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In this paper we concern with the multiplicity and concentration
of positive solutions for the semilinear Kirchhoff type equation

⎧⎪⎪⎨
⎪⎪⎩

−
(
ε2a + bε

∫
R3

|∇u|2
)
�u + M(x)u = λ f (u)+ |u|4u, x ∈R

3,

u ∈ H1(
R

3), u > 0, x ∈R
3,

where ε > 0 is a small parameter, a, b are positive constants
and λ > 0 is a parameter, and f is a continuous superlinear
and subcritical nonlinearity. Suppose that M(x) has at least one
minimum. We first prove that the system has a positive ground
state solution uε for λ > 0 sufficiently large and ε > 0 sufficiently
small. Then we show that uε converges to the positive ground
state solution of the associated limit problem and concentrates to
a minimum point of M(x) in certain sense as ε → 0. Moreover,
some further properties of the ground state solutions are also
studied. Finally, we investigate the relation between the number
of positive solutions and the topology of the set of the global
minima of the potentials by minimax theorems and the Ljusternik–
Schnirelmann theory.
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1. Introduction and main results

In present paper, we investigate the multiplicity and concentration of positive solutions to a class
of semilinear Kirchhoff type equation

(KH)ε

⎧⎪⎪⎨
⎪⎪⎩

−
(
ε2a + bε

∫
R3

|∇u|2
)
�u + M(x)u = λ f (u)+ |u|4u, x ∈R

3,

u ∈ H1(
R

3), u > 0, x ∈R
3,

where ε > 0 is a small parameter, a, b are positive constants, λ > 0 is a real parameter, and f is
a continuous superlinear and subcritical nonlinearity.

In (KH)ε , if ε = 1 and M(x)= 0, some mathematicians considered the following problem

⎧⎪⎨
⎪⎩

−
(

a + b

∫
Ω

|∇u|2
)
�u = f (x,u), inΩ,

u = 0, on ∂Ω,

(1.1)

where Ω ⊂ R
3 is a smooth bounded domain. Such problems are often referred to as being nonlocal

because of the presence of the term (
∫
Ω

|∇u|2)�u which implies that the equation in (1.1) is no
longer a pointwise identity. This phenomenon provokes some mathematical difficulties, which make
the study of such a class of problem particularly interesting. On the other hand, we have its physical
motivation. Indeed, this problem is related to the stationary analogue of the equation

⎧⎪⎨
⎪⎩

utt −
(

a + b

∫
Ω

|∇u|2
)
�u = f (x,u), inΩ,

u = 0, on ∂Ω,

(1.2)

where u denotes the displacement, f (x,u) the external force and b the initial tension while a is
related to the intrinsic properties of the string (such as Young’s modulus). Equations of this type
were first proposed by Kirchhoff in [23] to describe the transversal oscillations of a stretched string,
particularly, taking into account the subsequent change in string length caused by oscillations. Prob-
lem (1.2) began to call attention of several researchers mainly after the work of Lions [28], where
a functional analysis approach was proposed to attack it. We have to point out that nonlocal prob-
lems also appear in other fields as biological systems, where u describes a process which depends on
the average of itself (for example, population density). See, for example, [24,25,27] and the references
therein.

The solvability of the Kirchhoff type equations (1.1) and (1.2) has been well studied in general
dimension by various authors; for example, see [25–27,29–33] and the references therein. In [30],
Arosio and Panizzi studied the Cauchy–Dirichlet type problem related to (1.2) in the Hadamard sense
as a special case of an abstract second-order Cauchy problem in a Hilbert space. Ma and Rivera [31]
obtained positive solutions of such problems by using variational methods. Perera and Zhang [32]
obtained a nontrivial solution of (1.1) via Yang index and critical group. He and Zou [33] obtained
infinitely many solutions by using the local minimum methods and the fountain theorems. Recently,
when f is a continuous superlinear nonlinearity with critical growth, the paper [26] proved the exis-
tence of positive solution for (1.1). More recently, the paper [27] considered Eq. (1.1) with concave and
convex nonlinearities by using Nehari manifold and fibering map methods, and obtained the existence
of multiple positive solutions.
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We note that if a = 1, b = 0, R3 and λ f (u)+|u|2∗−2u are replaced by R
N and f (x,u), respectively,

(KH)ε is reduced to

(SH)ε

{
−ε2�u + M(x)u = f (x,u), x ∈R

N ,

u ∈ H1(
R

3), u > 0 x ∈R
N .

Eq. (SH)ε arises in different models. For example, they are involved with the existence of standing
waves of the nonlinear Schrödinger equations

(SH)′ε iε
∂ψ

∂t
= −ε2�ψ + (

M(x)+ E
)
ψ − f

(
x, |ψ |)ψ.

Here a standing wave of (SH)′ε is a solution of the form ψ(x, t) = u(x)e−iEt/h̄ , u(x) ∈ R, where u is
a solution of (SH)ε . The existence and concentration behavior of the positive solutions of (SH)ε have
been extensively studied in recent years, see for instance, [34–36,7,37] and the reference therein.
Recently, He and Zou [3] considered the following equation

(SP)ε

⎧⎪⎪⎨
⎪⎪⎩

−
(
ε2a + bε

∫
R3

|∇u|2
)
�u + V (x)u = f (u), x ∈R

3,

u ∈ H1(
R

3), u > 0 x ∈R
3,

where f is a C1 and subcritical function such that

f (s)

s3
is increasing on (0,∞), 0<μF (s)=μ

s∫
0

f (t)dt � sf (s), μ > 4,

f ′(s)s2 − 3 f (s)s � C sσ , σ ∈ (4,6), C > 0, and f (s)= o
(
s3) as s → 0. (1.3)

By using Ljusternik–Schnirelmann theory (see [10]) and minimax methods, the author obtained the
multiplicity of positive solutions, which concentrate on the minima of V (x) as ε → 0. This phe-
nomenon of concentration is very interesting for both mathematicians and physicians. Moreover, as
far as we know, the existence and concentration behavior of the positive solutions to (KH)ε with crit-
ical growth have not ever been studied by variational methods. So in this paper we shall fill this gap.
Precisely, the goal of this paper is the following three points: (i) To find a family of positive ground
state solutions for (KH)ε with some properties, such as concentration, exponent decay etc.; we also
investigate the relation between the number of solutions and the topology of the set of the global
minima of the potentials by minimax theorems and the Ljusternik–Schnirelmann theory, and some
concentration phenomenon of positive solutions are also obtained. (ii) We obtain the sufficient condi-
tions for the nonexistence of positive ground state solutions. (iii) We treat the critical case for (KH)ε ,
i.e., the nonlinearity is allowed to be critical growth. Furthermore, the conditions on f are more gen-
eral than [3]. Both of those will depend on the Nehari manifold methods [2] and minimax methods.

Before stating our theorems, we first give some assumptions.

(C0) M ∈ C(R3,R) such that M∞ = lim inf|x|→∞ M(x) > M0 = infx∈R3 M(x) > 0.
(C1) M ∈ C(R3,R) such that 0< infx∈R3 M(x)= M∞ = lim inf|x|→∞ M(x) and M(x) 	≡ M∞ .

The hypothesis (C0) was first introduced by Rabinowitz [7] in the study of a nonlinear Schrödinger
equation with the nonlinearity subcritical growth. In this paper, we shall also assume that M∞ <∞.
This condition is made only for simplicity, since it is irrelevant to the goal of our paper. Actually,
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it is even easier to consider potentials which are large at infinity, since the energy space embeds
compactly into Lebesgue spaces.

For the nonlinearity we assume f satisfies the following conditions:

(F1) f ∈ C(R3), f (t)= o(t3) as t → 0, f (t)t > 0 for all t 	= 0 and f (t)= 0 for all t � 0;
(F2) f (t)

t3 is strictly increasing on interval (0,∞);
(F3) | f (t)| � c(1 + |t|p−1) for some c > 0, where 4< p < 6.

It follows from the conditions of (F1)–(F2) that

F (u) > 0, 4F (u) < f (u)u, ∀u 	= 0, (1.4)

where F (u)= ∫ u
0 f (s)ds. Set

M := {
x ∈ R

3: M(x)= M0
}
.

Without loss of generality, below we assume 0 ∈M, that is, M(0)= M0. The limit problem associated
with (KH)ε reads as

(HM0) −
(

a + b

∫
R3

|∇u|2
)
�u + M0u = λ f (u)+ |u|4u, u ∈ H1(

R
3).

Let

Kε,λ(u) := 1

2

∫
R3

(
aε2|∇u|2 + M(x)|u|2) + bε

4

( ∫
R3

|∇u|2
)2

− λ
∫
R3

F (u)− 1

6

∫
R3

|u|6

denote the energy function associated to Eq. (KH)ε . Set

	ε = inf
{
Kε,λ(u): u 	= 0 is a solution of (KH)ε

}
.

If u0 > 0, and u0 solves (KH)ε , we say u0 is a positive solution. A positive solution u0 with 	ε =
Kε,λ(u0) is called a positive ground state solution. Let L′

ε denote the set of all positive ground state
solutions of Eq. (KH)ε . We recall that, if Y is a closed subset of a topological space X , the Ljusternik–
Schnirelmann category catX (Y ) is the least number of closed and contractible sets in X which cover Y .

Our main results are as follows.

Theorem 1.1. Suppose that the assumptions (C0) and (F1)–(F3) are satisfied. Then there exist λ∗ > 0 and
ε∗ > 0 such that for each λ ∈ [λ∗,∞) and ε ∈ (0, ε∗), we have that

(i) (KH)ε has one positive ground state solution uε in H1(R3);
(ii) L′

ε is compact in H1(R3);
(iii) there exists a maximum point xε of uε such that limε→0 dist(xε,M) = 0, and for any sequences of

such xε , hε(x)= uε(εx + xε) uniformly converges to a positive ground state solution of (HM0 ), as ε→ 0,
where uε ∈L′

ε denotes one of these positive ground state solutions;
(iv) lim|x|→∞ uε(x)= 0, lim|x|→∞ |∇uε(x)| = 0 and uε ∈ C1,σ

loc (R
3)with σ ∈ (0,1). Furthermore, there exist

constants C, c > 0 such that |uε(x)| � Ce− c
ε |x−xε | for all x ∈ R

3 .
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Theorem 1.2. Let the assumptions (C0) and (F1)–(F3) be satisfied. Then for each δ > 0, there exist εδ > 0
and λ∗ such that for any ε ∈ (0, εδ) and λ ∈ [λ∗,∞), (KH)ε has at least catMδ

(M) positive solutions. Fur-
thermore, if uε denotes one of these positive solutions and σε ∈ R

3 such that uε(σε)= maxx∈R3 uε(x), then
one sees that

(i) limε→0 M(σε)= M0;
(ii) lim|x|→∞ uε(x)= 0, lim|x|→∞ |∇uε(x)| = 0 and uε ∈ C1,σ

loc (R
3)with σ ∈ (0,1). Furthermore, there exist

constants C, c > 0 such that |uε(x)| � Ce− c
ε |x−σε | for all x ∈R

3 .

Theorem 1.3. If the assumptions (C1) and (F1)–(F3) hold, then for each ε > 0 and λ > 0, we have that (KH)ε
has no positive ground state solution.

Before going to prove our main results, some remarks on these results are in order: (i) To our best
knowledge, there is no result on the existence and concentration of positive ground state solutions for
Kirchhoff type equation with critical growth on R

3. At present paper we are first devoted to proving
the existence of positive ground state solutions of (KH)ε . Then we also obtain the multiplicity and
concentration of positive solutions for Kirchhoff type equation with critical growth. Moreover, some
properties for the positive ground state solution of (KH)ε are also obtained. (ii) We obtain sufficient
conditions for the nonexistence of positive ground state solution. (iii) Obviously, in the present paper
the conditions on f are weaker than the previous papers [3] (see (1.3)).

The proof is based on variational method. By comparing with the previous works, the main diffi-
culties in proving our theorems is the lack of compactness. As we shall see, Eq. (KH)ε can be viewed
as a Schrödinger equation coupled with a nonlocal term. The competing effect of the nonlocal term
with the nonlinearity f (u) and the lack of compactness of the embedding of prevents us from us-
ing the variational methods in a standard way. Precisely, since the embeddings H1(R3) ↪→ L p(R3)

(∀p ∈ (2,6)) and H1(R3) ↪→ L6
loc(R

3) are not compact, we cannot use the variational methods in
a standard way. In the later section, we shall show that the key to make up the global compactness
(H1(R3) ↪→ L p(R3) (p ∈ (2,6))) is the limit problem (HM0 ). Unfortunately, no information on the
ground state solution for the Kirchhoff equations can be found in the existing references. As a con-
sequence, we should carefully investigate the limit problem in the Section 3. To remedy the local
compactness (H1(R3) ↪→ L6

loc(R
3)), we should give some new estimates for the ground state level for

the energy functional. On the other hand, in the previous paper [3], since f is a C1 function, it follows
that Kε,λ ∈ C2 and Dε ∈ C1, where Dε is Nehari manifold given by

Dε = {
u ∈ H1(

R
3) \ {0}: K′

ε,λ(u)u = 0
}
.

From these properties of Kε,λ and Dε , one can easily deduce that critical points of Kε,λ on Dε are
critical points of Kε,λ on H1(R3). Furthermore, one can use the standard Ljusternik–Schnirelmann
category theory on Dε directly (see [10,20]). However, in present paper we cannot obtain these prop-
erties, since f is just a continuous functional, and Dε is only a continuous submanifolds of H1(RN ).
To overcome this difficulty, we should carefully study the elementary properties for Dε as in [2].
By doing this we can reduce variational problem for indefinite functional to minimax problem on
a manifold and find positive solutions for (KH)ε .

For the proof of our theorems, we shall consider an equivalent system to (KH)ε . For this purpose,
making the change of variable εy = x, we can rewrite (KH)ε as the following equivalent equation

(Hε) −
(

a + b

∫
R3

|∇u|2
)
�u + M(εx)u = λ f (u)+ |u|4u, u > 0, u ∈ H1(

R
3).

