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Abstract

In this paper, we study the continuation of solutions to an equation for surface water waves of moder-
ate amplitude in the shallow water regime beyond wave breaking (in [11], Constantin and Lannes proved
that this equation accommodates wave breaking phenomena). Our approach is based on a method proposed
by Bressan and Constantin [2]. By introducing a new set of independent and dependent variables, which
resolve all singularities due to possible wave breaking, the evolution problem is rewritten as a semilinear
system. Local existence of the semilinear system is obtained as fixed points of a contractive transformation.
Moreover, this formulation allows one to continue the solution after collision time, giving a global conserva-
tive solution where the energy is conserved for almost all times. Finally, returning to the original variables,
we obtain a semigroup of global conservative solutions, which depend continuously on the initial data.
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1. Introduction

This paper is focused on an equation for surface waves of moderate amplitude in the shallow
water regime
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ut + ux + 6uux − 6u2ux + 12u3ux + uxxx

− uxxt + 14uuxxx + 28uxuxx = 0, t > 0, x ∈ R,

u(x,0) = u0(x), x ∈R,

(1.1)

which arises as an approximation to the Euler equations, modeling the unidirectional propagation
of surface water wavers.

The study of water waves is a fascinating subject because the phenomena are familiar and the
mathematical problems are various [29]. Since the exact governing equations for water waves
have proven to be nearly intractable, the quest for suitable simplified model equations was ini-
tiated at the earliest stages of development of hydrodynamics. Until the early twentieth century,
the study of water waves was confined almost exclusively to linear theory. Since linearization
failed to explain some important aspects, several nonlinear models have been proposed, explain-
ing nonlinear behaviors linking breaking waves and solitary waves [11]. The most prominent
example is the Korteweg–de Vries (KdV) equation [24], the only member of the wider family of
BBM-type equations that is integrable and relevant for the phenomenon of soliton manifestation
[1]. Since KdV and BBM equations do not model breaking waves (wave breaking means that the
wave remains bounded but its slope becomes unbounded in finite time), several model equations
were proposed to capture this phenomenon, one of the typical models is the Camassa–Holm
equation:

ut − uxxt + 2kux + 3uux = 2uxuxx + uuxx. (1.2)

Eq. (1.2) was first obtained as a bi-Hamiltonian generalization of KdV equation by Fuchssteiner
and Fokas [16], and later derived as a model for unidirectional propagation of shallow water over
a flat bottom by Camassa and Holm [4]. Similar to the KdV equation, Camassa–Holm equation
has also a bi-Hamiltonian structure [16,25] and is completely integrable [4,7,22]. The orbital sta-
bility of solitary waves and the stability of the peakons (k = 0) for Camassa–Holm equation are
considered by Constantin and Strauss [12,13]. The advantage of the Camassa–Holm equation in
comparison with the KdV equation lies in the fact that the Camassa–Holm equation has peaked
solitons and models the peculiar wave breaking phenomena (cf. [5,8]). Many results have been
obtained for waves of small amplitude, but it is also interesting and important to look at large am-
plitude waves. Departing from an equation derived by Johnson in [23], which at a certain depth
below the fluid surface is a Camassa–Holm equation, one can derive a corresponding equation for
the free surface valid for waves of moderate amplitude in the shallow water regime. Local well-
posedness for initial value problem associated to (1.1) was first established by Constantin and
Lannes [11], and then improved using Kato’s semigroup approach for quasi-linear equations and
an approach due to Kato by Duruk Mutlubas [14]. Recently, Mi and Mu [26] improved the local
well-posedness of Eq. (1.1) in Besov space Bs

p,r with 1 � p, r � +∞ and s > max{1 + 1
p
, 3

2 } by
the transport equations theory and the classical Friedrichs regularization method. Note that, un-
like KdV or CH, Eq. (1.1) does not have a bi-Hamiltonian integrable structure [6]. Nevertheless,
the equation possesses solitary wave profiles that resemble those of CH, analyzed in [9], and
present similarities with the shape of the solitary waves for the governing equations for water
waves considered in [10,13,17], and the orbital stability of solitary waves for this equation was
recently obtained in [15,17].

In view of the possible development of singularities in finite time, continuation of the solution
beyond wave breaking has been a challenge. Recently, this issue has been discussed for the
Camassa–Holm equation [2,3] and for the hyperelastic rod equation in [27,28,30], by introducing
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a new set of independent and dependent variables. On the other hand, by introducing a coordinate
transformation into Lagrangian coordinates, the conservative and dissipative solutions of the
Camassa–Holm equation is also studied in [18–21]. For Eq. (1.1), Constantin and Lannes show
that singularities can develop only in the form of wave breaking in [11], it is natural to wonder
about the behavior of a solution beyond the occurrence of wave breaking.

Motivated by the works of Bressan and Constantin [2,3] to solve the singularities of solu-
tions to the Camassa–Holm equation, we want to know the behavior of a solution for Eq. (1.1)
after wave breaking, and establish the existence of a semigroup of global solutions with non-
increasing H 1(R) energy. However, the main difficulty is that we here deal with a higher order
nonlinearity. To solve the problem, we present an equivalent semilinear system to the problem
(1.1) by introducing new variables as follows.

Consider an energy variable ξ ∈ R, let ũ(ξ) ∈ H 1(R) be the initial data of Eq. (1.1) and the
non-decreasing map ξ �→ ỹ(ξ) be defined as

ỹ(ξ)∫
0

(
1 + ũ2

x

)
dx = ξ. (1.3)

Let y(t, ξ) be a solution to the following problem

∂

∂t
y(t, ξ) = −1 − 14u

(
t, y(t, ξ)

)
, y(0, ξ) = ỹ(ξ), (1.4)

and new variables functions v = v(t, ξ) and q = q(t, ξ) be defined as

v
.= 2 arctanux, q

.= (
1 + u2

x

) · ∂y

∂ξ
. (1.5)

By the new variables defined in (1.3)–(1.5), we can rewrite (1.1) as the following semilinear
system (see Section 2.2)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u

∂t
= −Px,

∂v

∂t
= (

2u + 10u2 − 2u3 + 3u4 − P
)
(1 + cosv) + 14 sin2 v

2
,

∂q

∂t
= (

2u + 10u2 − 2u3 + 3u4 − P − 7
)

sinv · q,

(1.6)

where

P(t, ξ) = 1

2

∞∫
−∞

exp

{
−

∣∣∣∣∣
θ∫

ξ

cos2 v(s)

2
· q(s) ds

∣∣∣∣∣
}

·
[(

2u + 10u2 − 2u3 + 3u4) cos2 v − 7 sin2 v
]
(θ) · q(θ) dθ,
2 2
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Px(t, ξ) = 1

2

( ∞∫
ξ

−
ξ∫

−∞

)
exp

{
−

∣∣∣∣∣
θ∫

ξ

cos2 v(s)

2
· q(s) ds

∣∣∣∣∣
}

·
[(

2u + 10u2 − 2u3 + 3u4) cos2 v

2
− 7 sin2 v

2

]
(θ) · q(θ) dθ.

