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Abstract

In this paper, we derive a strong convergence rate of spatial finite difference approximations for both
focusing and defocusing stochastic cubic Schrodinger equations driven by a multiplicative Q-Wiener pro-
cess. Beyond the uniform boundedness of moments for high order derivatives of the exact solution, the key
requirement of our approach is the exponential integrability of both the exact and numerical solutions. By
constructing and analyzing a Lyapunov functional and its discrete correspondence, we derive the uniform
boundedness of moments for high order derivatives of the exact solution and the first order derivative of
the numerical solution, which immediately yields the well-posedness of both the continuous and discrete
problems. The latter exponential integrability is obtained through a variant of a criterion given by Cox,
Hutzenthaler and Jentzen [arXiv:1309.5595]. As a by-product of this exponential integrability, we prove
that the exact and numerical solutions depend continuously on the initial data and obtain a large deviation-
type result on the dependence of the noise with first order strong convergence rate.
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1. Introduction and main idea

There is a general theory on strong error estimations for stochastic partial differential equa-
tions (SPDEs) with Lipschitz coefficients (see e.g. [1,4,6,7] and references therein), where one
usually adopts the semigroup or equivalent Green’s function framework. For SPDEs with non-
Lipschitz but monotone coefficients, one can use the variational framework to derive strong
convergence rates of numerical approximations (see e.g. [20]). Unfortunately, the monotonicity
assumption is too restrictive in the sense that the coefficients of the majority of nonlinear SPDEs
from applications, including stochastic Navier—Stokes equations, stochastic Burgers equations,
Cahn-Hilliard—Cook equations and stochastic nonlinear Schrédinger equations etc., do not sat-
isfy the monotonicity assumption. Since these SPDEs can not be solved explicitly, one needs
to develop effective numerical techniques to study them. Depending on the particular physical
model, it may be necessary to design numerical schemes for solutions of the underlying SPDEs
with strong convergence rates, i.e., rates in L.”(€2) for some p > 1. We point out that strong
convergence rates are particularly important for efficient multilevel Monte Carlo methods (see
e.g. [2,19]).

Our main purpose in this paper is to derive the strong convergence rate of a representative,
spatial approximation for the one-dimensional stochastic cubic Schrédinger equation

idu+ (Au+ MulPuw)dt =uodW (@) in (0,T]x O

with the initial datum u(0) = uo under homogenous Dirichlet boundary condition. Here A =1
or —1 corresponds to focusing or defocusing cases, T > 0 is a fixed real number, & = (0, 1)
and W ={W(@): t €[0,T]} is a Q-Wiener process on a stochastic basis (2, .%#, %, P), i.e.,
there exists an real-valued, orthonormal basis {ek},‘{’i1 of L2(ﬁ ; R) and a sequence of mutually

1
independent, real-valued Brownian motions { ,Bk},fi | such that W(z) = Z,fi 1 Q2erPr(t) fort €
[0, T']. For convenience, we always consider the equivalent Itd equation

|
du = (iAu +inulfu — EFQu)dt —wudW() in (0,T]x O (1)

with the initial datum u(0) = ug, where Fp :=) 2, (Q%ek)z.

The stochastic cubic Schrodinger equation (1) has been studied in e.g. [12,23] to motivate the
possible role of noise to prevent or delay collapse formation. Many authors concern numerical ap-
proximations for Eq. (1); see e.g. [8,10,11] and references therein. To deal with the nonlinearity,
one usually applies the truncation technique. However, this method only produces convergence
rates in certain sense such as in probability or pathwise which is weaker than strong sense. In
this paper, by deducing the uniform boundedness for moments of high order derivatives of the
exact solution and exponential moments of both the exact and numerical solutions, we obtain the
strong error estimate of the central difference scheme (see (6) below). To the best of our knowl-
edge, this is the first result deriving strong convergence rates of numerical approximations for
Eq. (1). For other types of SPDEs, we are only aware that [13] analyzes the spectral Galerkin
approximation for the two-dimensional stochastic Navier—Stokes equation by using a uniform
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bound for exponential moments of the solution derived in [18], and that [17] studies spectral
Galerkin approximations for the one-dimensional Cahn—Hilliard—-Cook equation and stochastic
Burgers equation through exponential integrability characterized in [5].

Before proposing our main idea, we introduce some frequently used notations and related
technical analytic tools.

1.1. Notations and analytic tools

1. We denote Zy ={0,1,--- , N} foragiven N e N;. Let0=x9 <x; <--- <xy41 =1 be
the uniform partition of the interval &' with the step size h = ﬁ For a grid function f,
we denote f (/) := f(x;) for simplicity, / € Zy+1. We use 64 and 5_ to denote the forward
difference operator and backward difference operator, respectively, i.e.,

I+1)—fd D—fd-1
5. £() ::w, 5. () ::%,
2. Denote by L.? := .>(¢; C) and li the continuous and discrete Hilbert spaces with inner
products
. N+1 -
(f. )2 :=m[ / f(x)g(x)dx} (fghni= Y [ F g ]h.
Y =0

We also use the discrete 12- and /;°-spaces with norms
N+1 %
£l = ( 3 If(l)|4h> Iflpe = sup £ QL.
1=0 l€Zn+

3. Denote by £p(IL?, NI:i ) the space of Hilbert—Schmidt operators ¥ from L? to another separa-
ble Hilbert space H, endowed with the norm

b }
RIVEN = (tr[\lf*\lf]) = (anekn%) :
k=1

In particular, £,(IL%, H®) is denoted simply by L5. Here and what follows, s is an positive
integer and H® denotes the usual Sobolev space H®, which consists of functions f such that
Vk f exist and are square integrable for all k € Zs, with the additional boundary condition
Alv=00nd0 forN> j <s/2.

4. To bound the || - || cc-norm, we need the Gagliardo—Nirenberg inequality

If1foe <20 fll2 - IV fllp2, feH )

and its discrete correspondence

1" e <20 £ 1nll8s flln. f €L FO) = f(N+1) =0, 5,f€lj. 3)
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We also use the Sobolev embedding H'! < L>°:

I fliLe < Coll fllgr, feH!' 4

for some constant Cy and the fact that HS is an algebra, i.e., for any f, g € H®, there exists a
constant C = C(s) such that

I fgllms < Cllf sl g llms- ®)

Throughout the paper C is a generic constant, independent of the discretization parameter 7,
which will be different from line to line.

