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Abstract

We consider a degenerate abstract wave equation with a time-dependent propagation speed. We inves-
tigate the influence of a strong dissipation, namely a friction term that depends on a power of the elastic 
operator.

We discover a threshold effect. If the propagation speed is regular enough, then the damping prevails, 
and therefore the initial value problem is well-posed in Sobolev spaces. Solutions also exhibit a regularizing 
effect analogous to parabolic problems. As expected, the stronger is the damping, the lower is the required 
regularity.

On the contrary, if the propagation speed is not regular enough, there are examples where the damping is 
ineffective, and the dissipative equation behaves as the non-dissipative one.
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1. Introduction

Let H be a separable real Hilbert space. For every x and y in H , |x| denotes the norm of x, 
and 〈x, y〉 denotes the scalar product of x and y. Let A be a self-adjoint linear operator on H
with dense domain D(A). We assume that A is nonnegative, namely 〈Ax, x〉 ≥ 0 for every 
x ∈ D(A), so that for every α ≥ 0 the power Aαx is defined provided that x lies in a suitable 
domain D(Aα).

We consider the second order linear evolution equation

u′′(t) + 2δAσ u′(t) + c(t)Au(t) = 0 (1.1)

in some interval [0, T ], with initial data

u(0) = u0, u′(0) = u1. (1.2)

We refer to [7] for the history of the problem and a short survey of some related literature (see 
also [1,4,5,9] and the references quoted therein for analogous models with competition between 
damping and time-dependent propagation speed). Here we just recall the main results that are 
more relevant to our presentation.

The non-dissipative equation (δ = 0) was considered in the seminal paper [2] under the strict 
hyperbolicity assumption

0 < μ1 ≤ c(t) ≤ μ2 ∀t ∈ [0, T ], (1.3)

and then in [3] under the degenerate hyperbolicity assumption

0 ≤ c(t) ≤ μ ∀t ∈ [0, T ]. (1.4)

The general philosophy is that higher space-regularity of initial data compensates lower time-
regularity of c(t). The result is that problem (1.1)–(1.2) is well-posed in suitable Gevrey spaces, 
whose order depends on the regularity class of c(t), and on the strict/degenerate hyperbolicity 
condition. For less regular data strange pathologies may occur, in the sense that for suitable co-
efficients there do exist “solutions” which lie in Gevrey spaces (of course not as good as those 
that guarantee well-posedness) at time t = 0, but which are not even distributions when t > 0. 
We refer to section 2.2 for a survey of the statements concerning the degenerate non-dissipative 
case.

The dissipative equation (δ > 0) with constant positive propagation speed was considered in 
full generality in [8]. If we limit ourselves to the range σ ∈ (0, 1/2], the result is that in this spe-
cial autonomous case problem (1.1)–(1.2) is well-posed in the classic energy space D(A1/2) ×H , 
and solutions exhibit a regularizing effect for positive times, in the sense that they lie in Gevrey 
spaces of order (2σ)−1.

The dissipative case with time-dependent propagation speed is more complex, because there 
is some sort of competition between the damping and the potential low-regularity of c(t). This 
competition was investigated for the first time in [7], leading to the following results.
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• When σ > 1/2 the damping always prevails, and problem (1.1)–(1.2) is well-posed in 
D(A1/2) × H (but also different choices are possible) provided that c(t) is measurable and 
satisfies the degenerate hyperbolicity condition (1.4).

• When σ ∈ [0, 1/2] the competition is tighter. If c(t) is α-Hölder continuous and satisfies the 
strict hyperbolicity condition (1.3), then problem (1.1)–(1.2) is well-posed in D(A1/2) × H

provided that 2σ > 1 −α. Otherwise, the equation behaves as the non-dissipative one, mean-
ing well-posedness in the appropriate Gevrey classes, and potential pathologies for less 
regular data.

In this paper, which is intended as a continuation of [7], we consider the case where σ ∈
[0, 1/2], and the coefficient c(t) is a function of class Ck,α satisfying the degenerate hyperbolicity 
condition (1.4). Again we discover a threshold effect.

• When (2 + k + α)σ > 1, we show in Theorem 3.1 that equation (1.1) behaves as the one 
with constant positive propagation speed, meaning well-posedness in Sobolev spaces, and 
regularizing effect to Gevrey classes of order (2σ)−1 for positive times.

• When (2 + k + α)σ < 1, we show in Theorem 3.6 that equation (1.1) can exhibit the same 
pathologies of the non-dissipative case.

From the technical point of view, the spectral theory reduces the problem to estimating the 
growth of solutions to the family of ordinary differential equations

u′′
λ(t) + 2δλ2σ u′

λ(t) + λ2c(t)uλ(t) = 0, (1.5)

with initial data

uλ(0) = u0,λ, u′
λ(0) = u1,λ. (1.6)

To this end, we introduce “approximated hyperbolic energies” of the form

|u′
λ(t)|2 + δ2λ4σ |uλ(t)|2 + δλ2σ uλ(t)u

′
λ(t) + γλ(t)λ

2|uλ(t)|2,

where γλ(t) is a suitable smooth approximation of c(t) to be chosen in a λ-dependent way. This 
technique dates back to [2,3], but here we need to design γλ(t) in a completely different way in 
order to take advantage of the strong damping. For this reason, Lemma 5.1 is the technical core 
of the proof of Theorem 3.1.

As for counterexamples, again we follow the strategy devised in [2,3], but again we have to 
change the ingredients from the very beginning because of the dissipation.

This paper is organized as follows. In section 2 we introduce the functional setting and we 
recall the classic existence results from [3]. In section 3 we state our main results. In section 4
we provide a heuristic description of the competition between oscillations of c(t) and strong 
damping. In section 5 we prove our existence and regularity results. In section 6 we present our 
examples of pathological solutions.
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2. Notation and previous results

2.1. Functional spaces

Let H be a separable Hilbert space. Let us assume that H admits a countable complete or-
thonormal system {en}n∈N made by eigenvectors of A. We denote the corresponding eigenvalues 
by λ2

n (with the agreement that λn ≥ 0), so that Aen = λ2
nen for every n ∈ N. In this case every 

u ∈ H can be written in a unique way in the form u = ∑∞
n=0 unen, where un = 〈u, en〉 are the 

Fourier components of u. In other words, the Hilbert space H can be identified with the set of 
sequences {un} of real numbers such that 

∑∞
n=0 u2

n < +∞.
We stress that this is just a simplifying assumption, with substantially no loss of generality. 

Indeed, according to the spectral theorem in its general form (see for example Theorem VIII.4 
in [10]), one can always identify H with L2(M, μ) for a suitable measure space (M, μ), in such 
a way that under this identification the operator A acts as a multiplication operator by some mea-
surable function λ2(ξ). All definitions and statements in the sequel, with the exception of the 
counterexamples of Theorem 3.6, can be easily extended to the general setting just by replac-
ing the sequence {λ2

n} with the function λ2(ξ), and the sequence {un} of Fourier components 
of u with the element û(ξ) of L2(M, μ) corresponding to u under the identification of H with 
L2(M, μ).

The usual functional spaces can be characterized in terms of Fourier components as follows.

Definition 2.1. Let u be a sequence {un} of real numbers.

• Sobolev spaces. For every α ≥ 0 we say that u ∈ D(Aα) if

‖u‖2
D(Aα) :=

∞∑
n=0

(1 + λn)
4αu2

n < +∞. (2.1)

• Distributions. We say that u ∈ D(A−α) for some α ≥ 0 if

‖u‖2
D(A−α)

:=
∞∑

n=0

(1 + λn)
−4αu2

n < +∞. (2.2)

• Gevrey spaces. Let s > 0, r > 0 and α be real numbers. We say that u ∈ Gs,r,α(A) if

‖u‖2
s,r,α :=

∞∑
n=0

(1 + λn)
4αu2

n exp
(

2rλ
1/s
n

)
< +∞. (2.3)

• Gevrey ultradistributions. Let S > 0, R > 0 and α be real numbers. We say that u ∈
G−S,R,α(A) if

‖u‖2−S,R,α :=
∞∑

n=0

(1 + λn)
4αu2

n exp
(
−2Rλ

1/S
n

)
< +∞. (2.4)
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The quantities defined in (2.1) through (2.4) are actually norms inducing a Hilbert space 
structure on the corresponding spaces. The standard inclusions

Gs,r,α(A) ⊆ D(Aβ) ⊆ H ⊆ D(A−β) ⊆ G−S,R,−α(A)

hold true for every positive value of α, β , r , s, R, and S. All inclusions are strict if the sequence 
λn is unbounded.

We observe that Gs,r,α(A) is actually a so-called scale of Hilbert spaces with respect to the pa-
rameter r , with larger values of r corresponding to smaller spaces. Analogously, G−S,R,α(A) is a 
scale of Hilbert spaces with respect to the parameter R, but with larger values of R corresponding 
to larger spaces.

2.2. Damping-independent results

In this subsection we recall the classical results concerning existence, uniqueness, and regu-
larity for solutions to problem (1.1)–(1.2) under the sole assumptions that δ ≥ 0 and c(t) satisfies 
the degenerate hyperbolicity assumption. For the sake of consistency, we rephrase the results in 
our functional setting. In the quoted references only the case δ = 0 is considered, but the same 
techniques work also when δ > 0 because all extra terms have the “right sign”.