A local solution of (1.6) can be obtained as the fixed point of a contractive transformation.
Moreover, exploiting the conservation of energy property, this local solution can be extended
globally in time:

Theorem 1.1. If ũ ∈ H 1(R), then the Cauchy problem (1.5) with (ũ(ỹ(ξ)),2 arctan ũx(ỹ(ξ)),1)

has a unique solution for all t � 0, in the sense of Definition 2.1.

Remarkably, the new variables allow us to resolve all singularities. Indeed, solutions of the
equivalent semilinear system (1.6) can be globally extended in time, even after wave breaking.

To this, we need go back to the original variables u(t, x). It suffices to show that the global
solution of (1.6) yields a global conservative solution to (1.1), in the original variables (t, x).
Recall

y(t, ξ)
.= ỹ(ξ) − t − 14

t∫
0

u(τ, ξ) dτ. (1.7)

For each fixed ξ , the function y(t, ξ) thus provides a solution to the Cauchy problem

∂

∂t
y(t, ξ) = −1 − 14u(t, ξ), y(0, ξ) = ỹ(ξ). (1.8)

We claim that a solution of (2.1) can be obtained by setting

u(t, x)
.= u(t, ξ) if y(t, ξ) = x. (1.9)

Then the following theorem shows that the global solution of (1.6) yields a global conservative
solution to (1.1).

Theorem 1.2. Let (u, v, q) be a global solution to (1.6) with initial data (ũ,2 arctan ũx,1). Then
the pair of functions u(t, x) defined by (1.7)–(1.9) is the global solution to the problem (1.1).
Moreover, this solution u enjoys the following property:

∥∥u(t)
∥∥2

H 1(R)
= ‖ũ‖2

H 1(R)
for a.e. t � 0. (1.10)

Furthermore, let ũn be a sequence of initial data such that

‖ũn − ũ‖H 1(R) → 0. (1.11)

Then the corresponding solutions un(t, x) converge to u(t, x) uniformly for (t, x) in any bounded
set.
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In Theorem 1.2, for each initial data ũ ∈ H 1(R), we construct a global conservative solution to
Eq. (1.1). However, we remark that the resulting flow u(t) = Ψt ũ is not a semigroup yet. Indeed,
if t ∈ S .= {t � 0; measure {ξ ∈ R; v(t, ξ) = −π} > 0}, the semigroup property fails.

To obtain a semigroup, it is clear that we need to retain some additional information about the
solutions. For this purpose, we consider the domain D consisting of all couples (u,μ), where
u ∈ H 1(R), while μ is a positive Radon measure of R satisfying dμa = u2

x dx. In other words,
splitting μ = μa + μs as the sum of an absolutely continuous and a singular part, we require
that the absolutely continuous part has a density u2

x with respect to the Lebesgue measure. We
call M(R) the metric space of all bounded Radon measures on R, endowed with the topology of
weak convergence.

Given (ũ, μ̃) ∈D, we define the map ξ �→ ỹ(ξ) by setting

{
ỹ(ξ)

.= sup
{
x; x + μ̃

([0, x]) � ξ
}

if ξ � 0,

ỹ(ξ)
.= inf

{
x; |x| + μ̃

([0, x]) � |ξ |} if ξ < 0.

This definition is designed so that for any Borel set J ⊂R we have

μ̃(J ) + measure(J ) = measure
{
ξ ∈R; ỹ(ξ) ∈ J

}
.

Note that this reduces to (1.3) in this case where μ is absolutely continuous. In all cases, the
map ξ �→ ỹ(ξ) is Lipschitz continuous with constant 1, and hence it is differentiable almost
everywhere. We now solve the system (1.6) with initial data

ũ(ξ) = ũ
(
ỹ(ξ)

)
, q(ξ) ≡ 1,

ṽ(ξ) =
{

2 arctanux(ỹ(ξ)) = 2 arctan ũξ (ξ) · dξ
dỹ

if dỹ
dξ

> 0,

π if dỹ
dξ

= 0.

In turn, from this solution (u, v, q) we recover a mapping

t �→ (
u(t),μ(t)

) ∈ H 1(R) ×M(R)

defined by (1.7) and (1.9) together with

μ(t)

([a, b]) =
∫

{ξ ; y(t,ξ)∈[a,b]}
sin2 v(t, ξ)

2
· q(t, ξ) dξ. (1.12)

Our last main result is the following.

Theorem 1.3. There exists a continuous semigroup Ψ : D × [0,∞) �→ D whose trajectories
t �→ (ũ, μ̃) = Ψ (ũ, μ̃) have the following properties:

(i) The function u provides a solution to the Cauchy problem (1.1) in the sense of Definition 2.1,
while the measures {μ(t), t � 0} provide a measure valued solution w to the linear transport
equation with source
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wt − 14(uw)x = 2
(
2u + 10u2 − 2u3 + 3u4 − P

)
ux + wx. (1.13)

(ii) For a.e. t � 0 the measure μ(t) is absolutely continuous. Its density with respect to the
Lebesgue measure is given by

dμ(t) = u2
x(t, ·) dx. (1.14)

(iii) If ũn → ũ in H 1(R) and μ̃(t) ⇀ ũ weakly, then un(t, x) → u(t, x) uniformly for (t, x) in
bounded sets.

This paper is organized as follows. In Section 2, we introduce a new set of independent and
dependent variables, and we obtain Eq. (1.5). In Section 3, a global continuous semigroup of
weak conservative solutions to Eq. (1.1) will be constructed, and we prove Theorems 1.1–1.3.

2. Preliminary

2.1. The basic equations

As usual, we can rewrite Eq. (1.1) as follows:

{
ut − ux − 14uux + Px = 0, x ∈R, t > 0,

u(x,0) = u0(x), x ∈R,
(2.1)

with

P = 1

2
e−|x| ∗ (

2u + 10u2 − 2u3 + 3u4 − 7u2
x

)
. (2.2)

If u ∈ H 1(R), we claim that Q,P ∈ H 1(R). It follows from the generalization of Young’s in-
equality that

∥∥P(t, x)
∥∥

L2(R)
�

∥∥∥∥1

2
e−|x| ∗ (

2u + 10u2 − 2u3 + 3u4 − 7u2
x

)∥∥∥∥
L2(R)

� C1

(∥∥e−|x|∥∥
L1(R)

· ‖u‖L2(R) + ∥∥e−|x|∥∥
L2(R)

· ∥∥u2
∥∥

L1(R)

+ ∥∥e−|x|∥∥
L2(R)

· ∥∥u2
∥∥

L1(R)
‖u‖L∞(R) +

∥∥∥∥1

2
e−|x|

∥∥∥∥
L2(R)

· ∥∥u2
∥∥

L1(R)
‖u‖2

L∞(R)

+
∥∥∥∥1

2
e−|x|

∥∥∥∥
L2(R)

· ∥∥u2
x

∥∥
L1(R)

)

� C
[(

1 + ‖u‖L∞(R) + ‖u‖2
L∞(R)

)‖u‖2
H 1(R)

+ ‖u‖H 1(R)

]
.