1.2. Main idea

Our main aim is to derive the convergence of the spatial central difference scheme
1
du" (1) = (i8+8_uh(l) Firu )Pl (1) — EFQ(Z)uh(l))dz —w AWl (6)

towards Eq. (1) with an algebraic rate in strong sense. Define R" (1) := Au(l) — 8,.8_u(l) for
| € Zn+1. The initial datum of Eq. (6) is the grid function ug ={uo(l), | € Zn+1}. Itis clear that
Eq. (1) and Eq. (6) possess the continuous and discrete charge conservation laws, respectively,
i.e., for all ¢+ € [0, T'] it holds a.s. that

2 2 By 2 hy2
w2 = lluollyz,  Nu™ DIl = llugl- (7

The exact solution of Eq. (1), at the grid points, satisfies
1
du(l) = <i8+87u(l) +iR" (D) +irluD)Pul) - Eu(l)FQ(l)>a’t —iu()dWw(,1).

Denote by €” the difference between the exact solution u and the numerical solution u” defined
at the grid points x;, [ € Zy 1. Applying Ité formula to the functional ||€” (r) ||%l, using the con-
tinuous and discrete Gagliardo—Nirenberg inequalities (2)—(3) and charge conservation laws (7)
(more details see Theorem 4.1), we obtain

t

t
le" )1l < f IR" () fdr + f (1 20 e e ) N ) 1 8)
0

0

Taking expectation, as in the deterministic case, would lead to

t t
E[ueh(r)uﬁ] < / E[Ith(r)Ilim}err / E[(l +2||u<r>||w||u"<r>||l,go)||eh(r>||%,}dr.
0 0

Due to the appearance of the nonlinear term in the last integral above, the classical Gronwall
inequality is not available and one could not derive a strong convergence rate. These difficulties
are common features to obtain strong convergence rates for numerical approximations appearing
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in many situations, see e.g. [8,11] for stochastic nonlinear Schrédinger equations and [3,21] for
other SPDEs with non-monotone coefficients.

Our main idea is applying Gronwall-Bellman inequality to (8) before taking expectation.
Then using Holder and Minkowskii inequalities, we have

1 1

2 P

(E[ sup ||eh<r>||£D §C<E[ sup ”Rh(f)H?OOD
1€[0,T] t€[0,7T] h

T
exp( / IIM(I)IIILOOIIMh(f)III;OdV>
0

In order to obtain the strong convergence rate for our scheme (6), we need to estimate the two
terms appearing on the right hand side of (9). The first expectation produces the strong conver-
gence rate O(h?) with a multiple given by p-moments of the solution under H*-norm, which is
proved to be uniformly bounded in Theorem 2.1 and Corollary 2.1. To control the exponential
moments with the random initial datum uo, we apply a variant of a criterion given by [5] on
exponential integrability of a Hilbert space valued stochastic process which is the strong solution
of a stochastic differential equation in Hilbert space (see Lemma 3.1 and Theorem 3.1).

Meanwhile, we derive the continuous dependence, in L”(€2; C([0, T']; L?)) with p=2or
p > 4, for the solution of the stochastic cubic Schrodinger equation (1) on both the initial data
and the noises with explicit rates (see Corollaries 3.1 and 3.2). Similar continuous dependence
on the initial data for the numerical solution of the central difference scheme (6) can also be
obtained (see Remark 3.1). Such continuous dependence property is not a trivial property for
the solutions of SPDEs with non-Lipschitz coefficients. We also illustrate that this continuous
dependence property is very crucial, besides for theoretical analysis such as in [14, Chapter 9.1],
for numerical computation because there exist round-off errors in computer simulations.

The rest of the paper is organized as follows. In Section 2, we bound the p-moments for high
order derivatives of the exact solution and discrete first derivative of the numerical solution. The
uniform bound on exponential moments of energy functionals of solutions as well as continuous
dependence on initial data and noises is proved in Section 3. The results in Sections 2 and 3 are
used in Section 4 to derive the strong convergence rate of the central difference scheme (6).

(€))

L4()

2. Well-posedness and regularity

In this section, we first prove the moments’ uniform boundedness for the solution of the
stochastic cubic Schrodinger equation (1) by analyzing the Lyapunov functional defined by (10),
which is necessary for proving the global well-posedness of Eq. (1). This uniform boundedness
is also useful to derive a strong convergence rate of the central difference scheme (6). Then we
show, with the help of the discrete energy functional defined by (24), a priori estimate and thus
the well-posedness of the discrete equation (6).

2.1. A priori estimation of the exact solution
For s =1 or 2, it is known that the stochastic cubic Schrodinger equation (1) possesses a

unique mild solution u which is in C([0, T]; H%) a.s. under some assumptions on ug and Q
(see [9] for s = 1, and [8] for s = 2 in the defocusing case). Our main result in this part is a priori
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estimation of u in H®-norm with integer s > 2 for both focusing and defocusing cases. This will
enable us to bound the term IE[|| R" ||?oo] appearing in (9). We remark that our arguments can also
h

be applied to the whole line.