The first result concerns existence and uniqueness of a very weak solution for a very huge 
class of initial data, with minimal assumptions on c(t) (no hyperbolicity is required).

Theorem A (see [2, Theorem 1]). Let us consider problem (1.1)–(1.2) under the following as-
sumptions:

• A is a self-adjoint nonnegative operator on a separable Hilbert space H ,
• c ∈ L1((0, T )) (without sign conditions) for some T > 0,
• σ ≥ 0 and δ ≥ 0 are two real numbers,
• there exists R0 > 0 such that initial conditions satisfy

(u0, u1) ∈ G−1,R0,1/2(A) × G−1,R0,0(A).

Then there exists a nondecreasing function R : [0, T ] → (0, +∞), with R(0) = R0, such that 
problem (1.1)–(1.2) admits a unique solution

u ∈ C0 ([0, T ];G−1,R(t),1/2(A)
) ∩ C1 ([0, T ];G−1,R(t),0(A)

)
. (2.5)

Condition (2.5), with the range space increasing with time, simply means that

u ∈ C0 ([0, τ ];G−1,R(τ),1/2(A)
) ∩ C1 ([0, τ ];G−1,R(τ),0(A)

) ∀τ ∈ (0, T ].

This amounts to say that scales of Hilbert spaces, rather than fixed Hilbert spaces, are the 
natural setting for this problem.

In the second result we assume degenerate hyperbolicity and more time-regularity of the coef-
ficient c(t), and we obtain well-posedness in a suitable smaller class of Gevrey ultradistributions.
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Theorem B (see [3, Theorem 1 and Remark 4]). Let us consider problem (1.1)–(1.2) under the 
following assumptions:

• A is a self-adjoint nonnegative operator on a separable Hilbert space H ,
• there exists k ∈ N and α ∈ (0, 1] such that c ∈ Ck,α([0, T ]),
• c(t) satisfies the degenerate hyperbolicity assumption (1.4),
• σ ≥ 0 and δ ≥ 0 are two real numbers,
• initial conditions satisfy

(u0, u1) ∈ G−S,R0,1/2(A) × G−S,R0,0(A)

for some real numbers R0 > 0 and S > 0 such that

S < 1 + k + α

2
. (2.6)

Then the unique solution u(t) to the problem provided by Theorem A satisfies the further 
regularity

u ∈ C0 ([0, T ],G−S,R0+ε,1/2(A)
) ∩ C1 ([0, T ],G−S,R0+ε,0(A)

) ∀ε > 0.

The third result concerns existence of regular solutions. The assumptions on c(t) are the same 
as in Theorem B, but initial data are significantly more regular (Gevrey spaces instead of Gevrey 
ultradistributions).

Theorem C (see [3, Theorem 1]). Let us consider problem (1.1)–(1.2) under the following as-
sumptions:

• A is a self-adjoint nonnegative operator on a separable Hilbert space H ,
• there exists k ∈ N and α ∈ (0, 1] such that c ∈ Ck,α([0, T ]),
• c(t) satisfies the degenerate hyperbolicity assumption (1.4),
• σ ≥ 0 and δ ≥ 0 are two real numbers,
• initial conditions satisfy

(u0, u1) ∈ Gs,r0,1/2(A) × Gs,r0,0(A)

for some real numbers r0 > 0 and s > 0 such that

s < 1 + k + α

2
. (2.7)

Then the unique solution u(t) to the problem provided by Theorem A satisfies the further 
regularity

u ∈ C0 ([0, T ],Gs,r0−ε,1/2(A)
) ∩ C1 ([0, T ],Gs,r0−ε,0(A)

) ∀ε ∈ (0, r0).
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Remark 2.2. The counterexample presented in [3, Theorem 2] clarifies that there is essentially 
no well-posedness result in between the Gevrey spaces of Theorem C and the Gevrey ultradistri-
butions of Theorem B, and that conditions (2.6) and (2.7) are optimal.

More precisely, there exists a nonnegative coefficient c(t) of class Ck,α for which (1.1) admits 
a solution that is Gevrey regular at time t = 0 (just a little bit less regular than required by 
Theorem C), but then exhibits a severe derivative loss, meaning that for all positive times this 
solution is just a hyperdistribution as in Theorem B, and nothing more.

2.3. Glaeser type inequalities

A classical result states that the power 1/(k + α) of a nonnegative function of class Ck,α is 
absolutely continuous, and actually Lipschitz continuous when k = 1. In this paper we need this 
result in the following form.

Theorem D (Glaeser type inequalities). Let T be a positive real number, let k be a positive 
integer, let α ∈ (0, 1] be a real number, and let c : [0, T ] → [0, +∞) be a nonnegative function 
of class Ck,α .

Then the following estimates hold true.

• (Case k = 1) There exists a constant K such that

|c′(t)| ≤ K[c(t)]1−1/(1+α) ∀t ∈ [0, T ]. (2.8)

• (Case k ≥ 2) There exists a function ϕ : [0, T ] → [0, +∞), with ϕ ∈ L1((0, T )), such that

|c′(t)| ≤ ϕ(t)[c(t)]1−1/(k+α) ∀t ∈ [0, T ]. (2.9)

For a proof of Theorem D we refer to [3, Lemma 1], or to the more recent paper [6] where the 
result has been improved by showing further Lp summability of ϕ(t).

3. Main results

Let us set

C(t) :=
t∫

0

c(s) ds ∀t ∈ [0, T ]. (3.1)

Our main existence and regularity result concerns the regime where the damping dominates 
the time-dependent coefficient.

Theorem 3.1 (Sobolev and Gevrey regularity). Let us consider problem (1.1)–(1.2) under the 
following assumptions:

• A is a self-adjoint nonnegative operator on a separable Hilbert space H ,
• there exists k ∈ N and α ∈ (0, 1] such that c ∈ Ck,α([0, T ]),
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• c(t) satisfies the degenerate hyperbolicity assumption (1.4), with in addition

c(0) = 0, (3.2)

and its antiderivative (3.1) satisfies

C(t) > 0 ∀t ∈ (0, T ], (3.3)

• δ is a positive real number, and σ is a real number such that

1

2 + k + α
< σ ≤ 1

2
, (3.4)

• (u0, u1) ∈ D(Aσ ) × H .

Then the unique solution u(t) to the problem provided by Theorem A has the following regu-
larity properties.

(1) (Sobolev regularity for positive times) It turns out that

u ∈ C0 (
(0, T ],D(Aσ )

) ∩ C1 ((0, T ],H) . (3.5)

(2) (Gevrey regularity for positive times) There exists r > 0 such that

u ∈ C0 (
(0, T ],G(2σ)−1,rC(t),σ (A)

) ∩ C1 (
(0, T ],G(2σ)−1,rC(t),0(A)

)
. (3.6)

(3) (Continuity in Sobolev spaces up to t = 0) If in addition k ∈ {0, 1}, then it turns out that

u ∈ C0 ([0, T ],D(Aσ )
) ∩ C1 ([0, T ],H) . (3.7)

The proof of Theorem 3.1 provides also estimates for high frequency components of solutions. 
We refer to Remark 5.4 for further details.

We observe that we assumed that c(0) = 0, and that c(t) does not vanish identically in a right 
neighborhood of t = 0. In the following two remarks we show that there is no loss of generality 
in these assumptions.

Remark 3.2. Let us assume that c(0) > 0. Due to the continuity of c(t), there exists T1 ∈ (0, T ]
such that c(t) is bounded from below by a positive constant in [0, T1].

Therefore, in this subinterval we can apply the theory for the strictly hyperbolic case, which 
provides well-posedness in Sobolev spaces (see [7, Theorem 3.2 and Remark 3.5]) and regulariz-
ing effect up to Gevrey spaces of order (2σ)−1 (see [7, Theorem 3.9]) provided that c ∈ C0,β for 
some β > 1 − 2σ . In order to check this assumption, we observe that it is satisfied with β := α if 
(3.4) holds true with k = 0, and with β close enough to 1 if (3.4) holds true with k ≥ 1 (in which 
case c(t) is at least of class C1, and hence β-Hölder continuous for every β ∈ (0, 1)).

Thus from the theory for strictly hyperbolic equations we deduce that, if initial data are in 
D(A1/2) × H , there exists r1 > 0 such that

(u(T1), u
′(T1)) ∈ Gs,r ,1/2(A) × Gs,r ,0(A) with s = (2σ)−1.
1 1
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This value of s satisfies (2.7) because of (3.4), and hence we can apply Theorem C in the 
interval [T1, T ], where c(t) is allowed to vanish. As a consequence, a quite regular solution 
exists on the whole interval [0, T ] for all initial data in D(A1/2) × H .

In other words, the case c(0) > 0 can be dealt with relying only on Theorem C and on the 
theory for strictly hyperbolic equations.

