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Abstract
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while our rigorous results only provide a partial answer.
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1. Introduction

In this paper, we study the speed determinacy of the lattice Lotka-Volterra competition system

{
u′

j (t) =D2[uj ](t) + uj (t)[1 − uj (t) − kvj (t)],
v′
j (t) = dD2[vj ](t) + rvj (t)[1 − vj (t) − huj (t)], t ∈ R+, j ∈Z,

(1.1)

where D2[uj ](t) = uj+1(t) + uj−1(t) − 2uj (t) and D2[vj ](t) = vj+1(t) + vj−1(t) − 2vj (t). 
In the system (1.1), uj (t) and vj (t) are the population densities at niches j and time t ; d is 
the diffusion coefficient; r is the intrinsic growth rate; k, h are the competition coefficients. In-
deed, system (1.1) can be regarded as a discretization of the classical diffusive Lotka-Volterra 
competition system

{
ut = uxx + u(1 − u − kv),

vt = dvxx + rv(1 − v − hu), x ∈R, t ∈ R+.
(1.2)

The dynamics for (1.2) are very diverse and have been studied extensively. Three non-negative 
equilibria (0, 0), (1, 0), and (0, 1) always exist. For the case when k < 1, h < 1, or the case when 
k > 1, h > 1, there is another unique positive co-existence equilibrium

(u∗, v∗) =
(

1 − k

1 − kh
,

1 − h

1 − kh

)
.

In view of the phase plane portrait to the ordinary differential system of (1.2) without diffusion 
terms, the classification of the model (1.2) is clear. The nonlinearity of the case when k < 1 and 
h < 1 is called the persistence case (or co-existence). Furthermore, the nonlinearity is called the 
monostable case when k < 1 and h > 1 (or k > 1 and h < 1), or the bistable case when k > 1 and 
h > 1. Traveling waves of (1.2) have extensively attracted the interest of scientists. In the bistable 
case, the existence of traveling waves, connecting (1, 0) and (0, 1), was studied in Conley and 
Gardner [5], Gardner [9], and the uniqueness and parameter dependence of wave speeds can be 
found in [16]. For the monostable case, we refer to [12–14,17] for the existence of traveling 
waves, and [1,2,15,25] for the selection of the minimal speed. For the persistence (co-existence) 
case, the existence of traveling waves connecting (0, 0) and (u∗, v∗) has also been investigated 
in [23,24] in great detail.

However, researchers believed that a lattice dynamic system may be more suitable than the 
continuous rival to model natural phenomena in some cases, such as the applications in material 
science, image processing, pattern formation and the phenomenon of biological invasion (see 
[3,4,20,22]). This is the main motivation that we focus on the dynamics of (1.1). Similarly one 
can see that system (1.1) at least has three equilibria: e0 = (0, 0), e1 = (1, 0) and e2 = (0, 1) in 
the region {(u, v)|0 ≤ u ≤ 1, 0 ≤ v ≤ 1}. Throughout this paper, we impose an assumption on k
and h with

0 < k < 1 < h, (1.3)

which implies that the system exhibits the so-called monostable nonlinearity. For more biolog-
ical explanations of this condition, we refer readers to [12–14,18,19,21]. For the existence of 
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wavefront as well as the sign of its speed (i.e., the moving direction) in the bistable case, we will 
investigate them in future research.

As previously mentioned, we are interested in the special solution (i.e., wavefront) to the 
system (1.1) in the form

(uj (t), vj (t)) = (U(z),V (z)), z = j − ct, (1.4)

connecting e1 and e2. Here, c is the wave speed, and the pair (U, V ) is usually called the wave-
front. By substituting (1.4) into (1.1), we have

⎧⎪⎪⎨
⎪⎪⎩

− cU ′ =D2[U ] + U(1 − U − kV ),

− cV ′ = dD2[V ] + rV (1 − V − hU),

(U,V )(−∞) = (1,0), (U,V )(+∞) = (0,1), z ∈R, 0 ≤ U,V ≤ 1,

(1.5)

where D2[U(z)] := U(z + 1) + U(z − 1) − 2U(z), and so is D2[V (z)]. For further analysis, if 
we make a transformation W = 1 − V , then the system (1.5) can be rewritten as a cooperative 
system

⎧⎪⎪⎨
⎪⎪⎩

− cU ′ =D2[U ] + U(1 − k − U + kW),

− cW ′ = dD2[W ] + r(1 − W)(hU − W),

(U,W)(−∞) = (1,1), (U,W)(+∞) = (0,0), z ∈R, 0 ≤ U,W ≤ 1.

(1.6)

Accordingly, our aim is to find the traveling wave solution (U, W) with some unknown speed(s) 
c, connecting (1, 1) and (0, 0) for (1.6).