On the other hand, due to the Sobolev inequality ‖u‖L∞(R) � ‖u‖H 1(R). Thus, P(x) ∈ L2(R).
Similarly, we can obtain Px(x) ∈ L2(R), that is, P(x) ∈ H 1(R).
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Definition 2.1. By a solution of the Cauchy problem (2.1) on [t1, t2] we mean a Hölder contin-
uous functions u(x, t) defined on [t1, t2] × R with the following properties. At each fixed t we
have u(t, ·) ∈ H 1(R). Moreover, the map t �→ u(t, ·) is Lipschitz continuous from [t1, t2] into
L2(R), satisfying the initial condition and

d

dt
u = ux + 14uux − Px, for a.e. t. (2.3)

Here (2.1) is understood as an equality between functions in L2(R).

For smooth solutions, we have the conservation law

E(t) =
∫
R

(
u2 + u2

x

)
dx = E(0). (2.4)

Indeed, differentiating the first equations in (1.1) with respect to x and using the identity
∂2
xp ∗ f = p ∗ f − f , we get

uxt − uxx − 7u2
x − 14uuxx − 2u − 10u2 + 2u3 − 3u4 + P = 0.

In view of Eq. (2.1) and the above equality, we have

d

dt
E(t) = 2

∫
R

uut + uxuxt dx

= 2
∫
R

u(ux + 14uux − Px)

+ ux

(
uxx + 7u2

x + 14uuxx + 2u + 10u2 − 2u3 + 3u4 − P
)
dx

= 0.

Thus (2.4) holds.

2.2. A new set of independent and dependent variables

Let ũ ∈ H 1(R) be the initial data. Consider an energy variable ξ ∈ R, and set the non-
decreasing map ξ �→ ỹ(ξ) be defined by following

ỹ(ξ)∫
0

(
1 + ũ2

x

)
dx = ξ. (2.5)

Assuming that the solution u to Eq. (2.1) remains Lipschitz continuous for t ∈ [0, T ], we now
derive an equivalent system of equations, using the independent variables (t, ξ). Let t �→ y(t, ξ)

be the characteristic starting at ỹ(ξ), so that
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∂

∂t
y(t, ξ) = −1 − 14u

(
t, y(t, ξ)

)
, y(0, ξ) = ỹ(ξ). (2.6)

Moreover, we write

u(t, ξ)
.= u

(
t, y(t, ξ)

)
, ux(t, ξ)

.= ux

(
t, y(t, ξ)

)
,

P (t, ξ)
.= P

(
t, y(t, ξ)

)
, Px(t, ξ)

.= Px

(
t, y(t, ξ)

)
.

The following further variables will be used: v = v(t, ξ) and q = q(t, ξ) defined as

v
.= 2 arctanux, q

.= (
1 + u2

x

) · ∂y

∂ξ
. (2.7)

We stress that v is defined up to multiples of 2π . All subsequent equations involving v are
invariant under addition of multiples of 2π . Notice that (2.5) implies

q(0, ξ) ≡ 1. (2.8)

And we have the identities

1

1 + u2
x

= cos2 v

2
,

ux

1 + u2
x

= 1

2
sinv,

u2
x

1 + u2
x

= sin2 v

2
, (2.9)

and

∂y

∂ξ
= q

1 + u2
x

= cos2 v

2
· q. (2.10)

In view of (2.10) this yields

y(t, θ) − y(t, ξ) =
θ∫

ξ

cos2 v(t, s)

2
· q(t, s) ds. (2.11)

Furthermore, we get

P(t, ξ) = 1

2

∞∫
−∞

exp
{−∣∣y(t, ξ) − x

∣∣}(2u + 10u2 − 2u3 + 3u4 − 7u2
x

)
dx,

Px(t, ξ) = 1

2

( ∞∫
y(t,ξ)

−
y(t,ξ)∫
−∞

)
exp

{−∣∣y(t, ξ) − x
∣∣}(2u + 10u2 − 2u3 + 3u4 − 7u2

x

)
dx.

In the above formulae, we can perform the change of variables x = y(t, θ), and write the convolu-
tion as an integral over the variable θ . Using the identities (2.9)–(2.11), we thus get an expression
for P and Px in terms of the new variable ξ , that is,
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P(t, ξ) = 1

2

∞∫
−∞

exp

{
−

∣∣∣∣∣
θ∫

ξ

cos2 v(s)

2
· q(s) ds

∣∣∣∣∣
}

·
[(

2u + 10u2 − 2u3 + 3u4) cos2 v

2
− 7 sin2 v

2

]
(θ) · q(θ) dθ, (2.12)

Px(t, ξ) = 1

2

( ∞∫
ξ

−
ξ∫

−∞

)
exp

{
−

∣∣∣∣∣
θ∫

ξ

cos2 v(s)

2
· q(s) ds

∣∣∣∣∣
}

·
[(

2u + 10u2 − 2u3 + 3u4) cos2 v

2
− 7 sin2 v

2

]
(θ) · q(θ) dθ. (2.13)

From (2.1) and (2.6), the evolution equation for u in the new variables (t, ξ) takes the form

∂

∂t
u(t, ξ) = ut + uyyt = ut − ux − 14uux = −Px(t, ξ), (2.14)

where Px is given at (2.13).
Next, we derive an evolution equation for the variable q in (2.7)

ξ2∫
ξ1

q(t, ξ) dξ =
y(t,ξ2)∫

y(t,ξ1)

(
1 + u2

x(t, x)
)
dx.

(2.6) yields

d

dt

ξ2∫
ξ1

q(t, ξ) dξ =
y(t,ξ2)∫

y(t,ξ1)

{(
1 + u2

x

)
t
− [

(1 + 14u)
(
1 + u2

x

)]
x

}
dx

=
y(t,ξ2)∫

y(t,ξ1)

(
4u + 20u2 − 4u3 + 6u4 − 2P − 14

)
ux dx.

Differentiating with respect to ξ we obtain

∂

∂t
q(t, ξ) = (

4u + 20u2 − 4u3 + 6u4 − 2P − 14
) ux

1 + u2
x

· q

= (
2u + 10u2 − 2u3 + 3u4 − P − 7

)
sinv · q. (2.15)

Finally, using (2.6) and (2.7), we find
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∂

∂t
v(t, ξ) = 2

1 + u2
x

(uxt − uxx − 14uuxx)

= 2

1 + u2
x

(
7u2

x + 2u + 10u2 − 2u3 + 3u4 − P
)

= 2
(
2u + 10u2 − 2u3 + 3u4 − P

)
cos2 v

2
+ 14 sin2 v

2
. (2.16)

In (2.15) and (2.16), the function P is defined by (2.12).