Throughout this section, we assume that the initial datum ug is .%p-measurable and belongs
to HS a.s. for certain s > 2. To control the nonlinear term |u|2u in Eq. (1), we introduce the
Lyapunov functional

F@)=1Voulf, = M=) u, fulu) . ueH. (10)

L2

By the inequality (5) and integration by parts, we have

sc(E[mm%ﬂs} +E[||uo||§;le. (11)

Simple calculations yield that the first and the second order derivatives of f(u) are

‘E[f(uo)}

Df (u)(v) = 2(V¥u, VS, — 2A{(— )5 u, ui[uv]), »
— M=, ulPo) s — M=), fulu) (12)
D? f () (v, w) =2(V®v, Vi), , — 22{(=A)*'u, wik[uv]),
= 2M{(= ) w, udt[wv]) — 24 {(—= A u, udt[vw]),
— 20{(= ), v [aw]) o — A=A w, [ulPv)y
— 2= M, ut[mw]) — A=A o, [ulPw) . (13)

where v, w € C3°. Applying the It6 formula to the functional f () defined by (10), we get

t
fu@)) — f(ug) :/Df(u)(iAu +ik|u|2u — %FQu)dr
0

t

+ %ftr[sz(u)( —iuQ%>(—iuQ%)*:|dr
0

+/Df(u)(—iu)dW(r) =L+ L)+ 50). (14)
0

Substituting the expressions (12) and (13) of Df and D2f into I1(¢) and I>(t), respectively, we
obtain

t

1
L) = 2/ <Vsu, Vs(iAu idufu — EFQI/!))]deV
0

t

s—1 — . — 2
_A/<(—A) u,u(luAu —iuAu — |u| FQ)>]L2dr
0
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\ 1
- x/((—A)Hu, |u|2(iAu idufu — EFQM>>]L2dV

k/ (—A)S™ 1 1Au+1k|u| u—EFQu> |u|2u>L2dV
0

and
L) =/ttr[v5(—iuQi)* ® vS( — iuQ%ﬂdr
0
t

—2x0/tr[((—A)S—lﬁ)um[(—iuQ%)*® (—iuQ%)Hdr

— A/tr[(—A)s_l (—iuQ%>* ® |u|2(—iuQ%):|dr
0

Our main result in this subsection is the following a priori estimation of algebraic moments
for high order derivatives of the solution of Eq. (1).

Theorem 2.1. Let p =2 or p > 4 and s > 2. Assume that

S 1
upe (L "P@:E") N (L5 (@ H™) (15)
m=2 m=0

and Q% € E;. Then there exists a constant C = C(T, p, ug, Q) such that

sup]lE[llu(t)llﬁs] <C. (16)

tel0,T

Proof. Let r € [0, T']. We first estimate /1 (¢) in (14). Denote the four integrals in I;(¢) succes-
sively by 111(?), I12(t), 113(t) and I14(¢). Integration by parts yields that /71 (z) and I12(¢) can be
rewritten as

Ii@) =L () + L@, §Ia@)=La@)+ 1),

where
t
_ s—1 = 2
Im(z)_—z)\/<(—A) u,1A<|u| u)>L2dr,

0
t

L) = —/(Vsu, VS(FQM>>L2L1F,

0
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t

N1 () = —2 f <(—A)S*1u, i (ﬁAu _ uAﬁ)>L2dr,
0
t

Iin() = X/<(—A)S_1u, |M|2FQM>L2dr.
0

The Cauchy—Schwarz inequality and the inequality (5) yield that

t t
‘E[lnz(l)” + ‘]E[IIZZ(t):| SC(/E[IIM(F)H%IS1:|dr+/E|:|M(r)|H2{s:|dr>'
0 0

The term I711(¢) is divided into two equal parts which can balance I121(¢) and I14(¢). More
precisely, inserting the identities A(|u|?u) = 2{ul*Au + 4u|Vu|* + 2u(Vu)> + u?>Au and
(ASTV(uu), iAu)p 2 + (A5 u, iA(lu|?u))y 2 = 0, we obtain

L1 () + o () + La(?)
1 I
= ( ”;(I) +1121(t)) ~|—( ”é(t) +114(f))

‘
= —)\/<(—A)571u,3i|u|2Au>L2dr
0
13

— A/<(—A)S_lu,4i|Vu|2u +2i(w)2u> dr
2

0 1L

t

s—1 2 1
—,\f<(—A) (|u| u),——FQu> dr =: 1,(t) + Iy(t) + 1.(1).
0 ? L

Applying integration by parts, Leibniz formula and the fact that (VSu, i|u|?>Vsu);» = 0, we have

<(—A)s_lu, i|u|2Au>]L2 - <Vsu,iVs_2(|u|2Au)>

]LZ
s—3 ) _ ‘

= CSLz(vsu, vs-2-i (|u|2) v/ (Au>>L2.
Jj=0

Then by the Sobolev embedding (4) and the inequality (5) we get for s > 2,

s—3
—2—j1.,12
< Clulas Y NV oo el g2
j=0

K(—A)S—lu,umzm)IL

2

3
S C|M|HS”M”HS_] .
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The above estimate is also valid for s =2, since (Au, i|u|2Au>Lz = 0. This implies that

1 t
’E[la(t)] < c(/E[nu(r)n%sl]dr+/ﬂ<:[|u(r)lﬁﬂs}dr).
0 0

Applying Holder inequality, integration by parts and the inequality (5), we obtain for s > 2,

t t
‘E[Ib(t)} §C<fE[||u(r)||H6ﬂs1:|dr+/]E|:|u(r)|]12{s:|dr>.
0 0

When s = 2, by using the Sobolev embedding (4), the Gagliardo—Nirenberg inequality (2) and
the Young inequality, we get

‘E[Ib(t)}

t
SfEI:|”|H2||”||L°°||V”||L°°||V”||L2]dr
0
t

t

gc(fE[uu(r)u];gl}dr+/1E[|u(r)lﬁs}dr>.
0

0

Similar arguments imply that

t
‘E[lcm” <c f E[nu(r)n;‘ﬂs_l}dr.
0

As a result, there exists a constant C = C (T, Q) such that

‘]E[lm(t) + I121(8) + 114(1‘)”

t t
§C<1 +/]E|:||u(r)||ﬁ_]g_li|dr+/E|:|u(r)|%lsi|dr).
0 0

For I13(¢), using integration by parts and the inequality (5), we have

‘E[lm(f)}

J)

t
S— . 1
5C(E|]Ia(t)|} +/EH<(—A) 1u,l|u|4u+§FQ|u|2u>]L2
0

t t
5C(1+/]E[||u(r)||gﬂs1]dr+/E[|u(r)|§Hs]dr>.
0 0

Combining the estimations of 71 to /14, we have
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t t
‘]E|:Il(t)] §C<1+/E|:|Iu(r)||%ls1i|dr+/]E|:|u(r)|H2{si|dr> (17)
0 0

for s > 2 and

t t
‘E[h(z)” §C<1+/]E|:||u(r)||ﬁ)1:|dr+/E|:|u(r)|]?_ﬂz:|dr). (18)
0 0

Now we turn to the estimations of I>(¢) and /3(¢) in (14). Using the Cauchy—Schwarz inequal-
ity and the inequality (5), we get