It has been proved in [10] that there exists a positive constant cmin (the minimal wave speed) 
such that (1.6) has a non-negative monotone traveling wavefront (U, W) if and only if c ≥ cmin. 
The same result can also be obtained by applying the idea in [7], as long as we can show that 
a single spreading speed exists. Indeed, following the idea of Theorem 5.3 in [7], we can im-
mediately deduce that (1.6) has a single asymptotic spreading speed which implies significant 
biological interpretations. However, its explicit value is usually unknown. To estimate it, by lin-
earizing the U -equation near the equilibrium solution (0, 0) in (1.6), one can find a linear speed 
c0 defined by

c0 = min
μ>0

(eμ + e−μ − 2) + (1 − k)

μ
. (1.7)

In view of the idea in [7] again, it can always be shown that cmin ≥ c0. Only when some special 
restrictions are imposed on the parameters, cmin is equal to c0 (pulled traveling wave exists); 
otherwise, cmin > c0 (pushed traveling wave exists). Whether they are equal or not has become 
a challenging problem for researchers in the study of biological invasions. Therefore, as in the 
continuous case in [1,2], we can set up the definition of linear or nonlinear determinacy of the 
minimal wave speed as follows.

Definition 1.1. The minimal wave speed is said to be linearly selected if cmin = c0, and nonlin-
early selected if cmin > c0.
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Motivated by the Hosono’s conjecture in [14] for the speed selection to the continuous model 
(1.2), which has not been completely solved, our conjecture is

Conjecture 1.1. If kh ≤ 1, then cmin = c0 for all r > 0. If kh > 1, then there exists a critical 
positive number rc, 0 ≤ rc ≤ ∞ such that cmin = c0 if 0 < r ≤ rc , and cmin > c0 if r > rc .

Remark 1.2. When kh > 1 and rc = 0, the conjecture means that the minimal wave speed is 
nonlinearly selected for all r > 0.

As far as we know, there have been a few previous results with a partial answer to this conjec-
ture. Guo and Wu in [10] proved that the minimal wave speed of (1.1) is linearly selected when 
0 < d ≤ 1, and

{hk ≤ 1, r > 0} ∪
{
hk > 1,0 < r <

1 − k

hk − 1

}
. (1.8)

In another paper, Guo and Liang [11] extended the results to more general cases. More precisely, 
they proved that there exists a constant d∗ > 2 such that the minimal wave speed is linearly 
selected if 0 < d ≤ d∗ and (h, k, r, d) ∈ A1 ∪ A2 ∪ A3, where

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

A1 := {d ∈ (0, d∗], hk ≤ 1, r > 0} ,

A2 :=
{
d ∈ (0,1], hk > 1,0 < r ≤ 1 − k

hk − 1

}
,

A3 :=
{
d ∈ (1, d∗), hk > 1,0 < r ≤ d∗ − d

d∗ − 1

1 − k

hk − 1

}
.

(1.9)

In this paper, we aim to further investigate the challenging problem of the speed selection 
for the lattice system (1.1) by employing the upper-lower solution method and the comparison 
principle. Developing the idea in [2], we first reduce the coupled system (1.6) to a scalar nonlocal 
equation by means of abstractly solving the W -equation (see Lemma 2.6). Due to the existence of 
second order center-difference operator D2, the proof of this lemma shows some new challenges 
and ideas that are quite different from the one in [2]. For the existence of traveling wavefronts as 
well as the speed selection, instead of using classical construction of the upper/lower solutions as 
in [6], technically, we provide some new upper and lower solutions for the lattice wave profile. 
This enables us to obtain novel results, not only on the linear selection, but also on the nonlinear 
selection mechanism, which has not been touched in any previous references for (1.1), including 
[10,11]. Furthermore, the existence of a threshold value of h, denoted as hc, is also provided. 
Precisely, when h crosses over this value hc, the speed selection mechanism changes from linear 
to nonlinear. The estimations of hc are also established.

The structure of the rest of our paper is organized as follows. By virtue of the upper and 
lower solution method, Section 2 provides sufficient conditions which can help us to derive some 
explicit conditions for the speed selection. Section 3 is devoted to obtaining explicit conditions 
for linear and nonlinear speed selections. In Section 4, we focus on the critical value of h and 
the corresponding estimations. We will carry out some numerical simulations in Section 5 to 
demonstrate our main results and numerically verify the conjecture raised in this paper. Finally, 
we provide some concluding remarks in Section 6.
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2. The speed selection mechanism

We will use the technique of upper/lower solution pair coupled with the comparison principle 
to find the existence of traveling waves as well as the speed selection mechanism. We first give 
the definition of upper and lower solutions.