Thus, our theorems for (KH)ε are equivalent to the following results for (Hε):
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(a) If the assumptions (C0) and (F1)–(F4) hold, then there exist λ∗ > 0 and ε∗ > 0 such that for
each λ ∈ [λ∗,∞) and ε ∈ (0, ε∗), we have that

(i) (Hε) has a positive ground state solution uε ∈ H1(R3);
(ii) the set of all positive ground state solutions of (Hε) is compact in H1(R3);

(iii) there exists a maximum point yε of uε such that limε→0 dist(εyε,M) = 0, and for any
sequence of such yε , kε(x)= uε(x + yε) converges in E to a ground state solution of (HM0 ),
where uε denotes the positive ground state solution of (Hε);

(iv) lim|x|→∞ uε(x) = 0, lim|x|→∞ |∇uε(x)| = 0 and uε ∈ C1,σ
loc (R

3) with σ ∈ (0,1). Furthermore,
there exist constants C, c > 0 such that |uε(x)| � Ce−c|x−yε | for all x ∈ R

3.
Moreover, if the assumptions (C1) and (F1)–(F3) hold, then (Hε) has no positive ground state
solution for all λ > 0 and ε > 0.

(b) If the assumptions (C0) and (F1)–(F4) hold, then for each δ > 0, there exist εδ > 0 and λ∗
such that for any ε ∈ (0, εδ) and λ ∈ [λ∗,∞), then (H)ε has at least catMδ

(M) positive so-
lutions. Furthermore, if uε denotes one of these positive solutions and σε ∈ R

3 such that
uε(σε)= maxx∈R3 uε(x), then one sees that
(i) limε→0 M(σε)= M0;

(ii) lim|x|→∞ uε(x) = 0, lim|x|→∞ |∇uε(x)| = 0 and uε ∈ C1,σ
loc (R

3) with σ ∈ (0,1). Furthermore,

there exist constants C, c > 0 such that |uε(x)| � Ce− c
ε |x−σε | for all x ∈R

3.

2. Variational setting

In order to establish the variational setting for (Hε), we need give more notations:

– L p ≡ L p(R3) is the usual Lebesgue space endowed with the norm

|u|p
p =

∫
R3

|u|p <∞ for 1 � p <∞, |u|∞ = sup
x∈R3

∣∣u(x)∣∣;

– Let H1(R3) be the usual Sobolev space endowed with the standard scalar product and norm

(u, v)=
∫
R3

(∇u∇v + uv), ‖u‖2 =
∫
R3

(|∇u|2 + |u|2);

– E = H1(R3) and S = B1(0)= {u ∈ E: ‖u‖ = 1};
– The letters c, C , Ci will be indiscriminately used to denote various positive constants whose exact

values are irrelevant.

For any ε > 0, let Eε = {u ∈ H1(R3):
∫
R3 M(εx)u2 <∞} denote the Hilbert space endowed with

inner product

(u, v)ε =
∫
R3

∇u∇v + M(εx)uv, for u,u ∈ Eε,

and the induced norm denoted by ‖u‖2
ε = (u,u)ε . Clearly, ‖ · ‖ε and ‖ · ‖ are equivalent norms for

ε > 0 and M∞ <∞. Now on Eε we define the functional

Tε,λ(u)= 1

2

∫
3N

(
a|∇u|2 + M(εx)|u|2) + b

4

( ∫
3

|∇u|2
)2

− λ
∫

3

F (u)− 1

6

∫
3

|u|6 for u ∈ Eε.
R R R R
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Obviously, Tε,λ ∈ C1(Eε,R) and a standard argument shows that critical points of Tε,λ are solutions
of (Hε) (see [3,26,27]).

We shall use the Nehari methods to find critical points for Tε,λ . The Nehari manifold corresponding
to Tε,λ is defined by

Nε = {
u ∈ Eε \ {0}: T ′

ε,λ(u)u = 0
}
.

Thus for u ∈Nε , one sees that

∫
R3

(
a|∇u|2 + Mε(x)|u|2) + b

( ∫
R3

|∇u|2
)2

= λ
∫
R3

f (u)u +
∫
R3

|u|6, (2.1)

where Mε(x)= M(εx). This implies that for u ∈Nε

Tε,λ|Nε = 1

4

∫
R3

(
a|∇u|2 + Mε(x)|u|2) + λ

∫
R3

(
1

4
f (u)u − F (u)

)
+ 1

12

∫
R3

|u|6. (2.2)

In the following we shall prove some elementary properties for Nε . To do this, we first need to
prove some properties for the functional Tε,λ .

Lemma 2.1. Under the assumptions of (C0) and (F1)–(F3), we have that for λ > 0 and ε > 0

(i) T ′
ε,λ maps bounded sets in Eε into bounded sets in Eε;

(ii) T ′
ε,λ is weakly sequentially continuous in Eε;

(iii) Tε,λ(tnun)→ −∞ as tn → ∞, where un ∈ E , and E ⊂ Eε \ {0} is a compact subset.

Proof. (i) Let {un} denote the boundedness sequence of Eε . Then for each ϕ ∈ Eε one deduces from
(C0), (F1) and (F3) that

T ′
ε,λ(un)ϕ =

∫
R3

(
a∇un∇ϕ + Mε(x)unϕ

) + b

( ∫
R3

|∇un|2
)∫
R3

∇un∇ϕ + λ
∫
R3

f (un)ϕ +
∫
R3

|un|5ϕ

� c‖un‖2|ϕ|22 + ‖un‖3|ϕ|22 + c + c‖un‖p|ϕ|22 + ‖un‖5|ϕ|22 � c.

(ii) To prove the conclusion (ii), one can refer to [1]; here we omit the details.
(iii) Finally, we prove the conclusion (iii). Without loss of generality, we may assume that

‖u‖ε = 1 for each u ∈ E . For un ∈ E , after passing to a subsequences, we obtain that un → u ∈ Sε :=
{u ∈ Eε: ‖u‖ = 1}. It is clear that

Tε,λ(tnun)= t2
n

2

∫
R3

(
a|∇un|2 + Mε(x)|un|2

) + bt4
n

4

( ∫
R3

|∇un|2
)2

− λ
∫
R3

F (tnun)− t6
n

6

∫
R3

|un|6

� t4
n

(∫
R3 a|∇un|2 + Mε(x)|un|2

2t2
n

+ b

4

( ∫
R3

|∇un|2
)2

− t2
n

∫
R3

|un|6
)

→ −∞,

as n → ∞. �
Now we are ready to prove some elementary properties for Nε .
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Lemma 2.2. Under the assumptions of Lemma 2.1, for λ > 0 and ε > 0 we have that

(i) for all u ∈ Sε , there exists a unique tu > 0 such that tuu ∈ Nε . Moreover, mε(u) = tuu is the unique
maximum of Tε,λ on Eε , where Sε = {u ∈ Eε: ‖u‖ε = 1};

(ii) the set Nε is bounded away from 0. Furthermore, Nε is closed in Eε;
(iii) there is α > 0 such that tu � α for each u ∈ Sε and for each compact subset W ⊂ Sε , there exists CW > 0

such that tu � CW , for all u ∈W ;
(iv) Nε is a regular manifolds diffeomorphic to the sphere of Eε;
(v) cε = infNε Tε,λ � ρ > 0 and Tε,λ is bounded below on Nε , where ρ > 0 is independent of ε;

(vi) mε is a bounded mapping. Moreover, if un ⇀ u, then we have mε(un)⇀mε(u).

Proof. (i) For each u ∈ Sε and t > 0, we define h(t) = Tε,λ(tu). It is easy to verify that h(0) = 0,
h(t) < 0 for t > 0 large. Moreover, we claim that h(t) > 0 for t > 0 small. Indeed, from the conditions
(F1)–(F3), we deduce that for each ε > 0 there exists Cε > 0 such that

∣∣ f (u)
∣∣ � ε|u| + Cε |u|p−1 and

∣∣F (u)
∣∣ � ε|u|2 + Cε |u|p, p ∈ (4,6). (2.3)

It follows that

h(t)= Tε,λ(tu)= t2

2

∫
R3

(
a|∇u|2 + |u|2) + bt4

4

( ∫
R3

|∇u|2
)2

− λ
∫
R3

F (tu)− t6

6

∫
R3

|u|6

� ct2

2
‖u‖2

ε − ct4

4
‖u‖4

ε − ελt2|u|22 − t pcλCε |u|p
p − ct6|u|66

� t2

2
‖u‖2

ε − ct4‖u‖4
ε − ct2ε‖u‖2

ε − cCεt
p‖u‖p

ε − ct6‖u‖6
ε.

Since p > 4, we prove that h(t) > 0 for t > 0 small. Therefore, maxt>0 h(t) is achieved at a t = tu > 0
so that h′(tu) = 0 and tuu ∈ Nε . Suppose that there exist t′

u > tu > 0 such that t′
uu, tuu ∈ Nε . Then

one has that

t2
u‖u‖2

ε + t4
u

( ∫
R3

|∇u|2
)2

= λ
∫
R3

f (tuu)tuu + t6
u

∫
R3

|u|6 and

(
t′

u

)2‖u‖2
ε + (

t′
u

)4
( ∫

R3

|∇u|2
)2

= λ
∫
R3

f
(
t′

uu
)
t′

uu + (
t′

u

)6
∫
R3

|u|6. (2.4)

Then we see that(
1

(t′
u)

2
− 1

t2
u

)
‖u‖2

ε = λ
∫
R3

(
f (t′

uu)

(t′
uu)3

− f (tuu)

(tuu)3

)
u4 + ((

t′
u

)2 − t2
u

)∫
R3

|u|6,

which makes no sense in view of (F2) and t′
u > tu > 0. So the conclusion (i) follows.

(ii) For u ∈Nε , we infer from (2.1) and (2.3) that

‖u‖2
ε � ε|u|2ε + Cε |u|p

p + |u|66 � cε‖u‖2
ε + cCε‖u‖p

ε + ‖u‖6
ε.

So for some κ > 0, we get that

‖u‖ε � κ > 0. (2.5)
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Now we prove the set Nε is closed in Eε . Let {un} ⊂Nε such that un → u in Eε . In the following we
shall prove that u ∈Nε . By Lemma 2.1, we have that T ′

ε,λ(un) is bounded, then we infer from

T ′
ε,λ(un)un − T ′

ε,λ(u)u = (
T ′
ε,λ(un)− T ′

ε,λ(u)
)
u − T ′

ε,λ(un)(un − u)→ 0, as n → ∞,

that T ′
ε,λ(u)u = 0. Moreover, it follows from (2.5) that ‖u‖ε = limn→∞ ‖un‖ε � κ > 0. So u ∈Nε .

(iii) For {un} ⊂ Eε \ {0}, there exist tun such that tun un ∈ Nε . By the conclusion (ii), one sees that
‖tun un‖ε = tun ‖un‖ε � κ > 0. It is impossible to have that tun → 0, as n → ∞. To prove tu � CW ,
for all u ∈ W ⊂ Sε . We argue by contraction. Suppose there exists {un} ⊂ W ⊂ Sε such that tn =
tun → ∞. Since W is compact, there exists u ∈ W such that un → u in Eε and un(x)→ u(x) a.e.
on R

3 after passing to a subsequence. Then Lemma 2.1 implies that Tε,λ(tnun)→ −∞ as n → ∞.
However, from (2.2) we deduce that Tε,λ(tnun)� 0. This is a contradiction.

(iv) Define the mappings m̂ε : Eε \ {0} →Nε and mε : Sε →Nε by setting

m̂ε(u)= tuu and mε = m̂ε|Sε . (2.6)

By the conclusions (i)–(iii), we know that the conditions of Proposition 3.1 in [2] are satisfied. So the
mapping mε is a homeomorphism between Sε and Nε , and the inverse of mε is given by

m̌ε(u)= m−1
ε (u)=

u

‖u‖ε . (2.7)

Thus Nε is a regular manifolds diffeomorphic to the sphere of Eε .
(v) For ε > 0, λ > 0, s> 0 and u ∈ Eε \ {0}, it follows from (2.3) that

Tε,λ(su)= s2

2

∫
R3

(
a|∇u|2 + Mε(x)|u|2) + s4b

4

( ∫
R3

|∇u|2
)2

− λ
∫
R3

F (su)− s6

6

∫
R3

|u|6

� cs2

2
‖u‖2

ε − cs4‖u‖4
ε − s2cε‖u‖2

ε − spcCε‖u‖p
ε − cs6‖u‖6

ε

= cs2

2
(1 − ε)‖u‖2

ε − cs4‖u‖4
ε − spcCε‖u‖p

ε − cs6‖u‖6
ε.

So there is ρ > 0 such that Tε,λ(su)� ρ > 0 for s> 0 small. On the other hand, we deduce from the
conclusions (i)–(iii) that

cε = inf
Nε

Tε,λ(u)= inf
w∈Eε\{0} max

s>0
Tε,λ(sw)= inf

w∈Sε
max
s>0

Tε,λ(sw). (2.8)

So we get that cε � ρ > 0 and Tε,λ|Nε � ρ > 0.
(vi) Assume by contradiction that for {un} ⊂ Sε , we have that mε(un) = tnun = tun un → ∞, and

so tn . As in the proof of the conclusion (iii), we can prove that Tε,λ(tnun)→ −∞ as n → ∞. However,
Tε,λ(tnun) � 0. A contradiction. So m is a bounded mapping. Assume that {un} is bounded, and so
mε(un)= tnun = tun un . Without loss of generality, we can assume that un ⇀ u, tn → tu and mε(un)⇀

mε(u). For each ϕ ∈ Eε one has

(
m(un)− tuu,ϕ

) = (tnun − tuu,ϕ)= (
(tn − tu)u + tn(un − u),ϕ

) → 0, as n → ∞.

So mε(u)= tuu. This ends the proof. �
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Now we shall consider the functionals Υ̂ε,λ : Eε \ {0} → R and Υε,λ : Sε →R defined by

Υ̂ε,λ = Tε,λ
(
m̂ε(u)

)
and Υε,λ = Υ̂ε,λ|S ,

where m̂ε(u)= tuu is given in (2.6). As in [2], we have the following lemma.

