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1. Introduction and main results

In present paper, we investigate the multiplicity and concentration of positive solutions to a class
of semilinear Kirchhoff type equation

—<£2a+b€f|Vu|2>Au+M(x)u:kf(u)+|u|4u, xeR3,
(KH), 2

ue H'(R®), u>0, xeR3,

where ¢ > 0 is a small parameter, a, b are positive constants, A > 0 is a real parameter, and f is
a continuous superlinear and subcritical nonlinearity.
In (KH)g, if € =1 and M(x) =0, some mathematicians considered the following problem

—<a+b/|Vu|2>Au:f(x, u), in,
J (1.1)

u=0, onods2,

where £2 ¢ R? is a smooth bounded domain. Such problems are often referred to as being nonlocal
because of the presence of the term (fl,2 |Vu|?)Au which implies that the equation in (1.1) is no
longer a pointwise identity. This phenomenon provokes some mathematical difficulties, which make
the study of such a class of problem particularly interesting. On the other hand, we have its physical
motivation. Indeed, this problem is related to the stationary analogue of the equation

U — <a+b/|Vu|2)Au=f(x,u), in £,
J (12)

u=0, on ds2,

where u denotes the displacement, f(x,u) the external force and b the initial tension while a is
related to the intrinsic properties of the string (such as Young’s modulus). Equations of this type
were first proposed by Kirchhoff in [23] to describe the transversal oscillations of a stretched string,
particularly, taking into account the subsequent change in string length caused by oscillations. Prob-
lem (1.2) began to call attention of several researchers mainly after the work of Lions [28], where
a functional analysis approach was proposed to attack it. We have to point out that nonlocal prob-
lems also appear in other fields as biological systems, where u describes a process which depends on
the average of itself (for example, population density). See, for example, [24,25,27] and the references
therein.

The solvability of the Kirchhoff type equations (1.1) and (1.2) has been well studied in general
dimension by various authors; for example, see [25-27,29-33] and the references therein. In [30],
Arosio and Panizzi studied the Cauchy-Dirichlet type problem related to (1.2) in the Hadamard sense
as a special case of an abstract second-order Cauchy problem in a Hilbert space. Ma and Rivera [31]
obtained positive solutions of such problems by using variational methods. Perera and Zhang [32]
obtained a nontrivial solution of (1.1) via Yang index and critical group. He and Zou [33] obtained
infinitely many solutions by using the local minimum methods and the fountain theorems. Recently,
when f is a continuous superlinear nonlinearity with critical growth, the paper [26] proved the exis-
tence of positive solution for (1.1). More recently, the paper [27] considered Eq. (1.1) with concave and
convex nonlinearities by using Nehari manifold and fibering map methods, and obtained the existence
of multiple positive solutions.
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We note that if a=1, b =0, R3 and A f () + [u|*>*~2u are replaced by RN and f(x, u), respectively,
(KH)¢ is reduced to

—2Au+MXu=fx,u), xeRN,
(SH)¢ 103 N
ueH'(R’), u>0 xeR".

Eq. (SH). arises in different models. For example, they are involved with the existence of standing
waves of the nonlinear Schrédinger equations

)
(SH), isa—‘f =—&?AY + (M@ +E)y — f(x, [¥])y.

Here a standing wave of (SH)} is a solution of the form ¥ (x,t) = u(x)e Bt/ y(x) € R, where u is
a solution of (SH).. The existence and concentration behavior of the positive solutions of (SH); have
been extensively studied in recent years, see for instance, [34-36,7,37] and the reference therein.

Recently, He and Zou [3] considered the following equation

—<82a+b8/|Vu|2>Au+V(x)u:f(u), xeR3,
R3
ueH1(R3), u>0 xeR3,

(SP)e

where f is a C! and subcritical function such that

% is increasing on (0, c0), 0< uF(s)= M/ fOdt <sf(s), u=>4,
0

f'(s)s> —3f(s)s>Cs®, oe(4,6),C>0, and f(s)=o(s3) ass — 0. (1.3)

By using Ljusternik-Schnirelmann theory (see [10]) and minimax methods, the author obtained the
multiplicity of positive solutions, which concentrate on the minima of V(x) as € — 0. This phe-
nomenon of concentration is very interesting for both mathematicians and physicians. Moreover, as
far as we know, the existence and concentration behavior of the positive solutions to (KH) with crit-
ical growth have not ever been studied by variational methods. So in this paper we shall fill this gap.
Precisely, the goal of this paper is the following three points: (i) To find a family of positive ground
state solutions for (KH), with some properties, such as concentration, exponent decay etc.; we also
investigate the relation between the number of solutions and the topology of the set of the global
minima of the potentials by minimax theorems and the Ljusternik-Schnirelmann theory, and some
concentration phenomenon of positive solutions are also obtained. (ii) We obtain the sufficient condi-
tions for the nonexistence of positive ground state solutions. (iii) We treat the critical case for (KH),,
i.e,, the nonlinearity is allowed to be critical growth. Furthermore, the conditions on f are more gen-
eral than [3]. Both of those will depend on the Nehari manifold methods [2] and minimax methods.
Before stating our theorems, we first give some assumptions.

(Co) M e C(R?,R) such that My, =lim infjxj— o0 M(x) > Mo = infycps M(x) > 0.
(C1) M e C(R3,R) such that 0 < infycps M(x) = M® =liminfjy - oo M(x) and M(x) # M.

The hypothesis (Cp) was first introduced by Rabinowitz [7] in the study of a nonlinear Schrédinger
equation with the nonlinearity subcritical growth. In this paper, we shall also assume that My, < co.
This condition is made only for simplicity, since it is irrelevant to the goal of our paper. Actually,
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it is even easier to consider potentials which are large at infinity, since the energy space embeds
compactly into Lebesgue spaces.
For the nonlinearity we assume f satisfies the following conditions:

(F1) feCR?), fO) =ot3) ast— 0, f(t)t >0 for all t £0 and f(t) =0 for all t <O0;

(F2) % is strictly increasing on interval (0, c0);

(F3) If®)] <c(1+]t|P~1) for some ¢ > 0, where 4 < p <6.

It follows from the conditions of (F7)-(F>) that

F(u) > 0, 4F (u) < f(uw)u, Vu#0, (1.4)

where F(u) :[0” f(s)ds. Set

M= {xeR* M(x) = Mo}.

Without loss of generality, below we assume 0 € M, that is, M(0) = Mg. The limit problem associated
with (KH), reads as

(Hmy) _<a+b/IVu|2>Au+M0u=/\f(u)+|u|4u, ueH'(R’).
R3

Let

2
Ke, () :=%/(aez|Vu|2+M<x>|u|2)+%8</|Vu|2) —A/F(u)—%/wﬁ
R3 R3

R3 R3

denote the energy function associated to Eq. (KH)¢. Set

e =inf{K¢ (u): u #0is a solution of (KH) }.

If u% >0, and u® solves (KH)s, we say u® is a positive solution. A positive solution u® with £, =

KCe.5.(u%) is called a positive ground state solution. Let L], denote the set of all positive ground state

solutions of Eq. (KH).;. We recall that, if Y is a closed subset of a topological space X, the Ljusternik-

Schnirelmann category catx (Y) is the least number of closed and contractible sets in X which cover Y.
Our main results are as follows.

Theorem 1.1. Suppose that the assumptions (Co) and (F1)-(F3) are satisfied. Then there exist * > 0 and
&* > 0 such that for each A € [\*, o0) and ¢ € (0, €*), we have that

(i) (KH), has one positive ground state solution ug in H! (R3);
(ii) £, is compactin H'(R3);

(iii) there exists a maximum point X, of u. such that limg_ ¢ dist(x., M) = 0, and for any sequences of
such xg, he (X) = ug (6x+ x¢) uniformly converges to a positive ground state solution of (Hm,), as € — 0,
where u, € L, denotes one of these positive ground state solutions;

(iv) limjyj— o0 Ug (X) = 0, liMy) 00 Ve (X)| =0 and u, € CI]O'CU (R3) with o € (0, 1). Furthermore, there exist
constants C, ¢ > 0 such that |ug ()| < Ce™slx—xel for all x € R3.
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Theorem 1.2. Let the assumptions (Co) and (F1)-(F3) be satisfied. Then for each § > 0, there exist €5 > 0
and A* such that for any € € (0, &5) and A € [A*, 00), (KH) has at least cat a4, (M) positive solutions. Fur-
thermore, if u, denotes one of these positive solutions and o, € R3 such that u,(0,) = maXxycps3 Ug (X), then
one sees that

(i) limg_.o M(0e) = Mo;
(i) limxj— o0 Ug () =0, limy o0 [VUug (x)| =0and u, € C;O’C” (R3) with o € (0, 1). Furthermore, there exist

constants C, ¢ > 0 such that |ug (x)] < Ce™¢*~%! for all x € R3.

Theorem 1.3. If the assumptions (C1) and (F1)-(F3) hold, then for each € > 0 and A > 0, we have that (KH),
has no positive ground state solution.

Before going to prove our main results, some remarks on these results are in order: (i) To our best
knowledge, there is no result on the existence and concentration of positive ground state solutions for
Kirchhoff type equation with critical growth on R3. At present paper we are first devoted to proving
the existence of positive ground state solutions of (KH).. Then we also obtain the multiplicity and
concentration of positive solutions for Kirchhoff type equation with critical growth. Moreover, some
properties for the positive ground state solution of (KH). are also obtained. (ii) We obtain sufficient
conditions for the nonexistence of positive ground state solution. (iii) Obviously, in the present paper
the conditions on f are weaker than the previous papers [3] (see (1.3)).

The proof is based on variational method. By comparing with the previous works, the main diffi-
culties in proving our theorems is the lack of compactness. As we shall see, Eq. (KH), can be viewed
as a Schrodinger equation coupled with a nonlocal term. The competing effect of the nonlocal term
with the nonlinearity f(u) and the lack of compactness of the embedding of prevents us from us-
ing the variational methods in a standard way. Precisely, since the embeddings H!(R3) — LP(R3)
(Vp € (2,6)) and H'(R3) — LP (R?) are not compact, we cannot use the variational methods in
a standard way. In the later section, we shall show that the key to make up the global compactness
(H'(R?) < LP(R?) (p € (2,6))) is the limit problem (Hy,). Unfortunately, no information on the
ground state solution for the Kirchhoff equations can be found in the existing references. As a con-
sequence, we should carefully investigate the limit problem in the Section 3. To remedy the local
compactness (H!' (R3) < Lg) C(}1%3)), we should give some new estimates for the ground state level for
the energy functional. On the other hand, in the previous paper [3], since f is a C! function, it follows
that K¢, € C2 and D, € C!, where D is Nehari manifold given by

De ={u e H'(R?)\ {0}: K}, (wu =0}.

From these properties of K., and Dg, one can easily deduce that critical points of K¢ on D, are
critical points of ¢, on H 1(R3). Furthermore, one can use the standard Ljusternik-Schnirelmann
category theory on D, directly (see [10,20]). However, in present paper we cannot obtain these prop-
erties, since f is just a continuous functional, and D, is only a continuous submanifolds of H'(RN).
To overcome this difficulty, we should carefully study the elementary properties for Dy as in [2].
By doing this we can reduce variational problem for indefinite functional to minimax problem on
a manifold and find positive solutions for (KH).