3. Global solutions of the semilinear system

3.1. Global solutions of the equivalent semilinear system

Let initial data ũ ∈ H 1(R) be given. By Section 2, we can rewrite the corresponding Cauchy
problem for the variables (u, v, q) in the form

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂u

∂t
= −Px,

∂v

∂t
= (

2u + 10u2 − 2u3 + 3u4 − P
)
(1 + cosv) + 14 sin2 v

2
,

∂q

∂t
= (

2u + 10u2 − 2u3 + 3u4 − P − 7
)

sinv · q,

(3.1)

with

⎧⎨
⎩

u(0, ξ) = ũ
(
ỹ(ξ)

)
,

v(0, ξ) = 2 arctan ũx

(
ỹ(ξ)

)
,

q(0, ξ) = 1.

(3.2)

We regard (3.1) with initial data (3.2) as an ordinary differential equation in the Banach space

X
.= H 1(R) × [

L2(R) ∩ L∞(R)
] × L∞(R),

with the norm

∥∥(u, v, q)
∥∥

X

.= ‖u‖H 1(R) + ‖v‖L2(R) + ‖v‖L∞(R) + ‖q‖L∞(R).

The solution of the Cauchy problem means that a fixed point of the integral transformation

Υ (u, v, q) = (ū, v̄, q̄),

with
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ū(t, ξ) = ũ
(
ỹ(ξ)

) −
t∫

0

Px(τ, ξ) dτ,

v̄ = 2 arctan ũx

(
ỹ(ξ)

) +
t∫

0

(
2u + 10u2 − 2u3 + 3u4 − P

)
(1 + cosv) + 14 sin2 v

2
dτ,

q̄ = 1 +
t∫

0

(
2u + 10u2 − 2u3 + 3u4 − P − 7

)
sinv · q dτ.

(3.3)

By showing the local Lipschitz continuity of the right-hand side of (3.1), the local existence
of solution will follow from the standard theorem for ordinary differential equations in Banach
spaces. Then, we show the conservation of energy property expressed by (2.4). Moreover, we
prove that this local solution can be extended globally in time.

Proof of Theorem 1.1. The proof consists of several steps.

Step 1. We establish the local existence of solution. In order to do this, it suffices to show that
the operator determined by the right-hand side of (3.1), which maps (u, v, q) to

(
−Px,

(
2u + 10u2 − 2u3 + 3u4 − P

)
(1 + cosv) + 14 sin2 v

2
,

(
2u + 10u2 − 2u3 + 3u4 − P − 7

)
sinv · q

)
,

is Lipschitz continuous on every bounded domain Ω ∈ X in the form of

Ω =
{
(u, v, q); ‖u‖H 1 � α, ‖v‖L2 � β, ‖v‖L∞ � 3π

2
, q(x) ∈ [

q−, q+]
for a.e. x ∈R

}

for any constants α,β, q−, q+ > 0.
Since the uniform bounds on v, q , and due to the Sobolev inequality ‖u‖L∞(R) � ‖u‖H 1(R),

for m = 1,2,3,4, it is clear that the maps

um, um cosv, sin2 v

2
, sinv · q

are all Lipschitz continuous as maps from Ω �→ L2(R), and also from Ω �→ L∞(R).
Now, we only need to prove the Lipschitz continuity of the maps

(u, v, q) �→ P,Px, (3.4)

defined at (2.12) and (2.13), as maps from Ω into H 1(R). Then the local existence of a solution
to the Cauchy problem (3.1) on some small time interval [0, T ] with T > 0 can be followed from
the standard theory of ordinary differential equations in Banach spaces.
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First, we show that

∂u

∂t
∈ H 1(R),

∂v

∂t
∈ L2(R) ∩ L∞(R),

∂q

∂t
∈ L∞(R).

To this, we first observe that, as long as |v| � 3π
2 , there holds

sin2 v

2
� v2

4
� 9π2

8
sin2 v

2
.

For (u, v, q) ∈ Ω , by the definition of Ω and the above inequality we have

meas

{
ξ ∈ R,

∣∣∣∣v(ξ)

2

∣∣∣∣ � π

4

}
� measE

.=
{
ξ ∈R: sin2 v(ξ)

2
� 1

18

}

� 18
∫
E

sin2 v(ξ)

2
dξ � 9

2
β2.

Therefore, for any ξ1 < ξ2 we find

ξ2∫
ξ1

cos2 v(ξ)

2
· q(θ) dξ �

∫
ξ∈[ξ1,ξ2]; | v(ξ)

2 |� π
4

q−

2
dξ �

[
ξ2 − ξ1

2
− 9

2
β2

]
q−.

The above inequality is a key estimate which guarantees that the exponential term in the formulae
(2.12)–(2.13) for P and Px decreases quickly as ξ − ξ1 → ∞. Introducing the exponentially
decaying function

Γ (ζ )
.= min

{
1, exp

(
9

2
β2q− − |ζ |

2
q−

)}
,

an easy computation yields to

‖Γ ‖L1(R) =
( ∫

|ζ |�9β2

+
∫

|ζ |�9β2

)
Γ (ζ ) dζ = 18β2 + 4

q− ,

‖Γ ‖2
L2(R)

=
( ∫

|ζ |�9β2

+
∫

|ζ |�9β2

)
Γ 2(ζ ) dζ = 18β2 + 2

q− .

Next, we prove that P(ξ),Px(ξ) ∈ H 1(R), namely P(ξ), ∂ξP (ξ),Px(ξ), ∂ξPx(ξ) ∈ L2(R). We
only give the estimate for Px(ξ) since the estimates for P(ξ), ∂ξP (ξ),Px(ξ) are entirely similar.
By the definition (2.13), it follows that

∣∣Px(ξ)
∣∣ � q+ ∣∣∣∣Γ ∗

[(
2u + 10u2 − 2u3 + 3u4) cos2 v − 7 sin2 v

]
(ξ)

∣∣∣∣.
2 2 2
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Therefore, using standard properties of convolutions and Young’s inequality we obtain

∥∥Px(ξ)
∥∥

L2(R)
� q+

2
‖Γ ‖L1(R)

(∥∥2u + 10u2 − 2u3 + 3u4
∥∥

L2(R)
+ 1

8

∥∥v2
∥∥

L2(R)

)

� q+

2
‖Γ ‖L1(R)

(
‖u‖L2(R) + (‖u‖L∞(R) + ‖u‖2

L∞(R)

+ ‖u‖3
L∞(R)

)‖u‖L2(R) + 1

8
‖v‖L∞(R)‖v‖2

L2(R)

)
< ∞.

Next, differentiating (2.13) we get

∂

∂ξ
Px(ξ) = −

[(
2u(ξ) + 10u2(ξ) − 2u3(ξ) + 3u4(ξ)

)
cos2 v(ξ)

2
− 7 sin2 v(ξ)

2

]
q(ξ)

+ 1

2

( ∞∫
ξ

−
ξ∫

−∞

)
exp

{
−

∣∣∣∣∣
θ∫

ξ

cos2 v(s)

2
· q(s) ds

∣∣∣∣∣
}

·
[

cos2 v(ξ)

2
· q(ξ)

]

sign(θ − ξ)

[(
2u + 10u2 − 2u3 + 3u4) cos2 v

2
− 7 sin2 v

2

]
(θ) · q(θ) dθ.

