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Abstract

In this paper, we prove the well-posedness and optimal trajectory regularity for the solution of stochastic 
evolution equations driven by general multiplicative noises in martingale type 2 Banach spaces. The main 
idea of our method is to combine the approach in [9] dealing with Hilbert setting and a version of Burkholder 
inequality in M-type 2 Banach space. Applying our main results to the stochastic heat equation gives a 
positive answer to an open problem proposed in [10].
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1. Introduction

In this paper, we investigate the well-posedness and optimal trajectory regularity for the solu-
tion of the stochastic evolution equation
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dX(t) = (AX(t) + F(X(t)))dt + G(X(t))dWU(t), t ∈ (0, T ];
X(0) = X0

(SEE)

in a reflexive martingale type (M-type) 2 Banach space (E, ‖ · ‖), under weak assumptions on 
its data. Here T is a fixed positive number, A is a generator of an analytic C0-semigroup S(·)
on E and WU := {WU(t) : t ∈ [0, T ]} is a cylindrical Wiener process in a separable Hilbert 
space U with respect to a stochastic basis (�, F , (Ft )t∈[0,T ], P), i.e., for any g, h ∈ U , WUh =
{(WU(t)h : t ∈ [0, T ]} is a Brownian motion, and E[WU(s)g · WU(t)h] = (s ∧ t)(g, h)U for all 
s, t ∈ [0, T ].

The well-posedness and regularity for the solution of Eq. (SEE) in the Hilbert setting have 
been studied extensively; see, e.g., G. Da Prato, S. Kwapien̆ and J. Zabczyk [5], A. Jentzen and 
M. Röckner [10], J. Hong and Z. Liu [9] and references therein. There are several reasons to 
consider Eq. (SEE) in the Banach setting instead of Hilbert setting. On the one hand, it is shown 
that a large class of equations with various applications are more suitable to be described in the 
M-type 2 Banach space E = L

q(O) with q ≥ 2, where throughout O is a bounded, open subset 
of Rd with regular boundary (see, e.g., [2,3] for Wiener case and [7] for rough case). On the 
other hand, some error estimations in numerical analysis and simulation of Eq. (SEE) can also 
be improved (see, e.g., [4,8]).

Another motivation for us to study the optimal trajectory regularity for the solution of Eq. 
(SEE) in M-type 2 Banach space is an open problem proposed in [10, Section 4]. There the 
authors gave certain regularity for the solution of Eq. (SEE) in the Hilbert setting and ap-
plied their result to the stochastic heat equation in H = L

2((0, 1)d) driven by multiplicative 
Q-Wiener process with certain Lipschitz-type nonlinear drift and diffusion coefficients (see Eq. 
(SHE)). Their main result showed that the solution of this equation enjoys Hσ -regularity for any 
σ ∈ [0, min{3/2, ε + 1}), where Hσ denotes the domain of (−�)

σ
2 and ε ∈ (0, 1] is the same 

Hölder constant for the eigenfunctions of Q. Whether this type of spatial regularity holds, for 
the solution of Eq. (SHE) in the M-type 2 Banach space E = L

q((0, 1)d) for q > 2, was pro-
posed by the authors of [10] as an open problem. If this is valid for sufficiently large q , then by 
using appropriate Sobolev embeddings one can show that the solution possesses values in the 
spatio-temporal Hölder space Cδ([0, T ]; Cκ ((0, 1)d)) for certain δ, κ ≥ 0.

In [9], the authors established the optimal trajectory regularity for the solution of Eq. (SEE) in 
the Hilbert setting under fewer assumptions on its data. The main aim in this paper is to generalize 
the main results, Theorems 2.1–2.4, in [9] under Hilbert setting to Banach setting, by combining 
the approach in [9] and a version of Burkholder inequality in M-type 2 Banach space given by 
Brzeźniak [3] (see (3)). Applying our main results, Theorems 3.1 and 4.1, to the stochastic heat 
equation (SHE) gives a positive answer to the aforementioned open problem in [10].

We also note that a theory of stochastic integration and stochastic evolution equation in UMD 
Banach spaces (i.e., spaces in which martingale differences are unconditional) had been devel-
oped by J. van Neerven, M. Veraar and L. Weis [13,14]. Various classical spaces, such as Lq(O)

for q ∈ (1, 2), do have the UMD property but fail to have M-type 2. On the other hand, an M-type 
2 Banach space needs not to be of UMD; see an example given by J. Bourgain [1]. Meanwhile, in 
the application to the derivation of spatial Hölder regularity for the solution of the stochastic heat 
equation, it is sufficient to consider the M-type 2 Banach space Lq(O) for sufficiently large q .

The rest of the paper is organized as follows. In the next section, we give preliminaries of the 
stochastic integration in M-type 2 Banach setting and derive a version of Burkholder inequal-
ity. The well-posedness and optimal trajectory regularity for the solution of Eq. (SEE) are then 
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established in Sections 3 and 4, respectively. Finally, we illustrate our regularity result from the 
stochastic heat equation and settle the aforementioned problem in the last section.