Definition 2.1 (Upper solution, see [10]). Given c ≥ c0, a pair of continuous functions (U, W)

from R to (0, 1] is called an upper solution to the system (1.6), if U is a non-constant function, 
U(−∞) = 1, W(−∞) = 1, and (U, W) is differentiable a.e. in R such that

{ − cU
′ ≥D2[U ] + U(1 − k − U + kW), a.e. in R,

− cW
′ ≥ dD2[W ] + r(1 − W)(hU − W), a.e. in R.

(2.1)

The definition of the lower solution can be similarly given by reversing all the inequality signs, 
as well as some minor changes. This definition was not provided in [10], but we will need it for 
the nonlinear selection of the minimal wave speed.

Definition 2.2 (Lower solution). Given c ≥ c0, a pair of continuous functions (U, W) from R
to [0, 1) is called a lower solution to the system (1.6), if U is a non-constant function, U(∞) =
0, W(∞) = 0, and (U, W) is differentiable a.e. in R such that

{ − cU ′ ≤D2[U ] + U(1 − k − U + kW), a.e. in R,

− cW ′ ≤ dD2[W ] + r(1 − W)(hU − W), a.e. in R.
(2.2)

For the existence of traveling wavefronts, by applying the Helly’s lemma for monotone func-
tions, Guo and Wu [10] proved the following lemmas.

Lemma 2.3 (see Lemma 2.4 in [10]). For given c ≥ c0, if there exists a nonincreasing upper 
solution (U, W) satisfying U(z) = 1, W(z) = 1 for z ∈ (−∞, 0], then (1.6) admits a traveling 
wavefront (c, U, W) with U ′ < 0 and W ′ < 0.

If the upper solution is differentiable, there is another result.

Lemma 2.4 (see Lemma 2.5 in [10]). If there exists a differentiable upper solution (U, W) sat-
isfying U

′
< 0 and W

′
< 0 for a given c ≥ c0, then (1.6) admits a traveling wavefront (c, U, W)

with U ′ < 0 and W ′ < 0.

Remark 2.5. The method of upper/lower solution for finding traveling wavefronts originates 
from Diekmann [6] with two classical constructions of upper and lower solutions that have been 
extensively applied in the research of traveling wave solutions. Usually the upper solution is 
established by the truncation of an exponential function with the positive equilibrium, while the 
lower solution can be set up by the idea in [6] so that it always exists for c > c0 for almost any 
monostable nonlinear systems. This means that the existence of traveling waves is completely 
dependent on the construction of suitable upper solutions (see the above two lemmas from [10]), 
a fact that has also been observed in [1,2].
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Based on the above results, for the linear speed selection, we will focus on the establishment 
of new upper solutions. Since (1.6) is a system, we may follow the idea in [1,2] to express W in 
terms of U from the second equation and substitute it into the first equation so that we will work 
on a nonlocal scalar equation. To this end, we will prove the following lemma.

Lemma 2.6. Assume c ≥ c0. For any given continuous and nonincreasing function U(z), with 
U(−∞) = a > 0 and U(∞) = 0, there exists a nonincreasing function W(z) = W(U)(z) satis-
fying

{
dD2[W(z)] + cW ′ + r(1 − W)(hU − W) = 0,

W(−∞) = min{1, ha}, W(∞) = 0.
(2.3)

Moreover, the solution W(U) is monotone in U in the sense that W(U1) ≥ W(U2) if U1 ≥ U2.

Proof. Let z = −t and w(t) = 1 − W(z). Then the equation of w(t) becomes

{
dD2[w(t)] − cw′(t) + rw(t)(ā(t) − w(t)) = 0,

w(−∞) = 1, w(∞) = 1 − min{1, ha}, (2.4)

where ā(t) = 1 − hU(z) = 1 − hU(−t) with ā(−∞) = 1, ā(∞) = 1 − ha. We will use the 
upper-lower solution method to prove the existence of w(t). It is easy to see that w̄(t) = 1 is an 
upper solution to the system (2.4). To construct a lower solution, we will consider two cases (i) 
ha < 1 and (ii) ha ≥ 1 separately.

For the case (i) ha < 1, we can choose the lower solution as w(t) = 1 −ha. This immediately 
gives the existence of the solution to (2.4).

For the case (ii) ha ≥ 1, the construction of the lower solution becomes non-trivial. To this 
end, we choose t0 ∈ (−∞, ∞) and small ε > 0 such that ā(t) ≥ 1 − ε for all t ≤ t0. Assume

f (ŵ) =
{

rŵ(1 − ε − ŵ), ŵ ≥ 0,

rŵ(−ε − ŵ), ŵ < 0,

and consider the following bistable wave profile equation

dD2[ŵ(t)] + ĉŵ′(t) + f (ŵ(t)) = 0. (2.5)

This system has three constant solutions ŵ = −ε, 0, 1 − ε. By Theorem 3.5 of [8], there exists a 
decreasing solution (bistable wavefront) ŵ(t) for (2.5) with speed ĉ = cε , satisfying