(3.5)

Thus,

∣∣∣∣ ∂

∂ξ
Px(ξ)

∣∣∣∣ � q+
∣∣∣∣(2u(ξ) + 10u2(ξ) − 2u3(ξ) + 3u4(ξ)

)
cos2 v(ξ)

2
+ v2(ξ)

8

∣∣∣∣
+ q+

2

∣∣∣∣Γ ∗
[(

2u + 10u2 − 2u3 + 3u4) cos2 v

2
− 7 sin2 v

2

]
(ξ)

∣∣∣∣,
∥∥∥∥ ∂

∂ξ
Px(ξ)

∥∥∥∥
L2(R)

� q+
(∥∥2u + 10u2 − 2u3 + 3u4

∥∥
L2(R)

+ 1

8

∥∥v2
∥∥

L2(R)

)

+ q+

2
‖Γ ‖L1(R)

(∥∥2u + 10u2 − 2u3 + 3u4
∥∥

L2(R)
+ 1

8

∥∥v2
∥∥

L2(R)

)

�
(

q+ + q+

2
‖Γ ‖L1(R)

)(
‖u‖L2(R) + 1

8
‖v‖L∞(R)‖v‖2

L2(R)

+ (‖u‖L∞(R) + ‖u‖2
L∞(R) + ‖u‖3

L∞(R)

)‖u‖L2(R)

)
< ∞.

Thus, Px ∈ H 1(R). By analogous estimates for P(ξ), ∂ξP (ξ), we have P ∈ H 1(R).
We just proved that the maps in (3.4) actually take values in H 1(R). To establish their Lips-

chitz continuity, it suffices to show that their partial derivatives
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∂P

∂u
,

∂P

∂v
,

∂P

∂q
,

∂Px

∂u
,

∂Px

∂v
,

∂Px

∂q
(3.6)

are uniformly bounded as (u, v, q) range inside the domain Ω . We observe that these derivatives
are bounded linear operators from the appropriate spaces into H 1(R). For the sake of illustration,
we shall work out the detailed estimates for ∂Px

∂u
. All other derivatives can be estimated by the

same methods.
At a given point (u, v, q, ) ∈ Ω , the partial derivative ∂Px

∂u
: H 1(R) �→ L2(R) is the linear

operator defined by

[
∂Px(u, v, q)

∂u
· û

]
(ξ) = 1

2

( ∞∫
ξ

−
ξ∫

−∞

)
exp

{
−

∣∣∣∣∣
θ∫

ξ

cos2 v(s)

2
· q(s) ds

∣∣∣∣∣
}

·
[(

2 + 20u − 6u2 + 12u3) cos2 v

2

]
(θ) · q(θ) · û(θ) dθ.

Thus ∥∥∥∥∂Px(u, v, q)

∂u
· û

∥∥∥∥
L2(R)

� q+∥∥Γ ∗∣∣2 + 20u − 6u2 + 12u3
∣∣∥∥

L2(R)
‖û‖L∞(R).

Since ‖û‖L∞(R) � ‖û‖H 1(R), the above operator norm can thus be estimated as

∥∥∥∥∂Px(u, v, q)

∂u
· û

∥∥∥∥
L2

� 2q+‖Γ ‖L2 + q+‖Γ ‖L1

(
20‖u‖L2 + 6‖u‖L∞‖u‖L2 + 12‖u‖2

L∞‖u‖L2

)
.

From (3.5), ∂(∂ξ Px)

∂u
: H 1(R) �→ L2(R) is the linear operator defined by

[
∂ξ ∂Px(u, v, q)

∂u
· û

]
(ξ)

= −2

[(
2 + 20u − 6u2 + 12u3) cos2 v

2

]
(ξ) · q(ξ) · û(ξ)

+
( ∞∫

ξ

−
ξ∫

−∞

)
exp

{
−

∣∣∣∣∣
θ∫

ξ

cos2 v(s)

2
· q(s) ds

∣∣∣∣∣
}

·
[

cos2 v(ξ)

2
· q(ξ)

]

sign(θ − ξ) ·
[(

2 + 20u − 6u2 + 12u3) cos2 v

2

]
(θ)q(θ) · û(θ) dθ.

Its norm, as an operator from H 1(R) into L2(R), is thus bounded by∥∥∥∥∂ξ ∂Px(u, v, q)

∂u

∥∥∥∥
L2(R)

� C1q
+(

1 + ‖u‖L2 + ‖u‖L∞‖u‖L2 + ‖u‖2
L∞‖u‖L2

)
+ 2

(
q+)2‖Γ ‖L2 + (

q+)2‖Γ ‖L1

(
20‖u‖L2 + 6‖u‖L∞‖u‖L2 + 12‖u‖2 ∞‖u‖L2

)
.
L
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Then, we have the boundedness of ∂Px

∂u
: as a linear operator from H 1(R) into H 1(R). The bounds

on the other partial derivatives in (3.6) are obtained in an entirely similar way.
Thus, we have showed that the right-hand side of (3.1) is Lipschitz continuous on a neighbor-

hood of the initial data in the space X.

Step 2. To ensure that the local solution of (3.1) constructed above can be extended to a global
solution defined for all t � 0, it suffices to show that the quantity

∥∥u(t)
∥∥

H 1(R)
+ ∥∥v(t)

∥∥
L2(R)

+ ∥∥v(t)
∥∥

L∞(R)
+ ∥∥q(t)

∥∥
L∞(R)

+
∥∥∥∥ 1

q(t)

∥∥∥∥
L∞(R)

remains uniformly bounded on any bounded time interval.
As long as the local solution of (3.1) is defined, we claim that

uξ = q

2
sinv, (3.7)

and

d

dt

∫
R

(
u2 cos2 v

2
+ sin2 v

2

)
q dξ = 0. (3.8)

From (3.1) and (3.5), we get

uξt = − ∂

∂ξ

(
Px(ξ)

) =
[(

2u + 10u2 − 2u3 + 3u4) cos2 v

2
− 7 sin2 v

2
− P cos2 v

2

]
q.

On the other hand, from (3.7), we have(
q

2
sinv

)
t

= qt

2
sinv + q

2
vt cosv

= q

2

{(
2u + 10u2 − 2u3 + 3u4 − P − 7

)
sin2 v

+ cosv

((
2u + 10u2 − 2u3 + 3u4 − P

)
(1 + cosv) + 14 sin2 v

2

)}

=
[(

2u + 10u2 − 2u3 + 3u4 − P
)

cos2 v

2
− 7 sin2 v

2

]
q.

Therefore,

uξt =
(

q

2
sinv

)
t

.

Moreover, at the initial time t = 0, by (2.9) and (3.2) we get

∂u

∂ξ
= ux

1 + ux

= sinv

2
= q

2
sinv.