2. Burkholder inequality in M-type 2 Banach spaces

In this section, we give some preliminaries of the stochastic integration in M-type 2 Banach 
space and a version of Burkholder type inequality. For more details about definitions and prop-
erties of M-type 2 Banach space, we refer to [2,3].

It is known that the stochastic calculation in Banach space depends heavily on the geometric 
structure of the underlying space. We first recall the definitions of type and M-type for a Ba-
nach space. Let {εn}n∈N+ be a Rademacher sequence in a probability space (�′, F ′, P′), i.e., a 
sequence of independent random variables taking the values ±1 with probability 1/2. Then E is 
called of type 2 if there exists a constant τ ≥ 1 such that

∥∥∥∥
N∑

n=1

εnxn

∥∥∥∥
L2(�′;E)

≤ τ

( N∑
n=1

‖xn‖2
) 1

2

for all finite sequences {xn}Nn=0 in E; E is called of M-type 2 if there exists a constant τM ≥ 1
such that

‖fN‖L2(�′;E) ≤ τM

(
‖f0‖2

L2(�′;E)
+

N∑
n=1

‖fn − fn−1‖2
L2(�′;E)

) 1
2

(1)

for all E-valued Lp-martingales {fn}Nn=0. It is well-known that martingale type 2 implies type 2
and vice verse for UMD spaces. It is known that when E is a reflexive M-type 2 Banach space 
then so is Eθ for θ > 0. In the rest of the paper, we always assume that E (and thus Eθ for θ > 0) 
is a reflexive M-type 2 Banach space.

For stochastic integration in Banach space, γ -radonifying operators play an important role 
instead of Hilbert–Schmidt operators in the Hilbert setting. Let {γn}n≥1 is a sequence of inde-
pendent N (0, 1)-random variables on a probability space (�′, F ′, P′). Let L(U, E) denote the 
space of linear functionals from U to E. An operator R ∈ L(U, E) is called γ -radonifying if 
there exists an orthonormal basis {hn}n∈N+ of U such that the Gaussian series 

∑
n∈N+ γnRhn

converges in L2(�′; E). Then the number

‖R‖γ (U,E) :=
∥∥∥ ∑

n∈N+
γnRhn

∥∥∥
L2(�′;E)

does not depend on the sequence {γn}n≥1 and the basis {hn}n∈N+ , and it defines a norm on 
the space γ (U, E) of all γ -radonifying operators from U into E. If E is a Hilbert space, then 
γ (U, E) = L2(U, E) isometrically, where L2(U, E) denotes the space of all Hilbert–Schmidt 
operators from U to E. Moreover, the γ -radonifying operator satisfies the ideal property, i.e., for 
any S1 ∈ L(U ′, U) and S2 ∈ L(E, E′) with Hilbert space U ′ and Banach space E′ it holds that

||S2RS1||γ (U ′,E′) ≤ ‖S2‖L(E,E′)||R||γ (U,E)‖S1‖L(U ′,U). (2)
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An L(U, E)-valued adapted process � on (�, F , Ft , P) is said to be elementary, if there 
exists a partition {tn}Nn=0 of [0, T ], a sequence of disjoint sets {Amn}Mm=1 ⊂ Ftn for each 0 ≤ n ≤
N , orthonormal elements {hk}Kk=1 ⊂ U and {xkmn}K,M,N

k=1,m=1,n=0 ⊂ E such that

�(t,ω) =
N−1∑
n=0

M∑
m=1

χ(tn,tn+1]×Amn(t,ω)

K∑
k=1

hk ⊗ xkmn, (t,ω) ∈ [0, T ] × �.

Then one can define the stochastic integral of an elementary process � with respect to the 
U -cylindrical Wiener process WU by

t∫
0

�(r)dWU(r) :=
N−1∑
n=0

M∑
m=1

K∑
k=1

χAmn [WU(tn+1 ∧ t) − WU(tn ∧ t)]hkxkmn

for t ∈ [0, T ]. It was shown in [3, Theorem 2.4] that

∥∥∥∥
t∫

0

�(r)dWU(r)

∥∥∥∥
L2(�;E)

≤ τM‖�‖L2(�;L2(0,t;γ (U,E))), t ∈ [0, T ],

where τM is the M-type 2 constant of E in (1).
It is a routine density argument to extend the stochastic integral to arbitrary L(U, E)-valued 

predictable processes � such that ‖�‖L2(�;L2(0,T ;γ (U,E))) < ∞; the process 
∫ ·

0 �(r)dWU(r) is a 
continuous martingale. Then the Doob’s martingale inequality leads to the one-sided Burkholder 
inequality:

E

[
sup

t∈[0,T ]

∥∥∥∥
t∫

0

�(r)dWU(r)