Remark 3.3. Let us assume that c(t) vanishes identically in a left neighborhood of the origin, 
and let us set

T1 := sup{t ∈ [0, T ] : c(τ ) = 0 ∀τ ∈ [0, t]}.
In the interval [0, T1] equation (1.5) reduces to

u′′
λ(t) + 2δλ2σ u′

λ(t) = 0,

whose solution is

uλ(t) = u0,λ − exp(−2δλ2σ t) − 1

2δλ2σ
· u1,λ ∀t ∈ [0, T1]. (3.8)

If (u0, u1) ∈ D(Aσ ) × H , this formula tells us that

u ∈ C0 ([0, T1],D(Aσ )
) ∩ C1 ([0, T1],H) ,

and in particular (u(T1), u′(T1)) ∈ D(Aσ ) × H . Therefore, we are in a position to continue the 
solution by applying Theorem 3.1 in the interval [T1, T ].

Remark 3.4. The calculation shown in Remark 3.3 clarifies that D(Aσ ) × H (or any product of 
spaces with “gap σ ”) is the appropriate phase space for degenerate equations. In some sense, this 
space is chosen by the equation itself. Indeed, formula (3.8) with u(0) = 0 and u′(0) = u1 shows 
that solutions can undergo an immediate jump

D(A∞) × H � D(Aσ ) × H.

As expected, this sort of derivative loss is bigger when σ is smaller.

Remark 3.5. In Theorem 3.1 we prove the continuity of the solution in D(Aσ ) × H up to t = 0
only in the case k ≤ 1. When k ≥ 2, we obtain Sobolev and Gevrey regularity for positive times, 
but as far as we know the solution might assume initial data only in the weak hyperdistributional 
sense of Theorem B, even if these initial data are again in D(Aσ) × H .

From the technical point of view, this depends on the fact that for k ≥ 2 the function ϕ that 
appears in the Glaeser type inequalities of Theorem D could be unbounded in a neighborhood of 
the origin. We refer to Remark 5.5 for further details.

On the other hand, we have no counterexamples to the continuity up to t = 0, which motivates 
the following question.

Open problem. Let us consider problem (1.1)–(1.2) under the same assumptions of Theo-
rem 3.1. Can we conclude that (3.7) holds true even in the case k ≥ 2?
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Our second result is the counterpart of Theorem 3.1, and concerns the regime where the damp-
ing is ineffective. In this regime Theorem C still provides existence of a regular solution for initial 
data in suitable Gevrey classes. Here we show that for less regular data a severe derivative loss is 
possible.

Theorem 3.6 (Instantaneous severe derivative loss). Let A be a linear operator on a Hilbert 
space H . Let us assume that there exists a countable (not necessarily complete) orthonormal 
system {en} in H , and an unbounded sequence {λn} of positive real numbers such that Aen =
λ2

nen for every n ∈N.
Let δ > 0 and α ∈ (0, 1] be real numbers, let k ∈ N be a nonnegative integer, and let σ be a 

real number such that

0 ≤ σ <
1

2 + k + α
. (3.9)

Then there exist a function c :R → [0, +∞), and a solution u(t) to equation (1.1) in [0, +∞)

satisfying the following three properties.

(1) (Regularity of the coefficient) The coefficient c(t) satisfies the regularity assumption

c ∈ Ck,α(R) ∩ C∞(R \ {0}), (3.10)

and the degenerate hyperbolicity assumption

0 < c(t) ≤ 1 ∀t > 0. (3.11)

(2) (Regularity of the solution at initial time) It turns out that

(u(0), u′(0)) ∈ Gs,r,β(A) × Gs,r,β(A) ∀s > 1 + k + α

2
, (3.12)

independently of r > 0 and β ∈R.
(3) (Non-regularity of the solution for all positive times) For every t > 0 it turns out that

(u(t), u′(t)) /∈ G−S,R,β(A) × G−S,R,β(A) ∀S > 1 + k + α

2
, (3.13)

independently of R > 0 and β ∈R.

Remark 3.7. Both Theorem 3.1 and Theorem 3.6 do not cover the limit case where σ = (2 +
k +α)−1. Concerning Theorem 3.1, a careful inspection of the proof reveals that when k ∈ {0, 1}
the same conclusions hold true even in the limit case, but provided that δ is large enough. The case 
k ≥ 2 is more delicate, at least when the function ϕ that appears in the Glaeser type inequalities 
is unbounded.

Concerning Theorem 3.6, the strict inequality in (3.9) is essential in the construction of our 
counterexamples.
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Fig. 1. Non-dissipative equation (left) vs dissipative equation (right).

4. Heuristics

The diagrams of Fig. 1 summarize the results of this paper. In the horizontal axis we represent 
the value k +α, corresponding to the time-regularity of c(t). In the vertical axis we represent the 
space-regularity of initial data, where the value s stands for the Gevrey space of order s (so that 
higher values of s mean lower regularity). The oblique line has equation s = 1 + k+α

2 .
For the non-dissipative equation (δ = 0) we have the situation described in Theorem C and 

Remark 2.2, namely well-posedness provided that c(t) is of class Ck,α and initial data are in 
Gevrey spaces of order s < 1 + k+α

2 , and potential pathologies if s > 1 + k+α
2 . The same picture 

applies if δ > 0 and σ = 0.
For the dissipative equation (δ > 0) the problem is well-posed in the Sobolev setting in the 

full strip with k + α > −2 + 1/σ , as stated in Theorem 3.1. The region on the left of the vertical 
line is divided as in the non-dissipative case. Indeed, Theorem C still provides well-posedness in 
the Gevrey setting below the oblique line, while Theorem 3.6 shows that pathologies are possible 
above the oblique line. What happens on the oblique and on the vertical line is less clear, because 
in these regimes the size of δ becomes relevant.

Now we present a rough justification of this threshold effect. As already observed, exis-
tence results for problem (1.1)–(1.2) are related to estimates for solutions to the family of 
ordinary differential equations (1.5). Let us consider the standard energy function E(t) :=
|u′

λ(t)|2 + λ2|uλ(t)|2. A classical argument shows that

E(t) ≤ E(0) exp

⎛⎝λt + λ

t∫
0

|c(s)|ds

⎞⎠ , (4.1)

and this estimate is enough to establish Theorem A.
If in addition c(t) is of class Ck,α , and satisfies the degenerate hyperbolicity condition (1.4), 

then (4.1) can be improved to

E(t) ≤ M1 E(0) exp
(
M2λ

2/(2+k+α)t
)

(4.2)

for suitable constants M1 and M2. Estimates of this kind are the key point in the proof of both 
Theorem B and Theorem C. Moreover, the pathologies described in Remark 2.2 are equivalent 
to saying that the exponent of λ in (4.2) is optimal.

On the other hand, if σ ≤ 1/2 and c(t) is constant, then (1.5) can be explicitly integrated, 
obtaining that
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E(t) ≤ M3 E(0) exp
(
−2δλ2σ t

)
(4.3)

for a suitable constant M3.
If c(t) is of class Ck,α and satisfies the degenerate hyperbolicity condition (1.4), then we 

expect a superposition of the effects of the coefficient, represented by (4.2), and the effects of the 
damping, represented by (4.3). We end up with something like

E(t) ≤ M1M3 E(0) exp
(
(M2λ

2/(2+k+α) − 2δλ2σ ) · t
)

. (4.4)

Therefore, it is reasonable to expect well-posedness in Sobolev spaces when the argument of 
the exponential is bounded from above independently of λ, which is true for sure when condition 
(3.4) is satisfied. On the contrary, when (3.9) is satisfied, the right-hand side of (4.4) diverges 
as λ → +∞, opening the door to the pathologies. In the border-line case, namely when the two 
exponents are equal, the size of δ comes into play.

5. Proofs of well-posedness and regularity results

In this section we prove Theorem 3.1. The proof has three main steps.

• In Lemma 5.1 we show that c(t) can be approximated by a family γλ(t) of nonnegative 
functions of class C1 satisfying suitable estimates. Glaeser type inequalities play a crucial 
role in this step.

• In Proposition 5.2 we use the functions γλ(t) as coefficients of approximated hyperbolic 
energies, and with the help of these energies we estimate the growth of solutions to the 
family of ordinary differential equations (1.5).

• Finally, we conclude by means of the spectral theory and the previous estimates.

In the sequel we set for simplicity

θ := 2

2 + k + α
, (5.1)

and we observe that definition (5.1) implies that

2(1 − θ)

k + α
= θ. (5.2)

Lemma 5.1 (Approximation of the coefficient). Let T > 0, μ > 0 and α ∈ (0, 1] be real numbers, 
let k ∈ N be a nonnegative integer, and let c : [0, T ] → [0, μ] be any function of class Ck,α . Let 
θ be defined by (5.1).

Then for every λ > 0 there exists a function γλ : [0, T ] → [0, μ] of class C1 such that

|c(t) − γλ(t)| ≤ λ−2(1−θ) ∀t ∈ [0, T ], (5.3)

and

|c(t) − γλ(t)|2 ≤ c(t)λ−2(1−θ) ∀t ∈ [0, T ]. (5.4)
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In addition, the derivative of γλ satisfies the following estimates depending on k.