ŵ(−∞) = 1 − ε, ŵ(∞) = −ε. (2.6)

A translation of ŵ(t) is still a solution. Therefore, we can assume that ŵ(t) ≥ 0 for t ≤ t0 and 
ŵ(t) < 0 for t > t0. Here the speed cε is a continuous function of ε. When ε → 0, (2.5) reduces 
to

dD2[w̃(t)] + ĉw̃′(t) + rw̃(1 − w̃) = 0, (2.7)
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which has non-negative traveling waves for ĉ ≥ c̄0, connecting 1 and 0, with the minimal wave 
speed c̄0 given by

c̄0 = min
μ>0

d(eμ + e−μ − 2) + r

μ
> 0. (2.8)

By the continuity of cε , it is easy to know cε → c̄0, with cε > 0 as long as ε is sufficiently small. 
Now we can construct a lower solution to (2.4) with

w(t) = max{ŵ(t),0}, (2.9)

where ŵ is the solution of (2.5) satisfying (2.6). It can be easy to verify that w(t) is a lower 
solution of (2.4).

The construction of upper and lower solutions of w implies the existence of the solution W . 
To see this, we turn to the original differential-difference equation (2.3) and transform it into an 
integral form

W(z) = 1

c

∞∫
z

e
L
c
(z−s)F (W,U)ds =: T [W,U ]. (2.10)

Here, L > 0 is large enough so that F(W, U)(z) = d[W(z + 1) + W(z − 1) − 2W(z)] + r(1 −
W(z))(hU − W(z)) + LW(z) is monotone in W . We only prove the result in the case (ii) where 
ha ≥ 1, since case (i) can be dealt with similarly. For the case (ii), the chosen upper and lower 
solutions are W = min{1, 1 − ŵ(−z)} and W = 0, respectively. Clearly, W(+∞) = ε while 
W(−∞) = 1. We then follow the idea of the upper-lower solution method (see, e.g., [1,2]) to 
define an iteration scheme as

{
Wn+1 = T [Wn,U ],
W0 = W = 0.

(2.11)

We obtain a sequence {Wn}∞n=0 with Wn(z) being nonincreasing in R and nondecreasing in n, that 
is, 0 ≤ W0 ≤ W1 ≤ W2 ≤ · · · ≤ W ≤ 1. By the Helly’s lemma for monotone functions (see, e.g., 
[10]), this sequence converges to a nonincreasing function W(z) pointwise, i.e., lim

n→∞Wn = W . 

It is obvious that this limit W(z) is the solution of (2.3) and its continuity is ensured by (2.10). 
Since W(z) is nonincreasing in R and 0 ≤ W(z) ≤ W(z) ≤ 1 for all z ∈ R, W(±∞) exist. By 
using equation (2.3) or (2.10), it follows that

{
(1 − W(−∞))(ha − W(−∞)) = 0,

(1 − W(+∞))(−W(+∞)) = 0.

Since case (ii) means that ha ≥ 1, it immediately follows that W(−∞) = 1. Due to the fact 
W(+∞) = ε, we obtain that W(+∞) = 0.

It remains to show the monotonicity of W(U). Notice that F(W, U) is monotone in U since 
0 ≤ W ≤ 1. Let U1 ≥ U2 in R. Through the scheme (2.11) again, we obtain two sequences 
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{Wn(U1)}∞n=0 and {Wn(U2)}∞n=0 with the same initial data W0(U1) = W0(U2) = 0. By the mono-
tonicity of F(W, U) in W and U , we have Wi(U1) ≥ Wi(U2) for all i ≥ 1. Therefore, it follows 
W(U1) = lim

n→∞Wn(U1) ≥ lim
n→∞Wn(U2) = W(U2). This means the monotonicity of W(U) is 

proved. The proof is complete. �
By applying Lemma 2.6, (1.6) can reduce to the following nonlocal scalar equation

{
H1(U,W) := D2[U ] + cU ′ + U(1 − k − U + kW(U)) = 0,

U(−∞) = 1, U(+∞) = 0.
(2.12)

We proceed to construct upper/lower solutions to (2.12). To incorporate a suitable decay rate 
for this type of solutions, we first linearize (1.6) near (0, 0), since the nonlinear system is domi-
nated by its linear system at z = ∞. The linearized system is given by

{
D2[U ] + cU ′ + U(1 − k) = 0,

dD2[W ] + cW ′ + r(hU − W) = 0.
(2.13)

The first equation is decoupled from the system. Let U(z) = ξ1e
−μz for some positive constants 

ξ1 and μ, as z → ∞. By substituting it into (2.13), one can get a characteristic equation

�1(μ) := (eμ + e−μ − 2) − cμ + (1 − k) = 0. (2.14)

