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1. Introduction

First we shall outline the general theory on the initial value problem for fully nonlinear wave
equations,

{utt — Au=H(u,Du, DyDu) inR" x [0, c0), (1)

ux,0)=¢ef(x), ur(x,0)=egX),
where u =u(x,t) is a scalar unknown function of space-time variables,
Du = (uxy, Uxy, -+, Uxy)s X0 =1,
DxDu:(uxixj, i,j=0,1,....n,i+j=1),

f.geCP (R and & >0 is a small parameter. Let
A= G0, i=0,1,...,m (), 1,j=0,1,...,n, i+ j>1).
Suppose that the nonlinear term H = H () isa sufficiently smooth function with
HR) = 0(JA1"1)
in a neighborhood of A =0, where & >1 is an integer. Let us define the lifespan T (g) by
T(¢) = sup{t > 0: 3 solution u(x, t) of (1.1) for arbitrarily fixed (f, g)}.

When T(¢) = oo, the problem (1.1) admits a global in time classical solution, while we only have a
local in time solution on t € [0, T(¢)) when T(¢) < oco. For local in time solutions, one can measure
the global stability of a zero solution by orders of €. Because the uniqueness of the solution of (1.1)
may yield that lims_ o T(¢) = co. Such a uniqueness theorem can be found in appendix of John [7]
for example. For n = 1, we have no time decay of solutions even for the free case, so that there is
no possibility to obtain any global in time solution of (1.1). In this paper we assume n > 2 for the
simplicity.

In Chapter 2 of Li and Chen [9], we have long histories on the estimate for T (¢). The lower bounds
of T(e) are summarized in the following table. Let a = a(e) satisfy

a’e?logla+1) =1 (1.2)

and c stand for a positive constant independent of ¢. Then, due to the fact that it is impossible to
obtain an L? estimate for u itself by standard energy methods, we have

T(e) > a=1 a=2 o >3
6

n=2 ca(e) in general case, ce™° in general case,
ce™! if [ g dx=0, exp(ce=2) if 3H(0)=0 (b=3,4)
ce™? if92H0)=0

n=3 ce2 in general case, 00 00
exp(ce™!) if 92H(0) =0

n=4 exp(ce~?) in general case, 0 00
oo if 82H(0)=0
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We note that the lower bound in the case where n=4 and o =1 is exp(ce~!) in general case in Li
and Chen [9]. But later, Li and Zhou [10] improve this part. The remarkable fact is that all these lower
bounds are known to be sharp except for (n, @) = (4,1) and (2, 2). See Li and Chen [9] for references on
the whole history, in which the open sharpness of (n, @) = (2, 2) is dropped. For this case, it seems
that b =4 is a technical condition which may be removed. See also a table in Li [8]. Recently, Zhou
and Han [22] have obtained the sharpness for b =3 in (n,«) = (2,2) by studying H = uf while the
analysis for uy — Au = |u¢|® in two space dimensions is much easier.

Our purpose in this paper is to show this remained sharpness of the lower bound by giving a
sharp blow-up theorem for uy; — Au = u? in R* x [0, co). Including this situation, we consider the
initial value problem for semilinear wave equations of the form,

{utt—Au:|u|p in R" x [0, c0), (13)

ux,0)=cef®, ux, 0 =egx),
where p > 1. Let us define the lifespan T(¢) by
T(e) = sup{t > 0: 3 solution u(x, t) of (1.3) for arbitrarily fixed (f, g)}.
where “solution” means the classical one if p > 2, or the weak one which is the solution of associated

integral equations to (1.3) if 1 < p < 2. Then we have the following Strauss’ conjecture. There exists a
critical number pg(n) such that

T(¢) =00 if p> po(n)and ¢ is“small” (global in time existence),

T(e) <oo ifl<p<po(n) (blow-upin finite time).