• If k = 0, then it turns out that

|γ ′
λ(t)| ≤ (25H)1/α · c(t)λθ ∀t ∈ [0, T ], (5.5)

where H denotes the α-Hölder constant of c(t) in [0, T ].
• If k = 1, then it turns out that

|γ ′
λ(t)| ≤ 4K · c(t)λθ ∀t ∈ [0, T ], (5.6)

where K denotes the constant for which (2.8) holds true.
• If k ≥ 2, then it turns out that

|γ ′
λ(t)| ≤ 4ϕ(t) · c(t)λθ ∀t ∈ [0, T ], (5.7)

where ϕ(t) denotes the function for which (2.9) holds true.

Proof. For every ε > 0, let us consider the function ψε : R →R defined as

ψε(x) :=
⎧⎨⎩

0 if x ≤ 0,

x − 2

π
· ε arctan

(π

2
· x

ε

)
if x ≥ 0.

It turns out that ψε is a function of class C1 that approximates the piecewise affine function 
max{x, 0}. In particular, in the sequel we need that

|ψε(x) − x| ≤ ε ∀ε > 0, ∀x ≥ 0, (5.8)

and that the derivative satisfies

ψ ′
ε(x) = 0 ∀ε > 0, ∀x ≤ 0, (5.9)

|ψ ′
ε(x)| ≤ 1 ∀ε > 0, ∀x ≥ 0. (5.10)

Case k ≥ 1 In this case we set

cε(t) := ψε(c(t) − ε) ∀t ∈ [0, T ],

and we define γλ(t) as cε(t) in the case where

4ε := λ−2(1−θ). (5.11)

In order to prove (5.3) and (5.4), we distinguish two cases.
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• If c(t) ≤ ε, then cε(t) = 0, and hence

|γλ(t) − c(t)| = c(t) ≤ ε ≤ λ−2(1−θ),

which proves (5.3). Similarly, it turns out that

|γλ(t) − c(t)|2 = c(t) · c(t) ≤ c(t) · ε ≤ c(t) · λ−2(1−θ),

which proves (5.4).
• If c(t) ≥ ε, then from (5.8) with x = c(t) − ε we deduce that

|γλ(t) − c(t)| = |ψε(c(t) − ε) − (c(t) − ε) − ε| ≤ 2ε ≤ λ−2(1−θ),

which proves (5.3), and similarly

|γλ(t) − c(t)|2 ≤ 2ε · 2ε ≤ c(t) · 4ε = c(t) · λ−2(1−θ),

which proves (5.4).

Let us consider now the derivative γ ′
λ(t), and let us distinguish again two cases.

• If c(t) ≤ ε, then from (5.9) we deduce that γ ′
λ(t) = 0, and hence both (5.6) and (5.7) are 

trivial.
• If c(t) ≥ ε, then from (5.10) we deduce that

|γ ′
λ(t)| = |ψ ′

ε(c(t) − ε)| · |c′(t)| ≤ |c′(t)|. (5.12)

Now we apply the Glaeser type inequalities of Theorem D. If k = 1, from (5.11) and (5.2)
we obtain that

|c′(t)| ≤ Kc(t) · [c(t)]−1/(1+α) ≤ Kc(t)ε−1/(1+α) ≤ 4Kc(t)λθ .

Plugging this inequality into (5.12) we obtain (5.6). Similarly, for k ≥ 2 we obtain that

|c′(t)| ≤ ϕ(t)c(t) · [c(t)]−1/(k+α) ≤ ϕ(t)c(t)ε−1/(k+α) ≤ 4ϕ(t)c(t)λθ .

Plugging this inequality into (5.12) we obtain (5.7).

Case k = 0 In this case we first extend c(t) to the whole half-line t ≥ 0 by setting c(t) =
c(T ) for every t ≥ T , and then we consider the regularized function

ĉε(t) := 1

ε

t+ε∫
t

c(s) ds ∀t ≥ 0.

Due to (1.4), the function ĉε(t) takes its values in [0, μ]. Moreover, it is of class C1 and 
satisfies
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|̂cε(t) − c(t)| ≤ Hεα ∀t ∈ [0, T ], (5.13)

and

|̂cε
′(t)| ≤ H

ε1−α
∀t ∈ [0, T ]. (5.14)

Now we set

cε(t) := ψ2Hεα (̂cε(t) − 2Hεα) ∀t ∈ [0, T ],

and we define γλ(t) as cε(t) in the case where

25Hεα := λ−2(1−θ). (5.15)

In order to prove (5.3) and (5.4), we distinguish two cases.

• If ̂cε(t) ≤ 2Hεα , then cε(t) = 0, and in addition c(t) ≤ 3Hεα because of (5.13) and triangle 
inequality. It follows that

|γλ(t) − c(t)| = c(t) ≤ 3Hεα ≤ λ−2(1−θ),

which proves (5.3). Similarly, we obtain that

|γλ(t) − c(t)|2 = c(t) · c(t) ≤ c(t) · 3Hεα ≤ c(t) · λ−2(1−θ),

which proves (5.4).
• If ̂cε(t) ≥ 2Hεα , then c(t) ≥ Hεα because of (5.13) and triangle inequality. Now we observe 

that

|γλ(t) − c(t)| = ∣∣ψ2Hεα (̂cε(t) − 2Hεα) − (̂cε(t) − 2Hεα) + (̂cε(t) − c(t)) − 2Hεα
∣∣ .

The first two terms can be estimated by means of inequality (5.8) with x = ĉε(t) − 2Hεα . 
The third term can be estimates as in (5.13). Thus from triangle inequality we deduce that

|γλ(t) − c(t)| ≤ 5Hεα ≤ λ−2(1−θ),

and

|γλ(t) − c(t)|2 ≤ 5Hεα · 5Hεα ≤ c(t) · 25Hεα = c(t) · λ−2(1−θ),

which prove (5.3) and (5.4).

As for derivatives, again we distinguish two cases.

• If c(t) ≤ Hεα , then from (5.13) we deduce that ̂cε(t) ≤ 2Hεα . Thus from (5.9) we conclude 
that γ ′(t) = 0, and hence (5.5) is trivial.
λ
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• If c(t) ≥ Hεα , then from (5.9) and (5.10) we deduce that

|γ ′
λ(t)| =

∣∣ψ ′
2Hεα (̂cε(t) − 2Hεα)

∣∣ · |̂cε
′(t)| ≤ |̂cε

′(t)|,

and therefore from (5.14), (5.15) and (5.2) we conclude that

|γ ′
λ(t)| ≤ |̂cε

′(t)| ≤ Hεα

ε
≤ c(t) · 1

ε
= c(t) · (25H)1/αλθ ,

which proves (5.5).

This completes the proof. �
Proposition 5.2 (Estimates on components). Let us consider problem (1.5)–(1.6) under the fol-
lowing assumptions:

• there exists k ∈ N and α ∈ (0, 1] such that c ∈ Ck,α([0, T ]),
• c(t) satisfies the degenerate hyperbolicity assumption (1.4) and condition (3.2),
• δ and λ are positive real numbers, and σ is a real number satisfying (3.4).

Then there exist positive real numbers r and ν, both independent of λ, such that the following 
estimates hold true.

(1) (Case k ∈ {0, 1}) For every t ∈ [0, T ], and every λ ≥ ν, it turns out that

|u′
λ(t)|2 + δ2λ4σ |uλ(t)|2σ ≤ 3

(
u2

1,λ + δ2λ4σ u2
0,λ

)
exp

(
−4rλ2σ C(t)

)
, (5.16)

where C(t) is defined by (3.1).
(2) (Case k ≥ 2) Let ϕ(t) be the function which appears in (2.9), let θ be defined by (5.1), and 

let

�(t) :=
t∫

0

ϕ(s) ds ∀t ∈ [0, T ].

Then for every t ∈ [0, T ], and every λ ≥ ν, it turns out that

|u′
λ(t)|2 + δ2λ4σ |uλ(t)|2σ ≤ 3

(
u2

1,λ + δ2λ4σ u2
0,λ

)
·

· exp
(
−4rλ2σ C(t) + 4λθ�(t)

)
. (5.17)

Proof. For every function γ : [0, T ] → [0, +∞) of class C1, we introduce the approximated 
hyperbolic energy

Eγ (t) := |u′ (t)|2 + δ2λ4σ |uλ(t)|2 + δλ2σ uλ(t)u
′ (t) + γ (t)λ2|uλ(t)|2.
λ λ
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Since

δλ2σ |uλ(t)u
′
λ(t)| ≤

δ2

2
λ4σ |uλ(t)|2 + 1

2
|u′

λ(t)|2,

it follows that

Eγ (t) ≥ 1

2
|u′

λ(t)|2 + δ2

2
λ4σ |uλ(t)|2 + γ (t)λ2|uλ(t)|2 (5.18)

and

Eγ (t) ≤ 3

2
|u′

λ(t)|2 + 3δ2

2
λ4σ |uλ(t)|2 + γ (t)λ2|uλ(t)|2 (5.19)

for every admissible value of the parameters.
Given any real number r , an elementary but lengthy calculation shows that

E′
γ (t) = −4rc(t)λ2σ Eγ (t) − Q1,γ (t) + Q2,γ (t) ∀t ∈ [0, T ], (5.20)

where

Q1,γ (t) := Xγ (t)|u′
λ(t)|2 + Yγ (t)|uλ(t)|2 + Zγ (t)uλ(t)u

′
λ(t)

is a quadratic form in the variables uλ(t) and u′
λ(t) with coefficients

Xγ (t) := λ2σ (3δ − 4rc(t)), Yγ (t) := c(t)λ2+2σ

(
δ

2
− 4rδ2λ4σ−2 − 4rγ (t)

)
,

Zγ (t) := 2(c(t) − γ (t))λ2 − 4rδc(t)λ4σ ,

and

Q2,γ (t) := − δ

2
c(t)λ2+2σ |uλ(t)|2 + γ ′(t)λ2|uλ(t)|2.