13 t
'E[lz(t)} §C<1~I—/E|:||u(r)||]%ls1:|dr+/E|:|u(r)|H2_Hs:|dr). (19)
0 0

On the other hand, owing to the property of It6 integral, we have

\u«:[@ (z)] \ —0. (20)

For p > 4, we apply the Itd formula to f 5 (u) and obtain

t
FE@®) = £%@wo) + g/f%‘ ) Df (@) (i + i uPu — %Fgu)dr
0

t
+ p(pT—Z) /tr[fgz(u)Df(u)< - iuQ%)Df(u)( _ iuQ%)*]dr
0

t
+£/tr[f’z"(u)sz(u)(—iuQ%,—iuQ%)]dr
4
0
t
+g/fg_l(u)Df(u)<—iu)dW(r). @1)
0

It follows from the inequality (5) and the Cauchy—Schwarz inequality that
p_ 2(p—2 -2
£ = (s + i),
By the estimations (17) and (18) of I (), it holds a.s. that

1
‘Df(u)(iAu +iku)u— 5FQM)

< C (s + 0l

for s > 2 and
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)Df(u)(mu + i fu|u — %FQM)‘ < C(||u|| + IMIHZ)

Then by the Young inequality, we get an estimate for the first integral in (21):
t
2p+2 2p—4 2
< c/ (E[nunH’:ﬁ ] +E[||u||H’:1 |u|]%ls} +E[||u||§ﬂs_l Jue| s ] +E[|u|ﬁstr
0

t t

§C<1 +fE[||u<r>||Hs } +/E[|u<r>|ﬁs}dr>

0 0

H/f 1(u)Df(u)(lAu +1k|u| u—lF u)d
) 0

for s > 2 and

t t
5C(l+/E[I|u(r)||ﬂsﬂf]dr+fE|:|u(r)|ﬁ2:|dr).
0 0

Similar arguments can be applied to other terms in (21). Thus we obtain

it | = c(B] rfwon] + 5[ wiz )
c(l +E[Iluollﬂs} +E[||uo||Hs ]

T
/ [Ilu(r)IIHs l}dVvL/]E[IIM(V)IIﬁs]dr)
0

0

t
EH / 57 @ D o) (i + P — %FQu>dr
0

fors > 2 and

E[|u<r)|§p] < c<1 +E[||uo||{;ﬂz} +E[||uo||§£]
t T
+/E[||u(r>||§£]dr+/E[||u(r>||ﬁ2}dr>.
0 0

Gronwall inequality then yields that

Please cite this article in press as: J. Cui et al., Strong convergence rate of finite difference approximations for
stochastic cubic Schrodinger equations, J. Differential Equations (2017), http://dx.doi.org/10.1016/j.jde.2017.05.002




YJDEQ:8828

12 J. Cui et al. / J. Differential Equations eee (eees) see—eee

T
E[Iu(t)lﬁs] < c<1 +E[||uo||ﬁs] +E[||uo||§{:1] +/E[||u<r)||§ﬂil]dr)
0

for s > 2 and that

T
E[m(mﬁz] < c(l +E[||uo||§ﬂz} +1E[||uo||§ﬁ] +/E[uu<r)u§§]dr).
0

Similar arguments as in [9, Theorems 4.1 and 4.6] lead to

5
sup E[numuH’i] <00
t€[0,T]

provided that ug € L37($; H') N L'37(; L?). This implies that

sup E[nu(t)ugp] <00
te[0,T]

provided that ug € L” (2; H?) NL2P(Q; H'Y) NL1P(Q; L?). For s = 3, when ug € L (2; H) N
L3P (Q; H2) N L1P(Q; H') NL*P(Q; L?), it holds that

T
E[|u<r)|gp] < c<1 +E[||uo||gp} - E[||uo||§{2] +/E[||u(r)||iﬂ’2]dr> < o0
0

By induction, we complete the proof of (16). O

Remark 2.1. In [9, Theorem 4.6], a uniform bound for the Hamiltonian
UX) =S IVXIZ = JIXI (22)

is used to construct a unique solution with continuous H!-valued paths for Eq. (1). We can follow
the same strategy as in [9] to construct the unique local mild solution with continuous H*-valued
paths by a contraction argument, and then show that it is global by the a priori estimate (16)
with s > 2. To prove that this mild solution is also a strong one of Eq. (1), we refer to [22,
Propositions G.0.4 and G.0.5].

Corollary 2.1. Under the same conditions of Theorem 2.1, there exists a constant C =
C(T, p,up, Q) such that

E[ sup ||u(t)||ﬁsi| <C. (23)
1€[0,T}
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Proof. The main step to derive (23) from (16) is that we need to deal with the stochastic integral
I3(t) which is vanished in Theorem 2.1. By the expression (12) of Df (u), we get

t

L) = 2/ <Vsu, VS< — iudW(r)))ILZ

0
t
—A/((—A)Hu, |u|2<—iudW(r))>L2
A/( A~ ‘ iudW(r)),|u|2u>]L2.
0

Applying the Burkholder—Davis—Gundy, Holder and Young inequalities and using similar argu-
ments to estimate /,(¢) in Theorem 2.1, we obtain

E[ sup |13<r>|%]

te[0,T]

’ 2 2 § [ 2 6
5C(E['/lu(r)|Hs||u(r)||Hsldr }+IEH/Iu(r)IHsllu(r)lle_zdr
0 0
§CE[< sup |u(t)|Hs>-(f||u(t)lle ldt> }
te[0,T]

T
1
<——RFK 1) |irs C t
< oo [tes[‘ép |u(>|H}+ Of [nu()uHs }

Combining the above estimate and the estimations of

)

E[ sup |11(t)|%i| and E[ sup |12(t)|%]

t€[0,T] 1€[0,T]

derived in Theorem 2.1, we conclude the estimate (23). O
2.2. A priori estimation of the numerical solution