As in Section 4 in Strauss [16], po(n) is a positive root of the quadratic equation

y(p,m)=2+m+1)p—(n—1)p>=0. (14)
That is,
n+14+/n2410n—-7
po(n) = 20-1) (1.5)

and one should remark that pg(4) = 2. This number comes from the integrability of a weight function
(14|t — |x||)®@—DP/2-(+1)/2 ip the jteration argument. Such a weight function arises from the space-
time integration of (1 4+t + |x|)™~1/2 which is a decay of a solution to free wave equation. Note that
we have another story for noncompactly supported data, such as T(g) < oo even for the supercritical
case p > po(n) if the spatial decay at infinity of the data is weak. All the results in this direction are
summarized in Takamura, Uesaka and Wakasa [17].

Strauss’ conjecture was first verified by John [6] for n = 3 except for p = po(3). Later, Glassey [4,5]
verified this for n =2 except for p = po(2). Both critical cases were studied by Schaeffer [14]. In high
dimensions, n > 4, the subcritical case was proved by Sideris [15]. For the supercritical case, there
were many partial results. The final result was given by Georgiev et al. [2]. The critical case in high
dimensions was obtained by Yordanov and Zhang [18], or Zhou [21] independently. In this way, the
open part of the conjecture has been disappeared.

For (1.3), we have precise results on bounds of the lifespan in low dimensions, n = 2, 3, by virtue
of the positivity of the fundamental solution. Actually we know that

lim e2PP=D/Y(P-MT(g) > 0 exists for [(n) < p < po(n), (1.6)

e—0
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where [(3) =1 and [(2) = 2. This result was proved by Lindblad [11] for n =3 and by Zhou [20] for
n=2. In Lindblad [11], it was also proved that for n =2 and p =2 we have

limoa(s)‘1 T(e) >0 exists if /g(x) dx 0,

& Rz
lim0 eT(e) >0 existsif / g(x)dx =0, (1.7)
E—>

R2

where a(e) is the one in (1.2). For the critical blow-up in low dimensions, the situation is rather
complicated because the rescaling argument is no longer applicable. Zhou [19,20] proved that there
exist positive constants ¢ and C independent of ¢ (hereafter in this section, we omit this description)
such that

exp(ce PP~D) < T(e) <exp(Ce PP~D)  for p = po(n). (1.8)

In higher dimensional case, n > 4, it is hard to get the same results as (1.6) and (1.8) because the
fundamental solution is no longer positive. Actually, we have

ce—2p(=1D/y(p.m+o <T(e) < Ce=2p(@=D/y(®.")  fo5r1 < p < po(n), (1.9)

where o > 0 is a small error term. The lower bound in (1.9) was obtained by Di Pomponio and
Georgiev [1]. On the other hand, the upper bound in (1.9) is easily obtained by rescaling of the
blowing-up solution in Sideris [15] which is stated in the history of Strauss’ conjecture. Such an
argument can be found in Georgiev et al. [3]. We note that it is possible to remove o in (1.9) by
assuming that the solution is radially symmetric, or n < 8. See Section 6 in Lindblad and Sogge [12].
They also obtained the same lower bound as the one in (1.8). It is remarkable that, in n =4, Li
and Zhou [10] initially removed the assumption of radial symmetry for the critical case as stated in
the history on (1.1). Their success depends on careful analysis in L2 frame work. Such a method is
applicable to this case because the nonlinear term is smooth by the fact that pg(4) = 2.

As for the upper bound in (1.8) for n > 4, following the proof in Zhou [21] carefully, one can find
that T(g) < exp(exp(Ce~P)). Moreover, we point out that T(e) < exp(Cs‘pz) is implicitly obtained in
Yordanov and Zhang [18] if one follows their proof along with our argument. See Remark 4.1 at the
end of this paper. But unfortunately both results are not optimal.

In this paper, we prove the following expected theorem.

Theorem 1.1. Let n > 4 and p = po(n). Assume that both f € H'(R") and g € L?(R") are nonnegative, do
not vanish identically, and have compact support such as {x € R": |x| < R}, where R is a positive constant.
Suppose that the problem (1.3) has a solution (u, u¢) € C([0, T(¢)), H'(R") x L%(R")) with

supp(u, ur) C {(x,t) €R" x [0, 00): |x| <t +R}. (110)
Then, there exists a positive constant ey = €o(f, g, n, p, R) such that T (¢) has to satisfy
T(¢) <exp(CePP~V) for0 <e < g, (111)
where C is a positive constant independent of €.