Lemma 2.3. (See Corollary 3.3 of [2].) Under the assumptions of Lemma 2.1, for λ > 0 and ε > 0 we have that

(i) Υε,λ ∈ C1(Sε,R), and

Υ ′
ε,λ(w)z = ∥∥mε(w)

∥∥
ε
T ′
ε,λ

(
mε(w)

)
z for z ∈ Tw(Sε)=

{
h ∈ Eε: (w,h)ε = 0

};
(ii) {wn} is a Palais–Smale sequence for Υε,λ if and only if {mε(wn)} is a Palais–Smale sequence for Tε,λ . If

{un} ⊂Nε is a bounded Palais–Smale sequence for Tε,λ , then m̌ε(un) is a Palais–Smale sequence for Υε,λ ,
where m̌ε(u) is given in (2.7);

(iii)

inf
Sε
Υε,λ = inf

Nε
Tε,λ = cε.

Moreover, z ∈ Sε is a critical point of Υε,λ if and only if mε(u) is a critical point of Tε,λ , and the corre-
sponding critical values coincide.

3. The autonomous system

In this section we shall prove some properties of the ground state solution of the limit equation.
Precisely, for each μ> 0 and λ > 0, we concern with the following equation

(Hμ) −
(

a + b

∫
R3

|∇u|2
)
�u +μu = λ f (u)+ |u|4u, u > 0, u ∈ H1(

R
3).

For any μ> 0, let Eμ = {u ∈ H1(R3):
∫
R3 μu2 <∞} be the Hilbert space endowed the inner product

(u, v)μ =
∫
R3

∇u∇v +μuv, for u, v ∈ Eμ,

and correspondingly the norm denoted by ‖u‖2
μ = ∫

R3 |∇u|2 +μ|u|2. Then we see the energy func-
tional corresponding to (Hμ) is denoted by

Tμ,λ(u)= 1

2

∫
R3

(
a|∇u|2 +μ|u|2) + b

4

( ∫
R3

|∇u|2
)2

− λ
∫
R3

F (u)− 1

6

∫
R3

|u|6 for all u ∈ Eμ.

As in Section 2, in order to find the critical points for the functional Tμ,λ , we also use the Nehari
manifold methods. The Nehari manifold corresponding to Tμ,λ is defined by

Nμ = {
u ∈ Eμ \ {0}: T ′

μ,λ(u)u = 0
}
.
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Thus for u ∈Nμ , one sees that

∫
R3

(
a|∇u|2 +μ|u|2) + b

( ∫
R3

|∇u|2
)2

= λ
∫
R3

f (u)u +
∫
R3

|u|6. (3.1)

This implies that for u ∈Nμ

Tμ,λ|Nμ = 1

4

∫
R3

(|∇u|2 +μ|u|2) + λ
∫
R3

(
1

4
f (u)u − F (u)

)
+ 1

12

∫
R3

|u|6. (3.2)

Similar to Lemma 2.2, we know that Nμ has the following elementary properties.

Lemma 3.1. Under the assumptions of Lemma 2.1, for λ > 0 and μ> 0 we have that

(i) for all u ∈ Sμ := {u ∈ Eμ: ‖u‖μ = 1}, there exists a unique tu > 0 such that tuu ∈ Nμ . Moreover,
mμ(u)= tuu is the unique maximum of Tμ,λ on Eμ;

(ii) the set Nμ is bounded away from 0. Furthermore, Nμ is closed in Eμ;
(iii) there is δ > 0 such that tu � δ for each u ∈ Sμ and for each compact subset W ⊂ Sμ , there exists CW > 0

such that tu � CW , for all u ∈W ;
(iv) Nμ is a regular manifolds diffeomorphic to the sphere of Eμ;
(v) cμ = infNμ Tμ,λ > 0 and Tμ,λ|Nμ is bounded below by some positive constant;

(vi) mμ is a bounded map. Moreover, if un ⇀ u, then we have mμ(un)⇀mμ(u).

From the conclusion (i) of Lemma 3.1, we know that for each u ∈ Eμ \ {0}, there exists unique
tu > 0 such that tuu ∈ Nμ . So we define the mapping m̂μ : Eμ \ {0} → Nμ by m̂μ(u) = tuu. Clearly,
mμ = m̂μ|Sμ . Let

Υ̂μ,λ : Eμ \ {0} →R, Υ̂μ,λ(w) := Tμ,λ
(
m̂μ(w)

)
and Υμ,λ := Υ̂μ,λ|Sμ.

If the inverse of the mapping mμ to Sμ is given by

m̌μ = m−1
μ : Nμ → Sμ, m̌μ = u

‖u‖ ,

then we have the following lemma.

Lemma 3.2. (See Corollary 3.3 of [2].) Under the assumptions of Lemma 2.1, for λ > 0 and ε > 0 we have that

(i) Υμ,λ ∈ C1(Sμ,R), and

Υ ′
μ,λ(w)z = ∥∥mμ(w)

∥∥
μ
T ′
μ,λ

(
mμ(w)

)
z for z ∈ Tw Sμ = {

h ∈ Eμ: (w,h)μ = 0
};

(ii) {wn} is a Palais–Smale sequence for Υμ,λ if and only if {mμ(wn)} is a Palais–Smale sequence for Tμ,λ .
If {un} ⊂ Nμ is a bounded Palais–Smale sequence for Tμ,λ , then m̌μ(un) is a Palais–Smale sequence
for Υμ,λ , where m̌μ(u)= m−1

μ (u)= u
‖u‖μ ;

(iii)

inf
Sμ
Υμ,λ = inf

Nμ
Tμ,λ = cμ.
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Moreover, z ∈ Sμ is a critical point of Υμ,λ if and only if mμ(u) is a critical point of Tμ,λ , and the corre-
sponding critical values coincide.

Remark 3.3. By Lemma 3.1, we note that the infimum of Tμ,λ over Nμ has the following minimax
characterization:

0< cμ = inf
z∈Nμ

Tμ,λ(z)= inf
w∈Eμ\{0} max

s>0
Tμ,λ(sw)= inf

w∈Sμ
max
s>0

Tμ,λ(sw). (3.3)

Similar to [3], one can easily prove the following mountain pass geometry of functional Tμ,λ .

Lemma 3.4 (Mountain Pass Geometry). The functional Tμ,λ satisfies the following conditions:

(i) There exist positive constants β , α such that Tμ,λ(u)� β for ‖u‖μ = α.
(ii) There exists e ∈ Eμ with ‖e‖>α such that Tμ,λ(e) < 0.

From Lemma 3.4, by using the Ambrosetti–Rabinowitz Mountain Pass Theorem without (PS)c con-
dition (see [4,5]), it follows that there exists a (PS)c-sequence {un} ⊂ Eμ such that

Tμ,λ(un)→ c′
μ = inf

γ∈Γ max
0�t�1

Tμ,λ
(
γ (t)

)
and T ′

μ,λ(un)→ 0, (3.4)

where Γ = {γ ∈ C(Eμ,R): Tμ,λ(γ (0)) = 0, Tμ,λ(γ (1)) < 0}. As in Proposition 3.11 of [7] (also
see [6]), we shall use the following equivalent characterization of c′

μ , which is more adequate to
our purpose, given by

c′
μ = inf

u∈Eμ\{0} max
t>0

Tμ,λ(tu)= cμ. (3.5)

Here in the last equality we used (3.3). Now we have the following estimates for cμ .

Lemma 3.5. If the conditions (C0) and (F1)–(F3) hold, then there exists λ∗ > 0 such that for any 0 <
μ� M∞ , the number cμ satisfies

0< cμ <
1

3
(aS)

3
2 + 1

12
b3S6,

where S is the best Sobolev constant, namely

S = inf
u∈D1,2(R3),u 	=0

∫
R3 |∇u|2
(
∫
R3 u6)

1
3

.

Proof. For w ∈ Eμ \ {0}, it follows from Lemma 3.1 that there exists tλ > 0 such that

max
t�0

Tμ,λ(t w)= Tμ,λ(tλw).

Hence

t2
λ

∫
3

(
a|∇w|2 +μ|w|2) + t4

λb

( ∫
3

|∇w|2
)2

= λ
∫

3

f (tλw)tλw + t6
λ

∫
3

|w|6. (3.6)
R R R R
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From (3.6) we infer that

∫
R3

(
a|∇w|2 +μ|w|2) + t2

λb

( ∫
R3

|∇w|2
)2

� t4
λ

∫
R3

|w|6. (3.7)

So tλ is bounded. Thus, for the sequence λn → ∞ as n → ∞, there exist t0 � 0 such that tλn → t0.
Consequently, one sees that

t2
λn

∫
R3

(
a|∇w|2 +μ|w|2) + t4

λn
b

( ∫
R3

|∇w|2
)2

� c, ∀n ∈N, (3.8)

and so

λn

∫
R3

f (tλn w)tλn w + t6
λn

∫
R3

|w|6 � c, ∀n ∈N. (3.9)

Therefore, if t0 > 0, it follows from Fatou’s lemma that

lim
n→∞λn

∫
R3

f (tλn w)tλn w + t6
λn

∫
R3

|w|6 = +∞. (3.10)

This contradicts with (3.9). Thus, we conclude that t0 = 0. Set w = e. We consider the path γ̃ (t)= te
for t ∈ [0,1], then γ̃ ∈ Γ . Moreover, from (3.5), we infer that

0< cμ � max
t∈[0,1]Tμ,λ

(
γ̃ (t)

) = Tμ,λ(tλe)� t2
λ

2

∫
R3

(
a|∇e|2 +μ|e|2) + bt4

λ

4

( ∫
R3

|∇e|2
)2

. (3.11)

In this way, if λ is large enough, we derive that

t2
λ

2

∫
R3

(
a|∇e|2 +μ|e|2) + bt4

λ

4

( ∫
R3

|∇e|2
)2

<
1

3
(aS)

3
2 + 1

12
b3S6,

which implies that

0< cμ <
1

3
(aS)

3
2 + 1

12
b3S6. � (3.12)

To prove the compactness of the minimize sequence for Tμ,λ , we need the following lemma, and
the details of the proof one can refer to [9–11].

Lemma 3.6. (See Lions [9].) Let r > 0, q ∈ [2,2∗]. If {un} is bounded in H1(R3) and

lim
n→∞ sup

y∈R3

∫
Br(y)

|u|q dx = 0,

then we have un → 0 in L p(R3) for p ∈ (2,2∗). Moreover, if q = 2∗ , un → 0 in L p(R3) for p ∈ (2,2∗]. Here
2∗ = 2N

N−2 if N � 3 and 2∗ = ∞ if N = 1,2.



J. Wang et al. / J. Differential Equations 253 (2012) 2314–2351 2327
Now we are ready to study the minimize sequence for Tμ,λ .

Lemma 3.7. Let {un} ⊂ Nμ be a minimizing sequence for Tμ,λ . Then {un} is bounded. Moreover, there exist
r, δ > 0 and a sequence {yn} ⊂ R

3 such that

lim inf
n→∞

∫
Br(yn)

|un|2 � δ > 0,

where Br(yn)= {y ∈ R
3: |y − yn| � r} for each n ∈N.

Proof. We first prove the boundedness of {un}. Arguing by contradiction, suppose that there exists
a sequence {un} ⊂ Nμ such that ‖un‖μ → ∞ and Tμ,λ(un)→ cμ . Let zn = un‖un‖μ . Then zn ⇀ z and

zn(x)→ zn(x) a.e. in R
3 after passing to a subsequence. Moreover, we have either {zn} is vanishing, i.e.,

lim
n→∞ sup

y∈R3

∫
Br(y)

|zn|6 = 0 (3.13)

or non-vanishing, i.e., there exist r, δ > 0 and a sequence {yn} ⊂R
3 such that

lim
n→∞

∫
Br(yn)

|zn|6 � δ > 0. (3.14)

As in [8], we shall show neither (3.13) nor (3.14) takes place and this will provide the desired contra-
diction.

If {zn} is vanishing, Lemma 3.6 implies zn → 0 in L p(R3) for p ∈ (2,6]. Therefore from (2.3) we
deduce that

∫
R3 F (K zn)→ 0 as n → ∞ for each K ∈ R. So we infer from Lemma 3.1 that for λ > 0

and μ> 0

cμ + o(1)� Tμ,λ(un)� Tμ,λ(K zn)

= K 2

2

∫
R3

(
a|∇zn|2 +μ|zn|2

) + bK 4

4

( ∫
R3

|∇zn|2
)2

− λ
∫
R3

F (K zn)− K 6

6

∫
R3

|zn|6

� cK 2

2
− λ

∫
R3

F (K zn)− K 6

6

∫
R3

|zn|6 → cK 2

2
,

as n → ∞. Now we arrive a contradiction if K is large enough. Hence non-vanishing must hold. It
follows from (2.3) that ∫

R3

F (un)� cε‖un‖2
μ + cCε‖un‖p

μ. (3.15)

So from (3.14) and (3.15) we infer that for n large

0 � Tμ,λ(un)

‖un‖6
μ

= −1

6

∫
R3

|zn|6 + o(1)� −1

6
sup
y∈R3

∫
Br(y)

|zn|6 + o(1) < 0,

a contradiction.