The local existence and uniqueness of the solution for the central difference scheme (6) can
be proved by the contraction argument in [9] for Eq. (1). Then global existence is an immedi-

ate consequence of the following a priori estimate. To this end, we define the discrete energy
functional

1 A
Uty = 5||6+u”||i - Znuhn;% (24)

similarly to the continuous one U defined by (22).
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Proposition 2.1. Let p =2 or p > 4. Assume that ul € L37(Q,13), $;ul € LP(Q,13) and
Qe E%. Then there exists a constant C = C(T, p, uo, Q) such that

IE[ sup ||8+uh(r>||{j}sc. (25)
tel0,T]

Proof. We only prove (25) for p = 2 since the proof for the case p > 4 is similar to that of

Theorem 2.1 and Corollary 2.1. Applying the Ito formula to the energy functional U” (u”) defined
by (24), we obtain

U@ (1)) — U" (uo)

t

:A/<8+uh,i8+<|uh|2uh>>hdr—i/t<8+uh,iuh6+(Q%ek)>hd,Bk(r)
0

0 k=1

t
|
+ 5<5+3,uh,thQ>h +)\/<5+5,uh,i|uh zuh>hdr
0

t
+l§:8h%2d'—UUUUU
) +uQekhr~—a+b+c+d+e-
0k:1

Due to the symmetry of the numerical scheme (6) under the Dirichlet boundary condition, the
term U, + U, vanishes. Then the martingale property of the Itd integral yields that E[Up] =0
and thus

E[Uh(uh(t))] = ]E[Uh(uo)] + IE[UC + Ue].
Applying integration by parts, we obtain

U+ U,

N+1
1
Z_E/<th}i[8+uh(l)3+uh(l)FQ(l+])]+<8+uh(1)’uh(l)8+FQ(l)>h>dr

=0
00 1 N+1
+25/(Zh|6+u (Ot + VP + |us:(QFer) 0| )
k=1 0 1=0
! N+1

M2

+
k

Il
—_
Il
=}

f hfﬁ 8+uh(l)uh(l)8+(Q%ek)(l)Q%ek(l+ 1)]dr
0 1

Similar calculations as in Theorem 2.1 deduce that
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3t & 1
E[U" @) | <E[U"wo) |+ T Y I1V(@ 0 1E<E[ I}
k=1

3C5t
= E[U" o) |+ 10 I%E[ Iug ;]

where Cy is the Sobolev embedding coefficient in (4). The Cauchy—Schwarz inequality and the
discrete Gagliardo—Nirenberg inequality (3) imply that

1 ne  Loone ho h 3 n2 . Leonge
ZI|5+M IIh—ZIIu lp <U"(u )SZII5+M IIh+ZI|u - (26)
As a result, we get

3 1 1
sup E[U" e (1)] = ZE[184 17 + SB[ 1418] + Cll Q2 12, B 117 ] 7.
1€[0,T1 4 4 2

By the charge conservation laws (7) and the inequality (26), there exists a constant C =
C(T, Q, Cp) such that

sup [ 16,17 = € ({13 ] + 1] + E[ 115 ]).
tel0,

We conclude the uniform estimate (25) by similar arguments to derive (23) from (16) as in
Corollary 2.1. O

Remark 2.2. Similar arguments of [8, Lemmas 5 and 6] yield the existence of continuous ver-
sions of both u and " under the assumptions in Theorem 2.1 and Proposition 2.1. This continuity
will be used in the next section to derive the exponential integrability properties of both u and u”.

3. Exponential integrability and continuous dependence

In this section, we establish the exponential integrability for both the stochastic cubic
Schrodinger equation (1) and its central difference scheme (6). This exponential integrabil-
ity is used in the next section to bound the exponential moment in (9). As a by-product,
the exact solution depends continuously on the initial data as well as on the noises, under
LP(Q2;C([0, TT; L2))-n0rm for any p =2 or p > 4, with explicit rates.

3.1. Exponential integrability property

To handle the uniform boundedness of the exponential moment in (9) for the solutions of
Eq. (1) and Eq. (6), we give a criterion on exponential integrability, which is a variant of [5,
Corollary 2.4].

Lemma 3.1. Let H be a Hilbert space and X be an H-valued adapted stochastic process with
continuous sample paths satisfying fOT Iw(X) Il + llo(X)|12dt < oo a.s., and for all t € [0, T1,
X; =Xo+ fot w(X)dr + fot o (X,)dW, a.s. Assume that there exist two functionals VandV €
C%(H:R) and an Fy-measurable random variable o such that for almost every t € [0, T],
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u[D?V (X))o (X))o *(X)] n lo*(X) DV (X)II?

2 ~oat +V(X) <aV(X), as.

27)

DV (X)u(X:) +

Then

[ —

sup E[exp<ve(jf’) + / Ve(j(rr)dr>:| 5E[6V<X0>]. (28)

te[0,T] 0

Proof. Let Y, = 0’ Ve(f,’) dr. Applying the It6 formula to

eOlt

_ V(X))
Z(I,XI,Y[) =exp +Y[ R

we obtain

Z(t’ le Yl) - eV(XO)

t
_ / 2 Xy, Y)(V(X,) — aV (X, )dr
0

t
+/e—””z<r, X,,Y,)DV(X,)dX,
0

t

1 —ar 2 *
+5 [z X,,Yr)tr[D V(X))o (X))o (X,)]dr
0
1 t
+ E/e_Z“rZ(r, X, Y)||o*(X) DV (X,)| dr.
0

Condition (27) implies that

E[Z(t, X,, Y,)] _ ]E[ewxo)]

t

=E|:/Z(r, X,,Y,)(V(X’)_“V(Xr) MRAACOTICH

eO(r ear

2 * * 2
+tr[D V(X))o (Xy)o™(X,)] n o™ (X)) DV (X, )dr} <o
Der De2ar

This completes the proof of (28). O

In the rest of this section, we assume that the stochastic cubic Schrodinger equation (1) and
the central difference scheme (6) possess unique strong solutions with continuous trajectories.
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Applying Lemma 3.1 to the energy functionals U and U” defined by (22) and (24), respec-
tively, we obtain the following uniform bounds of exponential moments for « and u”. This is the
main ingredient in Section 4 to deduce the strong error estimate between u and u”.