Therefore, we obtain that (3.8) remains valid for all times t � 0, as long as the solution is defined.



1808 S. Zhou, C. Mu / J. Differential Equations 256 (2014) 1793–1816
To prove (3.9), we proceed as follows. From (3.1) and (3.7) we deduce that

d

dt

∫
R

(
u2 cos2 v

2
+ sin2 v

2

)
q dξ

=
∫
R

q

{
2
(
2u + 10u2 − 2u3 + 3u4 − P − 7

)
sin

v

2
cos

v

2

(
u2 cos2 v

2
+ sin2 v

2

)
− 2uPx cos2 v

2

+ (
1 − u2)[2

(
2u + 10u2 − 2u3 + 3u4 − P

)
cos2 v

2
+ 14 sin2 v

2

]
cos

v

2
sin

v

2

}
dξ

=
∫
R

q

{
−2P sin

v

2
cos

v

2
− 2uPx cos2 v

2
+ (

4u + 6u2 − 4u3 + 6u4) sin
v

2
cos

v

2

}
dx.

On the other hand, the definition of P,Px in (2.12)–(2.13) yields

Pξ = qPx cos2 v

2
,

using (3.8) we obtain

(uP )ξ = uξP + uPξ = q

(
P cos

v

2
sin

v

2
+ uPx cos2 v

2

)
,

and

umq sin
v

2
cos

v

2
= umuξ = 1

m

(
u3)

ξ
.

Therefore,

d

dt

∫
R

(
u2 cos2 v

2
+ sin2 v

2

)
q dξ =

∫
R

∂ξ

{
−2uP + 2u2 + 2u3 − u4 + 6

5
u5

}
dξ = 0

the last equality being justified since lim|ξ |→∞ u(ξ) = 0 as u ∈ H 1(R), while P is uniformly
bounded. This proves (3.9).

We can now rewrite the total energy (2.4) in terms of the new variables. By (3.9), this energy
remains constant in time,

E(t) =
∫
R

(
u2(t, ξ) cos2 v(t, ξ)

2
+ sin2 v(t, ξ)

2

)
q(t, ξ) dξ = E(0)

.= E0, (3.9)

for any solution of (3.1)–(3.2).
From (3.8) and (3.10) we obtain the bound

sup
ξ∈R

∣∣u2(t, ξ)
∣∣ � 2

∫
|uuξ |dξ � 2

∫
|u| ·

∣∣∣∣sin
v

2
cos

v

2

∣∣∣∣q dξ � E0. (3.10)
R R
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This provides a uniform a priori bound on ‖u(t)‖L∞(R). From (3.10) and the definitions
(2.12)–(2.13) it follows

∥∥P(t)
∥∥

L∞(R)
,

∥∥Px(t)
∥∥

L∞(R)

� 1

2

∥∥e−|x|∥∥
L∞ · ∥∥10u2 − 2u3 + 3u4 − 7u2

x

∥∥
L1 + ∥∥e−|x|∥∥

L1 · ‖u‖L∞

� C1
(
E

1/2
0 + E0 + E

3/2
0 + E2

0

)
. (3.11)

Looking at the third equation in (3.1), by (3.11)–(3.12) we deduce that, as long as the solution is
defined,

|qt | � Cq with C = C
(
E

1/2
0 ,E0,E

3/2
0 ,E2

0

)
� 0.

Since q(0, ξ) = 1, the previous differential inequality yields

e−Ct � q(t) � eCt . (3.12)

By the second equation in (3.1), it is now clear that

‖v‖L∞(R) � exp{Mt} with M = M
(
E

1/2
0 ,E0,E

3/2
0 ,E2

0

)
� 0.

Moreover, the first equation in (3.1) implies

∣∣∣∣ d

dt

∫
R

(
u2(t, ξ) dξ

)∣∣∣∣ � 2‖u‖L∞(R)

∥∥Px(t)
∥∥

L1(R)
,

∣∣∣∣ d

dt

∫
R

(
u2

ξ (t, ξ) dξ
)∣∣∣∣ � 2‖uξ‖L∞(R)

∥∥∂ξPx(t)
∥∥

L1(R)
.

From (3.8)–(3.9) and (3.11), we get the uniform bounds of u,uξ on bounded time interval, re-
spectively. The estimates on ‖u‖H 1(R) will follow from bounds on the L1-norms of Px and
∂ξPx . For this goal, taking r the right-hand side of (3.13) in any bounded time interval, so that
r−1 � q(t) � r . From (3.5) we obtain

∂

∂ξ
Px(ξ) = −

[(
2u(ξ) + 10u2(ξ) − 2u3(ξ) + 3u4(ξ)

)
cos2 v(ξ)

2
− 7 sin2 v(ξ)

2

]
q(ξ)

+ 1

2

( ∞∫
ξ

−
ξ∫

−∞

)
exp

{
−

∣∣∣∣∣
θ∫

ξ

cos2 v(s)

2
· q(s) ds

∣∣∣∣∣
}

·
[

cos2 v(ξ)

2
· q(ξ)

]

sign(θ − ξ)

[(
2u + 10u2 − 2u3 + 3u4) cos2 v

2
− 7 sin2 v

2

]
(θ) · q(θ) dθ,

(3.13)
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∥∥∂ξPx(t)
∥∥

L1(R)

� r
(
2E

1/2
0 + 10E0 + 2E

3/2
0 + 3E2

0

) + 1

2

∫
R

exp

{
−

∣∣∣∣∣
θ∫

ξ

r−1 cos2 v(t, s)

2
ds

∣∣∣∣∣
}

×
∣∣∣∣(2u(t, θ) + 10u2(t, θ) − 2u3(t, θ) + 3u4(t, θ)

)
cos2 v(t, θ)

2
− 7 sin2 v(t, θ)

2

∣∣∣∣r dθ

� r
(
2E

1/2
0 + 10E0 + 2E

3/2
0 + 3E2

0

) + ‖Γ̃ ‖L1(R)r
(
2E

1/2
0 + 10E0 + 2E

3/2
0 + 3E2

0

)
,

where Γ̃
.= min{1, exp(18(2E

1/2
0 + 10E0 + 2E

3/2
0 + 3E2

0)r−1 − |ζ |
2 r−1)}. We can thus repeat the

estimates on Γ before, and deduce

‖Γ̃ ‖L1(R) = 72
(
2E

1/2
0 + 10E0 + 2E

3/2
0 + 3E2

0

) + 4

r
.

Similar calculations show that the L1-norms of ‖P(t)‖L∞(R) are uniformly bounded. This proves
the boundedness of ‖u(t)‖H 1(R) for t in bounded interval.

Finally, the second equations in (3.1) imply that

d

dt
‖v‖L2 � 2

(
2‖u‖L2 + 10‖u‖L∞‖u‖L2 + 2‖u‖2

L∞‖u‖L2 + 3‖u‖3
L∞‖u‖L2 + ‖P‖L2

)
+ 7

2
‖v‖L∞(R)‖v‖2

L2(R)
.