2328 J. Wang et al. / J. Differential Equations 253 (2012) 2314–2351
Next we prove the latter conclusion of this lemma. Since {un} is bounded, if

lim
n→∞ sup

y∈R3

∫
Br(y)

|un|2 = 0,

then from Lemma 3.6 we deduce that un → 0 in L p(R3) for p ∈ (2,6). We infer from Lemma 2.2 and
(2.3) that

∫
R3 F (un)→ 0, as n → ∞. Moreover, it follows from T ′

μ,λ(un)un = 0 that

∫
R3

(
a|∇un|2 +μ|un|2

) + b

( ∫
R3

|∇un|2
)2

=
∫
R3

u6
n + o(1). (3.16)

Assume that
∫
R3 (a|∇un|2 + μ|un|2)→ 	1 � 0 and b(

∫
R3 |∇un|2)2 → 	2 � 0. We claim that 	1 > 0 if

and only if 	2 > 0. In fact, if 	2 > 0, from

b

( ∫
R3

|∇un|2
)2

� c

( ∫
R3

(
a|∇un|2 +μ|un|2

))2

we derive that 0< 	2 � 	2
1. Conversely, for 	1 > 0, if 	2 = 0, then we deduce from (3.16) and

( ∫
R3

|un|6
) 1

3

� cb

( ∫
R3

(|∇un|2
))2

that 0 � (	1 + 	2)
1
3 � 	2 = 0. So we obtain 	1 = 0, this a contradiction. Thus we prove the claim.

If 	1 > 0, one has 	2 > 0. Since Tμ,λ(un)→ cμ > 0, then one sees that

1

2

∫
R3

(
a|∇un|2 +μ|un|2

) + b

4

( ∫
R3

|∇un|2
)2

− 1

6

∫
R3

u6
n → cμ.

Thus we obtain cμ = 	1
3 + 	2

12 . On the other hand, since 	1 � aS(	1 + 	2)
1
3 and 	2 � bS2(	1 + 	2)

2
3 , we

deduce that

	1 � (aS) 3
2 and 	2 � b3S6.

So cμ = 	1
3 + 	2

12 � 1
3 (aS)

3
2 + 1

12 b3S6. This contradicts with Lemma 3.5. Therefore 	1 = 	2 = 0, this
contradicts with the conclusion (ii) of Lemma 3.1. �

Let us now state the main results for the limit problem (Hμ).

Theorem 3.8. Let the assumptions Lemma 2.1 be satisfied. Then there exists λ∗ > 0 such that for each λ ∈
[λ∗,∞) and μ> 0, we have the following conclusions hold:

(i) (Hμ) has at least one positive ground state solution uμ in Eμ = H1(R3);

(ii) lim|x|→∞ uμ(x) = 0, lim|x|→∞ |∇uμ(x)| = 0 and uμ ∈ C1,σ
loc with σ ∈ (0,1). Furthermore, there exist

C, c > 0 such that uμ(x)� Ce−c|x−xμ| , where uμ(xμ)= maxx∈RN uμ(x);
(iii) Lμ is compact in H1(R3), where Lμ denotes the set of all least energy positive solutions of (Hμ).
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Proof. (i) From the conclusion (v) of Lemma 3.1 we know that cμ > 0 for each μ > 0. Moreover, if
u0 ∈ Nμ satisfies Tμ,λ(u0) = cμ , then m̌μ(u0) is a minimizer of Υμ,λ and therefore a critical point
of Υμ,λ , so that u0 is a critical point of Tμ,λ by Lemma 3.2. It remains to show that there exists
a minimizer u of Tμ,λ|Nμ . By Ekeland’s variational principle [10], there exists a sequence {νn} ⊂ Sμ
such that Υμ,λ(νn)→ cμ and Υ ′

μ,λ(νn)→ 0 as n → ∞. Set un = mμ(νn) ∈ Nμ for all n ∈ N. Then
Tμ,λ(un)→ cμ and T ′

μ,λ(un)→ 0 as n → ∞. By Lemma 3.7, we know that {un} is bounded there

exist r, δ > 0 and a sequence {yn} ⊂ R
3 such that

lim
n→∞

∫
Br(yn)

|un|2 � δ > 0.

So we can choose r′ > r > 0 and a sequence {yn} ⊂ Z
3 such that

lim
n→∞

∫
Br′ (yn)

|un|2 � δ

2
> 0. (3.17)

Using Φμ and Nμ are invariant under translations, we may select that {yn} is bounded in Z
3. So

un ⇀ u 	= 0 and T ′
μ,λ(u)= 0.

It remains to show that Tμ,λ(u)= cμ . If λ > 0, since {un} is bounded, by (1.4) and Fatou’s lemma
we get that

cμ = lim inf
n→∞

(
Tμ,λ(un)− 1

4
T ′
μ,λ(un)un

)

= lim inf
n→∞

(
1

4

∫
R3

(|∇un|2 +μ|un|2
) + λ

∫
R3

(
1

4
f (un)un − F (un)

))
+ 1

12

∫
R3

|un|6

� 1

4

∫
R3

(|∇u|2 +μ|u|2) + λ
∫
R3

(
1

4
f (u)u − F (u)

)
+ 1

12

∫
R3

|u|6

= Tμ,λ(u)− 1

2
T ′
μ,λ(u)u = Tμ,λ(u).

Hence Tμ,λ(u) � cμ . The reverse inequality follows from the definition of cμ since u ∈ Nμ . So we
prove that Tμ,λ(u)= cμ .

Let us note that all the calculations above can be repeated word by word, replacing Tμ,λ with the
functional

T +
μ,λ(u)=

1

2

∫
R3

(
a|∇u|2 +μ|u|2) + b

4

( ∫
R3

|∇u|
)2

− λ
∫
R3

F
(
u+) − 1

6

∫
R3

(
u+)6

,

where u+ = max{u,0} is the positive part of u. In this way we find a ground state solution u ∈ H1(R3)

of the equation

−
(

a + b

∫
3

|∇u|2
)
�u +μu+ = λ f

(
u+) + (

u+)5
. (3.18)
R



2330 J. Wang et al. / J. Differential Equations 253 (2012) 2314–2351
In (3.18), using u− = max{−u,0} as a text function and integrating by parts, we obtain

∫
R3

(
a
∣∣∇u−∣∣2 + ∣∣u−∣∣2) + b

( ∫
R3

|∇u|2
)∫
R3

∇u∇u− − λ
∫
R3

f
(
u+)

u− = 0.

So we have that

∫
R3

(
a
∣∣∇u−∣∣2 + ∣∣u−∣∣2) + b

( ∫
R3

|∇u|2
)∫
R3

∣∣∇u−∣∣2 = 0.

Thus u− = 0, and u � 0 is a solution of (Hμ). Therefore, from Harnack’s inequality (see [14]), we infer
that u > 0 for all x ∈ R

3. This finishes the proof of the conclusion (i).
(ii) Using the arguments of [15] (also see [13,12]), we have that u ∈ Lt(R3) for t ∈ [2,∞]. Let

A = a + b
∫
R3 |∇u|2 and

g(x,u)= 1

A

(
λ f (u)+ u5 −μu

)
.

From (2.3), we infer that

∣∣g(x,u)
∣∣ � c

(|u| + |u|p−1 + |u|5).
It follows that

∣∣g(x,u)
∣∣

Lτ (B2ρ)
� c

(|u|Lτ (B2ρ) + |u|p−1
L(p−1)τ (B2ρ)

+ |u|5L5τ (B2ρ)

)
, (3.19)

where 3< τ < 6, 4< p < 6 and B2ρ = {x ∈ R
3: |x− x0| � 2ρ, x0 ∈R

3}. Using (Hμ), we conclude that
�u ∈ Lτ (B2ρ), for all 3< τ < 6. By the Calderon–Zygmund inequality (see Theorem 9.9 of [16]), we
conclude that u ∈ W 2,τ (B2ρ). Next, by the interior L p-estimates we have

‖u‖W 2,τ (Bρ) � c
(|u|Lτ (B2ρ) +

∣∣g(x,u)
∣∣

Lτ (B2ρ)

)
. (3.20)

From (3.19) and (3.20), we deduce that

‖u‖W 2,τ (Bρ) � c
(|u|Lτ (B2ρ) + |u|p−1

L(p−1)τ (B2ρ)
+ |u|5L5τ (B2ρ)

)
,

where Bρ = Bρ(x0). Since τ > 3, by Sobolev imbedding theorem (see [14]) one has

‖u‖C1,σ (B̄ρ) � c
(|u|Lτ (B2ρ) + |u|p−1

L(p−1)τ (B2ρ)
+ |u|5L5τ (B2ρ)

)
,

where σ ∈ (0,1). Letting |x0| → ∞, we conclude that ‖u‖C1,σ (B̄ρ ) → 0. Therefore, we get that

lim|x|→∞ u(x)= 0, lim|x|→∞ |∇u(x)| = 0 and u ∈ C1,σ
loc ∩ L∞(R3) for 0< σ < 1.

Next we shall prove that u(x) � Ce−c|x−xμ| , where u(xμ) = maxx∈R3 u(x). To do this, we develop

a contradiction argument related to the one introduced in [14] (also see [17]). We fix α ∈ (0,
√
μ
A )
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and let η=μ−α2 A, where 0< a< A = a+b
∫
R3 |∇u|2 <∞. Since u(x)→ 0 as |x| → ∞, we conclude

that there is R > 0 such that

λ f (u(x))+ (u(x))5
u(x)

� η, ∀|x| � R. (3.21)

Let m(x)= Ge−α(|x−xμ|−R) , where G = max{|u(x)|: |x − xμ| = R}. For K > R , let us define the set

ΠK = {
x ∈R

3: R < |x − xμ|< K , u(x) >m(x), u(x) > 0
}
.

In the following we shall prove that ΠK is empty. Suppose, by contradiction, that this is not so. Thus
ΠK is a nonempty open set and in it we have

�(m − u)=
(
α2 − 2α

|x|
)

m(x)+ 1

A

(
λ f (u)+ u5 −μu

)
.

Moreover, we infer from (3.21) that

�(m − u)� α2m(x)+ 1

A

(
λ f (u)+ u5

u
−μ

)
u � α2(m(x)− u

)
. (3.22)

From the definition of ΠK , we deduce from (3.22) that �(m − u) < 0 in ΠK . Using the maximum
principle, we conclude that

m(x)− u � min
∂ΠK
(m − u).

Since |x − xμ| = R does not belong to the boundary of ΠK , we have

m(x)− u � min
{

0, min|x−xμ|=K

(
m(x)− u(x)

)}
.

Now, letting K → ∞, and using the fact that u decays to 0 at ∞, we have that, for each fixed |x −
xμ|> R , m(x)− u(x)� 0, contradicting the definition of ΠK . So, the ΠK is empty, i.e., for |x − xμ|> R
such that u > 0, we obtain u(x)� m(x). That is, u(x)� Cec|x−xμ| for C, c > 0.

(iii) Let the bounded sequence {un} ⊂Lμ∩Nμ such that Tμ,λ(un)= cμ and T ′
μ,λ(un)= 0. Without

loss of generality we assume that un ⇀ u in Eμ . As in the proof of the conclusion (i), one can easily
prove that {un} is non-vanishing, i.e.,

lim
n→∞

∫
Br(yn)

|un|2 � δ

2
> 0.

By the invariance of Tμ,λ and Nμ under translations of the form u �→ u(· − k) with k ∈ Z
3, we may

assume that {yn} is bounded in Z
3. So un ⇀ u 	= 0 and T ′

μ,λ(u)= 0. Moreover, repeating arguments
as in the proof of the conclusion (i), one sees that Tμ,λ(u)= cμ . So it follows that
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cμ = Tμ,λ(u)= Tμ,λ(u)− 1

4

(
T ′
μ,λ(u),u

)

= 1

4

∫
R3

(
a|∇u|2 +μ|u|2) + λ

∫
R3

(
1

4
f (u)u − F (u)

)
+

(
1

2
− 1

2∗

)∫
R3

|u|2∗

� lim inf
n→∞

[
1

4

∫
R3

(
a|∇un|2 +μ|un|2

) + λ
∫
R3

(
1

2
f (un)un − F (un)

)
+

(
1

2
− 1

2∗

)∫
R3

|un|2∗
]

= lim inf
n→∞

(
Tμ,λ(un)− 1

4
T ′
μ,λ(un)un

)
= cμ. (3.23)

From (3.23) and λ > 0, we deduce that limn→∞
∫
R3 (a|∇un|2 +μ|un|2)= ∫

R3 (a|∇u|2 +μ|u|2). That is,
un → u in H1(R3). �
Remark 3.9. We point out that our arguments in this section applies equally well to the case of
periodic potentials, namely, equation

(HV ) −
(

a + b

∫
R3

|∇u|2
)
�u + V (x)u = λ f (u)+ |u|4u, u > 0, u ∈ H1(

R
3),

where V (x) is a positive continues function and periodic in each variables. Using translation invari-
ance of the problem the same proof is still valid. Thus if f satisfies the assumptions of Theorem 3.8,
then the conclusions of Theorem 3.8 hold.

Lemma 3.10. Under the assumptions of Lemma 2.1, we have that cμ1 > cμ2 for μ1 >μ2 .

Proof. For μ1,μ2 > 0, one sees that Eμ1 = Eμ2 = E . Let u1 ∈Nμ1 be such that

cμ1 = Tμ1,λ(u1)= max
w∈Eμ1

Tμ1,λ(w).

On the other hand, let u2 ∈ Eμ2 be such that

Tμ2,λ(u2)= max
w∈Eμ2

Tμ2,λ(w).

Therefore one sees

cμ1 � Tμ1,λ(u2)= Tμ2,λ(u2)+ (μ1 −μ2)

∫
R3

u2
2

� cμ2 + (μ1 −μ2)

∫
R3

u2
2 > cμ2 . �



J. Wang et al. / J. Differential Equations 253 (2012) 2314–2351 2333
4. A compactness condition

In this section we shall prove some compactness results for the functional Tε,λ . Precisely, we shall
show that any minimizing sequence of Tε,λ has a strongly convergent subsequence in Eε . We begin
with the following lemma.

Lemma 4.1. Under the assumptions of (C0) and (F1)–(F3), we have that

(i) cε � cM0 for all ε > 0;
(ii) cε → cM0 as ε→ 0.