Let c0 be defined in (1.7). It is easy to know that for c > c0, �1(μ) = 0 has two solutions μ1 =
μ1(c) and μ2 = μ2(c), with μ1 < μ2. Here μ1(c) is a decreasing function and μ2(c) is an 
increasing function of c, satisfying

μ̄ := μ1(c0) = μ2(c0). (2.15)

Remark 2.7. As z → ∞ and c > c0, the behavior of solution U of (1.6) (or (2.13)) can be given 
by

U(z) ∼ C1e
−μ1(c)z + C2e

−μ2(c)z, z → ∞, (2.16)

for non-negative C1, C2 with C1 + C2 > 0. Substituting (2.16) into the second equation of (1.6)
(or (2.13)), we can obtain the behavior of W as z → ∞. Indeed, denote the characteristic equation 
of the second equation as

�2(μ) := d(eμ + e−μ − 2) − cμ − r = 0.

It can be derived that the behavior of W is given by

W(z) ∼ C1
rh

−�2(μ1)
e−μ1z + C2

rh

−�2(μ2)
e−μ2z + C3e

−μ3z, z → ∞, (2.17)

if μ3 is not equal to μ1 or μ2, where C3 > 0, μ3 is the unique positive solution of �2(μ) = 0. 
For a detailed and rigorous analysis of the asymptotic behavior of the wave profile, we refer to 
Section 3 in [10].
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We are ready to construct an upper solution pair. Let c = c0. Define U(z) as

U = 1

1 + eμ̄z
, μ̄ = μ1(c0), (2.18)

and W = W(U) is defined by Lemma 2.6. Thus, we get

D2(U) = U(z + 1) + U(z − 1) − 2U(z)

= 1

1 + eμ̄(z+1)
+ 1

1 + eμ̄(z−1)
− 2

1

1 + eμ̄z

= U

[
eμ̄z(2 − eμ̄ − e−μ̄) + e2μ̄z(eμ̄ + e−μ̄ − 2)

(1 + eμ̄(z+1))(1 + eμ̄(z−1))

]

= U
(
1 − U

)[
(eμ̄z + 1)(eμ̄z − 1)(eμ̄ + e−μ̄ − 2)

(1 + eμ̄(z+1))(1 + eμ̄(z−1))

]
.

Substituting it into the expression of H1(U, W) and using U
′ = −μ̄U(1 − U), we have

H1(U,W) = U
2 (

1 − U
)(

−2(e−μ̄ + eμ̄ − 2) + (eμ̄ + e−μ̄ − 2)2R1(U) + k
W − U

U
(
1 − U

)
)

(2.19)
where

R1(U) := eμ̄z(1 − eμ̄z)

1 + eμ̄z(eμ̄ + e−μ̄) + e2μ̄z
.

Therefore, (U, W) is an upper solution if

−2(e−μ̄ + eμ̄ − 2) + (eμ̄ + e−μ̄ − 2)2R1(U) + kY1(z)≤0 (2.20)

is satisfied, where

Y1(z) = W − U

U
(
1 − U

) . (2.21)

The maximum of R1(U) can be derived by setting x = eμ̄z ∈ (0, ∞) and it is given by

χ = max
z∈(−∞,∞)

R1(U)(z) = 1

τ + 4 + 2
√

τ + 4
, τ = eμ̄ + e−μ̄ − 2, (2.22)

which implies that the pair of functions (U, W) is an upper solution, provided that

−2τ + τ 2χ + kY1(z) ≤ 0 (2.23)

holds.
With this choice of (U, W) as an upper solution, one can conclude the following theorem.
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Theorem 2.8. The minimal wave speed of the system (1.6) is linearly selected, if (2.20), or (2.23), 
is satisfied.

Remark 2.9. Similar to the discussion in [1], we can derive that the function Y1(z) is bounded 
above for all z ∈ R.

Next, we proceed to investigate the nonlinear speed selection.

Theorem 2.10. For c1 > c0, assume that there exists a continuous and monotonic function pair 
(U, W)(z) = (U, W)(j − c1t) as a lower solution to (1.6), with (0, 0) ≤ (U, W) < (1, 1), sat-
isfying U(z) ∼ ζ1e

−μ2(c1)z for some positive ζ1 as z → ∞ and U(−∞) < 1. Then no traveling 
wave solution exists for (1.6) with c ∈ [c0, c1).

Proof. First for c ∈ (c0, c1), assume to the contrary that there is a monotonic traveling wavefront 
(U, W)(z) to (1.6) with (U, W)(j − ct) satisfying

{
u′

j (t) =D2[uj ] + uj (1 − k − uj + kwj ),

w′
j (t) = dD2[wj ] + r(1 − wj)(huj − wj), j ∈Z,

(2.24)

subject to the initial conditions

uj (0) = U(j) and wj(0) = W(j).