For the proof of our theorems, we shall consider an equivalent system to (KH).. For this purpose,
making the change of variable ¢y = x, we can rewrite (KH), as the following equivalent equation

(He) —(a—i—b/|Vu|2>Au+M(8x)u=Af(u)+|u|4u, u>0, ueH'(R?).
R3

Thus, our theorems for (KH), are equivalent to the following results for (H¢):
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(a) If the assumptions (Cp) and (F7)-(F4) hold, then there exist A* > 0 and &* > 0 such that for

each A € [A*, 00) and ¢ € (0, €*), we have that
(i) (H¢) has a positive ground state solution u, € H' (R3);

(i) the set of all positive ground state solutions of () is compact in H!(R3);

(iii) there exists a maximum point y. of u. such that lim._¢dist(ey., M) =0, and for any
sequence of such yg, ke (X) =ugs(x+ y,) converges in E to a ground state solution of (Hu,),
where u, denotes the positive ground state solution of (H,);

(iv) limpy o0 Ug(x) = 0, limy 00 |V ()| =0 and u, € C,]O‘CU (R3) with o € (0, 1). Furthermore,
there exist constants C, ¢ > 0 such that |u, (x)] < Ce~*~Y¢l for all x € R3.

Moreover, if the assumptions (C1) and (F7)-(F3) hold, then (H.) has no positive ground state

solution for all A >0 and ¢ > 0.

(b) If the assumptions (Cp) and (F1)-(F4) hold, then for each § > 0, there exist &5 > 0 and A*
such that for any € € (0,&s) and A € [A*, 00), then (H), has at least cataq; (M) positive so-
lutions. Furthermore, if u, denotes one of these positive solutions and o, € R?® such that
U (0g) = Max,p3 Ug (), then one sees that
(i) limg_o M(0¢) = Mo;

(ii) limxj— 0o Ue (X) = 0, liM|xj—00 |VUe(x)] = 0 and u, € C,lof (R3) with o € (0, 1). Furthermore,
there exist constants C, c > 0 such that |ug(x)| < Ce~ =% for all x e R3.

2. Variational setting
In order to establish the variational setting for (#.), we need give more notations:
- [P =[P(R3) is the usual Lebesgue space endowed with the norm

|u|§:/|u|p<oo for 1< p < oo, |Uloo = sup [u®)|;

xeR3
R3

Let H'(R3) be the usual Sobolev space endowed with the standard scalar product and norm

(u,v)=/<vm+uv), ||u||2=/(|Vu|2+|u|2);
R3 R3
- E=H'(R3® and S=B1(0)={uckE: ||lu|=1};

- The letters c, C, C; will be indiscriminately used to denote various positive constants whose exact
values are irrelevant.

For any & > 0, let E; = {u € H'(R®): 33 M(ex)u? < oo} denote the Hilbert space endowed with
inner product

(u,v),,;:/Vqu—i-M(sx)uv, foru,u € Eg,
R3

and the induced norm denoted by ||u||§ = (u,u)g. Clearly, || - |l¢ and || - || are equivalent norms for
£ >0 and My < oo. Now on E, we define the functional

1 b 2 1
Teaw)=> /(a|Vu|2+M(8x)|u|2)+Z(/qulz) —A/F(u)—éflule foru e E,.
R3 R3

R3N R3
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Obviously, Tz ) € C1(E;,R) and a standard argument shows that critical points of Te.». are solutions
of (H¢) (see [3,26,27]).

We shall use the Nehari methods to find critical points for 7 ;. The Nehari manifold corresponding
to g, is defined by

Ne ={ueEe\{0}: T, (wu=0}.

Thus for u € A, one sees that

2
/(aqu|2+M£(x)|u|2)+b</|Vu|2> :A/f(u)u+/|u|6, (21)
R3 R3 R3

R3

where M, (x) = M(¢x). This implies that for u € NV

1 1 1

Tealne = /(a|Vu|2 + M (0lul?) +A/(Zf<u>u - F(u)) T / Jul®. (22)
R3 R3 R3

In the following we shall prove some elementary properties for N.. To do this, we first need to

prove some properties for the functional 7 ;.

Lemma 2.1. Under the assumptions of (Co) and (F1)-(F3), we have that for A > 0and ¢ > 0

(i) T, , maps bounded sets in E. into bounded sets in E;
(ii) 7;/’)\ is weakly sequentially continuous in E;
(iii) Tz (tnun) — —o0 as ty, — oo, where u, € €, and £ C E, \ {0} is a compact subset.

Proof. (i) Let {u,} denote the boundedness sequence of E.. Then for each ¢ € E; one deduces from
(Co), (F1) and (F3) that

T 5 (un)g = / (aVun Ve + Me (X)tng) +b< / |Vun|2) / Vi Vo + 2 / Flunp + / |unl*@
R3 R3 R3 R3 R3
<cllunl®l9l3 + lunlPlel3 + ¢ + cllunllP 1915 + lunl’lol3 < c.
(ii) To prove the conclusion (ii), one can refer to [1]; here we omit the details.
(iii) Finally, we prove the conclusion (iii). Without loss of generality, we may assume that

llulle =1 for each u € &. For uy € &, after passing to a subsequences, we obtain that u, — u € S¢ :=
{ueEg: ||ull =1}. It is clear that

t 2 2y, bea 2\’ tn 6
Ts,k(tnun)=5n/(a|vun| + Mg (x)|un| )+Tn<[|vun| ) _)\/F(tnun)_ gn/|un|
R3 R3

R3 R3
alVup|?> + M¢(®)|upl> b 2
gt;;(fw Vol + Me 0l +_</|Wn|z) _t5/|un|6)%_oo,
22 4
R3 R3

asn—oo. 0O

Now we are ready to prove some elementary properties for N.
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Lemma 2.2. Under the assumptions of Lemma 2.1, for .. > 0 and € > 0 we have that

(i) for all u € S, there exists a unique t, > 0 such that tyu € N,. Moreover, my(u) = t,yu is the unique

maximum of Tz ; on E¢, where Sg = {u € Eg: |ulle =1};

(ii) the set Ng is bounded away from 0. Furthermore, N is closed in E;

(iii) thereis o > Osuchthatt, > « foreachu € S, and for each compact subset VW C Sg, there exists Cyy > 0
such that t, < Cw, forallu e W,

(iv) N is a regular manifolds diffeomorphic to the sphere of E;

(v) cg =infar, Tz, = p > 0and Ty, is bounded below on Ny, where p > 0 is independent of &;

(vi) mg is a bounded mapping. Moreover, if u, — u, then we have mg (up) — mg (u).

Proof. (i) For each u € S; and t > 0, we define h(t) = 7¢,(tu). It is easy to verify that h(0) =0,

h(t) <0 for t > 0 large. Moreover, we claim that h(t) > 0 for t > 0 small. Indeed, from the conditions
(F1)-(F3), we deduce that for each € > 0 there exists Cc > 0 such that

|f @] <elul+CelulP™' and |Fw)|<elul*+Celul’, pe(4,6). (2.3)
It follows that

t2 bt4 2 6
h(t):Tg,A(tu):5/(a|Vu|2+|u|2)+T</|Vu|2> —A/F(tu)—€/|u|6

R3 R3 R3 R3
2 4
ct ct
2 4 20,12 p 6/, 16
= 7“””5 - T”u”g —ert|uly — tPeaCelulp — ct®lulg

tz
2 4 4 2 2 6 6
> Ellullg —ct*|Jull — ct®ellul|2 — cCetPfluf — ct®|lull.

Since p > 4, we prove that h(t) > 0 for t > 0 small. Therefore, max;~o h(t) is achieved atat=t, >0
so that h'(t,) =0 and t,u € Ne. Suppose that there exist t, > t, > 0 such that t,u, tyu € N;. Then

one has that
2
r§||u||§+t4</|w|2> =A/f(tuu)tuu+t6/|u|6 and

(t2) Il + <[|Vu|) —A/ftutu+ flul (2.4)
Then we see that
R Y few — ftau) _) /
(e g =2 [ (Gt ~ s o+ (@0 = [
R3

which makes no sense in view of (F;) and t], > t, > 0. So the conclusion (i) follows.
(i) For u € Ng, we infer from (2.1) and (2.3) that

lull? < €lul? + Celulh + ulg < cellull? +cCellullf + lul}.

So for some k > 0, we get that

lulle =« > 0. (2.5)
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Now we prove the set N, is closed in E,. Let {u,} C N such that u, — u in E,. In the following we
shall prove that u € N. By Lemma 2.1, we have that 7;’, , (up) is bounded, then we infer from

Te 3 W)ty — To , (wu = (T, (un) — T2, @)u — T, (Un) (up —u) - 0,  asn— oo,

that 7., (u)u = 0. Moreover, it follows from (2.5) that [|u|le = limp— oo [[Unlle = & > 0. So u € Ne.

(iii) For {un} C E¢ \ {0}, there exist t,, such that t,,u, € Ne. By the conclusion (ii), one sees that
ltu, Unlle = tu, llunlle =« > 0. It is impossible to have that t,, — 0, as n — oco. To prove t; < Cyy,
for all u € W C S;. We argue by contraction. Suppose there exists {u,} C W C S, such that t; =
ty, — oo. Since W is compact, there exists u € W such that uy, — u in E¢ and up(x) — u(x) a.e.
on R3 after passing to a subsequence. Then Lemma 2.1 implies that Te s (tnn) —> —00 as n — oo.
However, from (2.2) we deduce that 7 ; (t,un) > 0. This is a contradiction.

(iv) Define the mappings m, : E; \ {0} — N and m, : S — N by setting

me(w) =tyu and me =mls,. (2.6)

By the conclusions (i)-(iii), we know that the conditions of Proposition 3.1 in [2] are satisfied. So the
mapping m, is a homeomorphism between S, and N, and the inverse of m; is given by

(2.7)

e (u) =m; ' (u) =

llu ||£

Thus N is a regular manifolds diffeomorphic to the sphere of E..
(v)Fore >0, A>0,s>0and ueE,\ {0}, it follows from (2.3) that

2
7E,A(Su)=%/(a|Vu| + M (x0)|uf?) (/IVUI ) —)»/F(SU)——/IUI6

R3

2
cs

2 404 2 2 61(7/116

= TIIUIIE—CS llully —s CGIIUIIE—SPCCeIIUHg—CS llullg

2
cs

2 4y 114 P 611416
=7(1—€)|IU||8—C5 lulls —sPcCellulle — cs®llullg.

So there is o > 0 such that 7., (su) > p > 0 for s > 0 small. On the other hand, we deduce from the
conclusions (i)-(iii) that

ce =infTg  (u)= inf maxTa A(sw) = inf max7f9 A(sw). (2.8)
Ne weE:\{0} s weS, s>

So we get that ¢. > p >0 and ¢ 3], = p > 0.

(vi) Assume by contradiction that for {u,} C S¢, we have that mg(u,) = tauy = ty,un — oo, and
so t,,. As in the proof of the conclusion (iii), we can prove that 7 ; (tpu,) — —o0 as n — oo. However,
Te . (taun) = 0. A contradiction. So m is a bounded mapping. Assume that {u,} is bounded, and so
Mg (Up) = tylly = ty, un. Without loss of generality, we can assume that u, — u, t, — t; and mg(up) —
me(u). For each ¢ € E; one has

(m(up) — tyu, @) = (tatn — tytt, @) = ((tg — tu + ty(up —u), ) - 0, asn— oo.

So mg(u) = tyu. This ends the proof. O
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Now we shall consider the functionals ]Afg,x :E¢\{0} > R and 7% : S¢ — R defined by

?E,A = %,A(ma (u)) and Te = ’fﬂa,ﬂS»
where g (u) = tyu is given in (2.6). As in [2], we have the following lemma.