Proof. (i) Since M is a bounded function, it is easily to check that for all ε > 0 and μ> 0, Eε = Eμ =
H1(R3). To prove the first conclusion, we argue by contradiction, assume that cε < cM0 for some
ε > 0. By the definition of cε , we can choose an e ∈ Eε \ {0} such that maxs>0 Tε,λ(se) < cM0 . Again
by the definition of cM0 , we know that cM0 � maxs>0 TM0,λ(se). Since Mε(x)� M0, Tε,λ(u)� TM0,λ(u)
for all u ∈ Eε , and we get

cM0 >max
s>0

Tε,λ(se)� max
s>0

TM0,λ(se)� cM0 ,

a contradiction.
(ii) Set M0(x)= M(x)− M0 and M0

ε(x)= M0(εx). Then we see

Tε,λ(u)= TM0,λ(u)+
∫
R3

M0
ε(x)u

2.

Let u ∈NM0 be such that cM0 = TM0,λ(u)= maxw∈EM0 \{0} TM0,λ(w). We take u1 ∈ Eε \ {0} such that

cε � Tε,λ(u1)= max
s>0

Tε,λ(su)= TM0,λ(u1)+
∫
R3

M0
ε(x)u

2
1. (4.1)

Obviously, for each ε > 0 we can choose R > 0 such that

∫
|x|>R

M0
ε(x)|u1|2 < cε. (4.2)

Moreover, since 0 ∈M, one has

∫
|x|�R

M0
ε(x)|u1|2 → 0, as ε→ 0. (4.3)

Substituting (4.2) and (4.3) into (4.1), we deduce that

∫
3

M0
ε(x)u

2
1 → 0, as ε→ 0.
R
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Therefore, we get

cε � TM0,λ(u1)+ o(1)� max
w∈Em\{0}TM0,λ(w)+ o(1)

= TM0,λ(u)+ o(1)= cM0 + o(1).

Furthermore, it follows from the conclusion (i) that

cM0 � lim
ε→0

cε � lim
ε→0

Tε,λ(u1)= TM0,λ(u1)� TM0,λ(u)= cM0 .

Hence, we obtain cε → cM0 as ε→ 0. �
Form (C1), we know that M0 < M∞ . So we can choose ξ > 0 such that

M0 < ξ < M∞.

Therefore we first prove the following lemma.

Lemma 4.2. Suppose that the assumptions of (C0) and (F1)–(F3) hold. Let {un} ⊂Nε such that Tε,λ(un)→ c
with c � cξ and un ⇀ 0 in Eε , then one of the following conclusions holds

(i) un → 0 in Eε;
(ii) there exists a sequence yn ∈ R

3 and constants r, δ > 0 such that

lim inf
n→∞

∫
Br(yn)

u2
n � δ.

Proof. Suppose that (ii) does not occur, i.e., there exists r > 0 such that

lim
n→∞ sup

y∈R3

∫
Br(y)

u2
n = 0.

Then by Lemma 3.6, we deduce that un → 0 in Lt(R3) for t ∈ (2,6). So from T ′
ε,λ(un)un = 0, we infer

that

∫
R3

(
a|∇un|2 + M(εx)u2

n

) + b

( ∫
R3

|∇un|2
)2

=
∫
R3

u6
n + o(1).

Assume that
∫
R3 (a|∇un|2 + M(εx)u2

n)→ 	1 � 0 and b(
∫
R3 |∇un|2)2 → 	2 � 0. Since c � cκ , by using

the same arguments as in Lemma 3.7, one can easily check that 	1 > 0 if and only if 	2 > 0. Moreover,
if 	1 > 0 or 	2 > 0, one can obtain the contradiction. Thus 	1 = 	2 = 0. �
Lemma 4.3. Let the assumptions of (C0) and (F1)–(F3) be satisfied. If {un} ⊂ Nε such that Tε,λ(un)→ c
with c � cξ and un ⇀ 0 in Eε , we have that un → 0 in Eε for ε > 0 small.
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Proof. Let {un} ⊂Nε such that

Tε,λ(un)→ c and T ′
ε,λ(un)un = 0. (4.4)

We choose (tn)⊂ (0,∞) such that {tnun} ⊂NM∞ .
If un � 0 in Eε , we first claim that the sequence {tn} such that lim supn→∞ tn � 1. Assume by

contradiction, there exist σ > 0 and a subsequence still denoted by {tn} such that tn � 1 + σ for all
n ∈N. By Lemma 3.1 we see that {tn} is bounded and, from T ′

ε,λ(un)un = o(1), one has

∫
R3

(
a|∇un|2 + M(εx)|un|2) + b

( ∫
R3

|∇un|2
)2

= λ
∫
R3

f (un)un +
∫
R3

u6
n + o(1). (4.5)

Moreover, since {tnun} ⊂NM∞ , then we see

t2
n

∫
R3

(
a|∇un|2 + M∞|un|2

) + t4
nb

( ∫
R3

|∇un|2
)2

= λ
∫
R3

f (tnun)tnun + t6
n

∫
R3

|un|6. (4.6)

Combining (4.5) and (4.6), we obtain that

o(1)+
(

1

t2
n

− 1

)∫
R3

a|∇un|2 +
∫
R3

(
M∞
t2
n

− M(εx)

)
u2

n

= λ
∫
R3

(
f (tnun)

t3
nu3

n
− f (un)

u3
n

)
u4

n + (
t2
n − 1

)∫
R3

u6
n. (4.7)

By condition (C0) and tn > 1, for any ε > 0, there exists G = G(ε) > 0 such that

M(εx)� M∞ − ε > M∞
t2
n

− ε for any |x| � G. (4.8)

Since ‖un‖ε � C , un ⇀ 0 in L2(BG(0)) and tnun � un , we deduce from the condition (F2) that

(
(1 + σ)2 − 1

)∫
R3

u6
n � cε. (4.9)

Since un � 0 in Eε , it follows from Lemma 4.2 that there exists a sequence y′
n ∈ R

3 and constants
r′, δ > 0 such that

lim inf
n→∞

∫
Br′ (y′

n)

u2
n � δ > 0.

Thus we can choose a sequence yn ∈ Z
3 and constants r > r′ > 0 such that

lim inf
n→∞

∫
B (y )

u2
n � δ > 0. (4.10)
r n
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If we set vn(x)= u(x + yn), then there exists a function v that, up to a subsequence, vn ⇀ v in Eε ,
vn → v in L2

loc(R
3) and vn(x)→ v(x) a.e. in R

3. Moreover, by (4.10), there exists a subset Ω in R
3

with positive measure such that v 	= 0 a.e. in Ω . It follows from (4.9) and Fatou’s lemma that

0<
(
(1 + σ)2 − 1

)∫
Ω

v6 � cε (4.11)

for any ε > 0, which yields a contradiction.
In the sequel, we shall prove that the case of lim supn→∞ tn � 1 cannot be happened. Then

we obtain a contradiction and un → 0 in Eε . To do this, we distinguish the following two cases:
lim supn→∞ tn = 1 and lim supn→∞ tn < 1.

(a) lim supn→∞ tn = 1.
In this case, there exists a subsequence, still denoted by {tn} such that tn → 1 as n → ∞. Hence,

o(1)+ cξ � Tε,λ(un)� Tε,λ(un)+ cM∞ − TM∞,λ(tnun). (4.12)

It is clear that

Tε,λ(un)− TM∞,λ(tnun)= 1

2

∫
R3

(
1 − t2

n

)|∇un|2 + b
(
1 − t4

n

)( ∫
R3

|∇un|2
)2

+ (
1 − t6

n

)∫
R3

|un|6

+ 1

2

∫
R3

M(εx)u2
n − t2

n

2

∫
R3

M∞u2
n + λ

∫
R3

(
F (tnun)− F (un)

)
. (4.13)

From the boundedness of {un} and (4.8), we infer that

Tε,λ(un)− TM∞,λ(tnun)� o(1)− cε + λ
∫
R3

(
F (tnun)− F (un)

) = o(1)− cε (4.14)

by using the mean value theorem and the Lebesgue theorem. Taking the limit of the above inequal-
ity (4.12), we have cξ � cM∞ . On the other hand, from Lemma 4.1, we deduce that cξ < cM∞ . This is
a contradiction.

(b) lim supn→∞ tn < 1.
In this case, we may suppose, without loss of generality, tn < 1 for all n ∈ N. From (4.8), {tnun} ⊂

NM∞ , un → 0 in L2
loc(R

3) and ‖un‖ε � c, we see that

cM∞ � TM∞,λ(tnun)= Tε,λ(tnun)+ t2
n

2

∫
R3

(
M∞ − M(εx)

)
u2

n

� Tε,λ(un)+ εc � cξ + εc + o(1). (4.15)

Let n → ∞, we get cξ � cM∞ . This contradicts with cξ < cM∞ . �
Lemma 4.4. Under the assumptions of (C0) and (F1)–(F3), we have that if {un} ⊂Nε such that Tε,λ(un)→ c
with 0< c � cξ < cM∞ , then {un} has a convergent subsequence in Eε .
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Proof. Let {un} ⊂Nε such that

Tε,λ(un)→ c and T ′
ε,λ(un)un = 0.

Similar to Lemma 3.7, one can easily check that {un} is bounded. So there exists u ∈ Eε such that
un ⇀ u in Eε . Moreover, u is a critical point of R′

ε . Set wn = un − u. By Brezis–Lieb Lemma (see [10]),
we have ∫

R3

|∇wn|2 =
∫
R3

|∇un|2 −
∫
R3

|∇u|2 + o(1)

and

( ∫
R3

|∇wn|2
)2

=
( ∫
R3

|∇un|2
)2

−
( ∫

R3

|∇u|2
)2

+ o(1).

Moreover, as in [1,18,19] that Tε,λ(wn) = Tε,λ(un)− Tε,λ(u)+ o(1) and T ′
ε,λ(wn)→ 0 as n → ∞. It

follows from T ′
ε,λ(u)= 0 and (1.4) that

Tε,λ(u)= Tε,λ(u)− 1

4
T ′
ε,λ(u)u = 1

4

∫
R3

(
a|∇u|2 + M(εx)u2) + λ

∫
R3

(
1

4
f (u)u − F (u)

)
+

∫
R3

|u|6 � 0.

So we deduce that Tε,λ(wn) = Tε,λ(un)− Tε,λ(u)+ o(1)→ c − y as n → ∞, where y = Tε,λ(u) � 0.
Thus it follows from c1 = c − y � c � cξ and Lemma 4.3 that wn = un − u → 0 in Eε . �

Now we are in a position to prove that (Hε) has a positive ground state solution.

Lemma 4.5. Under the assumptions of (C0) and (F1)–(F3), we have that cε is attained for all small ε > 0.

Proof. It follows from the conclusion (v) of Lemma 2.2 that cε � ρ > 0 for each ε > 0. Moreover,
if uε ∈ Nε satisfies Tε,λ(uε) = cε , then m̌ε(uε) is a minimizer of Υε,λ and therefore a critical point
of Υε,λ , so that uε is a critical point of Tε,λ by Lemma 2.3. It remains to show that there exists
a minimizer uε of Tε|Nε . By Ekeland’s variational principle [10], there exists a sequence {νn} ⊂ Sε
such that Υε,λ(νn)→ cε and Υ ′

ε,λ(νn)→ 0 as n → ∞. Set wn = mε(νn) ∈ Nε for all n ∈ N. Then
from Lemma 2.3 again, we deduce that Tε,λ(wn)→ cε , T ′

ε,λ(wn)wn = 0 and T ′
ε,λ(wn)→ 0 as n → ∞.

So {wn} is a (PS)cε -sequence for Tε,λ . By Lemma 4.2, we know that cε � cξ for ε > 0 small. Thus
from Lemma 4.4, we infer that un = wn − w → 0 in Eε . Therefore we prove that w ∈ Nε and
Tε,λ(w)= cε . �

Let Lε denote the set of all positive ground state solutions of (Hε). Similar to the conclusion (iii)
of Theorem 3.8, one has the following lemma.

Lemma 4.6. Suppose that the assumptions of Theorem 1.1 are satisfied. Then Lε is compact in H1(R3) for all
small ε > 0.

Proof. Let the boundedness sequence {un} ⊂Lε ∩Nε such that Tε,λ(un)= cμ and T ′
ε,λ(un)= 0. With-

out loss of generality we assume that un ⇀ u ∈ Eε . Then it follows from the weakly continuous of T ′
ε

that T ′
ε (u)= 0. Set wn = un − u. As in Lemma 4.6, we can prove that wn → 0 in H1(R3). �
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5. Multiplicity and concentration of positive solutions

In this section, we are in a position to give the proof of the main results. We first prove that (Hε)
has existence of multiple positive solutions. To do this, we shall make good use of the ground state
solution of (HM0 ). Precisely, let w be a ground state solution of problem (HM0 ) and φ be a smooth
nonincreasing function defined in [0,∞) such that φ(s) = 1 if 0 � s � 1

2 and φ(s) = 0 if s � 1. For
any y ∈M, we define

ψε,y(x)= φ
(|εx − y|)w

(
εx − y

ε

)
. (5.1)

Then there exists tε > 0 such that maxt�0 Tε,λ(tψε,y) = Tε,λ(tεψε,y). We define γε : M → Nε by
γε(y)= tεψε,y . By the construction, γε(y) has a compact support for any y ∈M.

Lemma 5.1. Under the assumptions of (C0) and (F1)–(F3), we have that the function γε such that
limε→0 Tε,λ(γε(y))= cM0 .