In the sequel we fix r such that

2rμ ≤ δ, 16r(δ2 + μ) ≤ δ, 64r2μ ≤ 1, (5.21)

and we provide estimates for Q1,γ (t) and Q2,γ (t).

Estimate on Q1,γ (t) Let ν be a positive real number such that

ν ≥ 1, δν2σ−θ ≥ 4. (5.22)

For every λ > 0, let γλ(t) be the approximation of c(t) provided by Lemma 5.1. We claim 
that

Q1,γλ(t) ≥ 0 ∀λ ≥ ν, ∀t ∈ [0, T ]. (5.23)
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From the theory of quadratic forms, we know that (5.23) holds true if the three inequalities

Xγλ(t) ≥ 0, Yγλ(t) ≥ 0, 4Xγλ(t)Yγλ(t) ≥ Zγλ(t)
2 (5.24)

are satisfied for every λ ≥ ν and every t ∈ [0, T ].
From (1.4) and the first inequality in (5.21) we obtain that Xγλ(t) ≥ δλ2σ . Moreover, since 

σ ≤ 1/2, λ ≥ 1, and γλ(t) ≤ μ, from the second inequality in (5.21) we obtain that Yγλ ≥
δc(t)λ2+2σ /4. This proves the first two inequalities in (5.24), and also provides the following 
estimate

4Xγλ(t)Yγλ(t) ≥ δ2c(t)λ2+4σ (5.25)

for the left-hand side of the third one. As for the right-hand side, we first observe that

Zγλ(t)
2 ≤ 8(c(t) − γλ(t))

2λ4 + 32r2δ2c(t)2λ8σ . (5.26)

The second term can be estimated as

32r2δ2c(t)2λ8σ ≤ 32r2μλ4σ−2 · δ2c(t)λ2+4σ ≤ δ2

2
c(t)λ2+4σ ,

where again we used that σ ≤ 1/2, λ ≥ 1, and the last inequality in (5.21). As for the first term, 
now we exploit the special choice of γλ(t) provided by Lemma 5.1. From (5.4) and (5.22) we 
obtain that

8(c(t) − γλ(t))
2λ4 ≤ 8c(t)λ−2(1−θ)λ4 ≤ δ2

2
c(t)λ2+4σ .

Plugging the last two estimates into (5.26) we conclude that

Zγλ(t)
2 ≤ δ2c(t)λ2+4σ . (5.27)

Finally, from (5.25) and (5.27) we obtain the third inequality in (5.24), and this completes the 
proof of (5.23).

Estimate on Q2,γ (t) and conclusion if k = 0 Let H denote the α-Hölder constant of c(t) in 
[0, T ], and let us assume that ν satisfies (5.22) and the further condition

ν2σ−θ ≥ 2

δ
(25H)1/α. (5.28)

As before, let γλ(t) denote the approximation of c(t) provided by Lemma 5.1. From (5.5) and 
(5.28) it follows that

Q2,γλ(t) ≤ 0 ∀λ ≥ ν, ∀t ∈ [0, T ]. (5.29)
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Plugging (5.23) and (5.29) into (5.20), we find that

E′
γλ

(t) ≤ −4rc(t)λ2σ Eγλ(t) ∀λ ≥ ν, ∀t ∈ [0, T ].

Integrating this differential inequality we obtain that

Eγλ(t) ≤ Eγλ(0) exp
(
−4rC(t)λ2σ

)
∀λ ≥ ν, ∀t ∈ [0, T ]. (5.30)

Finally, we observe that γλ(0) = 0 because of (5.4) and our assumption that c(0) = 0. At this 
point, estimate (5.16) with k = 0 follows from (5.18), (5.19), and (5.30).

Estimate on Q2,γ (t) and conclusion if k = 1 Let K denote the constant such that (2.8) holds 
true, and let us assume that ν satisfies (5.22) and the further condition

ν2σ−θ ≥ 8K

δ
. (5.31)

As before, let γλ(t) denote the approximation of c(t) provided by Lemma 5.1. From (5.6) and 
(5.31) it follows that also in this case (5.29) holds true.

At this point, the conclusion follows exactly as in the case k = 0.

Estimate on Q2,γ (t) and conclusion if k ≥ 2 Let us assume that ν satisfies (5.22) and the 
further condition

ν2σ−θ ≥
√

2

δ
. (5.32)

As always, let γλ(t) denote the approximation of c(t) provided by Lemma 5.1. From (5.7) it 
follows that

|γ ′
λ(t)| ≤ 4c(t)ϕ(t)λθ = 4γλ(t)ϕ(t)λθ + 4(c(t) − γλ(t))ϕ(t)λθ .

On the other hand, from (5.3) and (5.32) it follows that

|c(t) − γλ(t)| ≤ λ−2(1−θ) ≤ δ2

2
λ4σ−2,

and hence from (5.18) we deduce that

Q2,γλ(t) ≤ λ2|γ ′
λ(t)| · |uλ(t)|2

≤ 4λθϕ(t)

[
γλ(t)λ

2|uλ(t)|2 + δ2

2
λ4σ |uλ(t)|2

]
≤ 4λθϕ(t)Eγλ(t).
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Plugging this estimate and (5.23) into (5.20), we find that

E′
γλ

(t) ≤
[
−4rc(t)λ2σ + 4λθϕ(t)

]
Eγλ(t).

Integrating this differential inequality we obtain that

Eγλ(t) ≤ Eγλ(0) exp
(
−4rC(t)λ2σ + 4λθ�(t)

)
for every λ ≥ ν and every t ∈ [0, T ]. Recalling that γλ(0) = 0, the conclusion (5.17) follows 
again from (5.18) and (5.19), as in the previous cases. �
Remark 5.3. We observe that r depends only on δ and μ, as specified by (5.21), and that ν
depends on δ, σ , k + α, and

• on the α-Hölder constant of c(t) when k = 0,
• on the constant K for which (2.8) is true when k = 1.

The conditions on ν are stated in (5.22), and in (5.28), (5.31) or (5.32), depending on the value 
of k.

Stating precisely “what depends on what” could be useful when considering families of equa-
tions of the form (1.1) with different choices of δ, σ , c(t). This is often a key step in the fixed 
point arguments exploited when dealing with nonlinear problems.

End of the proof of Theorem 3.1
Let r and ν be as in Proposition 5.2. Let us write H as an orthogonal direct sum

H := Hν,− ⊕ Hν,+,

where Hν,− is the closure of the subspace generated by all eigenvectors of A relative to eigenval-
ues λn < ν, and Hν,+ is the closure of the subspace generated by all eigenvectors of A relative 
to eigenvalues λn ≥ ν. Let uν,−(t) and uν,+(t) denote the corresponding components of u(t).

The low frequency component uν,−(t) is continuous in any reasonable space because the 
operator A is bounded in Hν,−. For further details we refer to [7, Remark 3.3].

In order to estimate the high frequency component uν,+(t), we apply Proposition 5.2 to all 
components un(t) of u(t) corresponding to eigenvalues λn ≥ ν. To this end, we distinguish two 
cases.

Case k ∈ {0, 1} For these values of k we know that estimate (5.16) holds true for ev-
ery t ∈ [0, T ]. Summing over all eigenvalues λn ≥ ν, we obtain that uν,+(t) is bounded in 
G(2σ)−1,rC(t),σ (A), and hence in particular in D(Aσ ), while u′

ν,+(t) is bounded in
G(2σ)−1,rC(t),0(A), and hence in particular in H .

The same estimate guarantees the uniform convergence in [0, T ] of the series defining uν,+(t)

and u′
ν,+(t) in the same spaces. Since all summands are continuous, and the convergence is 

uniform, the sum is continuous as well.
This proves (3.5) through (3.7) for these values of k.



JID:YJDEQ AID:9436 /FLA [m1+; v1.287; Prn:23/07/2018; 15:47] P.21 (1-33)

M. Ghisi, M. Gobbino / J. Differential Equations ••• (••••) •••–••• 21
Case k ≥ 2 For these values of k we have to rely on estimate (5.17), which is worse than 
(5.16) because C(t) vanishes of order at least one in t = 0, while �(t) might vanish with a lower 
order.

Nevertheless, if we fix any τ ∈ (0, T ), from assumption (3.3) we deduce that C(t) is bounded 
from below in [τ, T ] by a positive constant, while �(t) is bounded from above in the same 
interval. Recalling (3.4), we obtain that

−4rλ2σ C(t) + 4λθ�(t) ≤ −2rλ2σ C(t) ∀t ∈ [τ, T ]

provided that λ is large enough.
At this point, the same argument of the previous case proves that

u ∈ C0 ([τ, T ],G(2σ)−1,rC(t),σ (A)
) ∩ C1 ([τ, T ],G(2σ)−1,rC(t),0(A)

)
.