Theorem 3.1. Let g > 1 and Q% € E%. Assume that

1
[ 202107 |2, luoll2, T
E|:eU("°):| +E[exp <—2 L2 +4q2T2||u0||§2e 0 T >] <00 (29)

and
h)6 2C2N0 12, Il 2T
h u
]E[em@]+E[exp<W+4q2T2Hu8H%e B )]<oo. (30)

Then there exists a constant C = C(T, q, ug, Q) such that

T
exp ( / luoll,s ||Vu||der> <c, 31)
L9(Q)
0
T
exp ( / llug |l ||8+uh||hdr> <C. (32)
, L9(Q)

Proof. Simple calculations as (12) and (13) show that

DUX)Y = (VX,VY)2 — M| XX, Y)2,
D*UX)(Y,Z)=(VZ,VY)12 — M|X|?Y, Z)2 — 2A(R[XY]X, Z); 2.

In the case of Eq. (1), uw(u) =iAu + ik|u|2u — %FQu and o () = —iuQ%. Then

1 1 A
DU ) (u) = —§<w, VFQu>L2 _ §<V”’ uVFQ>]L2 n §<|u|4’ FQ>L2,

tr[DzU(u)a(u)a*(u)] - i Hv@g%ek) ‘ ; _ A<|u|4, FQ>L2,
k=1

and
lo* @) DU )|, = <Vu, —iu i V(Q%ek»;
k=1

Therefore, by the Sobolev embedding (4), we have
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t[D>U (w)o (u)o ™ (u)] N lo*(u)DU ()|

DU () (w) + - S

2

- %io”'z’ (vQ%ekY)U + Ze]“’ g<vu _iuv(Q%ek»LZ

2
1.2 2 G L) 2 2
< Q2 W5 lluoliF + =107 17, luollE I Vull.

2
We conclude that for A = —1,

2 * * 2
DU () + tr[D U(u);f(u)o (u)] n o (u)zgyltf(u)ll <o U + By

2
with a1 = C3I1Q2 I, lluoll?, and p_; = Q)02 22 lluol12,. When A = 1, using the fact that
2 2
lullf 4 < 20ull? 5 I Vully2, we get
[ DU w)o (w)o*w)]  |lo*w)DU )2

DU (u)u(u) + 5 + > at =aUu) + B

. 1 ez, A1 .
with o = 2C3| Q2 ||§:% ||M0||]iz and B = Q2 ”25%("140”]%2 + ||M0||§z)- Applying Lemma 3.1
with U = — ;. for A = %1, we obtain

t
sup E[exp<U(’:_(f)) —/ f*sdsﬂg]E[eU(“w}. (33)
1€[0,7] e )€ *

When A = —1, (33) yields that

U(u(t
sup E[exp( (u(t))>] §e%E[eU(”°)].
1€[0,T] e%-1

Applying the Young inequality and a variant of Jensen inequality, we obtain
t
sup | exp </ llueolly 2 ||Vu||]des>
1€[0,7] g

r 2
exp| o2 lluoll 2
r 2
exp( 52 luolly 2

then the above two estimations yield that

L4()

T
€
exp ( / Enwnizds)
0

exp (TeU(u(t)))

=<

L24 () L24(Q)

< sup

L24(Q) t€[0,T]

L2 () .

1

Lete = m’
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t
exp( / ||uo||Lz||Vu||des)
0 La(2)

1
<eH 2\"’/IE|:exp <2q2T28“—1T||u0||i2>:| zi’/E[eU("O)}.

When A = 1, by the fact that U (u) > }‘(H Vu ||]i2 - ||u0||E2) and a version of Jensen inequality,

we have

t

exp( / ||uo||Lz||Vu||des)
L4(Q)
0
[T lnol2,  elluol?
ug 6 ug
e ([ |75+ T g )
4 2qeo‘1’ L249(Q)

0

(/T[duwn — ol By })
— dr
2qeotlr

0

Tluoll?, €T lluol? 1 —e T
< |exp 1.2 + 1.2 +,31( e )
€ 4 2qa;

sup
t€l0,T]

sup
€[0,T]

1L24(Q)

L24()

pr(l—e )
2ga

exp (6TU(M([)) —

L2 (sz).

Lete = then by the Young inequality,

t
exp </ ||M0||L2||VM||L2dS>
. L4(S)

ol | — el
< Z%E[exp <4qZT2e“'T||uo||iz+ 2 + 2 - )>] 2"E[eU<“0)}
L 1
<e¥ 2\‘/E|:exp (5 luoll®, + 4q2Tze°‘lT||uo||i2>i| T/E[eU(“O)}.

This combining with the charge conservation laws (7) shows the estimate (31).
For the discrete case, we have

2 T"‘IT’

sup
1€[0,T]

DUMXMY" = (8, X" 8, 7"y — 11X PX" Yy,

D2UM (XYY", 21 = (5, 2", 8,y — A XY, 20y, — 20 (RIXT Y IXE, 2.
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In the case of Eq. (6), ")) = i8;8_u"(1) + irlu"(O)*u"(1) — JFo(Hu"(l) and

o) (ep) (1) = —iuh(l)Q%ek(l). Substituting them into the above equalities and using the
Sobolev embedding (4), we obtain

u[D2U" (u")o " (uh)o" (u")*] N lo"@"y*DUM u")|?
2 zeaht

I ho b 1A LSy hp LA
=3 et fpe(0re) ), + 3 o {ut P o (0] ),

DU" "y (™) +

" 1 2
h s h 5
g 2 s (b)),
k=1
3C? 1 C? 1
= Qg gl + 1 Q2 I g 7 184" 17

We conclude that, for A = —1,

tr[D2UN u™yo " (uhyo " (uh)*]
2

DU ™" () +

N lo® "hy* DU (uh)||?

h
zeaill

= aith(uh) + ﬂﬁ]

Lk 200512 k2 R 3G A2 12 Qi .
with a” | = C7[| Q2 ”L% lugll; and B2, = =2 Q2 ||£,§,||u0 [l Similarly to the continuous case,

t
exp( / ||u8||h||8+uh||hds>
o La(2)

< eﬁ 2\(1/]E[exp (4q2TzeOlth”ug“i>j| 2\‘I/E|:eUh(ug):|.