Lemma 2.3. (See Corollary 3.3 of [2].) Under the assumptions of Lemma 2.1, for » > 0 and & > 0 we have that

(i) Tes € C1(Se,R), and

Y., (w)z=|mg(w) ||87’8’,,\(m8(w))z forz e Tw(Se)={heEs (w,h), =0}
(ii) {wy} is a Palais-Smale sequence for T ;. if and only if {m¢(wy)} is a Palais-Smale sequence for T ;. If

{un} C N is a bounded Palais-Smale sequence for T ;, then m, (up) is a Palais-Smale sequence for % ;,
where mg (u) is given in (2.7);

(iii)

infYe ) =inf7e ) =cs.
58 NE

Moreover, z € S¢ is a critical point of Y¢  if and only if m¢(u) is a critical point of T ;, and the corre-
sponding critical values coincide.

3. The autonomous system

In this section we shall prove some properties of the ground state solution of the limit equation.
Precisely, for each u > 0 and A > 0, we concern with the following equation

(Hup) —<a+b/|Vu|2>Au+,uu:kf(u)+|u|4u, u>0, ueH'(R?).
R3

For any u >0, let E,, = {u € H'(R3): [ps pu? < oo} be the Hilbert space endowed the inner product
W, vy = / VuVv +puv, foru,veky,
R3

and correspondingly the norm denoted by ||u||12L = f]Rg |Vu|? + w|ul?. Then we see the energy func-
tional corresponding to (#,,) is denoted by

1 b 2 1
T,M(u)=5/(a|Vu|2+,u|u|2)+Z</qu|2) —A/F(u)—€/|u|6 forallu e E,.

R3 R3 R3 R3

As in Section 2, in order to find the critical points for the functional 7 ), we also use the Nehari
manifold methods. The Nehari manifold corresponding to 7, is defined by

Ny ={u€Eu\{0}: T, ; wu=0}.
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Thus for u eN,,,, one sees that

2
/(aqu|2+/L|u|2)+b(/|Vu|2> =A/f(u)u+/|u|6. (3.1)
R3 R3 R3

R3

This implies that for u € NV,

1 1 1
TN =Z/(IVHIZ+M|u|2)+k/<zf(u)u—F(u)> +5/|u|6. (32)

R3 R3 R3
Similar to Lemma 2.2, we know that ;, has the following elementary properties.

Lemma 3.1. Under the assumptions of Lemma 2.1, for » > 0 and . > 0 we have that

(i) forallu € S, == {u € E,;: |ull,, = 1}, there exists a unique t, > 0 such that t,u € N,. Moreover,
my, (u) = tyu is the unique maximum of T, 5 on E,;
i) the set is bounded away from 0. Furthermore, isclosedin E;;
(ii) th N, is bounded from 0. Furth N, is closed in E,
iii) thereis 8 > O such thatt, > § foreachu € S,, and for each compact subset VW C S,,, there exists Cyy >
iii) thereis§ > Osuchth 8 hueS, and h bset W C S, there exists Cyy > 0
such that t,, < Cyy, forallu e W;
(iv) N, is a regular manifolds diffeomorphic to the sphere of E.;
V) ¢, =in 32 >0an _A is bounded below by some positive constant;
w =1nfar, T 5 > 0 and Ty 5l n, is bounded below b iti
(vi) my, is a bounded map. Moreover, if u, — u, then we have my, (un) — my, (u).

From the conclusion (i) of Lemma 3.1, we know that for each u € E, \ {0}, there exists unique

tu > 0 such that t,u € NV,. So we define the mapping i, : E;, \ {0} — AN, by i, (u) = tyu. Clearly,
my, =t,ls,. Let

Tyo tEu\ {0} > R, Tuow) = Tua(fu(w) and Yy = Tuals,.
If the inverse of the mapping m,, to S, is given by

u
Ho—m-1- ¥, =
my=m, :Ny— Sy,  my= T

then we have the following lemma.
Lemma 3.2. (See Corollary 3.3 of [2].) Under the assumptions of Lemma 2.1, for A > 0 and & > 0 we have that
(i) Yy € CY(Sy, R), and
Y, W)z = [my(w) ||M7;,k(mu(w))z forze TwS,={heEy: (w,h), =0}
(ii) {wp} is a Palais-Smale sequence for Yy, ; if and only if {m, (wy)} is a Palais-Smale sequence for T, ;.
If {un} C Ny, is a bounded Palais-Smale sequence for T, ;, then i, (u,) is a Palais-Smale sequence
for Y}, 5, where i, (u) =m;, ' (u) = &

Tl
(iii)

infY,;=inf7,;,=c
J7 [ e
Sp Nu
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Moreover, z € S, is a critical point of Y}, ,, if and only if m, (u) is a critical point of T, ;, and the corre-
sponding critical values coincide.

Remark 3.3. By Lemma 3.1, we note that the infimum of 7, over A, has the following minimax
characterization:

0<cy = inf z)= inf max sw) = inf max sw). 3.3
=u zeNy 72]“)»( ) weE,\{0} s>0 nx( ) weSy, s>0 nk( ) (3.3)

Similar to [3], one can easily prove the following mountain pass geometry of functional 7, .

Lemma 3.4 (Mountain Pass Geometry). The functional T, ;. satisfies the following conditions:

(i) There exist positive constants B, o such that T, 5 (u) > B for |lull, = c.
(ii) There exists e € E, with |le| > a such that T, ;. (e) < 0.

From Lemma 3.4, by using the Ambrosetti-Rabinowitz Mountain Pass Theorem without (PS). con-
dition (see [4,5]), it follows that there exists a (PS)c-sequence {u,} C E,, such that

T (un) = ¢, = yirelg Orgtagln,x(y(t)) and 7, ;(un) =0, (34)

where I' = {y € C(E;,R): Tu(y(0) =0, Tui(y(1)) <0} As in Proposition 3.11 of [7] (also

see [6]), we shall use the following equivalent characterization of c;L, which is more adequate to
our purpose, given by

c,, = inf max tu) =cy. 3.5
M ueE,\ (0} t>0 T (tw) =y (35)

Here in the last equality we used (3.3). Now we have the following estimates for c,.

Lemma 3.5. If the conditions (Cy) and (F1)-(F3) hold, then there exists A* > 0 such that for any 0 <
1 < Moo, the number ¢, satisfies

1 3 1
0<cy<=(@aS)? + —b3s°,
<t =309+
where S is the best Sobolev constant, namely

Vu|?
S= inf Joo IVUI” '1.
ueD12(R3),u#0 (f]R3 us)g

Proof. For w € E;, \ {0}, it follows from Lemma 3.1 that there exists t; > 0 such that

max Tua W) =Ty (Ew).

Hence

2
t,%/(a|VW|2+M|W|2)—|—tj\‘b<f|Vw|2> :k/f(txw)txw—l—tfflwle. (3.6)

R3 R3 R3 R3



2326 J. Wang et al. / ]. Differential Equations 253 (2012) 2314-2351
From (3.6) we infer that

2
/(a|Vw|2+u|w|2)+t§b(/|Vw|2> >t;‘/|w|6. (3.7)
R3 R3

R3

So ¢, is bounded. Thus, for the sequence A, — oo as n — oo, there exist top > 0 such that t;, — to.
Consequently, one sees that

2
tﬁn/(a|vW|2+M|w|2)+t§nb</|vW|2> <c, VneN, (3.8)

R3 R3

and so

kn/f(tknw)tknw—i—tfn/lwﬁ<c, vneN. (3.9)
3

Therefore, if tg > 0, it follows from Fatou’s lemma that

lim kn/f(txnw)tknw—i-tg /|w|6=+oo. (3.10)
n—oo n
3 3

This contradicts with (3.9). Thus, we conclude that tp = 0. Set w = e. We consider the path y(t) =te
for t € [0, 1], then y € I'. Moreover, from (3.5), we infer that

2
O<CMgtlel?g)f]n,k()?(t))=77M(t)\e)<%/(aWel +,u|e| (/|Ve| ) . (311)
) 2

In this way, if A is large enough, we derive that

1 1
—/ alVel + plef?) </|Ve| ) g(a:>‘)%+ﬁb356,

which implies that
1 ERN R P
0<C,L<§(a8)2 +ﬁb S°. ] (3.12)

To prove the compactness of the minimize sequence for 7, ;, we need the following lemma, and
the details of the proof one can refer to [9-11].

Lemma 3.6. (See Lions [9].) Let r > 0, q € [2, 2*]. If {u,} is bounded in H' (R®) and

then we have u, — 0 in LP(R3) for p € (2, 2*). Moreover, if ¢ = 2*, u, — 0 in LP(R3) for p € (2, 2*]. Here
=2 ifN>3and2* =0 if N=1,2.
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Now we are ready to study the minimize sequence for 7, ;.

Lemma 3.7. Let {u,} C NV, be a minimizing sequence for T,, 5. Then {u,} is bounded. Moreover, there exist
r,8 > 0 and a sequence {y,} C R3 such that

liminf / lun|®> =68 > 0,
n—oo
By (yn)

where B (yn) = {y € R3: |y — yn| <r)} foreachn e N.

Proof. We first prove the boundedness of {u,}. Arguing by contradiction, suppose that there exists

a sequence {up} C N, such that |up|l,, — oo and Ty, (us) — cp. Let z, = Huli—nHu Then z; — z and

Z2(X) — zp(x) a.e. in R3 after passing to a subsequence. Moreover, we have either {z,} is vanishing, i.e.,

lim sup / |zl =0 (3.13)

or non-vanishing, i.e., there exist r, 8 > 0 and a sequence {y,} C R? such that

lim 1zn|® > 6§ > 0. (3.14)

n—-oo
Br(yn)

As in [8], we shall show neither (3.13) nor (3.14) takes place and this will provide the desired contra-
diction.

If {zy} is vanishing, Lemma 3.6 implies z, — 0 in LP(R3) for p € (2, 6]. Therefore from (2.3) we
deduce that ng F(Kz;) — 0 as n — oo for each K € R. So we infer from Lemma 3.1 that for A > 0
and © >0

e +0(1) = Ty (un) 2 Tp,n(Kzn)

K2 bK4 2 K
== (a|Vzn|2+u|zn|2)+T<f|Vzn|2> —fo(Kzn)—?/mP

R3 R3 R3 R3

, K A/F(Kz ) K6/|z 6, K

= - - % 77

2 Y6 g 2
R3 R3

as n — oo. Now we arrive a contradiction if K is large enough. Hence non-vanishing must hold. It
follows from (2.3) that

/ F(tn) < c€llunl? + cCelunll}.- (3.15)
R3

So from (3.14) and (3.15) we infer that for n large

o (U 1 1
< 7’“(6”) :——/Izn|6+o(l)<—— sup / |za|® +0(1) <0,
Jually 6 6

a contradiction.
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Next we prove the latter conclusion of this lemma. Since {u} is bounded, if

lim sup / |un|2=0,

then from Lemma 3.6 we deduce that u, — 0 in LP(R3) for p € (2, 6). We infer from Lemma 2.2 and
(2.3) that f]R3 F(uy) — 0, as n — oo. Moreover, it follows from mqk(un)un =0 that

2
/(a|Vun|2+u|un|2)+b</|Vun|2> :/ug—i—o(l). (3.16)
R3 R3 R3

Assume that [ps(a|Vug|? 4 plug|?) — €1 > 0 and b(fs [Vun|?)? — £, > 0. We claim that ¢; > 0 if
and only if ¢, > 0. In fact, if £ > 0, from

2 2
b</|Vun|2) <c</(a|wn|2+u|un|2))
R3 R3

we derive that 0 < £ < Z%. Conversely, for £1 > 0, if £, =0, then we deduce from (3.16) and
6 3 2 2
( f |t ) <cb< /(IVunl ))
R3 R3

that 0 < (41 + Kz)% < ¢ =0. So we obtain ¢1 =0, this a contradiction. Thus we prove the claim.
If £1 > 0, one has ¢; > 0. Since 7, »(un) — ¢, > 0, then one sees that

1 1
2/(0|Vun| + wlunl?) (/IVunl ) _6[ "= Cu

R3 R3

Thus we obtain ¢, = %1 + f—z On the other hand, since ¢ > aS(¢1 +Z2)3 and ¢ > bS? (¢4 +€2)3, we
deduce that

>@S)? and £y > b35S,

Socu=35+ 12 > (aS)z + 1 b386 This contradicts with Lemma 3.5. Therefore ¢; = ¢, = 0, this
contradlcts with the conclusnon ( ii) of Lemma 3.1. O

Let us now state the main results for the limit problem ().