∥∥∥∥
p]

≤ C‖�‖p

Lp(�;L2(0,T ;γ (U,E)))

for any p ≥ 2. Applying Minkovski inequality, we obtain the following version of one-sided 
Burkholder inequality:

E

[
sup

t∈[0,T ]

∥∥∥∥
t∫

0

�(r)dWU(r)

∥∥∥∥
p]

≤ C‖�‖p

L2(0,T ;Lp(�;γ (U,E)))
. (3)

3. Well-posedness

Assume that the linear operator A : D(A) ⊆ E → E is the infinitesimal generator of an ana-
lytic C0-semigroup S(·) and the resolvent set of A contains all λ ∈ C with �[λ] ≥ 0. Then one 
can define the fractional powers (−A)θ for θ ∈ R of the operator −A. Let θ ≥ 0 and Eθ be the 
domain of (−A)

θ
2 equipped with the norm ‖ · ‖θ :

‖x‖θ := ‖(−A)
θ
2 x‖, x ∈ Eθ .
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The analyticity of S(·) ensures the following properties (see, e.g., [12, Theorem 6.13 in Chap-
ter 2]):

‖(−A)ν‖L(E) ≤ C,

‖(−A)μS(t)‖L(E) ≤ Ct−μ, (4)

‖(−A)−ρ(S(t) − IdE)‖L(E) ≤ Ctρ,

for any 0 < t ≤ T , ν ≤ 0 ≤ μ and 0 ≤ ρ ≤ 1.
For p ≥ 2, we denote by H p

θ (and denote H p := H
p

0 ) the space of all Eθ -valued processes 
Y defined on [0, T ] such that

‖Y‖H p
θ

:= sup
t∈[0,T ]

(
E

[
‖Y(t)‖p

θ

]) 1
p

< ∞.

Note that (H p
θ , ‖ · ‖H p

θ
) becomes a Banach space after identifying stochastic processes which 

are stochastically equivalent. We will use the following result which shows that

H
p

θ (M) := {Z ∈ H
p

θ : ‖Z‖H p
θ

≤ M} (5)

with the ‖ · ‖H p -norm is a complete metric space for any M > 0 and p ≥ 2. The proof of 
Lemma 3.1 can be easily adapted from [9, Lemma 3.2].

Lemma 3.1. For any M > 0, p > 1 and θ ≥ 0, the space H p
θ (M) defined by (5) with the 

‖ · ‖H p -norm is a complete metric space.

Recall that a predictable stochastic process X : [0, T ] × � → H is called a mild solution of 
Eq. (SEE) if X ∈ L

∞(0, T ; E) almost surely (a.s.) and for all t ∈ [0, T ] it holds a.s. that

X(t) = S(t)X0 + S ∗ F(X)(t) + S � G(X)(t), (6)

where S ∗F(X) and S �G(X) denote the deterministic and stochastic convolutions, respectively:

S ∗ F(X)(·) :=
·∫

0

S(· − r)F (X(r))dr,

S � G(X)(·) :=
·∫

0

S(· − r)G(X(r))dW(r).

The uniqueness of the mild solution of Eq. (SEE) is understood in the sense of stochastically 
equivalence.

To perform the well-posedness result, we give the following Lipschitz-type continuity with 
linear growth condition on the nonlinear operators F and G.
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Assumption 3.1. There exist four nonnegative, Borel measurable functions KF , KF,θ and 
KG, KG,θ on [0, T ] with

K0
F :=

T∫
0

KF (t)dt < ∞, K0
G :=

T∫
0

K2
G(t)dt < ∞,

Kθ
F :=

T∫
0

KF,θ (t)dt < ∞, Kθ
G :=

T∫
0

K2
G,θ (t)dt < ∞,

such that for any x, y ∈ E and z ∈ Eθ it holds that

‖S(t)(F (x) − F(y))‖ ≤ KF (t)‖x − y‖,
‖S(t)F (z)‖θ ≤ KF,θ (t)(1 + ‖z‖θ ),

and that

‖S(t)(G(x) − G(y))‖γ (U,E) ≤ KG(t)‖x − y‖,
‖S(t)G(z)‖γ (U,Eθ ) ≤ KG,θ (t)(1 + ‖z‖θ ).

Theorem 3.1. Let p ≥ 2, β ≥ θ ≥ 0, X0 : � → Eβ be strongly F0-measurable such that X0 ∈
Lp(�; Eβ) and Assumption 3.1 holds. Then Eq. (SEE) possesses a unique mild solution X such 
that the following statements hold.