When A = 1, similar arguments yield that

sup
tel0,T]

tr[DZUh (uh)o,h (uh)o_h(uh)*]
2

DU "y (u™y +

N lo" "y DU" uh)|?

- <aU" ") + Bt
Zeall

L h 200502 k2 h_ Connhn2 2 8
with af =2C5| Q2 ||£%||u0||h and B} = 3|02 ||L%(3||uo||m2 + ||M0||]L2). Moreover, we have
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t
exp ( / ||u8||h||8+u*‘||hds)
0 L1(R2)

h) 6 hep _ —aT
< E|:exp <4q2T2€a{lT||u8||ﬁ+ llug Il " Br(1—e )>i| 2% E[eyh(”g)]

h
4o T 05111

3 1 ]
<e¥ 2\‘/IE|:eXp <E lugll$ +4g2T2e T ||uf) ||§>] 2\‘vf/ﬂz,[el” W]

This combining with the charge conservation laws (7) shows the estimate (32) and we complete
the proof. O

sup
t€[0,T]

3.2. Continuous dependence on initial data and noises

As an application of the exponential integrability Theorem 3.1, we can prove that the solution
of the stochastic cubic Schrodinger equation (1) is continuously depending on the initial data.
Such continuous dependence property is not a trivial property for the solutions of SPDEs with
non-Lipschitz coefficients.

Corollary 3.1. Let p =2 or p > 4. Assume that the condition (29) holds for ug and vo with g =
4p and Q% € E%. Letu={u(t): t€[0,T]}andv=A{v(t): t €0, T1} be the solutions of Eq. (1)
with initial data ug and vy, respectively. Then there exists a constant C = C(T, p, uo, vo, Q) such

that
(E[ sup ||u(r)—v(r>||{;2D SC<E[IIM0—UO|I]2L€D : (34)
tel0,T]

Proof. We only prove the case p =2 and the proof for the other cases is similar. Applying Itd
isometry to the functional ||u(¢) — v(¢)||;,, we obtain

2
L2
lu(e) = (@72 — lluo — voll3 2
t 00 t
1
= / D ol =) Qe dr +2 / (u— v, =i — v))2dW(r)
0 k=1 o
t 1
+ 2/(u —v,iA(u —v) +iA(|u|2u — |v|2v) — 5FQ(u — v)>]1,2dr
0
t

2
< /2||”||L°°||U||IL°°||M —vllg.dr.
0

Applying Gronwall inequality and taking expectation, combining with the Cauchy—Schwarz in-
equality and the Gagliardo—Nirenberg inequality (2), we get
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E[ sup [lu(t) —v<r>||iz]

tel0,T]

T

exp( / 2||u||1L°<>||v||1L°°dr)

0
3

< (E[Iluo - von;‘}]) exp (/2||u||m|w||mr)

0

T
exp (/ 2ullg2l|Vu ||]der>
0

from which we conclude (34) by Theorem 3.1. O

1

2
(E[Iluo — vo||§‘LzD
L2(Q)

T

=

L4(%)

)

L4()

Remark 3.1. One can show that the numerical solution u” of the central difference scheme (6)
possesses analogous continuous dependence (34), since the essential requirement of exponential
integrability of u” has been established in Theorem 3.1. This continuous dependence property is
very crucial for numerical computation, because of round-off errors in computer simulations.

Beyond the above continuous dependence result on the initial data, we also have the following
large deviation-type result, on the stochastic cubic Schrodinger equation

idu® + Aucdt + AMu€|Pucdt = eu€ odW, u0)=ug, €€R (35)
driven by small scale noise. This type of large deviation estimation can characterize, in
L (2)-sense, the deviation of the perturbed solution ¢ from the unperturbed solution u°, which
is the solution of Eq. (35) with ¢ =0 (see e.g. [15]).

Corollary 3.2. Let p =2 or p > 4. Assume that the condition (29) holds with ¢ = 4p and
0% ¢ L3 Letu€ = {u(t): t €[0,T1} and u® = {(u®(t) : t € [0, T} be the solutions of Eq. (35)

with the same initial datum uy, respectively. Then there exists a constant C = C(T, p,ug, Q)
such that

(E[ sup ||uf<t)—u°(r)||§jz])"sc|e|. (36)

te[0,T]

Proof. We only prove the case p = 2 and similar arguments yield the other cases. Applying Itd
isometry to the functional ||u€(t) — u®(r) ||i2, we obtain

lu€ @) —u’@)|17,

t t
=é? / > u Q3 el dr +2/<uf —u®, =i = u®)) 2 dW (r)
o K 0
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t
+ 2/<u6 —u® iAW — u®) Fin(us Pu — u)Pu) — %EZFQu€>L2dr
0
t

t
2 0 3,12 0 0,2
<& [ V(010 e ar+ [ 2 himlu ol — 1R
k
0

0

Applying Gronwall-Bellman inequality, taking expectation and using Sobolev embedding, we

get
T
exp ( / ||M€||]L°°||MO||1L°Odr)
0

Similarly to the proof of Corollary 3.1, we conclude (36) by Theorem 3.1. O

l€].
L4©)

\/E[ sup [|luc () — uO(t)nﬁz} <C

te[0,T]

Remark 3.2. For stochastic nonlinear Schrodinger equation driven by an additive noise, [9,
Corollary 3.1 and Proposition 3.5] derived a.s. continuous dependence, but without convergence
rates, on the initial data and the noises.

4. Strong convergence rate of finite difference approximation

In this section, we use the a priori estimations in Section 2 and the exponential integrability
properties in Section 3 to establish the strong error estimation between the numerical solution of
the spatial central difference scheme

du" () = <i8+6_uh(l) +irlu O)2u" (1) — %FQ (l)uh(l)>dt —iu"OHdw@e, 1y (37)

and the exact solution of Eq. (1). It is clear that the exact solution of Eq. (1), at the grid points,
satisfies

du(l) = <i8+5_u(l) iR (D) + irud) Pu() — %FQ (l)u(l))dt —iu@aw, ), (38)

where R"(1) := Au(l) — 848_u(l) forl € Zy1.