Since τ is arbitrary, this proves (3.5) and (3.6) for these values of k. �
Remark 5.4. The proof of Theorem 3.1 provides also decay estimates in Sobolev spaces for high 
frequency components of solutions. Indeed, in the case k ∈ {0, 1} from (5.16) we obtain that

|u′
ν,+(t)|2 + δ2|Aσ uν,+(t)|2 ≤ 3

(
|u′

ν,+(0)|2 + δ2|Aσ uν,+(0)|2
)

exp
(
−4rν2σ C(t)

)
.

Analogous estimates can be deduced from (5.17) in the case k ≥ 2.
On the contrary, low frequency components could even grow linearly with time (it is enough 

to think to the case λ = 0).

Remark 5.5. As announced at the beginning of the section, the proof of Theorem 3.1 followed 
the path

u ∈ Ck,α ⇒ Glaeser ⇒ Lemma 5.1 ⇒ Proposition 5.2 ⇒ Theorem 3.1 ,

where each step depends only on the previous one. As a consequence, Theorem 3.1 holds true 
whenever c(t) can be approximated as in Lemma 5.1. More precisely, statements (1) and (2) 
of Theorem 3.1 are true for every σ satisfying (3.4) provided that c(t) can be approximated by 
a family cλ(t) of nonnegative functions of class C1 satisfying (5.3), (5.4), and (5.7) for some 
ϕ ∈ L1((0, T )). If in addition ϕ ∈ L∞((0, T )), then also statement (3) of Theorem 3.1 is true.

Just to give an example, let us consider the coefficient c(t) := t30. Since this coefficient is 
of class C∞, from Theorem 3.1 we deduce that a solution in D(Aσ ) × H exists for every σ ∈
(0, 1/2] (and also for σ > 1/2, as already proved in [7]). If we want continuity in the same space 
up to t = 0, and we limit ourselves to Theorem 3.1 as stated, we can consider t30 as a coefficient 
of class C1,1, so that from (3.7) we deduce the required continuity in the range σ ∈ (1/4, 1/2].

On the other hand, the function t30 satisfies the Glaeser type inequality (2.9) with ϕ(t)

bounded even if k = 29 and α = 1. Therefore, we can obtain the conclusions of Lemma 5.1
also for these values of k and α, and hence deduce that (3.7) is valid even in the larger range 
σ ∈ (1/32, 1/2].

What happens when σ ≤ 1/32 remains unclear.
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6. Counterexamples

In this section we prove Theorem 3.6. The strategy of the proof dates back to [2], but the 
functions and the sequences involved are different from case to case.

The starting point is finding a family of λ-dependent coefficients for which the ordinary dif-
ferential equation (1.5) admits solutions whose energy grows exponentially with time. Then we 
glue together these λ-dependent coefficients in order to produce a unique λ-independent coef-
ficient c(t) that acts on infinitely many time-scales, and realizes a similar growth for countably 
many components. To this end, we introduce a suitable decreasing sequence tn → 0+, and in the 
interval [tn, tn−1] we design c(t) so that un(tn) is small and un(tn−1) is huge. Then we check that 
the piecewise defined coefficient c(t) has the required time-regularity, and that un(t) remains 
small for t ∈ [0, tn] and huge for t ≥ tn−1. This completes the proof.

Basic ingredients Let us consider the functions

b(m, ε,λ, t) := (2mλε − δλ2σ )t − ε sin(2mλt), (6.1)

w(m,ε,λ, t) := sin(mλt) exp(b(m, ε,λ, t)), (6.2)

γ (m, ε,λ, t) := m2 + δ2

λ2−4σ
− 16m2ε2 sin4(mλt) − 8m2ε sin(2mλt). (6.3)

These functions depend on four variables, and generalize the corresponding functions of three 
variables introduced in [7]. The key point is that for every admissible value of the parameters it 
turns out that

w′′(m, ε,λ, t) + 2δλ2σ w′(m, ε,λ, t) + λ2γ (m, ε,λ, t)w(m,ε,λ, t) = 0,

where “primes” denote differentiation with respect to t . If we set parameters in such a way that

mλε ∼ λθ ,

with θ defined by (5.1), then the powers of λ in the coefficient of the linear term in (6.1) are ex-
actly the same powers that appear in the argument of the exponential function in (4.4). Therefore, 
if we choose ε small enough so that c(t) := γ (m, ε, λ, t) is positive, this procedure delivers us a 
solution u(t) := w(m, ε, λ, t) to (1.5) whose energy grows exponentially as the right-hand side 
of (4.4).

Definition of sequences Let us choose a sequence θn of positive real numbers such that

θn → θ− as n → +∞.

Let us consider the sequence λn of the eigenvalues of the operator. Since 2σ < θ < 1, and the 
sequence λn was assumed to be unbounded, up to passing to a subsequence (not relabeled) we 
can assume that for every n ≥ 0 it turns out that

λ2(1−θ) ≥ 2, (6.4)
n
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and

λθ−2σ
n ≥ 32δ. (6.5)

Moreover, for every n ≥ 1 we can also assume that

λθ
n ≥ 5λθ

n−1, (6.6)

2παλ2(1−θ)
n ≥ 3λθα

n−1, (6.7)

πλθ
n ≥ 16λθ

n−1 ·
{
(4δλ2σ

n + λ2
n−1 + 2) · n + 3λθn

n + 4(1 − θ) logλn

}
. (6.8)

Indeed, the choice of a (sub)sequence of eigenvalues satisfying these properties can be done 
inductively. Once that λn−1 has been chosen, (6.6) and (6.7) can be easily fulfilled because the 
sequence of eigenvalues is unbounded. As for (6.8), where λn appears on both sides, it is enough 
to observe that θ > 2σ , and that θn < θ is a fixed exponent at the moment in which we need to 
choose λn, and therefore the left-hand side grows to +∞ faster than the right-hand side, as a 
function of λn.

Finally, let us set

ε := 1

32
, mn := 1

λ1−θ
n

, Mn := m2
n + δ2

λ2−4σ
n

, (6.9)

and

tn := 4π

λθ
n

, sn := π

λθ
n

⌊
2λθ

n

λθ
n−1

⌋
, t ′n := tn − π

λθ
n

, s′
n := sn + π

λθ
n

(6.10)

where �α� denotes the largest integer less than or equal to α.

Properties of the sequences In this paragraph we collect the properties of the sequences that 
are needed in the sequel. First of all, the sequence λn is increasing, and λn → +∞ as n → +∞.

From (6.9) it follows that the sequence Mn is decreasing, and it satisfies

Mn ≥ m2
n = 1

λ
2(1−θ)
n

∀n ∈ N (6.11)

and, keeping (6.5) into account, also

Mn ≤ 3

2
m2

n = 3

2

1

λ
2(1−θ)
n

∀n ∈N. (6.12)

From (6.10) and (6.6) it follows that

s′
n+1 < t ′n < tn < sn < s′

n ∀n ∈N,

and all these sequences tend to 0 as n → +∞. In addition, for every n ∈N it turns out that
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sin(mnλntn) = sin(mnλnsn) = 0, (6.13)

and

| cos(mnλntn)| = | cos(mnλnsn)| = 1. (6.14)

From (6.6) we deduce that for every n ∈N it turns out that

sn ≥ π

λθ
n−1

, sn − tn ≥ π

λθ
n−1

, t ′n − s′
n+1 ≥ 4π

5λθ
n

. (6.15)

Finally, from (6.8) and the first inequality in (6.15) we deduce that

2ελθ
nsn ≥

(
4δλ2σ

n + λ2
n−1 + 2

)
· n + 3λθn

n + 4(1 − θ) logλn ∀n ≥ 1. (6.16)

Definition of smooth junctions Plugging ε = 1/32 into (6.3) we obtain that

γ

(
m,

1

32
, λ, t

)
= m2 + δ2

λ2−4σ
+ m2f (mλt),

where

f (x) := − 1

64
sin4 x − 1

4
sin(2x)

is a π -periodic function such that f (πz) = 0 for every z ∈ Z, and

−1

2
≤ f (x) ≤ 1

2
∀x ∈ R. (6.17)

In order to create smooth junctions, we choose two function g1 : [0, π] → R and g2 :
[0, π] → R of class C∞ such that

−1

2
≤ g1(x) ≤ 1

2
and − 1

2
≤ g2(x) ≤ 1

2
(6.18)

for every x ∈ [0, π], and such that the piecewise defined function

f̂ (x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g1(x) if x ∈ [0,π],
f (x) if x ∈ [π,2π ],
g2(x − 2π) if x ∈ [2π,3π ],
0 if x /∈ (0,3π)

belongs to C∞(R). We observe that, due to the periodicity of f (x), we can repeat the construc-
tion above using more blocks of f (x), in the sense that the function
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Fig. 2. Basic block of c(t) between s′
n+1 and s′

n .

f̂j (x) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
g1(x) if x ∈ [0,π],
f (x) if x ∈ [π, jπ],
g2(x − jπ) if x ∈ [jπ, (j + 1)π],
0 if x /∈ (0, (j + 1)π)

still belongs to C∞(R) for every integer number j ≥ 2.
Finally, we choose any function h :R →R of class C∞ such that

• h(x) = 0 for every x ≤ 0,
• h(x) = 1 for every x ≥ 1,
• h(x) is strictly increasing in (0, 1).