Theorem 3.8. Let the assumptions Lemma 2.1 be satisfied. Then there exists A* > 0 such that for each A €
[A*, 00) and > 0, we have the following conclusions hold:

(i) (M) has at least one positive ground state solution u,, in E,L = HI(R3);
(i) limpy ooty (%) =0, limpy— o0 [Vu, ()| =0 and uy, € Cloc with o € (0, 1). Furthermore, there exist
C, ¢ > 0 such that uy, (x) < Ce~“¥—*ul, where u,,(x,,) = max,cgn Uy (X);
(iii) £, is compact in H'(R3), where L, denotes the set of all least energy positive solutions of (H ).
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Proof. (i) From the conclusion (v) of Lemma 3.1 we know that ¢, > 0 for each u > 0. Moreover, if
ug € N, satisfies 7, (uo) = ¢y, then 1, (up) is a minimizer of 7, and therefore a critical point
of 7,3, so that ug is a critical point of 7, ; by Lemma 3.2. It remains to show that there exists
a minimizer u of E,AINM. By Ekeland’s variational principle [10], there exists a sequence {v;} C Sy
such that 7y, ;(vy) — ¢, and T/M(Vn) — 0 as n — oco. Set u, =my,(v;) € N, for all n € N. Then
T (up) = ¢, and m,x(”n) — 0 as n — oco. By Lemma 3.7, we know that {u,} is bounded there

exist r,8 > 0 and a sequence {y,} C R3 such that

lim [un)® =8 > 0.
n—oo

Br(yn)
So we can choose ' >r > 0 and a sequence {y,} C Z3 such that

8
lim [un)®> > = > 0. (317)

n— 00
B,/ (yn)

N

Using &, and N, are invariant under translations, we may select that {y,} is bounded in Z3. So
up — u 0 and T;i,)\(”) =0.

It remains to show that 7, 3 (u) =cy. If A >0, since {un} is bounded, by (1.4) and Fatou’s lemma
we get that

Cu zlglrgggf<n,x(un) - A(un)un>
—— 2 1 6
:l}lﬂ_lggf Z/(|Vun| +M|un| / —f(un)up — F(un) ) | + E/ [un|
R3 R3 R3
> 1/(|Vu|2 + plul?) +A/(1f(u)u - F(u)) + lf|u|6
“ 4 4 12
R3 R3 R3
1
=T W) = 5T, WU =T W).

Hence 7., (u) < c. The reverse inequality follows from the definition of ¢, since u € NVj,. So we
prove that 7 ; (u) =cy.
Let us note that all the calculations above can be repeated word by word, replacing 7, ; with the

functional
; u)= ! alVu + \v} F(u 1
/,L,)»( ) /( | | ,LL|U| </| u|> )\\/‘ ( ) /( )6’

R3 R3

where u™ = max{u, 0} is the positive part of u. In this way we find a ground state solution u € H! (R3)
of the equation

—<a+b/|Vu|2>Au+uu+=/\f(u+)+(u+)5. (3.18)

R3
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In (3.18), using u~ = max{—u, 0} as a text function and integrating by parts, we obtain
/(a’Vu’]z + ]u’]z) —i—b( / |Vu|2> / Vuvu~ — k/ fhu™ =o.
R3 R3 R3 R3
So we have that
/(a\Vu*\z—i—\u*\2)+b</IVuIZ)/]Vu*\ZZO.
R3 R3 R3
Thus u™ =0, and u > 0 is a solution of (#,,). Therefore, from Harnack’s inequality (see [14]), we infer
that u > 0 for all x € R3. This finishes the proof of the conclusion (i).

(ii) Using the arguments of [15] (also see [13,12]), we have that u € L'(R3) for t € [2, oo]. Let
A=a+Db [ps |Vul? and

1
gx,u) = Z(Af(u) +u® — pu).

From (2.3), we infer that
|gCe, w] <c(lul+ JuP~! +[ul).
It follows that
p-1 5
|g(x, u)}Lr(sz) < C(|U|Lf(32p) + |u|L(p—1)r(sz) + |u|L5r(sz))s (319)

where 3 <7 <6,4<p <6and By, = {xeR3: |[x—xo| <2p, %0 € R3}. Using (H,,), we conclude that
Au € L7 (Byp), for all 3 <t < 6. By the Calderon-Zygmund inequality (see Theorem 9.9 of [16]), we
conclude that u € Wz’f(sz). Next, by the interior LP-estimates we have

”u”WZJ(Bp) < C(|U|LT (sz) + |g(xv u)|Lr (sz))~ (320)
From (3.19) and (3.20), we deduce that

p—1 5
”u”Wz’T(Bp) < C(|u|Lr(B2p) + |u|L(p—])r(Bzﬂ) + |u|L5T(sz))s

where B, = B, (xp). Since T > 3, by Sobolev imbedding theorem (see [14]) one has

- p—1 5
”u”ClyU(Bp) < C(|U|LT(32p) + |u|l_(p—1)‘r(32p) + |u|L5I(BZp))7

where o € (0,1). Letting |xo| — oo, we conclude that ||u||C1.a(Bp) — 0. Therefore, we get that
lim |y 0o u(x) =0, limx oo [Vu(x)| =0 and u € C}D’C‘T NL®[R3) for 0 <o < 1.
Next we shall prove that u(x) < Ce~**ul where u(x,) = max,g3 u(x). To do this, we develop

a contradiction argument related to the one introduced in [14] (also see [17]). We fix o € (0,\/%)
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and let = —a?A, where 0 <a < A =a—|—be3 |Vul? < oo. Since u(x) — 0 as |x| — oo, we conclude
that there is R > 0 such that

Af ) + @)’

u(x)

<n, Vx| =R. (3.21)
Let m(x) = Ge~**~Xul=R) 'where G = max{|u(x)|: |x —x,| = R}. For K > R, let us define the set

Mg ={xeR* R<|x—xu| <K, ux >m), ux) > 0}.

In the following we shall prove that ITx is empty. Suppose, by contradiction, that this is not so. Thus
ITk is a nonempty open set and in it we have

2 1
A(m—u) = <a2 - l%)m(x) + o (A f @)+ — ).

Moreover, we infer from (3.21) that

A(m—u) < oezm(x) + —

1/ Af@)+u’
A( u

— M)u <a?(m(x) —u). (3.22)

From the definition of ITx, we deduce from (3.22) that A(m — u) < 0 in [Tg. Using the maximum
principle, we conclude that

m(x) —u > min(m — u).
aMlk
Since |x — x| = R does not belong to the boundary of [Ty, we have

mx) —u > min{O, ‘ miln K(m(x) - u(x))}.
X*Xﬂ =

Now, letting K — oo, and using the fact that u decays to 0 at oo, we have that, for each fixed |x —
Xu| > R, m(x) —u(x) > 0, contradicting the definition of I7k. So, the ITk is empty, i.e., for [x —x,|> R
such that u > 0, we obtain u(x) <m(x). That is, u(x) < Ce?**u! for C,c > 0.

(iii) Let the bounded sequence {u,} C £, NN, such that 7, ;(u;) =c, and n,x(”ﬂ) = 0. Without
loss of generality we assume that u, — u in E,. As in the proof of the conclusion (i), one can easily
prove that {u,} is non-vanishing, i.e.,

> 0.

N| >

lim |un|2 =
n—o00

Br(yn)

By the invariance of 7, and N, under translations of the form u +— u(- —k) with k € 73, we may
assume that {y,} is bounded in Z3. So u, — u # 0 and n!l(u) = 0. Moreover, repeating arguments
as in the proof of the conclusion (i), one sees that 7, (u) =c,. So it follows that
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1
Cpu =T =Ty ) — Z(T,L,A(u), u)

=5 [(@vur s uiu) +xf(}1f<u>u - F(u)) " (% - Zl) [

R3 R3 R3
< liminf 1/(aWu 12+ plu |2)+A/ 1f(u Yun — F(un) | + -1 /lu 1>
X e 00 4 n n 2 n n n 2 2* n
R3 R3 R3
. 1_,
= lgﬂg}f(ﬂm(“n) - ank(un)un) =cCy. (3.23)

From (3.23) and A > 0, we deduce that limp_, o [3(a|Vun|? + p|unl?) = [gs (@ Vul? + |ul?). That is,
up — u in H'[R3. o

Remark 3.9. We point out that our arguments in this section applies equally well to the case of
periodic potentials, namely, equation

(Hv) —<a+b/|Vu|2>Au+V(x)u:kf(u)+|u|4u, u>0, ueH (R,
R3

where V (x) is a positive continues function and periodic in each variables. Using translation invari-
ance of the problem the same proof is still valid. Thus if f satisfies the assumptions of Theorem 3.8,
then the conclusions of Theorem 3.8 hold.

Lemma 3.10. Under the assumptions of Lemma 2.1, we have that ¢, > ¢y, for ;11 > .

Proof. For piq, 2 > 0, one sees that E,, = E,, =E. Let uy e./\/'M1 be such that
Cuy =T, u1) = max 7, w).
1 M],)L( 1) wek,, M],k( )
On the other hand, let up € E;;, be such that
Tipn(U2) = max Ty, 5 (w).
weEy,
Therefore one sees

CM] > 77/L1,)\(u2) = nz,k(uz) + (IU/l - /"(/2) / u%
R3

>CM2+(M1_M2)/U§>CM2- O
R3
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4. A compactness condition
In this section we shall prove some compactness results for the functional 7 ;. Precisely, we shall

show that any minimizing sequence of 7, has a strongly convergent subsequence in E.. We begin
with the following lemma.

Lemma 4.1. Under the assumptions of (Co) and (F1)-(F3), we have that

(i) ce = cm, foralle > 0;
(ii) cg = cmy as e — 0.

Proof. (i) Since M is a bounded function, it is easily to check that for all ¢ >0 and ¢ >0, Ec =E;, =
H'(R3). To prove the first conclusion, we argue by contradiction, assume that ¢, < cm, for some
& > 0. By the definition of c., we can choose an e € E; \ {0} such that max;.q 7¢,1(s€) < cp,. Again

by the definition of cp,, we know that cp, < maxs=g Tm,,a(se). Since Mg (x) > Mo, Te 5. (1) = Tmg, 1 (1)
for all u € E¢, and we get

CMp > Max T 1 (se) = max T, 1. (s€) = Cumy,
s>0 s>0

a contradiction.
(i) Set MO(x) = M(x) — Mp and M9(x) = M%(ex). Then we see

Ter (W) = Thg2 (W) + / M (u?.
R3
Let u € Ny, be such that cyy = T (U) = MaXweEy, \(0) Tmo,r(W). We take uq € E¢ \ {0} such that

Ce < Te(ur) = maxTe 5 (su) = Thag,» (1) + / M2 (x)us. (4.1)
]R3

Obviously, for each € > 0 we can choose R > 0 such that

/ M2(x)|ug|? < ce. (4.2)
[x|>R
Moreover, since 0 € M, one has
f M2(x)|ui|? =0, ase— 0. (4.3)

[X|<R

Substituting (4.2) and (4.3) into (4.1), we deduce that

/Mg(x)u% -0, ase—0.

