
to have uniqueness as in Lemma 4.1. For the spiralling results in Section 9.1 it is essential to have
rotational invariance, but that is not used in Section 4. In particular it seems that for co-harmonic
functions the method and results should hold. We leave the details for co-harmonic functions as well
as other equations to the future.
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