1. There exists a constant C = C(T , p, Kθ
F , Kθ

G) such that

sup
t∈[0,T ]

E

[
‖X(t)‖p

θ

]
≤ C

(
1 +E

[
‖X0‖p

θ

])
. (7)

2. The solution X is continuous with respect to ‖ · ‖Lp(�;Eθ) :

lim
t1→t2

E

[
‖X(t1) − X(t2)‖p

θ

]
= 0, t1, t2 ∈ [0, T ]. (8)

Proof. For X0 ∈ L
p(�; Eβ) ⊆ L

p(�; Eθ) and X ∈ H
p

θ , define an operator M by

M (X)(t) = S(t)X0 + S ∗ F(X)(t) + S � G(X)(t), t ∈ [0, T ].

By Minkovski inequality, we get

∥∥M (X)
∥∥

H p
θ

≤ ∥∥S(t)X0
∥∥

H p
θ

+ ∥∥S ∗ F(X)(t)
∥∥

H p
θ

+ ∥∥S � G(X)(t)
∥∥

H p
θ

.

Since S is uniformly bounded in E, we set
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M(t) := sup
r∈[0,t]

‖S(r)‖L(E), t ∈ [0, T ].

Then

∥∥S(t)X0
∥∥

H p
θ

≤ M(T )‖X0‖Lp(�;Eθ ).

By Minkovski inequality and Assumption 3.1, we get

‖S ∗ F(X)(t)‖H p
θ

≤ sup
t∈[0,T ]

t∫
0

‖S(t − r)F (X(r))‖Lp(�;Eθ )dr

≤ sup
t∈[0,T ]

t∫
0

KF,θ (t − r)(1 + ‖X(r)‖Lp(�;Eθ ))dr

≤
( T∫

0

KF,θ (r)dr

)(
1 + ‖X‖H p

θ

)
.

For the stochastic convolution, applying the Burkholder inequality (3) and Assumption 3.1, we 
obtain

E

[
‖S � G(X)(t)‖p

θ

]
≤

( t∫
0

‖S(t − r)G(X(r))‖2
Lp(�;γ (U,Eθ ))

dr

) p
2

≤
( t∫

0

K2
G,θ (t − r)

(
1 + ‖X(r)‖Lp(�;Eθ )

)2dr

) p
2

≤
( t∫

0

K2
G,θ (r)dr

) p
2
(

1 + ‖X‖H p
θ

)p

.

Then

‖S � G(X)(t)‖H p
θ

≤
( T∫

0

K2
G,θ (r)dr

) 1
2
(

1 + ‖X‖H p
θ

)
.

Combining the above estimations, we get

∥∥M (X)
∥∥

H p
θ

≤ M(T )‖X0‖Lp(�;Eθ ) + Nθ(T )
(
1 + ‖X‖H p

θ

)
,

where Nθ(t) is the non-decreasing, continuous function defined by
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Nθ(t) =
t∫

0

KF,θ (r)dr +
( t∫

0

K2
G,θ (r)dr

) 1
2

, t ∈ [0, T ].

Let X1, X2 ∈ H p . Previous arguments yield that

‖M (X)(t) − M (Y )(t)‖H p ≤ Nθ(T )‖X − Y‖H p .

Since Nθ is non-decreasing and continuous with Nθ(0) = 0, there exists a small enough T such 
that Nθ(T ) < 1. Taking a number M sufficiently large such that

M ≥ M(T )‖X0‖Lp(�;Eθ ) + Nθ(T )

1 − Nθ(T )
,

we conclude that M maps H p
θ (M) to H p

θ (M) and is a contraction under the ‖ · ‖H p -norm for 
sufficiently small time T . By Lemma 3.1 and the Banach fixed point theorem, given any T > 0
there exists a deterministic time τ ∈ (0, T ) satisfying Nθ(τ) < 1 such that Eq. (SEE) possesses a 
unique local mild solution {u(t) : t ∈ [0, τ ]} which possesses a predictable version such that

sup
t∈[0,τ ]

E

[
‖X(t)‖p

θ

]
< ∞. (9)

It suffices to prove the uniform a priori estimation (7) to conclude the global existence for the 
solution of Eq. (SEE). Let t ∈ [0, τ ]. Previous procedure implies the following estimation:

‖X(t)‖Lp(�;Eθ ) ≤ M(t)‖X0‖Lp(�;Eθ ) + Nθ(t) +
t∫

0

KF,θ (t − r)‖X(r)‖Lp(�;Eθ )dr

+
( t∫

0

K2
G,θ (t − r)‖X(r)‖2

Lp(�;Eθ )
dr

) 1
2

.

Then by Hölder inequality, we have

‖X(t)‖2
Lp(�;Eθ )

≤ m(t) +
t∫

0

K(t − r)‖X(r)‖2
Lp(�;Eθ )

dr,

where m(·) := 3(M(·)‖X0‖Lp(�;Eθ ) + Nθ(·))2 is non-decreasing and K(·) := 3Kθ
F KF,θ (·) +

3K2
G,θ (·) is integrable on [0, T ]. Then applying the generalized Grönwall’s inequality in 

[9, Lemma 3.1], we conclude by the boundedness (9) that there exists a constant C =
C(T , p, Kθ

F , Kθ
G) independent of τ such that the aforementioned local solution satisfies the fol-

lowing a priori estimation:

sup
t∈[0,τ ]

E

[
‖X(t)‖p

θ

]
≤ C

(
1 +E

[
‖X0‖p

θ

])
.
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Since the above constant C is independent of τ , Eq. (SEE) exists a unique solution on [0, T ]
such that (7) holds.