R3
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Therefore, we get

Ce < Tmpa (1) +0(1) < max  Tyya(w)+o(1)
weEm\ {0}
= Ty, (W) +0(1) =cpy +0(1).

Furthermore, it follows from the conclusion (i) that
CMy < lim e < lim T 5 (U1) = Tmg, 2 (U1) < T, (W) = Cpy-
e—0 e—0

Hence, we obtain ¢, — ¢y, as € — 0. O

Form (C1), we know that My < M. So we can choose & > 0 such that

Mg <& < M.
Therefore we first prove the following lemma.

Lemma 4.2. Suppose that the assumptions of (Co) and (F1)-(F3) hold. Let {u,} C N such that Tz ; (up) — ¢
with ¢ < cg and u, — 0 in E,, then one of the following conclusions holds

(i) up > 0in Eg;
(ii) there exists a sequence y, € R> and constants r, 5 > 0 such that

n—oo
Br(yn)

liminf / u2 >8.
Proof. Suppose that (ii) does not occur, i.e., there exists r > 0 such that

lim sup /-uﬁzo.
n—oo 3
yeR
Br(y)

Then by Lemma 3.6, we deduce that u, — 0 in L{(R3) for t € (2, 6). So from Tg/yk(un)un =0, we infer

that
2
/(a|Vu,,|2+M(sx)uﬁ)+b(/|Vun|2) :/ug+o(l).

R3 R3 R3

Assume that [p3(a|Vup|? + M(ex)u2) — €1 >0 and b(fgs [Vun|?)? — €2 > 0. Since ¢ < ¢, by using
the same arguments as in Lemma 3.7, one can easily check that ¢; > 0 if and only if ¢, > 0. Moreover,
if £1 > 0 or £3 > 0, one can obtain the contradiction. Thus ¢1 =¢, =0. O

Lemma 4.3. Let the assumptions of (Co) and (F1)-(F3) be satisfied. If {up,} C N such that T, 5 (uy) — ¢
with ¢ < ¢g and up, — 0in E¢, we have that u, — 0in E; for € > 0 small.
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Proof. Let {up} C NV such that

Tea(un) = c and T, (up)up =0. (4.4)
We choose (t,) C (0, 00) such that {tyun} C Ny,
If uy - 0 in Eg, we first claim that the sequence {t;} such that limsup,_, ., t; < 1. Assume by

contradiction, there exist o > 0 and a subsequence still denoted by {t,} such that t; > 1+ o for all
n € N. By Lemma 3.1 we see that {t,} is bounded and, from ﬂyk(un)un =o0(1), one has

2
/(a|Vun|2+M(8x)|un|2)+b</qun|2> :A/f(un)un+/u2+o(l). (4.5)

R3 R3 R3 R3

Moreover, since {tnun} C Ny, , then we see

2
r,%/(a|Vun|2+Moo|un|2)+t§b</|Vu,1|2> :A/f(tnun)tnun+t,?/|un|6. (4.6)

R3 R3 R3 R3

Combining (4.5) and (4.6), we obtain that

1 2 Mo 2
o(l)+ = -1 a|lVug|* + — — M(ex) |uy
tTl tn
R3 R3

=A/<f(t"””) - f(';”)u;w(f,z_ 1)fu,§. (4.7)

taug up
R3 R3

By condition (Cp) and t, > 1, for any € > 0, there exists G = G(¢) > 0 such that

M
M(X) = Moo — € > t—zoo—e for any |x| > G. (4.8)
n

Since ||unlle < C, un — 0 in L2(B¢(0)) and tyu, > un, we deduce from the condition (F») that
(1+0)* - 1)/u§ < ce. (4.9)
R3

Since u, - 0 in Eg, it follows from Lemma 4.2 that there exists a sequence y; € R3 and constants
r’, 8 > 0 such that

liminf u2>48>0.
n—oo

By (yn)

Thus we can choose a sequence y, € Z* and constants r > r’ > 0 such that

liminf u2>48>0. (4.10)
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If we set v,(x) = u(x + yn), then there exists a function v that, up to a subsequence, v, — v in Eg,
vp— v in L2 (R?) and vy(x) — v(x) ae. in R3. Moreover, by (4.10), there exists a subset £2 in R3
with positive measure such that v #0 a.e. in £2. It follows from (4.9) and Fatou’s lemma that

0<((1+a)2—1)/v6<ce (4.11)
ko)

for any € > 0, which yields a contradiction.

In the sequel, we shall prove that the case of limsup,_ ., tn < 1 cannot be happened. Then
we obtain a contradiction and u, — 0 in E.. To do this, we distinguish the following two cases:
limsup,_, ot =1 and limsup,,_, .ty < 1.

(a) limsup,_, oo th =1.

In this case, there exists a subsequence, still denoted by {t,} such that t;, — 1 as n — oo. Hence,

o(1) +ce = Te 3 (un) = Te 5. (Un) + My — TMoo,r (Enlin). (4.12)

It is clear that

1 2
%,A(un)—mm,x(tnumzif(l —t2)|Vug|* +b(1 —t;‘)(/WunF) +(1 —tf;’)f|un|6
R3 R3

R3

2
+%/M(ex)u§ - %/Moou,iJrA/(F(rnun)— F(up)).  (413)
R3 R3 R3

From the boundedness of {u,} and (4.8), we infer that

T (Un) = TMog,a (tnlin) = 0(1) — c€ +)»/(F(fnun) — F(up)) = o(1) —ce (4.14)

R3

by using the mean value theorem and the Lebesgue theorem. Taking the limit of the above inequal-
ity (4.12), we have ¢z > cy... On the other hand, from Lemma 4.1, we deduce that cg < cp,. This is
a contradiction.

(b) limsup,_, o th < 1.

In this case, we may suppose, without loss of generality, t, < 1 for all n € N. From (4.8), {tau,} C

Misor = 0 in L2 (R?) and |luy e <c, we see that

2
bt < Tt tl) = o) + 2 [ (Moo = M(E0)1
R3
< Tea(un) +€c < ce +ec+o(l). (4.15)

Let n — oo, we get ¢z > cpm,, . This contradicts with ¢ <cy,,. O

Lemma 4.4. Under the assumptions of (Co) and (F1)-(F3), we have that if {u,} C N such that Tz ; (up) — ¢
with 0 < ¢ < ¢g < Ccumy,, then {uy} has a convergent subsequence in E;.
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Proof. Let {up} C NV such that

Tea(un) —> ¢ and T, (un)up =0.

Similar to Lemma 3.7, one can easily check that {u,} is bounded. So there exists u € E; such that
u, — u in E.. Moreover, u is a critical point of R}. Set w, = u, —u. By Brezis-Lieb Lemma (see [10]),

we have
f|VWn|2=f|Vun|2—/|Vu|2+o(1>
R3 R3 R3

and

(IRZIVWnIZ)2=<R[IVun|2)2— (R/;|VU|2)2+0(1).

Moreover, as in [1,18,19] that T¢ 3 (wy) = Te 5. (un) — Te.x () + 0(1) and 7;”A(Wn) —0asn— oo. It
follows from 7;’4A(u) =0 and (1.4) that

1_, 1 2 2 1 6
E,A(U)=7Z:,x(u)—ZE,A(u)u=Z/(a|VHI + M(ex)u )+k/ Zf(U)U—F(u) +/IUI >0.
R3

R3 R3

So we deduce that T¢ 3 (wy) = Te 5 (un) — Te (W) +0(1) > c—y as n — oo, where y = T, (u) > 0.
Thus it follows from c; =c —y <c < ¢z and Lemma 4.3 that wy =uy, —u—0in E;. O

Now we are in a position to prove that (#.) has a positive ground state solution.
Lemma 4.5. Under the assumptions of (Co) and (F1)-(F3), we have that c; is attained for all small & > 0.

Proof. It follows from the conclusion (v) of Lemma 2.2 that ¢, > p > 0 for each & > 0. Moreover,
if ue € N, satisfies 7z 5 (ue) = g, then mg(ue) is a minimizer of 7;; and therefore a critical point
of 7%, so that u. is a critical point of 7., by Lemma 2.3. It remains to show that there exists
a minimizer u, of 7¢|n,. By Ekeland’s variational principle [10], there exists a sequence {v;} C S¢
such that 7% ,(vs) — ¢ and Tg”/\(vn) — 0 as n — oo. Set w, = mg(v;) € N, for all n € N. Then
from Lemma 2.3 again, we deduce that 7z ; (wp) — cg, ﬂyx(wn)wn =0 and 7Z,A(Wn) — 0 asn— oo.
So {wp} is a (PS),-sequence for 7 ;. By Lemma 4.2, we know that c; < ¢g for &€ > 0 small. Thus
from Lemma 4.4, we infer that u, = w, — w — 0 in E.. Therefore we prove that w € N, and
Teaw)=ce. O

Let £, denote the set of all positive ground state solutions of (). Similar to the conclusion (iii)
of Theorem 3.8, one has the following lemma.

Lemma 4.6. Suppose that the assumptions of Theorem 1.1 are satisfied. Then L is compact in H' (R3) for all
small & > 0.

Proof. Let the boundedness sequence {u,} C L£e NN such that Tz 5 (up) =c; and T/, (up) = 0. With-
out loss of generality we assume that u, — u € E. Then it follows from the weakly continuous of 7,
that 7/(u) =0. Set w, =u, — u. As in Lemma 4.6, we can prove that w, — 0 in H'®R3. o
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5. Multiplicity and concentration of positive solutions

In this section, we are in a position to give the proof of the main results. We first prove that (H;)
has existence of multiple positive solutions. To do this, we shall make good use of the ground state
solution of (H,). Precisely, let w be a ground state solution of problem (Hm,) and ¢ be a smooth

nonincreasing function defined in [0, c0) such that ¢(s) =1 if 0 < % and ¢(s) =0 if s > 1. For
any y € M, we define

Yoy ®) =¢(|ex—y|)w(¥>. (5.1)

Then there exists t; > 0 such that maX;»o 7 (tVe,y) = Tea(teVe,y). We define yp : M — N by
Ve(y) =teV¥e y. By the construction, y¢(y) has a compact support for any y € M.