Applying the monotonicity of μ1(c) and μ2(c) as well as Remark 2.7, we can assume U(z) <
U(z), by shifting if necessary. Using the equation in Lemma 2.6 and the monotonicity of W(U), 
we can obtain (U, W)(z) ≤ (U, W)(z). Due to the fact that (U, W)(j − c1t) is a lower solution 
to (2.24), it follows by comparison that

U(j − c1t) ≤ U(j − ct), and W(j − c1t) ≤ W(j − ct). (2.25)

Choose a point z so that U(z) > 0 is fixed. On the line z = j − c1t , it follows that

U(j − ct) = U(z + (c1 − c)t) ∼ U(∞) = 0 as t → ∞.

By (2.25), this implies that U(z) ≤ 0, which is a contradiction of the positivity of U(z).
Finally, if there exists a traveling wavefront when c = c0, naturally there exists a traveling 

wave for c ∈ (c0, c1), since c0 becomes the minimal wave speed. The above argument still oper-
ates to deduce a contradiction. Thus, the proof is complete. �

Now, we apply Theorem 2.10 to investigate the nonlinear selection of the minimal wave speed.
For 0 < k < 1, define

U = k

1 + eμ2(c)z
,

for c = c0 + ε, where ε is a sufficiently small number. Similar to (2.19), we can obtain
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H1(U,W) = U2

k

(
1 − U

k

)⎛
⎝−2(e−μ2(c) + eμ2(c) − 2) + R2(U) + k

W − U
(

k−1+k

kk

)
U

k

(
1 − U

k

)
⎞
⎠ .

(2.26)

It is easy to conclude that the pair of functions (U(z), W(z)) is a lower solution to system (1.6)
if

−2(eμ2(c) + e−μ2(c) − 2) + R2(U) + kY2(z) > 0, for all z ∈ (−∞,∞), (2.27)

where

Y2(z) =
W − U

(
k−1+k

kk

)
U

k

(
1 − U

k

) , R2(U) := (eμ2(c) + e−μ2(c) − 2)2eμ2(c)z(1 − eμ2(c)z)

1 + eμ2(c)z(eμ2(c) + e−μ2(c)) + e2μ2(c)z
. (2.28)

By replacing R2(U) by its minimum −(eμ2(c) + e−μ2(c) − 2)2, it follows from (2.27) that 
(U(z), W(z)) is a lower solution if

−2(eμ2(c) + e−μ2(c) − 2) − (eμ2(c) + e−μ2(c) − 2)2 + kY2(z) > 0 (2.29)

is satisfied. Based on the above results, we have the following theorem.

Theorem 2.11. The minimal wave speed of the system (1.6) is nonlinearly selected if (2.27), or 
(2.29), is satisfied for some c = c0 + ε.

3. Explicit conditions for the speed selection

We give the linear/nonlinear speed selection in the previous section based on the existence 
of implicit formula W(U). Numerically this provides a good judgment for the speed selection. 
In this section, we want to establish some explicit conditions for the speed selection with the 
estimate of W(U). In other words, we will give formulas for U and W simultaneously.

Theorem 3.1. The minimal wave speed of (1.6) is linearly selected for all r > 0, if

0 ≤ d ≤ 1 + 1 − k

τ
, and kh ≤ 2τ − χτ 2, (3.1)

where

τ = eμ̄ + e−μ̄ − 2, μ̄ = μ1(c0), (3.2)

and χ is defined in (2.22), i.e.,

χ = 1

τ + 4 + 2
√

τ + 4
.
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Proof. Let U be defined in (2.18) and W(z) be given by

W(z) = min{1, hU(z)} =
{

1, z ≤ z1,

hU, z > z1,
(3.3)

where z1 is the unique root of hU(z) = 1. Let c = c0. For the W -equation, when z ≤ z1 − 1, we 
have

dD2[W ] + cW
′ + r(1 − W)(hU − W) = 0.

When z1 − 1 < z ≤ z1, we have

dD2[W ] + cW
′ + r(1 − W)(hU − W) = d(hU(z + 1) − 1) < 0.

While for z1 < z ≤ z1 + 1, by noticing hU(z − 1) ≥ 1, we get

dD2[W ] + cW
′ + r(1 − W)(hU − W)

= d(1−2hU(z) + hU(z + 1)) + cW
′ + r(1 − W)(hU − W)

= dhU(z + 1) − 2dhU(z) + dhU(z − 1) + cW
′ + r(1 − W)(hU − W) + d(1 − hU(z − 1))

≤ dhU(z + 1) − 2dhU(z) + dhU(z − 1) + cW
′ + r(1 − W)(hU − W).

For z > z1 + 1, it is easy to see that

dD2[W ] + cW
′ + r(1 − W)(hU − W)

= dhU(z + 1) − 2dhU(z) + dhU(z − 1) + cW
′ + r(1 − W)(hU − W).