It remains to prove the Lp(�) continuity. Without loss of generality, assume that 0 ≤ t1 <

t2 ≤ T . Due to the strong continuity of the C0-semigroup S(t):

(S(t) − IdE)x → 0 in E as t → 0, ∀ x ∈ E, (10)

the term S(·)X0 is continuous Lp(�; Eθ):

lim
t1→t2

E

[∥∥S(t1)X0 − S(t2)X0
∥∥p

θ

]

= lim
t1→t2

E

[∥∥(S(t2 − t1) − IdE)S(t1)X0
∥∥p

θ

]
= 0. (11)

Next, we consider the stochastic convolution S � G(X). By (3), we get

E

[∥∥S � G(X)(t1) − S � G(X)(t2)
∥∥p

θ

]

≤
( t1∫

0

‖(S(t2 − t1) − IdE)S(t1 − r)G(X(r))‖2
Lp(�;γ (U,Eθ ))

dr

) p
2

+
( t2∫

t1

‖S(t2 − r)G(X(r))‖2
Lp(�;γ (U,Eθ ))

dr

) p
2 =: I1 + I2.

For the first term, by the uniformly boundedness (7) of X, we get

I1 ≤ C

( t1∫
0

K2
G,θ (r)dr

) p
2
(

1 + ‖X‖H p
θ

)p

< ∞.

Then I1 tends to 0 as t1 → t2 by the strong continuity (10) of the C0-semigroup S(·) and 
Lebesgue dominated convergence theorem. For the second term, we have

I2 ≤
( t2−t1∫

0

K2
G,θ (r)dr

) p
2
(

1 + ‖X‖H p
θ

)p

→ 0 as t1 → t2

by Lebesgue dominated convergence theorem. Therefore,

lim
t1→t2

E

[∥∥S � G(X)(t1) − S � G(X)(t2)
∥∥p

θ

]
= 0. (12)

Similar arguments can handle the deterministic convolution S ∗ F(X):
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lim
t1→t2

E

[∥∥S ∗ F(X)(t1) − S ∗ F(X)(t2)
∥∥p

θ

]
= 0. (13)

Combining the estimations (11)–(13), we derive (8). �
Remark 3.1. When β = θ = 0, the result of Theorem 3.1 holds if S(·) is only a C0-semigroup.

4. Optimal trajectory regularity

In this section, we consider the trajectory regularity for the solution of Eq. (SEE). For conve-
nience, we use the notation Lp(�; Cδ([0, T ]; Eθ)) with δ ∈ [0, 1] and θ ≥ 0 to denote Eθ -valued 
stochastic processes {X(t) : t ∈ [0, T ]} such that for any t1, t2 ∈ [0, T ] with t1 �= t2,

lim
t1→t2

‖X(t1) − X(t2)‖θ = 0 a.s. and E

[
sup

t∈[0,T ]
‖X(t)‖p

θ

]
< ∞

when δ = 0 and

‖X(t1) − X(t2)‖θ ≤ �|t1 − t2|δ a.s. and E
[
�p

]
< ∞

when δ > 0. Our aim is to find the optimal constants δ and θ such that the solution of Eq. (SEE)
is in Lp(�; Cδ([0, T ]; Eθ)).

To obtain the trajectory regularity for the solution of Eq. (SEE), in addition to Assumption 3.1
we propose the following assumption.

Assumption 4.1. There exists a constant α ∈ (1/p, 1/2) with p > 2 such that

K
θ,α
F :=

T∫
0

t−αKF,θ (t)dt < ∞, K
θ,α
G :=

T∫
0

t−2αK2
G,θ (t)dt < ∞.

Our main idea is to apply the factorization method established in [5], which is associated to a 
linear operator Rα with α ∈ (0, 1) defined by

Rαf (t) :=
t∫

0

(t − r)α−1S(t − r)f (r)dr, t ∈ [0, T ], (14)

and the following generalized characterization in [9].

Lemma 4.1. Let 1/p < α < 1 and θ, θ1, δ ≥ 0. Then Rα defined by (14) is a bounded linear 
operator from Lp(0, T ; Eθ) to Cδ([0, T ]; Eθ1) when α, θ, θ1, δ satisfy one of the following con-
ditions:

1. δ = α − 1
p

+ θ−θ1
2 when θ1 > θ and α > θ1−θ

2 + 1
p

;

2. δ < α − 1
p

when θ1 = θ ;

3. δ = α − 1 when θ1 < θ .

p
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Proof. It is a straightforward consequence of [9, Proposition 4.1] and we omit the details. �
By stochastic Fubini theorem, the following factorization formula is valid for the stochastic 

convolution S � G(X):

S � G(X)(t) = sin(πα)

π
RαGα(t),

where Gα(t) := ∫ t

0 (t − r)−αS(t − r)G(X(r))dWU(r), t ∈ [0, T ].