Lemma 5.1. Under the assumptions of (Co) and (F1)-(F3), we have that the function y. such that
limg 0 7e 1 (Ve (¥)) = Cumy-

Proof. Suppose by contradiction that there exist some 8y > 0, {y,} € M and &, — 0 such that

| Tex (Ve (¥n) = cmo| = do. (5.2)

Now we first claim that lim,_,  ts, = 1. Indeed, by the definition of tg, and the conclusion (v) of
Lemma 2.2 we know that there exists p > 0 such that
2 2
0<p< /(G‘V(tan Yenyn)| + M(Enx)|tsn¢a,yn|2) + b( /!V(tsn Yen,yn) )
R3 R3

_a / F oWy )oy Ve + / ey Vo yn % (53)
3 3

We infer from (F7) and (F3) that for each € > 0, there exists Cc > 0 such that

f(s) <es+ CesPL. (5.4)

From (5.3) and (5.4), we deduce that t;, cannot go zero, that is to say, ts, > to > 0 for some to > 0. If
te, — 00 as n — oo, it follows from the boundedness of v, y, that

t2 /(|V(1//sn yn)| + K(&nX)|Vep,y, +b< /|V(ten‘//€n yn)| )
]R3 R3
f (e, Ven,yn)
(tenlﬁsn yn)3

g”/hﬁsn wl® = ﬁn/(¢(IEnZI)W(Z))6

('(//8,1 }/n)4 + tgn / |1//€n Yn

> 2 / w(2)® > 00 asn— oo. (5.5)
B1(0)
2
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However, the left side of the inequality (5.5) tends to b(ng |Vw|?)2. This is absurd. Hence, we obtain
that 0 < tg < £, < C. Without loss of generality we assume that tg, — h. Next we shall prove that
h = 1. In fact, by using Lebesgue’s theorem, one can verify that

Tim [[Vey y, 12, = 1wl lim / F(Yepy,) = / F(w) and

R3
Jm [ e = [ Foow. (56)
R3 R3
So it follows from (5.3) that
1 2 fhw) 5
hz/(ale + Mo|w|? +b</|VW|) =A (h )3 w?+h /|w| (5.7)

R3
Furthermore, since w is a ground state of (Hy,), then one sees
2
/(a|Vw|2+M0|w|2)+b<f|Vw|2> =k/f(w)w+/|w|5. (5.8)
R3 R3 R3 R3
Combining (5.7) and (5.8), we conclude that

1 fthw) — f(w)
(h—z—1)/(a|Vw|2+K0|w|2):k/((hw)3 - ) 4+(h2—1)/w6. (5.9)

R3 R3 R3

Thus we deduce from (F3) that h = 1. On the other hand,

2

tg
Tenr (Ven (V) = /( V(¢ (lenzl)w)|* + M(enz + yn) | (1nzl) W) — —/|¢ lenzl)w|°
R3 R3
—A/F(tgn¢(|snz| (/|v o(|enzl) W) ) (5.10)
R3

Let n — oo in (5.10), we infer from Lebesgue’s theorem that 7, (Ve, (¥n)) = Tm, (W) = cpm,. This con-
tradicts with (5.2). O

For each § > 0, let 0 = 0(8) be such that Ms C B, (0). Let x : :R?® — R3 be define by x (x) = x for
|x| <o and yx(x) = & for |x| > o. Finally, let us define B¢ : N — R by

- IXI

Jgs x (ex)u® dx

Be(u) = f]R3 w2 dx
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As in the proof of Lemma 5.1, it is easy to see that
 Jes X @0VeZdX [s x (X + IW )G (|ex])|? dx

Be(ve() = T veWZdx o Iw0g(exDPdx

_ fR3(X(€X+Y)_}’)|W(x)¢(|8x|)|2dx ~
- Jr3 W)@ (Jex))|? dx =y+o()

as & — 0, uniformly for y € M. So we conclude that limg_.¢ B¢ (y=(¥)) = y uniformly for y € N;.
Next we shall prove some concentration phenomena for the positive ground state solutions
of (H;). Before doing these, we start with the following preliminary lemma.

Lemma 5.2. Suppose that the assumptions of Theorem 1.1 are satisfied. Let u, C Ny, be a sequence sat-
isfying Tmy,».(Un) — Cm,. Then either {u,} has a subsequence strongly convergent in HY(R3) or there exists
{yn} C R3 such that the sequence wy (x) = un(x+ yn) converges strongly in H' (R?). In particular, there exists
a minimizer of cj,.

Proof. By Lemma 3.7, we know that {u,} is a bounded sequence. From Lemma 2.3, v, = m.(uy)

is a minimizer sequence of 7 ;. By Ekeland’s variational principle [10], we may assume that
Ye 5 (vn) = ¢y, and T;,A(vn) — 0. So it follows that

TMox(Un) = CMg>  Tigor(Wn) =0 and Ty ; (un)un =0, (5.11)
where u, =mg(vy). Hence, for some subsequence, still denoted by {u,}, we may assume that there
exists an u € H'(R?) such that u, — u in H!(R3). In the following we distinguish the following two

cases:
(a) If u # 0, in this case we deduce from u € Ny, and (1.4) that

1
CMO < TMQ,X(”) = TMU,)\(”) - Z(T]\//IO,)L(U)v u)

1 1 1
=4 /(a|Vu|2 + Molul?) +/\/<Zf(u)u - F(u)) +5 / [u|®
R3

R3 R3
< liminf 1/(aWu 12 4+ Molu |2)+k/ lf(u Yup — F(up) +l/|u 6
X =00 4 n n 4 n n n _12 n
R3 R3 R3
. 1
=l}1n_1)g3f<TM0,x(un) - ZTMO,A(un)un> < CMy- (512)

Thus, by (5.12) we deduce that limy_ o 3 (a|Vtip|? +Mo|un|?) = [p3(a|Vul? +Molul?). That is, u — u
in H'(R3).
(b) u=0. As in Lemma 3.7, we have that there exist {y,} C R3, r, § > 0 such that

liminf u2 > 8. (5.13)

n— 00
Br(yn)

We set wn(x) = un(X + yn), then [[Wnllmo = llunlimg, Tnmo,x(Wn) = cumy and Ty (Wn)wn = 0. It is
clear that there exists w € H'(R3) with w # 0 such that w, — w in H'(R?). Then the proof follows
from the arguments used in case of u #20. O
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Lemma 5.3. Under the assumptions of Theorem 1.1, one has that there is a maximum point y¢ of ug such
that dist(xs, M) — 0 where x; = €y, Ug denotes the positive ground sate solutions of (H.) and 0 € M =
{x € R3: M(x) = Mg). Moreover, for such y., we have that v¢(x) = ug(x + y¢) converges in H'(R?) to
a positive ground state solution of (Hum,), as € — 0.

Proof. Let £ — 0, uj e Egj such that Ej,k(uj) =Cg; and 7;/1_’)\(11]') = 0. Clearly, {u;} C/\fgj. Using the
same arguments as in Lemma 3.7, one easily check {u;} is bounded in H'(R3). So we can assume

that u; — u in H'(R3). Moreover, since ’EM(uj) =Cg; = CM, aS j — oo according to Lemma 4.1,
then we have cg; < cum,, for j large. Thus similar to the proof of Lemma 3.7, we can prove that there

exist r,§ > 0 and a sequence {y/j} C R3 such that

liminf / ui>6>0. (5.14)
j*)OO
Br(Y})

For {y;} C R3 such that
uj(yj) =maxuj(y), Vj.
yeRr3
We claim that there is ¥k > 0 (independent of j) such that
uj(yj) =« >0, uniformly forall jeN. (5.15)
Assume by contradiction that uj(y;) — 0 as j — oo. We deduce from (5.14) that
0<68< / u?gcuj(yj)2—>0 as j — oo.
Br(¥})

This is a contradiction. As in Theorem 3.8, one can easily check that u; € CcLo(R3) N L (R3) for each
j € N. So it follows from (5.14)-(5.15) (see [11]) that there exist R >r > 0 and &’ > 0 such that

liminf / |uj|2 >§>0.
j—ooo
Br(yj)

Set
vi(x)=uj(x+yj) and ng(x) =M(gj(x+yj)).

Then along a subsequence we have v; — v #0 in H'(R®) and v; — v in L} (R%) (p € (2,6)). We
first claim that v; — v # 0 in H'(R3). In fact, according to Lemma 3.1, we choose t; > 0 such that

My (Vi) =tjvj € Nuy. Set vj=t;v;. It follows from (Co), uj € Ne; and Lemma 4.1 that

o1 By . 3 b o\ 1
TMO,mJ-)s5/(|Vv,-|2+ng<x>|vj|2)+Z(/Wvﬂz) —AfF(vj)—gfv‘;f
R3 R3 R3 R3
= %j,k(tjuj) < ’Ej,)t(uj) =CMq + O(l)
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Note that T, 1 (V) > cmg, thus limj_, oo Ty, 2. (Vj) = cp,. From the conclusion (vi) of Lemma 3.1, we
infer that t; is bounded. Without loss of generality we can assume that t; — t > 0. If t =0, we have
that vj =t;jv; — 0 in view of the boundedness of vj, and hence 7T, »(Vj) — 0 as j — oo, which
contradicts cpy, > 0. So, t > 0 and the weak limit of V; is different from zero. Let v be the weak limit
of v in HY(R3). Since t, — t > 0 and v, — v # 0, we have from the uniqueness of the weak limit
that ¥ =tv # 0 and ¥ € Njy,. From Lemma 5.2, V; — v in H'(R?), and so, v; — v in H!(R?). This
proves the claim for v; — v #0 in H!(R3).
Obviously, v solves

(1Y) —(a—l—b/|ij|2>Avj+A7Igj(x)vj:Af(vj)+v? inRR>.
3

Correspondingly, the energy functional is denoted by

1 2
ng(vj)=5/(a|Vv]| +Me,(><)v </|Vv1| ) —A/F(v])+ /

R3 R3 R3
= 7—81',)\(”]) = ng.
We next show that {¢;y;} is bounded. Assume by contradiction that &y ;| — oo. Without loss of

generality assume M(g;y;) — M. Clearly, Mg < M by (Cp). For each ne C8°(R3), we deduce from
vj— v in H'(R3) that

llm H, (v])r)_ llm /[ avv; Vn—}-ng(x)v]n)+b(/|vvj|2)(/ijVn)]

R3 R3
—A/f(v])n— lim /v N

/[(aVvVn—l—Moovn /f(v)n+b</|Vv| )(/an) —/VSn]

R3 R3

Thus, v solves
(H o) —(a—i—b/|Vv|2)Av+A7I°°v:Af(v)+v5 inR>.
R3
We denote the energy functional by
1 oo b 5\ 1(
Hoo (V) = a|Vv| + M>®v? +4 [Vv| —A F(v)—g V° 2 Cjoo-
R3 R3 R3 R3

Remark that since Mg < M one has Cjreo > CM, by Lemma 4.1. Moreover, since Hfaj(vj)vj =
Tg,j,x(uj)uj =0, it follows from Fatou’s lemma and (1.4) that
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1
lim Ce; = 11m Hej(vj)_ 11m <ng(v])(vj) ng(vj)/(vj)vj)

j—oo
el 2, 2 1 1 6
> liminf| — [ (a|vj|* +Me;@®1v;1*) + 4 [ | - fvpvi—Fj |+ = | vjl
J—>0o0 4 4 6
R3

R3 R3

1 1 1
> Z/(aivnz+M°°|VJ|2)+A/<Zf(v)v—F(v))+€/|v|5=Hoo(v). (5.16)
R3 R3

R3

Consequently, we infer from (5.16) that
Mo < Cpoe < Hoo (V) < lim ¢ = Cps
j—oo

a contradiction. Thus {¢;y;} is bounded. Hence, we can assume xj = &;yj — Xo. Then v solves
(Pko) —(a + b/ |Vv|2>Av + M(xo)v=Af(v) +v> inR3

It follows from M(xp) > My that
1 2
Ho(V)ZE/(GIVVI +1V1(X0)IV| (fIVVI ) —A/F(V)——/ V0 = crg) = CMo-
R3 R3 R3

Similar to (5.16), one gets
cMp, = lim Ce; = Po(v) 2 cmp.
j—o0

This implies that Po(v) = cp,, and hence M(xp) = Mp. So by Lemma 4.1, o e M. O
Now we study the exponent decay for the ground state solution.

Lemma 5.4. Under the assumptions of Theorem 1.1, if u. is a positive ground state solution of (He), one has
that for each &€ > 0 small, limx—oo Ug (X) = 0, lim|y— o0 |VUug (X)] =0 and u, € C,OC (R3) for o € (0, 1).
Furthermore, there exist C, ¢ > 0 such that ug(x) < Ce~¥=Yel where ug(y,) = MaX,cp3 Ug (X).