Proof. Suppose by contradiction that there exist some δ0 > 0, {yn} ⊂M and εn → 0 such that

∣∣Tε,λ(γε(yn)
) − cM0

∣∣ � δ0. (5.2)

Now we first claim that limn→∞ tεn = 1. Indeed, by the definition of tεn and the conclusion (v) of
Lemma 2.2 we know that there exists ρ > 0 such that

0<ρ �
∫
R3

(
a
∣∣∇(tεnψεn,yn)

∣∣2 + M(εnx)|tεnψε,yn |2
) + b

( ∫
R3

∣∣∇(tεnψεn,yn )
∣∣2

)

= λ
∫
R3

f (tεnψεn,yn )tεnψεn,yn +
∫
R3

|tεnψεn,yn |6. (5.3)

We infer from (F1) and (F3) that for each ε > 0, there exists Cε > 0 such that

f (s)� εs + Cε sp−1. (5.4)

From (5.3) and (5.4), we deduce that tεn cannot go zero, that is to say, tεn � t0 > 0 for some t0 > 0. If
tεn → ∞ as n → ∞, it follows from the boundedness of ψεn,yn that

1

t2
εn

∫
R3

(∣∣∇(ψεn,yn)
∣∣2 + K (εnx)|ψεn,yn |2

) + b

( ∫
R3

∣∣∇(tεnψεn,yn )
∣∣2

)

= λ
∫
R3

f (tεnψεn,yn)

(tεnψεn,yn)
3
(ψεn,yn)

4 + t2
εn

∫
R3

|ψεn,yn |6

� t2
εn

∫
R3

|ψεn,yn |6 = t2
εn

∫
R3

(
φ
(|εnz|)w(z)

)6

� t2
εn

∫
B 1 (0)

w(z)6 → ∞ as n → ∞. (5.5)
2
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However, the left side of the inequality (5.5) tends to b(
∫
R3 |∇w|2)2. This is absurd. Hence, we obtain

that 0 < t0 � tεn � C . Without loss of generality we assume that tεn → h. Next we shall prove that
h = 1. In fact, by using Lebesgue’s theorem, one can verify that

lim
n→∞‖ψεn,yn‖2

εn
= ‖w‖2

M0
, lim

n→∞

∫
R3

F (ψεn,yn )=
∫
R3

F (w) and

lim
n→∞

∫
R3

f (ψεn,yn )ψεn,yn =
∫
R3

f (w)w. (5.6)

So it follows from (5.3) that

1

h2

∫
R3

(
a|∇w|2 + M0|w|2) + b

( ∫
R3

|∇w|2
)2

= λ
∫
R3

f (hw)

(hw)3
w4 + h2

∫
R3

|w|6. (5.7)

Furthermore, since w is a ground state of (HM0 ), then one sees

∫
R3

(
a|∇w|2 + M0|w|2) + b

( ∫
R3

|∇w|2
)2

= λ
∫
R3

f (w)w +
∫
R3

|w|6. (5.8)

Combining (5.7) and (5.8), we conclude that

(
1

h2
− 1

)∫
R3

(
a|∇w|2 + K0|w|2) = λ

∫
R3

(
f (hw)

(hw)3
− f (w)

w3

)
w4 + (

h2 − 1
)∫
R3

w6. (5.9)

Thus we deduce from (F2) that h = 1. On the other hand,

Tεn,λ

(
γεn (yn)

) = t2
εn

2

∫
R3

(
a
∣∣∇(
φ
(|εnz|)w

)∣∣2 + M(εnz + yn)
∣∣φ(|εnz|)w

∣∣2) − t2
n

6

∫
R3

∣∣φ(|εnz|)w
∣∣6

− λ
∫
R3

F
(
tεnφ

(|εnz|)w
) + bt2

n

4

( ∫
R3

∣∣∇(
φ
(|εnz|)w

)∣∣2
)2

. (5.10)

Let n → ∞ in (5.10), we infer from Lebesgue’s theorem that Tεn (γεn (yn))= TM0 (w)= cM0 . This con-
tradicts with (5.2). �

For each δ > 0, let � = �(δ) be such that Mδ ⊂ B�(0). Let χ : R3 → R
3 be define by χ(x)= x for

|x| � � and χ(x)= �x
|x| for |x| � �. Finally, let us define βε :Nε →R by

βε(u)=
∫
R3 χ(εx)u2 dx∫

3 u2 dx
.

R
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As in the proof of Lemma 5.1, it is easy to see that

βε
(
γε(y)

) =
∫
R3 χ(εx)γε(y)2 dx∫

R3 γε(y)2 dx
=

∫
R3 χ(εx + y)|w(x)φ(|εx|)|2 dx∫

R3 |w(x)φ(|εx|)|2 dx

= y +
∫
R3(χ(εx + y)− y)|w(x)φ(|εx|)|2 dx∫

R3 |w(x)φ(|εx|)|2 dx
= y + o(1)

as ε→ 0, uniformly for y ∈Nε . So we conclude that limε→0 βε(γε(y))= y uniformly for y ∈Nε .
Next we shall prove some concentration phenomena for the positive ground state solutions

of (Hε). Before doing these, we start with the following preliminary lemma.

Lemma 5.2. Suppose that the assumptions of Theorem 1.1 are satisfied. Let un ⊂ NM0 be a sequence sat-
isfying TM0,λ(un)→ cM0 . Then either {un} has a subsequence strongly convergent in H1(R3) or there exists
{yn} ⊂R

3 such that the sequence wn(x)= un(x+ yn) converges strongly in H1(R3). In particular, there exists
a minimizer of cM0 .

Proof. By Lemma 3.7, we know that {un} is a bounded sequence. From Lemma 2.3, vn = m̌ε(un)

is a minimizer sequence of Υε,λ . By Ekeland’s variational principle [10], we may assume that
Υε,λ(vn)→ cM0 and Υ ′

ε,λ(vn)→ 0. So it follows that

TM0,λ(un)→ cM0 , T ′
M0,λ

(un)→ 0 and T ′
M0,λ

(un)un = 0, (5.11)

where un = mε(vn). Hence, for some subsequence, still denoted by {un}, we may assume that there
exists an u ∈ H1(R3) such that un ⇀ u in H1(R3). In the following we distinguish the following two
cases:

(a) If u 	= 0, in this case we deduce from u ∈NM0 and (1.4) that

cM0 � TM0,λ(u)= TM0,λ(u)−
1

4

(
T ′

M0,λ
(u),u

)
= 1

4

∫
R3

(
a|∇u|2 + M0|u|2) + λ

∫
R3

(
1

4
f (u)u − F (u)

)
+ 1

12

∫
R3

|u|6

� lim inf
n→∞

[
1

4

∫
R3

(
a|∇un|2 + M0|un|2

) + λ
∫
R3

(
1

4
f (un)un − F (un)

)
+ 1

12

∫
R3

|un|6
]

= lim inf
n→∞

(
TM0,λ(un)− 1

4
T ′

M0,λ
(un)un

)
� cM0 . (5.12)

Thus, by (5.12) we deduce that limn→∞
∫
R3 (a|∇un|2 + M0|un|2)= ∫

R3 (a|∇u|2 + M0|u|2). That is, u → u
in H1(R3).

(b) u = 0. As in Lemma 3.7, we have that there exist {yn} ⊂ R
3, r, δ > 0 such that

lim inf
n→∞

∫
Br(yn)

u2
n � δ. (5.13)

We set wn(x) = un(x + yn), then ‖wn‖M0 = ‖un‖M0 , TM0,λ(wn)→ cM0 and T ′
M0,λ

(wn)wn = 0. It is

clear that there exists w ∈ H1(R3) with w 	= 0 such that wn ⇀ w in H1(R3). Then the proof follows
from the arguments used in case of u 	= 0. �



J. Wang et al. / J. Differential Equations 253 (2012) 2314–2351 2341
Lemma 5.3. Under the assumptions of Theorem 1.1, one has that there is a maximum point yε of uε such
that dist(xε,M)→ 0 where xε = εyε , uε denotes the positive ground sate solutions of (Hε) and 0 ∈ M =
{x ∈ R

3: M(x) = M0}. Moreover, for such yε , we have that vε(x) = uε(x + yε) converges in H1(R3) to
a positive ground state solution of (HM0 ), as ε→ 0.

Proof. Let ε j → 0, u j ∈Lε j such that Tε j ,λ(u j)= cε j and T ′
ε j ,λ
(u j)= 0. Clearly, {u j} ⊂ Nε j . Using the

same arguments as in Lemma 3.7, one easily check {u j} is bounded in H1(R3). So we can assume
that u j ⇀ u in H1(R3). Moreover, since Tε j ,λ(u j) = cε j → cM0 as j → ∞ according to Lemma 4.1,
then we have cε j � cM∞ for j large. Thus similar to the proof of Lemma 3.7, we can prove that there
exist r, δ > 0 and a sequence {y′

j} ⊂ R
3 such that

lim inf
j→∞

∫
Br(y′

j)

u2
j � δ > 0. (5.14)

For {y j} ⊂ R
3 such that

u j(y j)= max
y∈R3

u j(y), ∀ j.

We claim that there is κ > 0 (independent of j) such that

u j(y j)� κ > 0, uniformly for all j ∈N. (5.15)

Assume by contradiction that u j(y j)→ 0 as j → ∞. We deduce from (5.14) that

0< δ �
∫

Br(y′
j)

u2
j � cu j(y j)

2 → 0 as j → ∞.

This is a contradiction. As in Theorem 3.8, one can easily check that u j ∈ C1,σ (R3)∩ L∞(R3) for each
j ∈ N. So it follows from (5.14)–(5.15) (see [11]) that there exist R > r > 0 and δ′ > 0 such that

lim inf
j→∞

∫
B R (y j)

|u j|2 � δ′ > 0.

Set

v j(x)= u j(x + y j) and M̂ε j (x)= M
(
ε j(x + y j)

)
.

Then along a subsequence we have v j ⇀ v 	= 0 in H1(R3) and v j → v in L p
loc(R

3) (p ∈ (2,6)). We
first claim that v j → v 	= 0 in H1(R3). In fact, according to Lemma 3.1, we choose t j > 0 such that
mM0 (v j)= t j v j ∈NM0 . Set ṽ j = t j v j . It follows from (C0), u j ∈Nε j and Lemma 4.1 that

TM0,λ(ṽ j)�
1

2

∫
R3

(|∇ ṽ j|2 + M̂ε j (x)|ṽ j|2
) + b

4

( ∫
R3

|∇ ṽ j|2
)2

− λ
∫
R3

F (ṽ j)− 1

6

∫
R3

ṽ6
j

= Tε j ,λ(t ju j)� Tε j,λ(u j)= cM0 + o(1).
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Note that TM0,λ(ṽ j)� cM0 , thus lim j→∞ TM0,λ(ṽ j)= cM0 . From the conclusion (vi) of Lemma 3.1, we
infer that t j is bounded. Without loss of generality we can assume that t j → t � 0. If t = 0, we have
that ṽ j = t j v j → 0 in view of the boundedness of v j , and hence TM0,λ(ṽ j)→ 0 as j → ∞, which
contradicts cM0 > 0. So, t > 0 and the weak limit of ṽ j is different from zero. Let ṽ be the weak limit
of ṽ j in H1(R3). Since tn → t > 0 and vn ⇀ v 	= 0, we have from the uniqueness of the weak limit
that ṽ = tv 	= 0 and ṽ ∈ NM0 . From Lemma 5.2, ṽ j → ṽ in H1(R3), and so, v j → v in H1(R3). This
proves the claim for v j → v 	= 0 in H1(R3).

Obviously, v j solves

(
Hv
ε

) −
(

a + b

∫
R3

|∇v j|2
)
�v j + M̂ε j (x)v j = λ f (v j)+ v5

j in R
3.

Correspondingly, the energy functional is denoted by

Hε j (v j)= 1

2

∫
R3

(
a|∇v j|2 + M̂ε j (x)v

2
j

) + b

4

( ∫
R3

|∇v j|2
)2

− λ
∫
R3

F (v j)+ 1

6

∫
R3

v6
j

= Tε j,λ(u j)= cε j .

We next show that {ε j y j} is bounded. Assume by contradiction that ε j |y j| → ∞. Without loss of
generality assume M(ε j y j)→ M̃∞ . Clearly, M0 < M̃∞ by (C0). For each η ∈ C∞

0 (R
3), we deduce from

v j → v in H1(R3) that

lim
j→∞

H ′
ε j
(v j)η= lim

j→∞

∫
R3

[(
a∇v j∇η+ M̂ε j (x)v jη

) + b

( ∫
R3

|∇v j|2
)( ∫

R3

∇v j∇η
)]

− λ
∫
R3

f (v j)η− lim
j→∞

∫
R3

v6
jη

=
∫
R3

[(
a∇v∇η+ M̃∞vη

) − λ
∫
R3

f (v)η+ b

( ∫
R3

|∇v|2
)( ∫

R3

∇v∇η
)

−
∫
R3

v5η

]

= 0.

Thus, v solves

(HM̃∞) −
(

a + b

∫
R3

|∇v|2
)
�v + M̃∞v = λ f (v)+ v5 in R

3.

We denote the energy functional by

H∞(v)= 1

2

∫
R3

a|∇v|2 + M̃∞v2 + b

4

( ∫
R3

|∇v|2
)2

− λ
∫
R3

F (v)− 1

6

∫
R3

v6 � cM̃∞ .

Remark that since M0 < M̃∞ one has cM̃∞ > cM0 by Lemma 4.1. Moreover, since H ′
ε j
(v j)v j =

T ′
ε ,λ(u j)u j = 0, it follows from Fatou’s lemma and (1.4) that
j
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lim
j→∞

cε j = lim
j→∞

Hε j (v j)= lim
j→∞

(
Hε j (v j)(v j)− 1

4
Hε j (v j)

′(v j)v j

)

� lim inf
j→∞

[
1

4

∫
R3

(
a|v j|2 + M̂ε j (x)|v j|2

) + λ
∫
R3

(
1

4
f (v j)v j − F (v j)

)
+ 1

6

∫
R3

|v j|6
]

� 1

4

∫
R3

(
a|v j|2 + M∞|v j|2

) + λ
∫
R3

(
1

4
f (v)v − F (v)

)
+ 1

6

∫
R3

|v|6 = H∞(v). (5.16)

Consequently, we infer from (5.16) that

cM0 < cM̃∞ � H∞(v)� lim
j→∞

cε j = cM0 ,

a contradiction. Thus {ε j y j} is bounded. Hence, we can assume x j = ε j y j → x0. Then v solves

(PK 0) −
(

a + b

∫
R3

|∇v|2
)
�v + M(x0)v = λ f (v)+ v5 in R

3.

It follows from M(x0)� M0 that

H0(v)= 1

2

∫
R3

(
a|∇v|2 + M(x0)|v|2) + b

4

( ∫
R3

|∇v|2
)2

− λ
∫
R3

F (v)− 1

6

∫
R3

v6 � cM(x0) � cM0 .