Remark 1.1. The differentiability of fR" u(x, t)dx twice in t follows from the assumption on the regu-
larity which is the same as Yordanov and Zhang [18]. See Sideris [15] for details.
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Our success depends on the iteration argument of LP norm of the solution. This is carried out
on the integral inequality of the norm which follows from LP boundedness of the maximal function
via Radon transform by Yordanov and Zhang [18]. After repeating the estimates finitely many times
till LP norm is large enough, we will be able to apply the blow-up theorem for ordinary differential
inequality with the best condition only.

2. Blow-up for ODI with a critical balance

We shall start with the following blow-up result for ordinary differential inequality. This lemma is
a modified version of Lemma 2.1 in Yordanov and Zhang [18]. The key items are concrete expressions
in (2.2) below.

Lemma 2.1.Let p > 1,a > 0 and (p — 1)a = q — 2. Suppose that G € C2([0, T)) satisfies

G(t) > Kt? fort > T,
G"(t) =Bt +R)IG®H)|" fort=0, (2.1)
G(0)>0, G'(0)>0,

where B, K, R, Tq are positive constants with To > R. Then, T must satisfy that T < 2Ty provided K > Ko,

where
-2/(p-1)
1 B 1 G(0)
Ko=)— | = (1-— T, = Ty, =) 22
0 {Zq/za p+1< 206)} ’ ! max{ O’G’(O)} (2.2)

with an arbitrarily chosen § satisfying0 <8 < (p — 1)/2.

Proof. We prove this lemma by contradiction. Assume that T > 2T;. First we note that the second
and third inequalities in (2.1) yield

G'(t) > G'(0) > 0, G(t) > G'(0)t+G(0)>G0) >0 fort>0. (2.3)

Multiplying the second inequality in (2.1) by G’(t) and integrating it over [0, t], we have

t
%G/(t)z >B /(s +R)TIG(5)PG/(s)ds + %G/(O)z
0

B

E— P‘H_GOP-H
" GrnerRe COT O

B ~
g (p+1)(t+R)qG(f) {6 -G}

for t > 0. Restricting the time interval to t > G(0)/G’(0) and making use of (2.3), we get

{G'(Ot -G} >0.

G'(t) B_ CmPhe fort > GO
> . > .
p+1 (t+R)/? G'(0)

%G(t)—G(O) Z

N =

Hence we obtain
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If t > T1 (> R), one can make use of the first inequality in (2.1) to obtain

G'(t) B G(t)P—D/2-8 B K(P—1/2-8
. > .
GO\ p+1  (t+RIZ T\ p+1 20202-alp-1/2-3)
for any § satisfying 0 <& < (p—1)/2. Noticing that q/2—a(p—1)/2 =1 and integrating this inequality
over [T, t], we have

LY G N B wo-vp-s( 1 1Y
S\ G(T1)¥ G@)? 29/2q5\ p+1 Tﬁ"‘ £as

Then, one can put t = 2T; because of T > 2T;. Neglecting 1/G(t)’ > 0 in the left-hand side and
making use of the first inequality in (2.1) with t = T1, we obtain

a §
1o Ay, ] B (1_ 1 \kw-nr2-s
K5 “\G(T)) " 297a\p+1\ 2@

This inequality contradicts to the choice of K > K. Therefore we conclude that T < 2T;. The lemma
is now established. O

3. Growing up of LP norm of the solution

In this section, we shall construct an iteration of estimates for L? norm of the solution. As stated
in Remark 1.1, the assumption on the regularity in Theorem 1.1 yields

F(t) :/u(x, t)ydx e C%([0, T(s)),
R?
so that we have
F'© = [ Jutc. 0] dx= .0
RH

The iteration argument will give us an enough growth of the norm for large time. To this end, we
have to start with the following basic frame of the iteration.