Proof. As in the proof of the conclusion (ii) of Theorem 3.8, we known that for each ¢ > 0 small,
limyy|— 00 Ue (X) = 0, limyy 00 [V (X)| =0 and u, € CIDC (R3) for o € (0, 1). In the following we shall
prove the exponent decay for the positive solution of u.. Let £j — 0, uj € ng such that 7}M(u]) =Cg;
and 7;,1,/\(“1‘) =0. As in the proof of Lemma 5.2, we have that vj =u;(x+ y;) such that

(RY) —<a+b/|ij|2>Av,»+1\71€j(x)vj=Af(vj)+|vj|4vj in R?
3
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and vj — v #0 in H'(R?) where u(y;) = max,cgs uj(y). Let Aj=a+b [p3|Vv;]®. Then it follows
that 0 <a < Aj <c and Eq. (R{) equivalent to

M0 .
(RE1) —Avj+ Aj :—f( Dt IVJI vj inR3.

So we deduce from Proposition 2 of [6] that v; € LE(R3) for all ¢t >2 and

[Vjle < Nellvjll, (5.17)

where N; does not depend on j. Then we infer from vj — v #0 in H'(R3) that

lim ( / (v? + v?)) =0, uniformly for j e N. (5.18)

R—o0
[X|=R

Let hj(x) = Aij(kf(vj) + v?). It follows from (5.17) that for t > 3

|hjle <C, forall jeN.

Thus by Proposition 3 in [6] (also see Theorem 8.17 in [14]), we infer that for all y € R3

51213) Vi <c(Ivjlia, iy + Ml mn)- (519)
1y

This implies that |vj|s is uniformly bounded. Furthermore, combining the limit (5.18) with inequal-
ity (5.19) we reach

x l‘lm vj(x) =0 uniformly forall j € N.
— 00

Form this we deduce that there is &y > 0 such that

l‘lm Ve(x) =0 uniformly for all € € (0, &].
X|— 00

So by using the same arguments as in the proof of the conclusion (ii) of Theorem 3.8, we know that
there exist C,§ > 0 (independent of ¢) such that

ve(x) < Ce™M,
where vy =u (X + y¢) and ug(ye) = Max, cp3 Us. Thus, the conclusions of this lemma hold. O

To prove the concentration phenomenon for the positive solutions of (H.), we need the following
results.

Lemma 5.5. Under the assumptions of Theorem 1.1 or Theorem 1.2, one has that if &, — 0 and {un} C N,
such that Tz, 5 (un) — Cum,, then there exists a sequence {yn} C R3 such that y, = eqyn — y € M.
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Proof. By using the same arguments as in Lemma 3.7, we can prove that {u,} is bounded in H!(R3).
Moreover, there exist r, 8 > 0 and a sequence {y,} C R? such that

n—oo
Br(yn)

liminf / u2 >8> 0.

Let v, = un(x + yp). Then it follows that v, — v £ 0 in H'(R?) and v,(x) — v(x) a.e., on R3. Ac-
cording to Lemma 3.1, we choose t, > 0 such that mpy,(vy) = tavn € Nu,. Set vy = tyvy. It follows
from (Co), up € Vg, and Lemma 3.2 that

5 2 t4h 2 ¢6
TMO,A(Vn)< En/(a|an| +Man(x)|vn| 1 ( [VVyl ) _A/F(tnvn)_ _/ ,?

R3 R3 R3
= Ten.a(tntin) < Te, 0 (Un) = Cumy +0(1).

Note that T, 1 (Va) > cmy, thus limy_, o0 Tmg,a (Vi) = cM,. From the conclusion (vi) of Lemma 3.1, we
infer that t; is bounded. Without loss of generality we can assume that t; — t > 0. If t =0, we have
that v, =ty,vy, — 0 in view of the boundedness of v, and hence 7Ty, (Vn) — 0 as n — oo, which
contradicts cpy, > 0. So, t > 0 and the weak limit of ¥, is different from zero. Let v be the weak limit
of v, in H'(R?). Since t; — t > 0 and v, — v # 0, we have from the uniqueness of the weak limit
that ¥ = tv # 0. Moreover, it follows from Lemma 5.2 that ¥ € Ny,.

We claim that {y,} is bounded. Indeed, suppose by contradiction that |y,| — oo. It follows from
Vn, V € Ny, and Mo < M that

Mo = T, (V) < g, 2 (V)

—1/a|v\7|2+/ YRy |\7|2+A/ 1f(\7)\7 F(V) )+ ! /|\7|6
4 274" 4 12
R3 R3 R3 R3
T . 1 1 .
<liminfl = [ a|Viy|* 4+ | [ =M(enx + Jn) — = Mo )| V5]
n—oco | 4 2 4

R3 R3

xf(}lfwn)vn - F(vn)) + / |6n|6]
]R3

R3
= liminf7g, » (Vp) = liminf Tg, 5 (t,vn) = liminf Tg, 2 (tqun)
n—oo n—oo n—oo

<liminf7;, ;. (un) = Cuy.-
n—-oo

This is impossible. So {y,} is bounded. Without loss of generality we may assume that y, — y. If
y ¢ M, then M(y) > Mo and we obtain a contradiction by the same arguments made above. So,
y € M and the conclusion follows. O

Let w(ge) be any positive function tending to 0 as € — 0 and let

Te={ueNe: Ten(w) <cmp + (o)}

For any y € M, we deduce from Lemma 5.1 that w(¢) = |7z (Ve (¥)) — cmyl — 0 as & — 0F. Thus
Ve(y) € Xe and X #0Q for € > 0.
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Lemma 5.6. Suppose that the assumptions of Theorem 1.1 or Theorem 1.2 are satisfied. Then for any § > 0,
there holds that limg_, g sup, 5, dist(B (1), M3) =0.

Proof. Let {¢;} C RT be such that &, — 0. By definition, there exists {up} C X, such that
dist(Be, (un), Ms) = SUPyex,, dist(Bs,(u), Ms) + o(1). From this we know that it suffices to find
a sequence {yn} C M satisfying |Be, — ¥nl = 0(1). From Ty, s (tus) < Tea(tuy) for t > 0 and
{un} C X, C N, we obtain that cp, < g, < Tep, (Un) < CMy + @(€n). This leads to Tz, 1 (Un) = Cup-
By Lemma 5.5 one sees that there exists a sequence {y,} C R® such that ¥, = yn&, € M; for n
sufficiently large. Hence

Jp3 (X (€nz + V) — yn)u2(z + yn)dz
Jg3 UA (z + yn) dz '

Be, (Un) = Vn+

Since €yz+ yn — y € M, we have that B, (us) = y» + 0(1) and then the sequence {y,} is what we
need. O

Lemma 5.7. Suppose that the assumptions of Theorem 1.1 or Theorem 1.2 are satisfied. If u, such that
Tenn(Un) — ci, and there exist r, § > 0 and a sequence {yn} C R3 such that liminf,_ o fBr(Yn) uﬁ >8>0,

vp(x) = up(x + yyn) satisfies the following problem

(#}) —(a+b/|an|2>Avn+Mgn(x)vnzkf(vn)+|vn|4vn in R3,
R3

where I\A/IEn (%) = M(enX + enyn) and yp is given in Lemma 5.3. Then we have that v, — v in H!(R3) with
v#£0, vy € L°[R3) and ||v, | Loo®3y < C for alln € N. Furthermore, limyx|— 0o Vn(X) = 0 uniformly forn € N
and vp(x) < ce~Cx—Vnl,

Proof. Since v, satisfies Eq. (H;), we know that 7;; , (vn) = 0. Moreover, Tg, ;(Un) = Cum,. SO by
using the same arguments as in Lemma 5.4, one can obtain the conclusion of this lemma. Here we
omit the details. O

Proof of Theorems 1.1. Going back to (KH). with the variable substitution: x — g Lemma 4.5 implies
that (KH). has at least one positive ground state solution u, € H'(R3) for all &£ > 0 small. The con-
clusions (ii) and (iii) follow from Lemmas 4.6 and 5.3 respectively. Finally, it follows from Lemma 5.4
that the conclusion (iv) of Theorem 1.1 holds. O

Next we shall prove Theorem 1.2, before doing this, we should use the following result for critical
points involving Ljusternik-Schnirelmann category. For the details of the proof one can sees [4,20].

Theorem 5.8. Let U be a C!:! complete Riemannian manifold (modelled on a Hilbert space). Assume that
h € C1 (U4, R) bounded from below and satisfies —oo < infy;h < d < k < +0co. Moreover, suppose that h
satisfies Palais-Smale condition on the sublevel {u € U: h(u) < k} and that d is not a critical level for h. Then

#{u e h®: Vh(u) =0} > catya (h?).

With a view to apply Theorem 5.8, the following abstract lemma provides a very useful tool in that
it relates the topology of some sublevel of a functional to the topology of some subset of the space R3.
For the proof, an easy application of the definitions of category and of homotopic equivalence between
maps, we refer to [21,22,20].
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Lemma 5.9. Let Z, 71, I, be closed sets with 71 C Iy; let w : T — 1, v : Iy — I be two continuous maps
such that 7w o y is homotopically equivalent to the embedding j : 7y — 1. Then catz (T) > catz, (11).

To prove Theorem 1.2, we first show that (#,) has at least cat aq, (M) positive solutions. Since Ny
is not a C!-submanifold of E., we cannot apply Theorem 5.8 directly. Fortunately, from Lemma 2.2,
we know that the mapping m, is a homeomorphism between N; and Sg, and S, is a C!-submanifold
of E¢. So we can apply Theorem 5.8 to 15 5 (W) = T¢ ;. (e (W))|s, = Te 1 (Mg (W)), where Y, is given
in Lemma 2.3.

Define y:1(y) = mg_1(t£w£,y) = me_l(yg(y)) = ”Z:/;—zi” = Hﬁ—il\ for y €¢ M. It follows from
Lemma 5.1 that
lim Ve (yea () = im Tes (Ve () = - (5.20)
Furthermore, we set
Te1:={weSe: Tep(w) <cmy +(e)}, (5.21)

where w(¢) — 0" as & — 0T It follows from (5.20) that w(e) = | Te 2 (Ve.1(¥)) — Cmy| — 0 as € — 0.
Thus, Ve,1(¥) € Ze,1 and g1 # @ for any & > 0. Recall that Xy := {u € Np: Toa(u) < oump + w(€)}.
From Lemmas 2.2-2.3, 5.1 and 5.6, we know that for any & > O sufficiently small, the diagram

-1
FYRCSS SRS SN LN V) (5.22)

is well define. By the arguments in the paragraph just before Lemma 5.2, we see that
lirrz) Be(ve(¥)) =y uniformlyiny € M. (5.23)
e~

For € > 0 small enough, we denote B¢ (y:(y)) =y + v(y) for y € M, where [v(y)| < % uniformly
for y € M. Define H(t,y) =y + (1 —t)v(y). Then H :[0,1] x O — M is continuous. Obviously,
H(0,y) =B (¥ (¥)), H1,y) =y for all y € M. Let yp 1 =m; ' oy, and B¢ 1 = fe om. Thus we obtain
that the composite mapping f¢ 10 ¥e,1 = B¢ o Ve is homotopic to the inclusion mapping id : M — M.
So it follows from Lemma 5.9 that

caty, ; (X 1) = catpgs (M). (5.24)

On the other hand, let us choose a function w(e) > 0 such that w(¢) — 0 as € — 0 and such that
(cmp + @(¢)) is not a critical level for ¢ ;. For & > 0 small enough, we deduce from Lemma 4.5 that
T satisfies the Palais-Smale condition in Y. By the conclusion (ii) of Lemma 2.3, we infer that
Y%, satisfies the Palais-Smale condition in X ;. So it follows from Theorem 5.8 that 7, has at
least catx, , (X, 1) critical point on X¢ 1. By the conclusion (iii) of Lemma 2.3, we conclude that 7 3
has at least cat a4, (M) critical points.