As a result, when z > z1, we can deal with the W -equation in the same way. In view of the first 
condition of (3.1), we have

dD2[W ] + cW
′ + r(1 − W)(hU − W) ≤ hU

(
1 − U

) {dτ − cμ̄} ≤ 0.

For the U -equation, we get the following estimation

Y1(z) =

⎧⎪⎪⎨
⎪⎪⎩

1

U
≤ h, when z ≤ z1,

h − 1

1 − U
≤ h, when z > z1.

(3.4)

Then we have −2τ + kh + χτ 2 ≤ 0 for all r . This ensures that (U, W) is an upper solution. By 
Lemma 2.3, our proof is complete. �
Remark 3.2. We point out that the number 2τ − χτ 2 is positive which can be verified directly.
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Remark 3.3. If we choose the function (U, W) = (−�2(μ̄), rh)e−μ̄z as an upper solution, and 
substitute it into (1.6), then we have

r(kh − 1) ≤ (1 − d)τ + (1 − k). (3.5)

This recovers the result in [10,11].

A combination of Theorem 3.1 and Remark 3.3 leads to the following corollary.

Corollary 3.4. If 0 ≤ d < 1 and kh ≤ max
{
1,2τ − χτ 2

}
, then the minimal wave speed of the 

lattice system (1.6) is linearly selected.

Interestingly, by choosing another different upper solution for W , we can obtain the following 
theorem.

Theorem 3.5. Linear speed selection of (1.6) is realized if

⎧⎪⎪⎨
⎪⎪⎩

0 ≤ d < 1 + 1 − k

τ
, k ≤ 2τ − χτ 2,

kh > 2τ − χτ 2, r ≤ L[(1 − d)τ + (1 − k)]
h − L

,

(3.6)

where

L := 1

k
(2τ − χτ 2) ≥ 1.

Proof. For the same U defined in (2.18), choose W as

W(z) = min
{
1,LU(z)

} =
{

1, z ≤ z2,

LU(z), z > z2,

where z2 satisfies LU(z) = 1. Similar to the treatment in Theorem 3.1, we know that, for c = c0, 
z ≤ z2, we obtain

dD2[W ] + cW
′ + r(1 − W)(hU − W) ≤ 0.

While for z > z2, we can show

dD2[W ] + cW
′ + r(1 − W)(hU − W) ≤ U

(
1 − U

)
L(dτ − cμ̄) + r

(
1 − LU

) (
hU − LU

)
≤ U(1 − U) {L[(d − 1)τ − (1 − k)] + r(h − L)}
≤ 0

if

L ≥ 1, kh > 2τ − χτ 2, and r ≤ L[(1 − d)τ + (1 − k)]
.

h − L
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From the choice of (U, W), it can be derived that Y1(z) ≤ 1
k
(2τ − χτ 2). Therefore, (2.20) is 

satisfied. In view of Lemma 2.3, the proof is complete. �
If we define M := max{1, 2τ − χτ 2}, then the combination of (3.5) and the bound for r in 

(3.6) gives the following result.

Corollary 3.6. The minimal wave speed is linearly selected provided that 0 < d < 1 + 1−k
τ

, 
hk > M , k ≤ 2τ − χτ 2 and

r ≤ M[(1 − d)τ + (1 − k)]
hk − M

.

Theorem 3.7. For 1 + 1−k
τ

< d < 1 + (1−k)+r
τ

, the minimal wave speed of (1.6) is linearly se-
lected if

r + (1 − k) − (d − 1)τ

hr
> max

{
(d − 1)τ − (1 − k)

d(2τ − χτ 2)
,

k

2τ − χτ 2

}
.

Proof. Take the choice of

W(z) = min{1, hγU(z)} =
{

1, z ≤ z3,

hγU(z), z > z3,

where z3 satisfies hγU(z) = 1 and

γ = γ (d, k, r) = r

r + (1 − k) − (d − 1)τ
+ η1,

with η1 being a sufficiently small positive number such that

1

hγ
> max

{
(d − 1)τ − (1 − k)

d(2τ − χτ 2)
,

k

2τ − χτ 2

}
. (3.7)

As before let c = c0. For the piecewise continuous function W(z), we can deduce that

dD2[W ] + cW
′ + r(1 − W)(hU − W) ≤ 0

for z ≤ z3. When z > z3, we can show

dD2[W ] + cW
′ + r(1 − W)(hU − W) ≤ hUF(U),

where

F(U) = dγ τ(1 − U)(1 − 2U) − cμ̄γ (1 − U) + r(1 − γ )(1 − hγU) + dγχτ 2U(1 − U).
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One can easily conclude that F(U) is concave up. Therefore, for U ∈ [0, 1
hγ

], we will prove 

F(U) < 0 by showing that they are negative at two endpoints 0 and 1
hγ

. For the left endpoint, we 
have F(0) = −η1[r − (d − 1)τ + (1 − k)] < 0. For the right endpoint, by using (3.7), we have

F

(
1

hγ

)
= γ

(
1 − 1

hγ

){
dτ − cμ̄ − d(2τ − χτ 2)

1

hγ

}
< 0.