Proposition 3.1. Suppose that the assumption in Theorem 1.1 is fulfilled. Then, there exists a positive constant
C=C(f,g.n,p,R)suchthat F(t) = [gn u(x,t)dx fort > R satisfies

, L pna-p2)g), e 2 , P
F (t)>c/ T f F'(s)ds | . (31)
0 0

Proof. This proposition immediately follows from the combination of two estimates for Radon trans-
formation, (2.14) and (2.21), in Yordanov and Zhang [18]. O

The next proposition is the basic estimate for the first step of our iteration.
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Proposition 3.2. Suppose that the assumption in Theorem 1.1 is fulfilled. Then, there exists a positive constant
C=C(f,g,n,p,R)suchthat F(t) = fRn u(x, t)dx for t > 0 satisfies

F'(t) = CeP(t + R)M~DA=p/2) (3.2)

Proof. This is exactly (2.5’) in Yordanov and Zhang [18]. They employed a special test function. With-
out such a technique, the easy proof for slightly different data can be found in Rammaha [13], in
which the short and simple proof of Sideris’ blow-up theorem in high dimensions is given. O

Remark 3.1. It is trivial that we can write the same C in Propositions 3.1 and 3.2.
The main estimate in our iteration is the following proposition.

Proposition 3.3. Suppose that the assumption in Theorem 1.1 is fulfilled. Then, F(t) = [gn u(x,t)dx for
t>ajR (j=1,2,3,...) satisfies that

(0-1)/(p-1)
t+ (aj—2)R
F’(t) > Cj(t —a;R)"~DI=P/2) (|og t+@-2R ) (3.3)
2(aj — DR
Herewesetaj=3-4"1—1and
Cj=exp{p’~!(log(CoC1C, ")) —logCo} (j>2),
cp+1 2
Ci= eb”, 34
1T 2 3002 — (n — 1)p/2)P G4
where C is the one in Propositions 3.1, 3.2, and
1/(p—1) j-1
(p—1C (+1)p ; k
Co= { on—1+(m+1)p/2 . 3np71p ’ CP =2 p, SO = Z E (3‘5)
k=1

Proof. Recall that 1 < p = po(n) < po(4) =2 for n > 4. First we shall show this proposition for j =1.
Replacing F”(s) in the right-hand side of (3.1) by the lower bound of F”(t) in (3.2), we have

=R (t—p=R)/2 p
(n=1)(1-p/2)
F'(t) > cprigr’ [ 2 dp S=1D(1-p/2) g
t = p+ R)m-Dp/2

for t > R. Hence it follows that

-2 3m-Dp/2¢, t/‘Rp(n—m—pm(t — p— RyP—(—1p?/2
0

onp—(n—1)p?/2 (t—p+ R)=Dp/2

F'(t) > dp

for t > R, where C; is defined in (3.4). From now on, we restrict the time interval to t > a{R = 2R
and diminish the domain of the p-integral to [0,t — 2R]. Then we have t — p > 2R in the p-integral.
We now employ the following elementary lemma.
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Lemma 3.1. Let M and R be positive constants. Then t — p > MR is equivalent to
M+D{t—p—M—-1R}>t—p+R.

It is easy to prove this lemma. We omit the proof.
Making use of Lemma 3.1 with M =2 and the relation

n—1 n—1
np - — p?= S—p—1 (3.6)

which is equivalent to (1.4), we obtain

F'(t) >

2, t/ZRp(nnap/b
dp

20m—1)p/2—1 t—p—R
0

for t > 2R. Hence, cutting the domain of the p-integral to be an upper half, we have

t—2R
F'(t) > Cy (¢ — 2R)B-DA-P/2) b s 2R NP g L
t—p—R 2R

(t=2R)/2

for t > 2R. Therefore (3.3) is true for j=1.