Theorem 4.1. In addition to the conditions of Theorem 3.1, let Assumption 4.1 hold. Then the 
following statements hold.

1. When θ = 0,

X ∈ L
p(�;Cδ([0, T ];E)) ∪L

p(�;Cα− 1
p

− θ1
2 ([0, T ];Eθ1))

∩L
p(�;C β−θ2

2 ∧1([0, T ];Eθ2)) (15)

for any δ ∈ [0, α − 1/p), θ1 ∈ (0, 2α − 2/p) and θ2 ∈ [0, β].
2. When θ > 0,

X ∈ L
p(�;Cδ([0, T ];Eθ)) ∪L

p(�;Cα− 1
p ([0, T ];Eθ1))

∪L
p(�;Cα− 1

p
+ θ−θ2

2 ([0, T ];Eθ2)) ∩L
p(�;C β−θ3

2 ∧1([0, T ];Eθ3)) (16)

for any δ ∈ [0, α − 1/p), θ1 ∈ (0, θ), θ2 ∈ (θ, θ + 2α − 2/p) and θ3 ∈ [0, β].

Proof. For the initial datum, by (4) we get

‖S(t2)X0 − S(t1)X0‖θ1 = ‖(−A)
θ1−β

2 (S(t2 − t1) − IdE)(−A)
β
2 S(t1)X0‖

≤ C|t2 − t1|
β−θ1

2 ∧1‖X0‖β

for any θ1 ∈ [0, β). Combining with the strong continuity of S(·) shows that S(·)X0 ∈
C

β−θ1
2 ∧1([0, T ]; Eθ1) for any θ1 ∈ [0, β].
By Fubini theorem and the usual Burkholder inequality, we get

E

[
‖Gα(t)‖p

Lp(0,T ;Eθ )

]
=

T∫
0

E

[
‖Gα(t)‖p

θ

]
dt

≤
[ T∫

0

( t∫
0

r−2αK2
G,θ (r)dr

) p
2

dt

](
1 + ‖X‖H p

θ

)p

< ∞,
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which implies that Gα ∈ L
p(0, T ; Eθ) almost surely. Applying Lemma 4.1 shows that if θ = 0, 

then

S � G(X) ∈ L
p(�;Cδ([0, T ];E)) ∪L

p(�;Cα− 1
p

− θ1
2 ([0, T ];Eθ1))

for any δ ∈ [0, α − 1
p
) and θ1 ∈ (0, 2α − 2

p
); and if θ > 0, then

S � G(X) ∈ L
p(�;Cδ([0, T ];Eθ)) ∪L

p(�;Cα− 1
p ([0, T ];Eθ1))

∪L
p(�;Cα− 1

p
+ θ−θ1

2 ([0, T ];Eθ2))

for any δ ∈ [0, α − 1/p), θ1 ∈ (0, θ), and θ2 ∈ (θ, θ + 2α − 2/p). Similar argument yields the 
same regularity for S ∗ F(X). Thus we conclude (15) and (16) by combining the Hölder conti-
nuity of S(·)X0, S ∗ F(X) and S � G(X). �
Remark 4.1. Let β = θ = 0 and Assumptions 3.1 and 4.1 hold, then by [6, Proposition 5.9], X ∈
L

p(�; C([0, T ]; H)) if S(·) is only a C0-semigroup S(·). Moreover, similarly to [9, Theorem 2.2], 
the following stronger moments’ estimation holds for some constant C = C(T , p, α, Kα

F , Kα
G):

E

[
sup

t∈[0,T ]
‖X(t)‖p

]
≤ C

(
1 +E

[
‖X0‖p

])
.

5. Example

In this section, we illustrate our results by the stochastic heat equation

dX(t, ξ) = (�X(t, ξ) + f (X(t, ξ)))dt + g(X(t, ξ))dW(t, ξ),

X(t, ξ) = 0, (t, ξ) ∈ [0, T ] × ∂O,

X(0, ξ) = X0(ξ), ξ ∈ O,

(SHE)

and give a positive answer to the open problem given in [10]. Without loss of generality, we 
assume that X0 is a deterministic function.

Set U = L
2(O), E = L

q(O) with q ≥ 2 throughout this section. Then E is a reflexive M-type 
2 Banach space. Define A = � with domain Dom(A) = W

1,q

0 (O) ∩ W 2,q (O). Here W s,q(O)

with s ∈ N+ denotes the Sobolev space consisting of functions in O whose derivatives up to 
order s are all in Lq(O), and W 1,q

0 (O) := {f ∈ W 1,q(O) : f |∂O = 0}. In the following, we also 
need the Sobolev–Slobodeckij space Wθ,q with θ ∈ (0, 1), whose norm is defined by

‖X‖Wθ,q(O) :=
(

‖X‖q

Lq (O)
+

∫
O

∫
O

|X(ξ) − X(η)|q
|ξ − η|d+θq

dξdη

) 1
q

.