Definition of c(t) Let us define the time-dependent coefficient c :R → R. To begin with, for 
every n ∈N we consider the function �n : R →R defined by

�n(t) := Mn+1 + (Mn − Mn+1) · h
(

t − s′
n+1

t ′n − s′
n+1

)
∀t ∈ R, (6.19)

which represents an increasing junction of class C∞ between the constants Mn+1 and Mn in the 
interval [s′

n+1, t
′
n]. Then in every interval [s′

n+1, s
′
n] we set

c(t) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�n(t) if t ∈ [s′

n+1, t
′
n],

Mn + m2
ng1(mnλn(t − t ′n)) if t ∈ [t ′n, tn],

Mn + m2
nf (mnλnt) if t ∈ [tn, sn],

Mn + m2
ng2(mnλn(t − sn)) if t ∈ [sn, s′

n].

Fig. 2 describes the shape of c(t) in the interval [s′
n+1, s

′
n]. This is the building block of the 

entire construction. We observe in particular that

c(t ′n) = c(tn) = c(sn) = c(s′
n) = Mn ∀n ∈ N. (6.20)

The building blocks are repeated as described in Fig. 3. This defines c(t) in the interval (0, s′
0]. 

We complete the definition by setting c(t) := 0 for every t ≤ 0, and c(t) := M0 for every t ≥ s′ . 
0
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Fig. 3. Gluing of blocks in the definition of c(t).

The resulting function c(t) belongs to C∞(R \ {0}), and its derivatives of any order vanish in the 
points s′

n.
In words, the idea of the construction is the following.

• In the interval [tn, sn] the function c(t) coincides with γ (mn, ε, λn, t). This function oscil-
lates, with frequency of order λθ

n and amplitude of order m2
n, around the mean value Mn. 

Both the mean value Mn and the amplitude of oscillations tend to 0 as n → +∞, while the 
frequency of oscillations diverges to +∞.

• In the intervals [t ′n, tn] and [sn, s′
n] the function c(t) is a C∞ junction between the oscillating 

function of the interval [tn, sn] and the constant Mn.
• In the interval [s′

n+1, t
′
n] the function c(t) is an increasing junction of class C∞ between the 

constant Mn+1 and the constant Mn.

We point out that the key feature of the construction is the highly oscillatory behavior of c(t)
in the intervals [tn, sn]; all the rest is aimed at creating a smooth transition between the values of 
c(t) in these intervals.

Definition of u(t) For every n ∈N, we consider the solution un(t) to the ordinary differential 
equation

u′′
n(t) + 2δλ2σ

n u′
n(t) + λ2

nc(t)un(t) = 0, (6.21)

with “initial” data

un(tn) = 0, u′
n(tn) = mnλn exp

(
(2εmnλn − δλ2σ

n )tn

)
. (6.22)

Then we set

an := mn

(n + 1)λθ
n

exp(−λθn
n ), (6.23)

and we consider the solution u(t) to (1.1) defined by

u(t) :=
∞∑

n=0

anun(t)en.

We claim that c(t) satisfies (3.10) and (3.11), and that u(t) satisfies (3.12) and (3.13). The rest 
of the proof is a verification of these claims.
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Continuity and degenerate hyperbolicity of c(t) We prove that for every n ∈ N it turns out 
that

1

2λ
2(1−θ)
n

≤ c(t) ≤ 2

λ
2(1−θ)
n

∀t ∈ [t ′n, s′
n], (6.24)

and

1

λ
2(1−θ)
n+1

≤ c(t) ≤ 2

λ
2(1−θ)
n

∀t ∈ [s′
n+1, t

′
n]. (6.25)

If we prove these estimates, then from (6.4) it follows that c(t) satisfies the degenerate hyper-
bolicity assumption (3.11). Moreover, since λn → +∞, we obtain also that c(t) → 0 as t → 0+, 
which proves the continuity of c(t) on the whole real line.

In order to prove (6.24), from (6.17) and (6.18) we obtain the estimates

Mn − 1

2
m2

n ≤ c(t) ≤ Mn + 1

2
m2

n ∀t ∈ [t ′n, s′
n],

so that the conclusion follows from (6.11) and (6.12).
In order to prove (6.25), we just recall that in the interval [s′

n+1, t
′
n] the function c(t) is a 

smooth increasing junction between the constants Mn+1 and Mn, and we conclude by exploiting 
again (6.11) and (6.12).

Regularity of c(t) and estimates for its derivatives For every positive integer j , let c(j)(t)

denote the j -th derivative of c(t). To begin with, we prove that there exists a constant �j such 
that

|c(j)(t)| ≤ �jλ
(2+j)θ−2
n ∀n ∈ N, ∀t ∈ [s′

n+1, s
′
n]. (6.26)

The constant �j depends only on the L∞ norms of the derivatives of order j of the functions 
f (x), g1(x), g2(x), and h(x).

If k ≥ 1, then (2 + j)θ < 2 for every j ≤ k, and hence (6.26) implies that c(j)(t) → 0 as 
t → 0+ for every j ≤ k, which proves that c ∈ Ck(R).

In order to establish (6.26), it is enough to examine the definition of c(t) in the four subinter-
vals whose union is [s′

n+1, s
′
n].

• In the interval [tn, sn] the function c(t) is obtained from f (x) through horizontal and vertical 
rescaling, and therefore

|c(j)(t)| = m2
n(mnλn)

j
∣∣∣f (j)(mnλnt)

∣∣∣ ≤ λ
(2+j)θ−2
n · ‖f (j)‖∞.

• In the intervals [t ′n, tn] and [sn, s′
n] the argument is exactly the same, just with g1 and g2

instead of f .
• In the interval [s′

n+1, t
′
n] the function c(t) is a rescaling of the function h(x). Thus from 

(6.19) it follows that
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|c(j)(t)| = Mn − Mn+1

(t ′n − s′
n+1)

j
·
∣∣∣∣∣h(j)

(
t − s′

n+1

t ′n − s′
n+1

)∣∣∣∣∣ ≤ Mn − Mn+1

(t ′n − s′
n+1)

j
· ‖h(j)‖∞.

Now we estimate the numerator with Mn, which in turn we estimate as in (6.12), and we 
estimate the denominator as in third inequality in (6.15). This is enough to conclude (6.26)
also in this case.

Now we show that actually c ∈ Ck,α(R). Since c(k)(t) is continuous, and constant for t ≤ 0
and t ≥ s′

0, it is enough to prove the α-Hölder continuity of c(k)(t) in (0, s′
0). This follows from 

two estimates.

• The α-Hölder constant of c(k)(t) in the interval [s′
n+1, s

′
n] is bounded from above indepen-

dently of n. Indeed, the same scaling arguments used in the estimates of the derivatives of 
c(t) show that this constant is less than or equal to

�k,α λ(2+k+α)θ−2
n ,

where �k,α is proportional to the α-Hölder constants of the k-th derivatives of the functions 
f (x), g1(x), g2(x), and h(x). Due to (5.1), the exponent of λn is zero, and hence the bound 
is independent of n.

• The function c(k)(t) is α-Hölder continuous when restricted to the points s′
i , in the sense that

∣∣∣c(k)(s′
i ) − c(k)(s′

j )

∣∣∣ ≤
∣∣∣s′

i − s′
j

∣∣∣α ∀(i, j) ∈N
2. (6.27)

Indeed, this inequality is trivial if k ≥ 1 because all derivatives of c(t) vanish in the points s ′
n. 

If k = 0, we assume without loss of generality that i < j , and from (6.20) and (6.12) we 
deduce that

|c(s′
i ) − c(s′

j )| = Mi − Mj ≤ Mi ≤ 3

2

1

λ
2(1−θ)
i

,

while from the second inequality in (6.15) we deduce that

s′
i − s′

j ≥ si − ti ≥ π

λθ
i−1

.

At this point (6.27) follows from (6.7).

We are now ready to show the α-Hölder continuity of c(k)(t) in (0, s′
0). Let us consider any 

interval [x, y] ⊆ (0, s′
0). If x and y lie in the same interval of the form [s′

n+1, s
′
n], then |c(k)(y) −

c(k)(x)| can be controlled in terms of |y − x|α because of the uniform bound on the Hölder 
constants. The same is true if x and y lie in neighboring intervals. In the remaining case, there 
exist two positive indices i < j such that

s′ < x ≤ s′ < s′ ≤ y < s′ .
j+1 j i i−1
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In this case we write

|c(k)(y) − c(k)(x)| ≤ |c(k)(y) − c(k)(s′
i )| + |c(k)(s′

i ) − c(k)(s′
j )| + |c(k)(s′

j ) − c(k)(x)|,
and we observe that the central term is less that |y − x|α because of (6.27), while the other two 
terms can be controlled by exploiting once again the uniform bound on the Hölder constants.