Similar to (5.16), one gets

cM0 = lim
j→∞

cε j � P0(v)� cM0 .

This implies that P0(v)= cM0 , and hence M(x0)= M0. So by Lemma 4.1, x0 ∈M. �
Now we study the exponent decay for the ground state solution.

Lemma 5.4. Under the assumptions of Theorem 1.1, if uε is a positive ground state solution of (Hε), one has
that for each ε > 0 small, lim|x|→∞ uε(x) = 0, lim|x|→∞ |∇uε(x)| = 0 and uε ∈ C1,σ

loc (R
3) for σ ∈ (0,1).

Furthermore, there exist C, c > 0 such that uε(x)� Ce−c|x−yε | , where uε(yε)= maxx∈R3 uε(x).

Proof. As in the proof of the conclusion (ii) of Theorem 3.8, we known that for each ε > 0 small,
lim|x|→∞ uε(x)= 0, lim|x|→∞ |∇uε(x)| = 0 and uε ∈ C1,σ

loc (R
3) for σ ∈ (0,1). In the following we shall

prove the exponent decay for the positive solution of uε . Let ε j → 0, u j ∈Lε j such that Tε j ,λ(u j)= cε j

and T ′
ε j ,λ
(u j)= 0. As in the proof of Lemma 5.2, we have that v j = u j(x + y j) such that

(
Rv
ε

) −
(

a + b

∫
R3

|∇v j|2
)
�v j + M̂ε j (x)v j = λ f (v j)+ |v j|4 v j in R

3
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and v j → v 	= 0 in H1(R3) where u j(y j)= maxy∈R3 u j(y). Let A j = a + b
∫
R3 |∇v j |2. Then it follows

that 0< a � A j � c and Eq. (Rv
ε ) equivalent to

(
Rv
ε,1

) −�v j + M̂ε j (x)

A j
v j = λ

A j
f (v j)+ 1

A j
|v j|4 v j in R

3.

So we deduce from Proposition 2 of [6] that v j ∈ Lt(R3) for all t � 2 and

|v j|t � Nt‖v j‖, (5.17)

where Nt does not depend on j. Then we infer from v j → v 	= 0 in H1(R3) that

lim
R→∞

( ∫
|x|�R

(
v2

j + v6
j

)) = 0, uniformly for j ∈N. (5.18)

Let h j(x)= 1
A j
(λ f (v j)+ v5

j ). It follows from (5.17) that for t > 3

|h j|t � C, for all j ∈N.

Thus by Proposition 3 in [6] (also see Theorem 8.17 in [14]), we infer that for all y ∈R
3

sup
B1(y)

v j � c
(|v j|L2(B2(y)) + |h j|Lt (B2(y))

)
. (5.19)

This implies that |v j |∞ is uniformly bounded. Furthermore, combining the limit (5.18) with inequal-
ity (5.19) we reach

lim|x|→∞ v j(x)= 0 uniformly for all j ∈N.

Form this we deduce that there is ε0 > 0 such that

lim|x|→∞ vε(x)= 0 uniformly for all ε ∈ (0, ε0].

So by using the same arguments as in the proof of the conclusion (ii) of Theorem 3.8, we know that
there exist C, δ > 0 (independent of ε) such that

vε(x)� Ce−δ|x|,

where vε = uε(x + yε) and uε(yε)= maxy∈R3 uε . Thus, the conclusions of this lemma hold. �
To prove the concentration phenomenon for the positive solutions of (Hε), we need the following

results.

Lemma 5.5. Under the assumptions of Theorem 1.1 or Theorem 1.2, one has that if εn → 0 and {un} ⊂ Nεn

such that Tεn,λ(un)→ cM0 , then there exists a sequence {yn} ⊂R
3 such that ỹn = εn yn → y ∈M.
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Proof. By using the same arguments as in Lemma 3.7, we can prove that {un} is bounded in H1(R3).
Moreover, there exist r, δ > 0 and a sequence {yn} ⊂ R

3 such that

lim inf
n→∞

∫
Br(yn)

u2
n � δ > 0.

Let vn = un(x + yn). Then it follows that vn ⇀ v 	= 0 in H1(R3) and vn(x)→ v(x) a.e., on R
3. Ac-

cording to Lemma 3.1, we choose tn > 0 such that mM0 (vn) = tn vn ∈ NM0 . Set ṽn = tn vn . It follows
from (C0), un ∈Nεn and Lemma 3.2 that

TM0,λ(ṽn)�
t2
n

2

∫
R3

(
a|∇ ṽn|2 + M̂εn (x)|ṽn|2

) + t4
nb

4

( ∫
R3

|∇ ṽn|2
)2

− λ
∫
R3

F (tn ṽn)− t6
n

6

∫
R3

ṽ6
n

= Tεn,λ(tnun)� Tεn,λ(un)= cM0 + o(1).

Note that TM0,λ(ṽn)� cM0 , thus limn→∞ TM0,λ(ṽn)= cM0 . From the conclusion (vi) of Lemma 3.1, we
infer that tn is bounded. Without loss of generality we can assume that tn → t � 0. If t = 0, we have
that ṽn = tn vn → 0 in view of the boundedness of vn , and hence TM0,λ(ṽn)→ 0 as n → ∞, which
contradicts cM0 > 0. So, t > 0 and the weak limit of ṽn is different from zero. Let ṽ be the weak limit
of ṽn in H1(R3). Since tn → t > 0 and vn ⇀ v 	= 0, we have from the uniqueness of the weak limit
that ṽ = tv 	= 0. Moreover, it follows from Lemma 5.2 that ṽ ∈NM0 .

We claim that { ỹn} is bounded. Indeed, suppose by contradiction that | ỹn| → ∞. It follows from
ṽn, ṽ ∈NM0 and M0 < M∞ that

cM0 = TM0,λ(ṽ) < TM∞,λ(ṽ)

= 1

4

∫
R3

a|∇ ṽ|2 +
∫
R3

(
1

2
M∞ − 1

4
M0

)
|ṽ|2 + λ

∫
R3

(
1

4
f (ṽ)ṽ − F (ṽ)

)
+ 1

12

∫
R3

|ṽ|6

� lim inf
n→∞

[
1

4

∫
R3

a|∇ ṽn|2 +
∫
R3

(
1

2
M(εnx + ỹn)− 1

4
M0

)
|ṽn|2

+ λ
∫
R3

(
1

4
f (ṽn)ṽn − F (ṽn)

)
+

∫
R3

|ṽn|6
]

= lim inf
n→∞ Tεn,λ(ṽn)= lim inf

n→∞ Tεn,λ(tn vn)= lim inf
n→∞ Tεn,λ(tnun)

� lim inf
n→∞ Tεn,λ(un)= cM0 .

This is impossible. So { ỹn} is bounded. Without loss of generality we may assume that ỹn → y. If
y /∈ M , then M(y) > M0 and we obtain a contradiction by the same arguments made above. So,
y ∈M and the conclusion follows. �

Let ω(ε) be any positive function tending to 0 as ε→ 0 and let

Σε = {
u ∈ Nε: Tε,λ(u)� cM0 +ω(ε)}.

For any y ∈ M, we deduce from Lemma 5.1 that ω(ε) = |Tε,λ(γε(y)) − cM0 | → 0 as ε→ 0+ . Thus
γε(y) ∈Σε and Σε 	= Ø for ε > 0.
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Lemma 5.6. Suppose that the assumptions of Theorem 1.1 or Theorem 1.2 are satisfied. Then for any δ > 0,
there holds that limε→0 supu∈Σε dist(βε(u),Mδ)= 0.

Proof. Let {εn} ⊂ R
+ be such that εn → 0. By definition, there exists {un} ⊂ Σεn such that

dist(βεn (un),Mδ) = supu∈Σεn dist(βεn (u),Mδ) + o(1). From this we know that it suffices to find
a sequence { ỹn} ⊂ M satisfying |βεn − ỹn| = o(1). From TM0,λ(tun) � Tε,λ(tun) for t � 0 and
{un} ⊂Σεn ⊂ Nεn , we obtain that cM0 � cεn � Tεn,λ(un)� cM0 +ω(εn). This leads to Tεn,λ(un)→ cM0 .
By Lemma 5.5 one sees that there exists a sequence {yn} ⊂ R

3 such that ỹn = ynεn ∈ Mδ for n
sufficiently large. Hence

βεn(un)= ỹn +
∫
R3(χ(εnz + ỹn)− ỹn)u2

n(z + ỹn)dz∫
R3 u2

n(z + ỹn)dz
.

Since εnz + ỹn → y ∈ M, we have that βεn (un)= ỹn + o(1) and then the sequence { ỹn} is what we
need. �
Lemma 5.7. Suppose that the assumptions of Theorem 1.1 or Theorem 1.2 are satisfied. If un such that
Tεn,λ(un)→ cK0 and there exist r, δ > 0 and a sequence {yn} ⊂ R

3 such that lim infn→∞
∫

Br (yn)
u2

n � δ > 0,
vn(x)= un(x + yn) satisfies the following problem

(
H1
ε

) −
(

a + b

∫
R3

|∇vn|2
)
�vn + M̂εn(x)vn = λ f (vn)+ |vn|4 vn in R

3,

where M̂εn (x) = M(εnx + εn yn) and yn is given in Lemma 5.3. Then we have that vn → v in H1(R3) with
v 	= 0, vn ∈ L∞(R3) and ‖vn‖L∞(R3) � C for all n ∈ N. Furthermore, lim|x|→∞ vn(x)= 0 uniformly for n ∈N

and vn(x)� ce−c|x−yn| .

Proof. Since vn satisfies Eq. (H1
ε), we know that T ′

εn,λ
(vn) = 0. Moreover, Tεn,λ(un)→ cM0 . So by

using the same arguments as in Lemma 5.4, one can obtain the conclusion of this lemma. Here we
omit the details. �
Proof of Theorems 1.1. Going back to (KH)ε with the variable substitution: x �→ x

ε . Lemma 4.5 implies
that (KH)ε has at least one positive ground state solution uε ∈ H1(R3) for all ε > 0 small. The con-
clusions (ii) and (iii) follow from Lemmas 4.6 and 5.3 respectively. Finally, it follows from Lemma 5.4
that the conclusion (iv) of Theorem 1.1 holds. �

Next we shall prove Theorem 1.2, before doing this, we should use the following result for critical
points involving Ljusternik–Schnirelmann category. For the details of the proof one can sees [4,20].

Theorem 5.8. Let U be a C1,1 complete Riemannian manifold (modelled on a Hilbert space). Assume that
h ∈ C1(U ,R) bounded from below and satisfies −∞ < infU h < d < k < +∞. Moreover, suppose that h
satisfies Palais–Smale condition on the sublevel {u ∈ U : h(u)� k} and that d is not a critical level for h. Then

#
{

u ∈ hd: ∇h(u)= 0
}

� cathd

(
hd).

With a view to apply Theorem 5.8, the following abstract lemma provides a very useful tool in that
it relates the topology of some sublevel of a functional to the topology of some subset of the space R

3.
For the proof, an easy application of the definitions of category and of homotopic equivalence between
maps, we refer to [21,22,20].
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Lemma 5.9. Let I , I1 , I2 be closed sets with I1 ⊂ I2; let π : I → I2 , ψ : I1 → I be two continuous maps
such that π ◦ψ is homotopically equivalent to the embedding j : I1 → I2 . Then catI(I)� catI2 (I1).

To prove Theorem 1.2, we first show that (Hε) has at least catMδ
(M) positive solutions. Since Nε

is not a C1-submanifold of Eε , we cannot apply Theorem 5.8 directly. Fortunately, from Lemma 2.2,
we know that the mapping mε is a homeomorphism between Nε and Sε , and Sε is a C1-submanifold
of Eε . So we can apply Theorem 5.8 to Υε,λ(w)= Tε,λ(m̂ε(w))|Sε = Tε,λ(mε(w)), where Υε,λ is given
in Lemma 2.3.

Define γε,1(y) = m−1
ε (tεψε,y) = m−1

ε (γε(y)) = tεψε,y
‖tεψε,y‖ = ψε,y

‖ψε,y‖ for y ∈ M. It follows from

Lemma 5.1 that

lim
ε→0

Υε,λ
(
γε,1(y)

) = lim
ε→0

Tε,λ
(
γε(y)

) = cM0 . (5.20)

Furthermore, we set

Σε,1 := {
w ∈ Sε: Υε,λ(w)� cM0 +ω(ε)}, (5.21)

where ω(ε)→ 0+ as ε→ 0+ . It follows from (5.20) that ω(ε)= |Υε,λ(γε,1(y))− cM0 | → 0 as ε→ 0+ .
Thus, γε,1(y) ∈ Σε,1 and Σε,1 	= Ø for any ε > 0. Recall that Σε := {u ∈ Nε: Tε,λ(u) � cM0 + ω(ε)}.
From Lemmas 2.2–2.3, 5.1 and 5.6, we know that for any ε > 0 sufficiently small, the diagram

M γε−→Σε
m−1
ε−−→Σε,1

mε−→Σε
βε−→ Mδ (5.22)

is well define. By the arguments in the paragraph just before Lemma 5.2, we see that

lim
ε→0

βε
(
γε(y)

) = y uniformly in y ∈ M. (5.23)

For ε > 0 small enough, we denote βε(γε(y)) = y + ν(y) for y ∈ M, where |ν(y)| < δ
2 uniformly

for y ∈ M. Define H(t, y) = y + (1 − t)ν(y). Then H : [0,1] × O → Mδ is continuous. Obviously,
H(0, y)= βε(γε(y)), H(1, y)= y for all y ∈M. Let γε,1 = m−1

ε ◦γε and βε,1 = βε ◦mε . Thus we obtain
that the composite mapping βε,1 ◦γε,1 = βε ◦γε is homotopic to the inclusion mapping id :M→Mδ .
So it follows from Lemma 5.9 that

catΣε,1(Σε,1)� catMδ (M). (5.24)

On the other hand, let us choose a function ω(ε) > 0 such that ω(ε)→ 0 as ε→ 0 and such that
(cM0 +ω(ε)) is not a critical level for Tε,λ . For ε > 0 small enough, we deduce from Lemma 4.5 that
Tε,λ satisfies the Palais–Smale condition in Σε . By the conclusion (ii) of Lemma 2.3, we infer that
Υε,λ satisfies the Palais–Smale condition in Σε,1. So it follows from Theorem 5.8 that Υε,λ has at
least catΣε,1(Σε,1) critical point on Σε,1. By the conclusion (iii) of Lemma 2.3, we conclude that Tε,λ
has at least catMδ

(M) critical points.