Similarly, we denote Wθ,q
(O) := {f ∈ Wθ,q(O) : f |∂O = 0}.
0
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Let Q ∈ L(L2(O)) and {hn}n∈N+ ⊂ L
2(O) be eigenfunctions of Q which forms an orthonor-

mal basis of L2(O) with related eigenvalues {λn}n∈N+ . Assume that W = {W(t) : t ∈ [0, T ]} is 
an L2(O)-valued Q-Wiener process, i.e.,

W(t) =
∑

n∈N+

√
λnhnβn(t), t ∈ [0, T ],

where (βn)n≥1 is a sequence of independent standard Brownian motions with respect to the 
filtration (Ft )t∈[0,T ]. Our main assumption on the system {(λn, hn)}n∈N+ is that there exists a 
constant ε ∈ (0, 1] such that

∑
n∈N+

√
λn‖hn‖Cε (O) =: CQ < ∞, (17)

where ‖ · ‖C0(O) denotes the L∞(O)-norm and ‖ · ‖Cε(O) with ε ∈ (0, 1] denotes the Hölder norm

‖h‖Cε (O) := ‖h‖L∞(O) + sup
ξ,η∈O,ξ �=η

|h(ξ) − h(η)|
|ξ − η|ε , h ∈ Cε(O).

Assume that f, g : R → R are Lipschitz continuous functions with Lipschitz constant 
Lf , Lg > 0, i.e., for any ξ1, ξ2 ∈R,

|f (ξ1) − f (ξ2)| ≤ Lf |ξ1 − ξ2|, |g(ξ1) − g(ξ2)| ≤ Lg|ξ1 − ξ2|.

Define the operators F : E → E and G : E → L(U, E) by the Nymiskii operator associated with 
f and g, respectively:

F(u)(ξ) := f (u(ξ)), G(u)hn(ξ) := √
λng(u(ξ))hn(ξ), ξ ∈ O, n ∈ N+.

Then the stochastic heat equation (SHE) is equivalent to Eq. (SEE).
Let θ ∈ (0, 1) and fix x, y ∈ L

q(O) and z ∈ Eθ(O). For the drift term, by the uniform bound-
edness of the semigroup S(·) and the Lipschitz continuity of f , we get the conditions on F of 
Assumption 3.1:

‖S(t)(F (x) − F(y))‖Lq (O) ≤ C‖x − y‖Lq (O).

On the other hand,

‖S(t)F (z)‖Eθ (O) ≤ Ct−
θ
2 (1 + ‖z‖Lq (O)) ≤ Ct−

θ
2 (1 + ‖z‖Eθ (O)).

These two inequalities show the conditions on F of Assumptions 3.1 and 4.1 with KF = C and 
KF,θ = Ct− θ

2 for any α ∈ (0, 1 − θ/2), where C depends on M(T ), Lf , f (0) and the volume of 
O .

In view of the diffusion term, the uniform boundedness of the semigroup S(·), the definition 
of the γ -radonifying operator and the Lipschitz continuity of g and (17) lead to
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‖S(t)(G(x) − G(y))‖γ (L2(O),Lq (O))

≤
∑

n∈N+
‖S(t)(G(x) − G(y))hn‖Lq (O)

≤ C
( ∑

n∈N+

√
λn‖hn‖L∞(O)

)∥∥x − y
∥∥
Lq (O)

≤ C
∥∥x − y

∥∥
Lq (O)

.

To verify the growth condition of G in Eθ for θ > 0, we need the fact (see, e.g., [11]) that

W
θ1,q
0 ↪→ Eθ2 ↪→ W

θ3,q
0 for all 1/q < θ3 < θ2 < θ1 < 1. (18)

Assume that g(0) = 0 or hn|∂O = 0. Now let σ ∈ (0, θ/2) be sufficiently small, then (4) yields 
that

‖S(t)G(z)‖γ (L2(O),Eθ (O)) ≤
∑

n∈N+
‖S(t)G(z)hn‖Eθ (O)

≤ Ct−σ
∑

n∈N+
‖G(z)hn‖Eθ−2σ (O)

≤ Ct−σ
∑

n∈N+
‖G(z)hn‖Wθ−σ,q (O).