Next we shall show (3.3) by induction. Assume that (3.3) holds but C; is unknown except for
j=1. Later we look for the relation between C; and C;;1 which yields (3.4). To this end, we restrict
the time interval t > a;R to t > (2a; + 1)R. Then it follows from (3.1) that

F"(s) ds)

t—(a;+1)R

—p—
(n=1)(1-p/2) 4

F'() > C / P ] P 2 /

S a—prR@ir\ )

aj

R)/2

for t > (2a; + 1)R. Making use of (3.3), we have

t—(a;+1R

m=D)A=p/2) (] .(t. p)IP
0

(t—p+R)=1p/2

for t > (2a; + 1)R, where we set

(t=p—R)/2

0
I;(t, p) = [ (s—ajR)(”—”“—P/z)(mg
R

aj

s+ - 2)R><I’J—”/<P—”dS

2(aj— DR

Now we restrict the time interval further to t > 2(a; 4+ 1)R and diminish the domain of the p-in-
tegral to [0, t — 2(aj 4+ 1)R]. Then we have t — p > 2(aj + 1)R in the p-integral. We note that one can
diminish also the domain of the s-integral to [a;(t — p — R)/(2aj + 1), (t — p — R)/2] because of

Y t-p-R
2(1j+l p ’
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Since (s —a;R) in the s-integral is estimated by

Y (t—p—R)—aR=——(t— p—2(a;+1R)
2aj+1 7 205 +1 ! ’
we have
(n=1)(1-p/2)
t—p—2@a;+ 1R
uwp)>< 3 )

(t—p—R)/2

ds.

< s+(aj—2)R>(p]_])/(p_])
X log —————

2(aj — DR
(t—p—R)a;j/(2aj+1)

Moreover, it follows from t — p > 2(a; + 1)R that the variable in the logarithmic term is estimated as

(t—p—R)a;/aj+1D+@—-2)R t—p+Qa;—DR  t—p—(a;+3)R

2(aj — DR 24+ DR 2(aj — 1)aj + DR
t—p+(2aj— DR (@j— 1R
2(2a;+ DR 2(aj — 1)(2a;+ DR’

Hence, neglecting the last positive term in the above inequality, we get

t—p—2(a;+ 1)R>("‘”“‘P/2)

Ij(t, p) >< 3

t—p—R( t—p+Qa—DR @/ =1)/(p=1)
X .
2(2aj+1) 2(2aj+ DR

Therefore (3.6) yields

t—2(aj+1R
ch.’ p@=D(=p/2) y
3(=Dp/2=1(2q;)P 0/ (t—p+R@E0p2

F'(t) >

t—p+Qa; - 1)R><”“1‘P>/(P—”

(1-1)p/2-1
t—p—2@aj+ 1R l
x{t—p =2+ DR} (Og 2(2a; + DR

for t > 2(a; + DR.
Now we restrict the time interval again to t > (2a; + 3)R. Then it follows from Lemma 3.1 with
M =2a; + 3 that

t—p+R<Qaj+4{t—p—2@aj+ DR} <2%{t — p —2(aj + DR}.

Hence we have



1166 H. Takamura, K. Wakasa / J. Differential Equations 251 (2011) 1157-1171

p
o > €
21p .3(n—1>p/2—1a§,"+”f’/2
t—Qa;+3)R .
7 p=D(=p/2) (= p+ (24— DR (pf+1—p)/<p—1>d
X
t—p—2@a+ DR 2(2a; + DR P

for t > (2a; + 3)R. This inequality implies

P
CCj

}(”—1)(1—13/2)
on—1+m+1)p/2 . 3(n—1)p/2—1a;”+1)’3/2

F'(t) >

{t—@a;+3)R

t—(a;+3)R (1 t—p+(2aj—l)R)(PjH*P)/(p*l)
5 T2Qa;+DR dp

t—p+Q2aj—1HR
{t—(2a;4+3)R}/2

for t > (2a; + 3)R. Noticing that

pitl—p _ pit1 -1 _ pitt
p—1 p—1 “p-—1
and
aj=3-4"1-1<3.2%,
we obtain

ccy
2n—=1+m+1)p/2 . 3np—1 . p(n+1)pj

p—1(, t+6a;+DHR\P D@D
X -
pitl 2(4a;+2)R

}(n71>(17p/2)

F'(t) > {t—(a;+3)R

for t > (2a; + 3)R. Therefore it follows from aj 1 =4a; + 3 that

(p— 1)ccj?