By the previous bounds, it is clear that ‖v‖L2(R) remains bounded on bounded intervals of time.
This completes the proof that the solution of (3.1) can be extended globally in time. This com-
pletes the proof of Theorem 1.1. �

Indeed, the above solution has an important property. Namely, consider the set of times

S .= {
t � 0; measure

{
ξ ∈R; v(t, ξ) = −π

}
> 0

}
.

Then, we claim measure(S) = 0. Its validity will be proved in next section.

3.2. Returning to the original variables

We now show that the global solution of (3.1) yields a global conservative solution to (2.1),
in the original variables (t, x), and prove Theorem 1.2. For the reader’s convenience, we collect
here the basic definition

y(t, ξ)
.= ỹ(ξ) − t − 14

t∫
0

u(τ, ξ) dτ. (3.14)

For each fixed ξ , the function y(t, ξ) thus provides a solution to the Cauchy problem



S. Zhou, C. Mu / J. Differential Equations 256 (2014) 1793–1816 1811
∂

∂t
y(t, ξ) = −1 − 14u(t, ξ), y(0, ξ) = ỹ(ξ). (3.15)

We claim that a solution of (2.1) can be obtained by setting

u(t, x)
.= u(t, ξ) if y(t, ξ) = x. (3.16)

Proof of Theorem 1.2. Using the uniform bound |u(t, ξ)| � E
1/2
0 being valid by (3.11), from

(3.14) we have the estimate

ỹ(ξ) − t − E
1/2
0 t � y(t, ξ) � ỹ(ξ) − t + E

1/2
0 t, t � 0. (3.17)

For the definition of ξ in (2.5), this yields

lim
ξ→±∞y(t, ξ) = ±∞. (3.18)

Therefore, the image of the map (t, ξ) �→ (t, y(t, ξ)) is the entire half-plane R
+ × R. Now we

claim

yξ = q cos2 v

2
for all t � 0 and a.e. ξ ∈ R. (3.19)

Indeed, from (3.7) we have

∂

∂t

(
q cos2 v

2

)
(t, ξ) = −qvt sin

v

2
· cos

v

2
+ qt cos2 v

2

= −q sin
v

2
· cos

v

2

((
2u + 10u2 − 2u3 + 3u4 − P

)
(1 + cosv) + 14 sin2 v

2

)

+ cos2 v

2

(
2u + 10u2 − 2u3 + 3u4 − P − 7

)
sinv · q

= −14 cos
v

2
sin

v

2
= −7q sinv = −14uξ (t, ξ).

On the other hand, (3.14) implies

∂

∂t
yξ (t, ξ) = −14uξ (t, ξ).

Since the function x �→ 2 arctan ũx(x) is measurable, the identity (3.19) holds true for almost
every ξ at t = 0. By the above calculation it remains true for all t � 0.

Next, we prove the set S defined in Section 3.1 has measure zero. Indeed, if v(t0, ξ) = −π ,
then yξ (t0, ξ) = cos2 v(t0,ξ)

2 q(t0, ξ) = 0. Using (3.8), we get

∂

∂t
yξ (t0, ξ) = −14uξ (t0, ξ) = −7q sinv(t0, ξ) = 0.

Furthermore, we have
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∂2

∂t2
yξ (t0, ξ) = −14uξt (t0, ξ) = −7(qt sinv + qvt cosv)(t0, ξ)

= 7qvt (t0, ξ) = 98q(t0, ξ) > 0.

This implies that t satisfying yξ (t, ξ) = 0 is isolated. Thus t satisfying v(t, ξ) = −π is also
isolated. Since v ∈ L2(R), this infers

measure(S) = 0.

From (3.19), we get that y(t, ξ) is non-decreasing. Moreover, if ξ < θ but y(t, ξ) = y(t, θ), then

θ∫
ξ

yξ (t, s) ds =
θ∫

ξ

q(t, s) cos2 v

2
ds = 0.

Hence cos v
2 ≡ 0 throughout the interval of integration. Therefore, by (3.8), we have

u(t, θ) − u(t, ξ) =
θ∫

ξ

q(t, s)

2
sinv(t, s) ds = 0.

This shows that the map (t, x) �→ u(t, x) in (3.16) is well defined for all t � 0 and x ∈R.
Next, using (3.8) and (3.19) to change the variable of integration, for every fixed t we get∫

R

(
u2(t, x) + u2

x(t, x)
)
dx

=
∫

{cos v>−1}

(
u2(t, ξ) cos2 v(t, ξ)

2
+ sin2 v(t, ξ)

2

)
q(t, ξ) dξ � E0. (3.20)

Since the measure of S is zero, the equality holds true for almost all t .
By Sobolev’s inequality, this implies the uniform Hölder continuity with the exponent 1

2 for

u as functions of x. By (3.1) and the bounds ‖Px‖L∞(R) � C(E
1/2
0 ,E0,E

3/2
0 ,E2

0), we can infer
that u(t, y(t)) are Hölder continuous with the exponent 1

2 . Indeed∣∣u(t, y) − u(s, y)
∣∣ �

∣∣u(t, y) − u(t, x)
∣∣ + ∣∣u(t, x) − u

(
t, y(t, ξ)

)∣∣
+ ∣∣u(

t, y(t, ξ)
) − u

(
t, y(s, ξ)

)∣∣
� E

1
2
0 |y − x| 1

2 + E
1
2
0

∣∣y(t, ξ) − y(s, ξ)
∣∣ +

t∫
s

∣∣Px(τ, ξ)
∣∣dτ

� C
(|y − x| 1

2 + |t − s| 1
2 + |t − s|),

where we choose ξ ∈ R such that the characteristic t �→ y(t, ξ) passes through the point (s, x).

Notice that u(t, x) � E
1
2
0 . This implies that u(t, x) is uniformly Hölder continuous with the

exponent 1 .
2
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We now prove the Lipschitz continuity of u(t, x) with values in L2(R). Consider any interval
[τ, τ + h]. For a given point x, we choose ξ ∈ R such that the characteristic t �→ y(t, ξ) passes
through the point (τ, x). By (3.11), it follows that

∣∣u(τ + h,y) − u(τ, y)
∣∣ �

∣∣u(τ + h,x) − u
(
τ + h,y(τ + h, ξ)

)∣∣
+ ∣∣u(

τ + h,y(τ + h, ξ)
) − u(τ, x)

∣∣
� sup

|y−x|�E
1
2

0

∣∣u(τ + h,y) − u(τ + h,x)
∣∣ +

τ+h∫
τ

∣∣Px(t, ξ)
∣∣dt.