Proof of Theorem 1.2. From above arguments we know that (#.) has at least catq,(M) positive
solutions. Going back to (KH); with the variable substitution: x g We obtain that (KH), has at
least cat g, (M) positive solutions. In the following we shall prove the concentration phenomena for
positive solutions. Let u,, denote a positive solution of (#,). Then v, (x) = un(x + y5) is a solution
of the problem

—<a+bf |an|2>Avn + Mg, ) vn = Af(vp) + |va|*vn inR2,
R3
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where 1\718" (X) = M(epx + €nyn) and yy is given in Lemma 5.5. Furthermore, up to a subsequence, it
follows from Lemma 5.5 that v, — v and y, = &,yn — ¥ € M. We claim that there exists a § > 0
such that [|[valljeo 3y = 8 > 0. Indeed, suppose that [[vyl| g3y — 0. We deduce from (F7) and (F2)
that for each g8 > 0, there exists an ng € N such that for all n > ng

Flvallpeog3y)

< ﬁ and ”VI’IHLOC(R3) < /3
lvn ||L°°(R3)

Hence, by (F2), we see that

Fdlvallpoor3y)
/|an|2+Mo|vn|2<A wv%/vg
3

IVallpoor3)
R3

<m/v£+ ||vn||;‘w(R3)/vﬁ <cB.

R3 R3

This implies that |vy|lm, =0 for n > ng, which is impossible because v, — v in H'(R3) and v #0
by Lemma 5.7. Then the claim is true. Let k, be the global maximum of v;,, we infer from Lemma 5.7
and the claim above, we see that {k;} C Br(0) for some R > 0. Thus, the global maximum of u,
given by z, = yn + ky satisfies e,z, = ¥, + enky. Since {k,} is bounded, it follows that e,z, — y € M.
Moreover, since the function hg(x) = ug(g) is a positive solution of (KH)., then the maximum point
o, and z, of h, and u, respectively, satisfy the equality o, = £z,. So we have that limg_. o M(0¢) =
limy— oo M (€r2n) = Mp. Finally, from the above arguments and Lemma 5.7, it follows the boundedness
of {kn} that u,(x) < ce~¥~Zntknl < ce=clx=znl 5o we conclude that u, satisfies the conclusion (ii) of
Theorem 1.2. O

Proof of Theorem 1.3. Since for each & > 0, we have E = H'(R3) = E,. Therefore, to prove the con-
clusion, we first claim that ¢, = ¢y~ for each € > 0. In fact, as in Lemma 4.2, since M(x) < M, one
can easily check that ¢z > cpy<. So, in order to prove ¢y~ = cg, it suffices to show that

CpMoo < Cg. (5.25)

By Theorem 3.8, we know that there exists e € Sy~ = {u € H'(R3): ||u||y~ =1} and s¢ > 0 such that
ug = my(e) = spe is a positive ground state solution of (Hp). Moreover, mye(e) is the unique
global maximum of 7y, on E. Set w, =e(- — yn), where y, € R3 and |y;| — oo as n — oco. Then
by Lemma 2.2, it follows that for each n, mg(w;) = thg(wy) € N is the unique global maximum of
Te.» on E. Therefore, we get

< Te (me (Wn))

1
=2/( |Vme(Wn)| +Mg(x)|mg(wn)| </|Vms(wn)| >

R3

—x/ (m(wn)) — f|ms(Wn)|

R3

1 b 2
= 5/(a|vm,s(e)|2 +M(8x+8yn)|m8(e)|2)—|— Z( /|Vm£(e)|2)

R3 R3
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1
_A/F(m(e)) - 6/|m£(e)|6
R3

R3
= Tueo,x (Me (@) + /(M(sx +eyn) — Mw)mﬁ(e)
R3
<oy + /(M(ex +&yn) — M®)m(e). (5.26)
R3

It is clear that for each € > 0, there exists R > 0 such that

/ (M — M(ex+ eyn)) (me(e))* < ce. (5.27)

[XI=R

Moreover, we conclude from Lebesgue’s dominated convergence theorem that

lim (M> — M(ex+ eyn))(me (e))2 = / <M°° - nan;o M (ex + syn))(mg (e))2

n—oo
[X|<R [X|<R
o 2
< / (M —llmme(ex—i—syn))(me(e)) =0.
n—oo
x[<R

(5.28)

So it follows from (5.26)-(5.28) that cp~ =c, for € > 0.

Finally, assume, seeking a contradiction, for some &g > 0 that there exists 0 < il € A, such that
Ceo = Tep,n(01). From the conclusion (iv) of Lemma 2.2, we deduce that there exists & € Sg, such
that &t = mg,(€) = s1€, where s; > 0. From Lemma 2.2 again, we infer that mg,(é) = i, (€) is the
unique global maximum of 7, , on E. We first have that cyeo < Tyeo, ) (Myee (€)) = Maxyeg Ty, 5 (U).
On the other hand, by (Cy), it follows that M(x) > M for all x € R® and Ty 5 (1) < Tg,.a(w) for
each u € E. Thus, cyeo < Tyoo 1 (Mo (8)) < T2 (Moo (8)) < Teg,a (Mey (€)) = €5y = Cyroo. This implies
cpmee = Tee j (Moo (8)) = Ty, 1 (M= (€)). Moreover, u™ =mpy (8) satisfies

(Hyeo) —<a+b/|Vu°°|2>Au°°+M°°u°°=Af(u°°)+|u°°|4u°° inR3.
R3

As in the proof of the conclusion (i) of Theorem 3.8, one can easily check that u®(x) > 0 in R3.
However, one has

T 1 (1) = Tep (u™) + /(M"O — M(gox)) (u™)°. (5.29)
R3
Furthermore, we deduce from (Cy) that
/(M"O — M(gox)) (u™)? < 0. (530)
R3

Thus, T 5 (U™) < Tey,2 (). This is a contradiction. O



2350 J. Wang et al. / J. Differential Equations 253 (2012) 2314-2351

Acknowledgments

The authors would like to thank the referees for giving valuable comments and suggestions, which
make us possible to improve the paper.

References

[1] Y.H. Ding, Variational Methods for Strongly Indefinite Problems, World Scientific Press, 2008.
[2] A. Szulkin, T. Weth, The method of Nehari manifold, in: D.Y. Gao, D. Motreanu (Eds.), Handbook of Nonconvex Analysis and
Applications, International Press, Boston, 2010, pp. 597-632.
[3] X.M. He, W.M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in R3, ]. Differential
Equations 2 (2012) 1813-1834.
[4] J. Mawhin, M. Willen, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, 1989.
[5] V. Coti-Zelati, A short Introduction to critical point theory, Second school on nonlinear functional analysis and applications
to differential equations, ICTP-Trieste, SMR 990-15, 1997.
[6] C.O. Alves, M.A. Souto, On existence and concentration behavior of ground state solutions for a class of problems with
critical growth, Commun. Pure Appl. Anal. 1 (2002) 417-431.
[7] PH. Rabinowitz, On a class of nonlinear Schrodinger equations, Z. Angew. Math. Phys. 43 (1992) 270-291.
[8] L. Jeanjean, K. Tanaka, Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc.
Var. Partial Differential Equations 21 (2004) 287-318.
[9] PL. Lions, The concentration compactness principle in the calculus of variations: The locally compact case. Parts 1, 2, Ann.
Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 109-145, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1984) 223-283.
[10] M. Willem, Minimax Theorems, Progr. Nonlinear Differential Equations Appl., vol. 24, Birkhduser, Basel, 1996.
[11] J. Wang, LX. Tian, ].X. Xu, EB. Zhang, Multiplicity and concentration of positive ground state solutions for Schrodinger-
Poisson systems with critical growth, preprint.
[12] P. Tolksdorf, Regularity for some general class of quasilinear elliptic equations, J. Differential Equations 51 (1984) 126-150.
[13] E.D. Benedetto, C'+* local regularity of weak solutions of degenerate results elliptic equations, Nonlinear Anal. 7 (1983)
827-850.
[14] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Grundlehren Math. Wiss., vol. 224,
Springer, Berlin, 1983.
[15] A. Pankov, On decay of solution to nonlinear Schrédinger equations, Proc. Amer. Math. Soc. 136 (2008) 2565-2570.
[16] W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977) 149-162.
[17] D.G. de Figueiredo, ]. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems, Nonlinear Anal. 33
(1998) 211-234.
[18] W. Kryszewski, A. Szulkin, Generalized linking theorem with an application to semilinear Schrodinger equations, Adv. Dif-
ferential Equations 3 (1998) 441-472.
[19] Y.H. Ding, Multiple Homoclinics in a Hamiltonian system with asymptotically or superlinear terms, Commun. Contemp.
Math. 8 (2006) 453-480.
[20] S. Cingolani, M. Lazzo, Multiple positive solutions to nonlinear Schrodinger equations with competing potential functions,
J. Differential Equations 160 (2000) 118-138.
[21] V. Benci, G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems,
Arch. Ration. Mech. Anal. 114 (1991) 79-93.
[22] V. Benci, G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology,
Calc. Var. Partial Differential Equations 2 (1994) 29-48.
[23] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
[24] M. Chipot, B. Lovat, Some remarks on non local elliptic and parabolic problems, Nonlinear Anal. 30 (1997) 4619-4627.
[25] C.O. Alves, E].S.A. Corréa, TF. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math.
Appl. 49 (2005) 85-93.
[26] C.O. Alves, FJ.S.A. Corréa, G.M. Figueiredo, On a class of nonlocal elliptic problems with critical growth, Differ. Equ. Appl. 2
(2010) 409-417.
[27] Ching-yu Chen, Yueh-cheng Kuo, Tsung-fang Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing
weight functions, J. Differential Equations 250 (2011) 1876-1908.
[28] J.-L. Lions, On some questions in boundary value problems of mathematical physics, in: Contemporary Developments in
Continuum Mechanics and Partial Differential Equations, Proceedings of International Symposium, Inst. Mat., Univ. Fed. Rio
de Janeiro, Rio de Janeiro, 1977, in: North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam, 1978, pp. 284-346.
[29] P. D’Ancona, S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math. 108
(1992) 247-262.
[30] A. Arosio, S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996) 305-330.
[31] TF. Ma, J.E. Munoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Lett. 16
(2003) 243-248.
[32] K. Perera, Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations 221 (2006)
246-255.
[33] X. He, W. Zou, Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal. 70 (2009) 1407-1414.
[34] M. del Pino, P.L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial
Differential Equations 4 (1996) 121-137.



J. Wang et al. / . Differential Equations 253 (2012) 2314-2351 2351

[35] M. del Pino, PL. Felmer, Multi-peak bound states for nonlinear Schrédinger equations, Ann. Inst. H. Poincaré Anal. Non
Linéaire 15 (1998) 127-149.

[36] M. del Pino, M. Kowalczyk, J.C. Wei, Concentration on curves for nonlinear Schrodinger equations, Comm. Pure Appl.
Math. 60 (2007) 113-146.

[37] X.E. Wang, On concentration of positive bound states of nonlinear Schrédinger equations, Comm. Math. Phys. 153 (1993)
229-244.



	Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth
	1 Introduction and main results
	2 Variational setting
	3 The autonomous system
	4 A compactness condition
	5 Multiplicity and concentration of positive solutions
	Acknowledgments
	References