”
>
F'(t) > 2n=1+m+1)p/2 . 3np—1p . 2+Dpp)j

E+ (@1 — 2)R>(Pj+1‘”/(p‘”

« (£ —a;,{R)®=DA=P/2) (log
" 2@aj1 — DR

for t > ajqR.
As a conclusion, if C; is defined by

p—1,p
cy'ct

Cjp1= (=1,

o
where Cp and Cp, are defined by (3.5), then (3.3) is valid for all j > 1. This equality is rewritten as

logCj 1 =plogCj— jlogCp +10gC871.
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It is clear that C, defined by this equality is the one in (3.4). For j > 2, we have the following
concrete expression of logCj; 1 inductively.

J j-1
logCjt1=p’logCq — kaf”‘ logCp + Zp" logng
k=1 k=0

= pj{logq —S(j+1)logCp +logCo} — log Co.
This is exactly (3.4). Therefore Proposition 3.3 is now established. O
4. Upper bound of the lifespan
In this section, we complete the proof of Theorem 1.1. The first step is to shift the estimate for

F"(t) = |u(-, t)||fp @&y O the one for F(t) = fR,, u(x, t) dx. One of the key in this section is the assump-
tion on the initial data in Theorem 1.1,

F(O)=8/f(x)dx>0, F’(O)=8/g(x)dx>0. (41)
R R

This yields that F(t) > 0 and F’(t) > 0 for t > 0. Because it follows from the support condition (1.10)
and Holder’s inequality that

F"(t) > {vol(B*(0, 1))} P (t + R) P~V |F(t)|? (4.2)

for t > 0, where vol(B"(0, 1)) is a volume of a unit ball in R".
Now we start with the following proposition.

Proposition 4.1. Suppose that the assumption in Theorem 1.1 is fulfilled. Then, F(t) = fR" u(x,t)dx for
£>{2(aj +2)R}? (j=1,2,3,...) satisfies

ci /1 (®/=1/(p-1)
Ft) > 7<ilogt> gt 1==Dp/2 (43)

16'D
where D = 32 .231=2-3(1=1)p/2 ¢ and C; are defined in Proposition 3.3.

Proof. Integrating (3.3) in Proposition 3.3 over [a;R, t], we have

s+ — z)R>(P”>/<P”dS

t
F'(t)>Ci | (s—a;R)DA=p/2 (]
020 ) el g2(aj—1)R
R

aj

for t > a;R. Here we restrict the time interval to t > (a; + 1)R and diminish the domain of the
s-integral to [ajt/(aj + 1),t]. (s —a;R) in the integral is estimated by

Lt—a-R>l{t—(a-+1)R}
ag+1 72 ! '

Also the variable of the logarithmic term is estimated by
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ajt/(aj+1)+(aj—2)R t+(@j+ DR t—(j+ DR
2(aj - DR T 2@ +DR 2@ — 1@+ DR

Hence we obtain

Fr > Gilt= (@ + DRy OTDPE ( t+(a; + 1)R><"J‘”/“"”

2n—(n=1p/2q; 2(a; + DR

for t > (a; + 1R.
Integrating this inequality over [(a; + 1)R, t], we have

t

Cj n—(n-1)p/2
FO) > Sogoreg; / {s—(@;+ DR}
(@j+DR
s+(aj+1)R (p!-1)/(p—1)
x (log L~ 2~ ds
2(aj+ 1R

for t > (a; + 1)R. Similarly to the above, we restrict the time interval to t > (a; + 2)R and diminish

the domain of the s-integral to [(a; + 1)t/(aj +2),t]. (s — (aj + 1)R) in the integral is estimated by
aj+1
aj+2

t—@j+DR>{t—(a; +2)R}.