Integrating over the whole real line, in view of (2.2), (3.13) and (3.20), we obtain∫
R

∣∣u(τ + h,y) − u(τ, y)
∣∣2

dx

� 2
∫
R

( x+E
1
2

0∫
x−E

1
2

0

∣∣ux(τ + h,y)
∣∣dy

)2

dx

+ 2
∫
R

( τ+h∫
τ

∣∣Px(t, ξ)
∣∣dt

)2

q(τ, ξ) cos2 v(τ, ξ)

2
dξ

� 8E0h
2
∥∥ux(τ + h)

∥∥2
L2(R)

+ 2h
∥∥q(τ)

∥∥
L∞(R)

∫
R

τ+h∫
τ

∥∥Px(t)
∥∥2

L2(R)
dt � Ch2

holds for some constant C depending only on T . This clearly implies the Lipschitz continuity of
the map t �→ u(t), in terms of the x-variable. Since L2(R) is a reflexive space, the left-hand side
of (2.3) is well defined for almost all t ∈ R. Note that we have proved that the right-hand side of
(2.3) also lies in L2(R) for almost all t ∈ R. To establish the equality between these two sides,
we find that

d

dt
u
(
t, y(t, ξ)

) = −Px(t, ξ).

On the other hand, recalling measure(S) = 0, for every t /∈ S the map ξ �→ x(t, ξ) is one-to-one.
Then, the change of variable formulae (2.13) yields

Px(t, ξ) = 1

2

( ∞∫
y(t,ξ)

−
y(t,ξ)∫
−∞

)
exp

{−∣∣y(t, ξ) − x
∣∣}(2u + 10u2 − 2u3 + 3u4 − 7u2

x

)
dx.

Hence the identity (2.3) is satisfied for almost all t � 0. This implies that u is a global solution
of Eq. (1.1) in the sense of Definition 2.1.
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From (3.10) and (3.20), we obtain the identity in (1.9) for almost all t � 0.
Finally, let ũn be a sequence of initial data converging to ũ in H 1(R). In this case, from (3.1)

and the boundedness of u,v,ρ we can infer

∥∥qn(t, ξ) − q(t, ξ)
∥∥

L2(R)
< ∞.

Recalling (2.5) and (3.2) at time t = 0, this implies

sup
ξ∈R

∣∣yn(0, ξ) − y(0, ξ)
∣∣ → 0,

sup
ξ∈R

∣∣un(0, ξ) − u(0, ξ)
∣∣ → 0,

∥∥un(0, ξ) − u(0, ξ)
∥∥

H 1(R)
→ 0,∥∥vn(0, ξ) − v(0, ξ)

∥∥
L2(R)

→ 0,∥∥qn(0, ξ) − q(0, ξ)
∥∥

L2(R)
→ 0.

Now from (3.1) and the bounds of u, v, q , we can obtain

d

dt

(∥∥un(t, ξ) − u(t, ξ)
∥∥

L∞(R)
+ ∥∥vn(0, ξ) − v(0, ξ)

∥∥
L2(R)

+ ∥∥qn(0, ξ) − q(0, ξ)
∥∥

L2(R)

)
� C

(∥∥un(t, ξ) − u(t, ξ)
∥∥

L∞(R)
+ ∥∥vn(0, ξ) − v(0, ξ)

∥∥
L2(R)

+ ∥∥qn(0, ξ) − q(0, ξ)
∥∥

L2(R)

)
.

Thus, Gronwall’s inequality implies that un(t, ξ) → u(t, ξ), uniformly for (t, ξ) in bounded sets.
Returning to the original coordinates, this yields

yn(t, ξ) → y(t, ξ), un(t, x) → u(t, x),

uniformly on bounded sets since all functions u,un are uniformly Hölder continuous. This com-
pletes the proof of Theorem 1.2. �
3.3. A semigroup property of the conservations

In this subsection, we prove Theorem 1.3.

Proof of Theorem 1.3. Most of the above statements already follow from the analysis in the pre-
vious sections. Indeed, we have already proved that the function u(t, x) defined by (3.14)–(3.16)
provides a solution to Eq. (2.1).

Recall the set S , and call S ⊂ R the set of times where measure {ξ ∈ R; cosv(t, ξ) =
−1} > 0. For t /∈ S , the measure μ(t) is precisely the absolutely continuous Radon measure
having density u2

x with respect to the Lebesgue measure. On the other hand, our construction
implies that for t ∈ S , the measure μ(t) is the weak limit of the measures μ(s), as s → t , s /∈ S .
Since the set S has measure zero, we deduce (1.11). Notice that this equation can be formulated
more precisely as
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∫
R

ϕt dμ(t)|t2t1 =
t2∫

t1

∫
R

ϕx(1 − 14u)dμ(t) dt −
t2∫

t1

∫
R

(
2u + 10u2 − 2u3 + 3u4 − P

)
uxϕ dx dt

for every t2 > t1 � 0 and any function ϕ ∈ C1([0,∞] ×R) with compact support in (0,∞) ×R.
The statement (iii) has been proved in the last paragraph of Section 3.2.

To complete the proof of Theorem 1.3, it now remains to prove the semigroup property:

Ψt ◦ Ψs(ũ, μ̃) = Ψt+s(ũ, μ̃). (3.21)

Given (ũ, μ̃) ∈D, let

U(τ, ξ) = (
u(τ, ξ), v(τ, ξ), q(τ, ξ)

) ∈ R
3

be the unique solution of (3.1) with initial data (u(0, ξ), v(0, ξ),1), defined for all τ � 0.
Then Ψt+s(ũ, μ̃) is obtained from U(t + s, ξ) via (3.14)–(3.16) and (1.11). To obtain Ψt ◦
Ψs(ũ, μ̃), we proceed as follows. For τ � 0, Ũ (τ, ξ) ∈ R

3 is the solution of (3.1) with ini-
tial data (u(0, ξ), v(0, ξ),1). Then, Ψt ◦ Ψs(ũ, μ̃) is obtained from Ũ (τ, ξ) by (3.14)–(3.16)
and (1.11). Notice that U(t + τ, ξ) with τ � 0 is the solution of (3.1) with initial data
(u(s, ξ), v(s, ξ), q(s, ξ)). We claim that

Ui(t + s, ξ) = Ū (t, ξ̄ ), i = 1,2, (3.22)

where ξ̄ is bi-Lipschitz parametrization of the ξ -variable with

dξ̄

dξ
= q(τ, ξ)

q̄(τ, ξ)
at time τ � 0. (3.23)

Indeed, (2.12)–(2.13) and the form of (3.1) confirm the validity of (1.13) in view of the change
of variables (3.23). The fact that ξ �→ ξ̄ is a bi-Lipschitz parametrization follows at once if we
notice that the linearity of the third equation in (3.1) with respect to q yields

∂τ

q(τ, ξ)

q̄(τ, ξ)
= [(

2u + 10u2 − 2u3 + 3u4 − P − 7
)

sinv

− (
2ū + 10ū2 − 2ū3 + 3ū4 − P̄ − 7

)
sin v̄

]q(τ, ξ)

q̄(τ, ξ)

and the factor of q(τ,ξ)
q̄(τ,ξ)

on the right-hand side is uniformly bounded. We thus established the
validity of (1.13). Looking at (3.14)–(3.15) and (1.11), we prove that (3.21) holds true. This
completes the proof of Theorem 1.3. �
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