Denote by e, ) i=u@,l) — uh(t, 1) the difference between the exact solution u and the
numerical solution u” at the grid point x; for ¢ € [0, T] and [ € Zx 1. Our main result of this
paper is the following L2(Q; C([0, T]; L?))-error estimate of €”.

5
Theorem 4.1. Assume that ug € () L*3 ™" (; H™), (29)~(30) hold for ¢ = 8 and Q7 € L3

m=2

Then there exists a constant C = C(T , ugy, Q) such that

(E[ sup Jlu(t) — u"'(z)ni])7 <Ch. (39)

te[0,T]
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Proof. Subtracting Eq. (37) from Eq. (38) and using the identity |a|?a — |b|?b = (Ja|* + |b|*) (a —
b) +ab (a — b) for a, b € C, we obtain

de (1) = (i8+8_eh<z> +ir(u@? + " O)1He" 1) + ixua)uh(l)e_h(l))dr

1 h s ph s h
— 5 Fo)e" 0)dr +iR" (dr —ie" (NdW (1, 1).

Applying It6 formula to the functional ||6h(t)||% and using the fact that €”(0,7) = 0 for any
| € Zn+1 and the symmetry of the proposed scheme under homogeneous Dirichlet boundary
condition, we get

N+1 LN+1 o LN+
Z I, )2 = 2,\f Z m[iu(l)uh (l)eh(l)z}dr + 2/ Z N [ieh(l)Rh(l)}dr.
1=0 o =0 o 1=0

Applying the Cauchy—Schwarz inequality and the discrete Gagliardo—Nirenberg inequality (3),
we obtain

t

t
le" @17 < / IR" () ljodr + / (14 20 e e )l ) e ()
0

0
It follows from Gronwall-Bellman inequality that

t

T
et = ([ 1R oigar ) -exo ([ [1+ 20 it o1 Jar ).
0 0

Taking expectation and using Holder and Minkovskii inequalities, we derive

1 1

2 4

(E[ sup ||eh(z>||i]) sTiJ(E[ sup ||Rh<r>||;‘ocD
1€[0,T] te[0,T] h

T
exp </ ()l ™ ) III;Odr>
0

By Taylor expansion, there exists 6; € [(I — 1)k, (I + 1)h] such that RM(I) := thrxx (O)h? /4.
Combining the Sobolev embedding (4), Corollary 2.1 implies, with p =4 and s =5, that

(40)

L4(Q)

C/E[ sup ||Rh<r)||1m}sch[ sup ||u(r)||§ﬂs}h256h2. (41)

1€[0,T] 1€[0,T]

By the Gagliardo—Nirenberg inequality (2) and the exponential moments estimations (31) and
(32) in Theorem 3.1, we get
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T
exp ( / ||u<r>||m||u”<r>||l;odr)
0

T
eXp(/ llue(r) Il IIVM(F)Ihder>
0

L4()

=<

L8()

< 00. (42)
L)

T
exp (/ Iluh(f”)llhI|5+Mh(r)||hdr)
0

We conclude (39) by combining (40)—(42). O

A slight version of the proof of Theorem 4.1 leads to the following error estimate of €” under
the IL? (Q; C([0, T]; .?))-norm for all p > 4.

5 —m
Corollary 4.1. Let p > 4. Assume that ug € () 1.2p3

m=2

and Q% € Eg. Then there exists a constant C = C(T, p, uq, Q) such that

(Q H™), (29)~(30) hold for q = 4p

1
(E[ sup ||u(t)—uh(z)||,'ij <Ch?. 43)

te[0,T]

Proof. Similarly to the proof of Theorem 4.1, we apply the 1t6 formula to ||e () || }’: , combining
with the Young inequality, and obtain

t t
||e<r>||,’jSpf||u<r>||m||uh<r>||1;c||e<r)||,';dr+p/||e(r)||,’,"1||Rh(r>||z;odr
0 0

1 t
< [UR"Ofear + [ 1elf (p = 1+ Pl s 0l )
0 0

Applying Gronwall-Bellman inequality, and then taking expectation and using Holder and
Minkovskii inequalities, as in the proof of Theorem 4.1, we deduce

1 1
P 2p
<E[ sup ||eh(r>||£]) 5C<]E[ sup ||Rh<t>||,2£])
t€[0,T] t€[0,T) h

T
exp( / ||u<t)||m||u"(t)||z,godr>
0

Using similar arguments in the proof of Theorem 4.1, we conclude (43) by Corollary 2.1 and
Theorem 3.1. O

L2/ ()
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If uq is a non-random element in H® with s > 2, then the conditions (15) and (29)—(30) dis-
appear and we always obtain the exponential integrability theorem (3.1). In this case, our main
results, Theorem 4.1 and Corollary 4.1, reduce to the following result.

Theorem 4.2. Let p > 1. Assume that ug € H and Q% € Eg. Then there exists a constant C =
C(T, p,up, Q) such that

1

(E[ sup ||u(;)_uh(;)||g])1’ <Ch?.

te[0,T]

Remark 4.1.

1. Our error analysis is also available under rough regularity assumptions. More precisely,
for some 8 > 1/2 and 0 < 8 < 1, if u € H>*P+3 (the fractional Sobolev space) a.s., then
||Rh||1;o < C|lul| H2+ﬁ+5]’l’3 , which implies that the strong convergence rate is O(hf); if
u e H3 P+ a5, then || Ry || 1o = Cllul| y3+p+0h 1P which yields that the strong convergence
rate is O(h'1P).

2. If one has a priori estimate of u under weak regularity assumptions, we can also obtain
the strong convergence rate (39) for the scheme (6). For example, once a priori estimate
under the H*®-norm with § > 1/2 is established, we can reduce the regularity condition
H? in Theorem 4.1 to H*t%. When the regularity exceeds H*+® with § > 1/2, the order
of the scheme (6) can not be improved. In this case, to obtain higher order schemes one
can consider other higher order finite difference schemes rather than the central difference
scheme (6) or use the extrapolation acceleration skill (see e.g. [16]).
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