1
2
Also the variable of the logarithmic term is estimated by

@ +1t/@j+2)+@+DR _t+(@+2)R
2(aj+ 1R 2@ +2)R

Hence we obtain

Cj{t — (aj +2)R)y*+1-(1=Dp/2 (1 t+(aj+2)R)<pf1>/<p1>
(0)

F(t) >
© 22n+17(n71)pa? 2(aj+2)R

for t > (a; +2)R.
Restricting the time interval further to t > 2(a; 4+ 2)R, we have

C;th+1-(m=1p/2
) log
23n+2—3(n—1)p/2a? 2(aj+2)R

(pI=1/(p-1)
F(t) > >

Note that we may assume 2(a; + 2)R > 1 without loss of the generality. Therefore we finally obtain

C.+H1-m=1p/2 /4 (PI-1)/(p-1)
F(t)> 2 ( )

23n+2-3(n—1)p/242 Elogt
J

for t > {2(aj + 2R} > 2(aj 4+ 2)R. The proof is now ended by trivial inequality a; <3 - 272.41 @

Proof of Theorem 1.1. Let j > 2. Define a sequence of time interval {I(j)} by

1G) = [{2@; + 2R}, {2(ajs1 + 2R}] (4.4)
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and set

¢ (1 ('=1)/(p=1)
K@) = 6D <§ logt>

which is the coefficient of t"*1="=1P/2 in (4.3). Then it follows from the definition of C; in (3.4) that

) log(log +/t
Kj(t) = exp{p"] logL;(t) — jlog16 —log(CoD) — gl()ig{/—) }
where we set
(i 1 p/(p—1)
Lj(f):CoC]C; (])<Elogt> .
In view of the definition of Cy in (3.4), we have L;(t) > e provided
PP Dlogt > E, (4.5)

where

21-2.30=Dp/2n _ (n — 1)p/2}P -eCIS,(OO) (p=1)/p
E=2 >0
CoCPH1

Because S(j) is monotonously increasing in j, but converges to a positive constant S(co).
From now on, we assume (4.5). Then it follows that

; log(log{2(a; 2)R
1<j(t>>e><p{pf‘1—jlog16—10g<coD>— e })}

p—1

for t € I(j). We note that the right-hand side of this inequality goes to infinity if j tends to infinity.
Hence, for Ko defined in (2.2) witha=n+1— (n—1)p/2 >0 and B = {vol(B"(0, 1))}! P > 0, there
exists an integer ] = J(f, g,n, p, R) such that

F(t) = Kot"H1==DP/2 fort € I(j)
as far as j > J. Therefore the definition of I(j) implies
F(t) > Kot"™ ' =DP72 fort > {2(a; +2)R).
Now we are in a position to apply Lemma 2.1 to our situation with
G=F, B={vol(B"(0,1)}'?

and

n—1
a=n+1—Tp, g=n(p—1)
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because of (4.2). We note that the condition (p — 1)a = q — 2 in this setting is equivalent to p = po(n).
First we set

To(e) = exp(Ee PP~ D),
where E is the one in (4.5). Then there exists g = &o(f, g, n, p, R) such that

F(0)

To(e) > {2(ay —+—2)R}2 and Zmax{TO(s), o)

} < exp(ZES*p(p’”)

hold for 0 < & < gy because J and F(0)/F’(0) are independent of &€ as we see. If the lifespan T(¢)
satisfies T(¢) > Ty(&), then we have

F(t) > Kot"T1=("=DP/2 fort e [To(e), T(e))

by definition of To(e) because such a t satisfies eP(P~1 Jogt > E. Lemma 2.1 says that this inequality
implies

F(0)

t<2 max{To(s), F(0)

} <exp(2E¢~PP~),
Taking a supremum over t € [To(¢), T(¢)), we get

T(¢) <exp(2Ee PPV} for0 < ¢ < &o. (4.6)

The counter case T(¢) < To(¢) is trivial. Therefore (4.6) holds for any cases. The proof of Theorem 1.1
is now completed. O

Remark 4.1. It is easy to check that the blow-up condition in Yordanov and Zhang [18] is
. 2
lim &P logt = oo.
t—o0

But one can find that their estimate is equivalent to Proposition 3.3 with j = 1. Hence, applying the
above argument to such an estimate, we have

T(e) < exp(ZEs"’z) for0 < e < &g

with a different constant E > 0 from E. This result is stated in introduction. The improvement of the
upper bound of the lifespan is carried out by our iteration argument.
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