Energy functions Let us consider the classic energy functions

En(t) := |u′
n(t)|2 + m2

nλ
2
n|un(t)|2,

Fn(t) := |u′
n(t)|2 + λ2

nc(t)|un(t)|2.
Since mn ≤ 1, and 0 < c(t) ≤ 1 for every t ≥ 0, it turns out that

|u′
n(t)|2 + λ2

n|un(t)|2 ≤ 1

m2
n

En(t) ∀n ∈ N, ∀t ≥ 0,

|u′
n(t)|2 + λ2

n|un(t)|2 ≥ Fn(t) ∀n ∈ N, ∀t ≥ 0.

Therefore, (3.12) is proved if we show that

∞∑
n=0

a2
n

1

m2
n

En(0) exp
(

2rλ
1/s
n

)
< +∞ ∀r > 0, ∀s > 1 + k + α

2
, (6.28)

while (3.13) is proved if we show that for every t > 0 it turns out that

∞∑
n=0

a2
nFn(t) exp

(
−2Rλ

1/S
n

)
= +∞ ∀R > 0, ∀S > 1 + k + α

2
. (6.29)

We can neglect the Sobolev parameter β in the spaces involved in (3.12) and (3.13) because 
powers of λn are lower order terms with respect to the exponentials. Thus in the sequel we just 
have to estimate En(0) and Fn(t).

Energy estimates in [0, tn] We prove that

En(0) ≤ λ2θ
n exp(5π) ∀n ∈N. (6.30)

To begin with, from (6.22), (6.9) and (6.10) we obtain that

En(tn) = |u′
n(tn)|2 ≤ m2

nλ
2
n exp(4mnλnεtn) = λ2θ

n exp(π/2). (6.31)

Moreover, the time-derivative of En(t) can be estimated as

E′
n(t) = −4δλ2σ

n |u′
n(t)|2 − mnλn

(
c(t)

m2
n

− 1

)
· 2mnλnun(t)u

′
n(t)

≥ −4δλ2σ
n En(t) − mnλn

∣∣∣∣c(t)2 − 1

∣∣∣∣En(t). (6.32)

mn
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Since λn is increasing, from (6.24) and (6.25) we obtain that

0 ≤ c(t) ≤ 2m2
n ∀t ∈ [0, tn],

and therefore from (6.32) we deduce that

E′
n(t) ≥ −

(
4δλ2σ

n + λθ
n

)
En(t) ∀t ∈ [0, tn].

Integrating this differential inequality, and keeping (6.10) and (6.5) into account, we deduce 
that

En(0) ≤ En(tn) exp
(

4δλ2σ
n tn + λθ

ntn

)
≤ En(tn) exp(π/2 + 4π). (6.33)

Plugging (6.31) into (6.33), we obtain (6.30).

Energy estimates in [tn, sn] In this interval the solution to (6.21)–(6.22) is given by the 
explicit formula un(t) := w(mn, ε, λn, t), where w(m, ε, λ, t) is the function defined in (6.2). 
Keeping (6.13) and (6.14) into account, we deduce that un(sn) = 0 and

|u′
n(sn)| = mnλn exp

(
(2mnλnε − δλ2σ

n )sn

)
= λθ

n exp
(
(2λθ

nε − δλ2σ
n )sn

)
.

Therefore, from (6.5) and the definition of ε it follows that

|u′
n(sn)| ≥ λθ

n exp
(
ελθ

nsn
)
,

and hence

Fn(sn) = En(sn) = |u′
n(sn)|2 ≥ λ2θ

n exp(2ελθ
nsn) ∀n ∈ N. (6.34)

Energy estimates in [sn, +∞) We prove that for every t ≥ sn it turns out that

Fn(t) ≥ λ2θ
n exp

(
2ελθ

nsn
) ·

· exp
(
−(4δλ2σ

n + 2�1λ
2
n−1)t − 2π�1 − 2(1 − θ) logλn

)
, (6.35)

where �1 is the constant for which (6.26) holds true in the case j = 1.
To begin with, we estimate the time-derivative of the hyperbolic energy as

F ′
n(t) = −4δλ2σ

n |u′
n(t)|2 + λ2

nc
′(t)|un(t)|2

≥ −4δλ2σ
n |u′

n(t)|2 − |c′(t)|
c(t)

· λ2
nc(t)|un(t)|2

≥ −
(

4δλ2σ
n + |c′(t)|)

Fn(t).

c(t)
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Integrating this differential inequality, we obtain that

Fn(t) ≥ Fn(sn) exp

⎛⎝−4δλ2σ
n t −

t∫
sn

|c′(s)|
c(s)

ds

⎞⎠ ∀t ≥ sn. (6.36)

In order to estimate the last integral, we write it as the sum of three terms

I1 :=
s′
n∫

sn

|c′(s)|
c(s)

ds, I2 :=
t ′n−1∫
s′
n

|c′(s)|
c(s)

ds, I3 :=
t∫

t ′n−1

|c′(s)|
c(s)

ds,

which we consider separately (we assume to be in the worst case scenario where t > t ′n−1, so that 
all the integrals need to be estimated).

• In the interval [sn, s′
n] we deduce from (6.24) and (6.26) that

c(t) ≥ 1

2λ
2(1−θ)
n

and |c′(t)| ≤ �1λ
3θ−2
n ,

from which we conclude that

I1 ≤ �1λ
3θ−2
n · 2λ2(1−θ)

n · (s′
n − sn) ≤ 2π�1. (6.37)

• In the interval [s′
n, t

′
n−1] the function c(t) is an increasing junction between Mn and Mn−1, 

and therefore

t ′n−1∫
s′
n

|c′(s)|
c(s)

ds =
t ′n−1∫
s′
n

c′(s)
c(s)

ds = log
c(t ′n−1)

c(s′
n)

= log
Mn−1

Mn

.

From (6.4), (6.11) and (6.12) we know that Mn−1 ≤ 1 and Mn ≥ λ
−2(1−θ)
n , and hence

I2 = log
Mn−1

Mn

≤ log(λ2(1−θ)
n ) = 2(1 − θ) logλn. (6.38)

• Let us consider the interval [t ′n−1, t], and let us observe that

[t ′n−1, t] ⊆ [t ′n−1, s
′
n−1] ∪

n−2⋃
i=0

[s′
i+1, s

′
i] ∪ [s′

0,+∞).

Due to the estimates from below in (6.24) and (6.25), and recalling that the sequence λn is 
increasing, we deduce that
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c(s) ≥ 1

2λ
2(1−θ)
n−1

∀s ≥ t ′n−1.

As for |c′(s)|, we exploit (6.26) with j = 1, and we obtain that

|c′(s)| ≤ max
i≤n−1

�1λ
3θ−2
i ∀s ≥ t ′n−1.

The value of the maximum depends on θ .
– If θ < 2/3, which corresponds to the case k ≥ 1, the maximum is attained for i = 0. Since 

λ0 ≥ 1, the maximum can be estimated from above with �1, and hence

|c′(s)|
c(s)

≤ 2�1λ
2(1−θ)
n−1 .

– If θ ≥ 2/3, which corresponds to the case k = 0, the maximum is attained for i = n − 1, 
and hence

|c′(s)|
c(s)

≤ 2�1λ
θ
n−1.

In conclusion, in both cases we have proved that

|c′(s)|
c(s)

≤ 2�1λ
max{2(1−θ),θ}
n−1 ≤ 2�1λ

2
n−1,

and hence

I3 =
t∫

t ′n−1

|c′(s)|
c(s)

ds ≤ 2�1λ
2
n−1t. (6.39)

Plugging (6.37), (6.38) and (6.39) into (6.36) we conclude that

Fn(t) ≥ Fn(sn) exp
(
−4δλ2σ

n t − 2π�1 − 2(1 − θ) logλn − 2�1λ
2
n−1t

)
.

Keeping (6.34) into account, we obtain exactly (6.35).

Conclusion We are now ready to verify (6.28) and (6.29). Indeed from (6.23) and (6.30) it 
turns out that

a2
n

m2
n

· En(0) · exp(2rλ
1/s
n ) ≤ 1

(n + 1)2λ2θ
n

exp(−2λθn
n ) · λ2θ

n exp(5π) · exp(2rλ
1/s
n )

= 1

(n + 1)2 exp
(

5π − 2λθn
n + 2rλ

1/s
n

)
.

Since θn → θ > 1/s, the argument of the exponential is bounded from above, and hence the 
series in (6.28) converges.
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Let us consider now (6.29). From (6.35) and (6.16) it follows that

Fn(t) ≥ λ2θ
n exp

(
3λθn

n + n + 2(1 − θ) logλn

) = λ2θ
n

m2
n

exp
(
3λθn

n + n
)

when n is large enough, and therefore

a2
n · Fn(t) · exp

(
−2Rλ

1/S
n

)
≥ m2

n

(n + 1)2λ2θ
n

exp
(−2λθn

n

) ·

· λ2θ
n

m2
n

exp
(
3λθn

n + n
) · exp

(
−2Rλ

1/S
n

)
= 1

(n + 1)2 exp
(
λθn

n − 2Rλ
1/S
n + n

)
for the same values of n. Since θn → θ > 1/S, the argument of the exponential is eventually 
greater than n, and therefore the series in (6.29) diverges. �
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