Proof of Theorem 1.2. From above arguments we know that (Hε) has at least catMδ
(M) positive

solutions. Going back to (KH)ε with the variable substitution: x �→ x
ε . We obtain that (KH)ε has at

least catMδ
(M) positive solutions. In the following we shall prove the concentration phenomena for

positive solutions. Let uεn denote a positive solution of (Hεn ). Then vn(x)= un(x + yn) is a solution
of the problem

−
(

a + b

∫
3

|∇vn|2
)
�vn + M̂εn (x)vn = λ f (vn)+ |vn|4 vn in R

3,
R
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where M̂εn (x)= M(εnx + εn yn) and yn is given in Lemma 5.5. Furthermore, up to a subsequence, it
follows from Lemma 5.5 that vn → v and ỹn = εn yn → y ∈ M. We claim that there exists a δ > 0
such that ‖vn‖L∞(R3) � δ > 0. Indeed, suppose that ‖vn‖L∞(R3) → 0. We deduce from (F1) and (F2)

that for each β > 0, there exists an n0 ∈ N such that for all n � n0

f (‖vn‖L∞(R3))

‖vn‖L∞(R3)

< β and ‖vn‖L∞(R3) < β.

Hence, by (F2), we see that

∫
R3

|∇vn|2 + M0|vn|2 � λ
∫
R3

f (‖vn‖L∞(R3))

‖vn‖L∞(R3)

v2
n +

∫
R3

v6
n

� βλ
∫
R3

v2
n + ‖vn‖4

L∞(R3)

∫
R3

v2
n � cβ.

This implies that ‖vn‖M0 = 0 for n � n0, which is impossible because vn → v in H1(R3) and v 	= 0
by Lemma 5.7. Then the claim is true. Let kn be the global maximum of vn , we infer from Lemma 5.7
and the claim above, we see that {kn} ⊂ B R(0) for some R > 0. Thus, the global maximum of uεn

given by zn = yn + kn satisfies εnzn = ỹn + εnkn . Since {kn} is bounded, it follows that εnzn → y ∈M.
Moreover, since the function hε(x)= uε(

x
ε ) is a positive solution of (KH)ε , then the maximum point

σε and zε of hε and uε respectively, satisfy the equality σε = εzε . So we have that limε→0 M(σε)=
limn→∞ M(εnzn)= M0. Finally, from the above arguments and Lemma 5.7, it follows the boundedness
of {kn} that un(x) � ce−c|x−zn+kn | � ce−c|x−zn| . So we conclude that uε satisfies the conclusion (ii) of
Theorem 1.2. �
Proof of Theorem 1.3. Since for each ε > 0, we have E = H1(R3)= Eε . Therefore, to prove the con-
clusion, we first claim that cε = cM∞ for each ε > 0. In fact, as in Lemma 4.2, since M(x)� M∞ , one
can easily check that cε � cM∞ . So, in order to prove cM∞ = cε , it suffices to show that

cM∞ � cε. (5.25)

By Theorem 3.8, we know that there exists e ∈ SM∞ = {u ∈ H1(R3): ‖u‖M∞ = 1} and s0 > 0 such that
u0 = mM∞ (e) = s0e is a positive ground state solution of (HM∞ ). Moreover, mM∞ (e) is the unique
global maximum of TM∞,λ on E . Set wn = e(· − yn), where yn ∈ R

3 and |yn| → ∞ as n → ∞. Then
by Lemma 2.2, it follows that for each n, mε(wn) = m̂ε(wn) ∈ Nε is the unique global maximum of
Tε,λ on E . Therefore, we get

cε � Tε,λ
(
mε(wn)

)
= 1

2

∫
R3

(
a
∣∣∇mε(wn)

∣∣2 + Mε(x)
∣∣mε(wn)

∣∣2) + b

4

( ∫
R3

∣∣∇mε(wn)
∣∣2

)2

− λ
∫
R3

F
(
m(wn)

) − 1

6

∫
R3

∣∣mε(wn)
∣∣6

= 1

2

∫
3

(
a
∣∣∇mε(e)

∣∣2 + M(εx + εyn)
∣∣mε(e)∣∣2) + b

4

( ∫
3

∣∣∇mε(e)
∣∣2

)2
R R
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− λ
∫
R3

F
(
m(e)

) − 1

6

∫
R3

∣∣mε(e)∣∣6

= TM∞,λ
(
mε(e)

) +
∫
R3

(
M(εx + εyn)− M∞)

m2
ε(e)

� cM∞ +
∫
R3

(
M(εx + εyn)− M∞)

m2
ε(e). (5.26)

It is clear that for each ε > 0, there exists R > 0 such that∫
|x|�R

(
M∞ − M(εx + εyn)

)(
mε(e)

)2 � cε. (5.27)

Moreover, we conclude from Lebesgue’s dominated convergence theorem that

lim
n→∞

∫
|x|<R

(
M∞ − M(εx + εyn)

)(
mε(e)

)2 =
∫

|x|<R

(
M∞ − lim

n→∞ M(εx + εyn)
)(

mε(e)
)2

�
∫

|x|<R

(
M∞ − lim inf

n→∞ M(εx + εyn)
)(

mε(e)
)2 = 0.

(5.28)

So it follows from (5.26)–(5.28) that cM∞ = cε for ε > 0.
Finally, assume, seeking a contradiction, for some ε0 > 0 that there exists 0 < û ∈ Nε0 such that

cε0 = Tε0,λ(û). From the conclusion (iv) of Lemma 2.2, we deduce that there exists ê ∈ Sε0 such
that û = mε0(ê) = s1ê, where s1 > 0. From Lemma 2.2 again, we infer that mε0(ê) = m̂ε0(ê) is the
unique global maximum of Tε0,λ on E . We first have that cM∞ � TM∞,λ(mM∞ (ê))= maxu∈E TM∞,λ(u).
On the other hand, by (C1), it follows that M(x) � M∞ for all x ∈ R

3 and TM∞,λ(u) � Tε0,λ(u) for
each u ∈ E . Thus, cM∞ � TM∞,λ(mM∞ (ê)) � Tε0,λ(mM∞ (ê)) � Tε0,λ(mε0(ê))= cε0 = cM∞ . This implies
cM∞ = TM∞,λ(mM∞ (ê))= Tε0,λ(mM∞ (ê)). Moreover, u∞ = mM∞ (ê) satisfies

(HM∞) −
(

a + b

∫
R3

∣∣∇u∞∣∣2
)
�u∞ + M∞u∞ = λ f

(
u∞) + ∣∣u∞∣∣4

u∞ in R
3.

As in the proof of the conclusion (i) of Theorem 3.8, one can easily check that u∞(x) > 0 in R
3.

However, one has

TM∞,λ
(
u∞) = Tε0,λ

(
u∞) +

∫
R3

(
M∞ − M(ε0x)

)(
u∞)2

. (5.29)

Furthermore, we deduce from (C1) that∫
R3

(
M∞ − M(ε0x)

)(
u∞)2

< 0. (5.30)

Thus, TM∞,λ(u∞) < Tε0,λ(u
∞). This is a contradiction. �



2350 J. Wang et al. / J. Differential Equations 253 (2012) 2314–2351
Acknowledgments

The authors would like to thank the referees for giving valuable comments and suggestions, which
make us possible to improve the paper.

References

[1] Y.H. Ding, Variational Methods for Strongly Indefinite Problems, World Scientific Press, 2008.
[2] A. Szulkin, T. Weth, The method of Nehari manifold, in: D.Y. Gao, D. Motreanu (Eds.), Handbook of Nonconvex Analysis and

Applications, International Press, Boston, 2010, pp. 597–632.
[3] X.M. He, W.M. Zou, Existence and concentration behavior of positive solutions for a Kirchhoff equation in R

3, J. Differential
Equations 2 (2012) 1813–1834.

[4] J. Mawhin, M. Willen, Critical Point Theory and Hamiltonian Systems, Springer-Verlag, 1989.
[5] V. Coti-Zelati, A short Introduction to critical point theory, Second school on nonlinear functional analysis and applications

to differential equations, ICTP-Trieste, SMR 990-15, 1997.
[6] C.O. Alves, M.A. Souto, On existence and concentration behavior of ground state solutions for a class of problems with

critical growth, Commun. Pure Appl. Anal. 1 (2002) 417–431.
[7] P.H. Rabinowitz, On a class of nonlinear Schrödinger equations, Z. Angew. Math. Phys. 43 (1992) 270–291.
[8] L. Jeanjean, K. Tanaka, Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calc.

Var. Partial Differential Equations 21 (2004) 287–318.
[9] P.L. Lions, The concentration compactness principle in the calculus of variations: The locally compact case. Parts 1, 2, Ann.

Inst. H. Poincaré Anal. Non Linéaire 1 (1984) 109–145, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1984) 223–283.
[10] M. Willem, Minimax Theorems, Progr. Nonlinear Differential Equations Appl., vol. 24, Birkhäuser, Basel, 1996.
[11] J. Wang, L.X. Tian, J.X. Xu, F.B. Zhang, Multiplicity and concentration of positive ground state solutions for Schrödinger–

Poisson systems with critical growth, preprint.
[12] P. Tolksdorf, Regularity for some general class of quasilinear elliptic equations, J. Differential Equations 51 (1984) 126–150.
[13] E.D. Benedetto, C1+α local regularity of weak solutions of degenerate results elliptic equations, Nonlinear Anal. 7 (1983)

827–850.
[14] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Grundlehren Math. Wiss., vol. 224,

Springer, Berlin, 1983.
[15] A. Pankov, On decay of solution to nonlinear Schrödinger equations, Proc. Amer. Math. Soc. 136 (2008) 2565–2570.
[16] W. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977) 149–162.
[17] D.G. de Figueiredo, J. Yang, Decay, symmetry and existence of solutions of semilinear elliptic systems, Nonlinear Anal. 33

(1998) 211–234.
[18] W. Kryszewski, A. Szulkin, Generalized linking theorem with an application to semilinear Schrödinger equations, Adv. Dif-

ferential Equations 3 (1998) 441–472.
[19] Y.H. Ding, Multiple Homoclinics in a Hamiltonian system with asymptotically or superlinear terms, Commun. Contemp.

Math. 8 (2006) 453–480.
[20] S. Cingolani, M. Lazzo, Multiple positive solutions to nonlinear Schrödinger equations with competing potential functions,

J. Differential Equations 160 (2000) 118–138.
[21] V. Benci, G. Cerami, The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems,

Arch. Ration. Mech. Anal. 114 (1991) 79–93.
[22] V. Benci, G. Cerami, Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology,

Calc. Var. Partial Differential Equations 2 (1994) 29–48.
[23] G. Kirchhoff, Mechanik, Teubner, Leipzig, 1883.
[24] M. Chipot, B. Lovat, Some remarks on non local elliptic and parabolic problems, Nonlinear Anal. 30 (1997) 4619–4627.
[25] C.O. Alves, F.J.S.A. Corrêa, T.F. Ma, Positive solutions for a quasilinear elliptic equation of Kirchhoff type, Comput. Math.

Appl. 49 (2005) 85–93.
[26] C.O. Alves, F.J.S.A. Corrêa, G.M. Figueiredo, On a class of nonlocal elliptic problems with critical growth, Differ. Equ. Appl. 2

(2010) 409–417.
[27] Ching-yu Chen, Yueh-cheng Kuo, Tsung-fang Wu, The Nehari manifold for a Kirchhoff type problem involving sign-changing

weight functions, J. Differential Equations 250 (2011) 1876–1908.
[28] J.-L. Lions, On some questions in boundary value problems of mathematical physics, in: Contemporary Developments in

Continuum Mechanics and Partial Differential Equations, Proceedings of International Symposium, Inst. Mat., Univ. Fed. Rio
de Janeiro, Rio de Janeiro, 1977, in: North-Holland Math. Stud., vol. 30, North-Holland, Amsterdam, 1978, pp. 284–346.

[29] P. D’Ancona, S. Spagnolo, Global solvability for the degenerate Kirchhoff equation with real analytic data, Invent. Math. 108
(1992) 247–262.

[30] A. Arosio, S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996) 305–330.
[31] T.F. Ma, J.E. Munoz Rivera, Positive solutions for a nonlinear nonlocal elliptic transmission problem, Appl. Math. Lett. 16

(2003) 243–248.
[32] K. Perera, Z. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations 221 (2006)

246–255.
[33] X. He, W. Zou, Infinitely many positive solutions for Kirchhoff-type problems, Nonlinear Anal. 70 (2009) 1407–1414.
[34] M. del Pino, P.L. Felmer, Local mountain passes for semilinear elliptic problems in unbounded domains, Calc. Var. Partial

Differential Equations 4 (1996) 121–137.



J. Wang et al. / J. Differential Equations 253 (2012) 2314–2351 2351
[35] M. del Pino, P.L. Felmer, Multi-peak bound states for nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Anal. Non
Linéaire 15 (1998) 127–149.

[36] M. del Pino, M. Kowalczyk, J.C. Wei, Concentration on curves for nonlinear Schrödinger equations, Comm. Pure Appl.
Math. 60 (2007) 113–146.

[37] X.F. Wang, On concentration of positive bound states of nonlinear Schrödinger equations, Comm. Math. Phys. 153 (1993)
229–244.


	Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth
	1 Introduction and main results
	2 Variational setting
	3 The autonomous system
	4 A compactness condition
	5 Multiplicity and concentration of positive solutions
	Acknowledgments
	References