By triangle inequality and the boundedness of {hn}n∈N+ ,

‖G(x)hn‖q

Wθ,q (O)

≤ λ
q
2
n

(
‖hn‖q

L∞‖g(x)‖q

Lq (O)
+

∫
O×O

|g(x(ξ)) − g(x(η))|q |hn(ξ)|q
|ξ − η|d+θq

dξdη

+
∫

O×O

|g(x(η))|q |hn(ξ) − hn(η)|q
|ξ − η|d+θq

dξdη

)

≤ Cλ
q
2
n

(
‖hn‖q

L∞‖g(x)‖q

Wθ,q (O)
+

(
sup

ξ,η∈O,ξ �=η

|hn(ξ) − hn(η)|
|ξ − η|ε

)q

×
∫

O×O

|g(x(ξ))|q |ξ − η|(ε−θ)q−ddξdη

)
.

For any θ < ε, we obtain by applying Fubini theorem
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∫
O×O

|g(x(ξ))|q |ξ − η|(ε−θ)q−ddξdη

≤
( ∫

O−O

|x|(ε−θ)q−ddξ

)(∫
O

|g(x(ξ))|qdξ

)
≤ C‖g(x)‖q

Lq (O)
,

where O − O denote the set {ζ = ξ − η : ξ, η ∈ O}. Then we get

∑
n∈N+

‖G(x)hn‖Wθ,q (O) ≤ C(1 + ‖x‖Wθ,q (O)).

As a result, when θ − σ < ε, we have

‖S(t)G(z)‖γ (L2(O),Eθ (O)) ≤ Ct−σ (1 + ‖z‖Wθ−σ,q (O))

≤ Ct−σ (1 + ‖z‖Eθ (O)).

The above two inequalities yield the conditions on G of Assumptions 3.1 and 4.1 with KG = C

and KG,θ = Ct−σ for any α ∈ (0, 1/2 − σ), where C depends on M(T ), Lf , f (0), the volume 
of O and the embedding constants in (18).

Thus we have verified Assumptions 3.1 and 4.1 for any θ ∈ [0, ε] ∩ [0, 1/2) and α ∈ [0, 1/2). 
Applying Theorems 3.1 and 4.1 and appropriate Sobolev embedding, we deduce the following 
regularity for the solution of the stochastic heat equation (SHE), which gives a positive answer 
to the open question in [10, Section 4].

Theorem 5.1. Assume that f, g : R → R are Lipschitz continuous functions, and W is a 
Q-Wiener process such that the eigensystem {(λn, hn)} of Q satisfies (17) for some ε ∈ [0, 1].

1. When ε = 0, assume that X0 ∈ E1(O) for any q ≥ 2, then Eq. (SHE) possesses a unique 
mild solution X such that

X ∈ Cδ([0, T ];Cθ (O)) a.s. (19)

for any δ, θ ≥ 0 such that δ + θ/2 < 1/2.
2. When ε ∈ (0, 1], assume that X0 ∈ E3/2(O) for any q ≥ 2 and that g(0) = 0 or hn = 0 on 

∂O for all n ∈N+. Then Eq. (SHE) possesses a unique mild solution X such that

X ∈ Cδ([0, T ];Cκ (O)) ∪ Cδ1([0, T ];Cκ1(O)) a.s. (20)

for any δ ∈ [0, 1/2), κ ∈ [0, ε ∧ 1/2) and any δ1 ∈ [0, (1 + ε − κ1)/2 ∧ (3 − 2κ1)/4), κ1 ∈
[ε ∧ 1/2, (1 + ε) ∧ 3/2).

Proof. When ε = 0, by Theorems 3.1 and 4.1, Eq. (SHE) possesses a unique mild solution such 
that X ∈ Cδ([0, T ]; Eθ) a.s. for any δ, θ ≥ 0 such that δ + θ/2 < 1/2. The first Hölder continuity 
(19) then follows from the Sobolev embedding.
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When ε ∈ (0, 1], we only prove the case ε ∈ [1/2, 1], since similar arguments yield the case 
ε ∈ (0, 1/2). Theorems 3.1 and 4.1 imply that Eq. (SHE) possesses a unique mild solution such 
that

X ∈ Cδ([0, T ];Eθ(O)) ∪ Cδ1([0, T ];Eθ1(O)) a.s.

for any δ ∈ [0, 1/2), θ ∈ [0, 1/2), θ1 ∈ [1/2, 3/2) and δ1 < 3/4 − θ1/2. Then using the Sobolev 
embedding, we get

X ∈ Cδ([0, T ];Cκ(O)) ∪ Cδ1([0, T ];Cκ1(O)) a.s.

for any δ ∈ [0, 1/2), κ ∈ [0, θ − d/q), δ1 ∈ [0, 3/4 − θ1/2) and κ1 ∈ (0, θ1 − d/q) when d < q/2. 
Taking sufficiently large q , we conclude (20). �
Remark 5.1. The Hölder continuity (20) shows that the solution of the stochastic heat equation 
(SHE) enjoys values in the space C([0, T ]; Cκ (O)) of continuous differentiable functions on 
[0, T ] × O with (κ − 1)-Hölder continuous spatial derivatives for any κ ∈ (1, (1 + ε) ∧ 3/2).
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