This indicates that dD2[W ] + cW
′ + r(1 −W)(hU −W) ≤ 0 for all z ∈ (−∞, ∞). On the other 

hand, we can show that

Y1(z) = W − U

(1 − U)U
=

⎧⎪⎪⎨
⎪⎪⎩

1

U
≤ hγ, when z ≤ z3,

hγ − 1

1 − U
≤ hγ, when z > z3.

Then in view of the conditions in the theorem, we find that −2τ + χτ 2 + khγ < 0. By Theo-
rem 2.8, the proof is complete. �

The above results are related to the linear speed selection. Now we start to establish the non-
linear speed selection by constructing a fast decaying lower solution for U -equation.

First we set

U1(z) = k

1 + eμ2(c)z
, W 1(z) = U1(z)

k
, (3.8)

where c = c0 + ε, k ∈ (0, 1) is to be determined. Then we obtain the following result.

Theorem 3.8. The minimal wave speed of (1.6) is nonlinearly selected if

1

hr
[(d + 1)τ + dτ 2 + (1 − k) + r] < 1 − 2τ − τ 2.

Proof. By the assumption, we can find k satisfying

1

hr
[(d + 1)τ + dτ 2 + (1 − k) + r] < k < 1 − 2τ − τ 2.

Via a substitution of (3.8) into (2.29) together with the condition in the theorem, we can directly 
prove inequality (2.29) and

W 1(1 − W 1)
{
−[dτ + dτ 2 + cμ2(c)] + r(hk − 1)

}
≥ 0.

Here, we have used the fact that μ2(c) → μ̄ and eμ2(c) + e−μ2(c) − 2 → τ as ε → 0. Therefore, 
the proof is complete. �
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It is worth mentioning that one can choose smooth upper solutions to obtain different condi-
tions for the linear selection. We now set W as a solution to the following equation

W ′ = −1

2
μ̄W(1 − W).

The explicit expression for W is given by

W = 1

1 + e
1
2 μ̄z

.

Further, we set U
1
2 = W , namely,

U = W 2 =
(

1

1 + e
1
2 μ̄z

)2

.

Substituting it into D2[U ] by a straightforward calculation (the software such as Mathematica 
can be used), we have

D2[U ] = τU(1 − U
1
2 )(1 − 3

2
U

1
2 ) + R(x,U), x = e

1
2 μ̄z,

where the remainder term R(x, U) is given by

R(x,U) = τU(1 − U
1
2 )U

1
2 g(x).

Here,

g(x) = a1 + a2x + a3x
2 + a4x

3 + a5x
4

1 + 2
√

τ + 4x + (τ + 6)x2 + 2
√

τ + 4x3 + x4
,

where

a1 = −2a + 1

2
, a2 = a2τ − 4a − 1 + √

τ + 4, a3 = 2a2τ + 6 − 4a − 2
√

τ + 4 + τ

2
,

a4 = a2τ − 4a − τ − 1 + √
τ + 4, a5 = 9

2
− 2a − 2

√
τ + 4,

with

a =
√

τ + 4 − 2

τ
.

If the maximum of g(x), x ∈ (0, +∞), is denoted by �, i.e.,

� = max g(x), (3.9)

x∈(0,∞)
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which is positive and always exists since the denominator of g(x) is positive and the limit at 
infinity is finite, then the term D2[U ] can be estimated by

D2[U ] ≤ τU(1 − U
1
2 )(1 − 3

2
U

1
2 ) + τ�U(1 − U

1
2 )U

1
2 .

Based on the above analysis, we have the following theorem.

Theorem 3.9. Let � be defined in (3.9). The minimal wave speed of (1.6) is linearly selected if 
− 3

2τ + 1 + τ� ≤ 0 and one of the following conditions is satisfied:

dτ1 − 1

2
(τ + (1 − k)) < r <

1

h
(2dτ1 − dχ1τ

2
1 ), (3.10)

or

1

h
(2dτ1 − dχ1τ

2
1 ) ≤ r <

dτ1 + 1
2 (τ + (1 − k)) − dχ1τ

2
1

h − 1
, (3.11)

where

τ1 = √
τ + 4 − 2, χ1 = 1

τ1 + 4 + 2
√

τ1 + 4
.

Proof. Note that

U ′ = −μ̄U(1 − U
1
2 ), and W ′ = −1

2
μ̄W(1 − W).

Let c = c0. One can verify that (U, W) turns to be an upper solution to system (1.6) if

D2[U ] + cU ′ + U(1 − k − U + kW) ≤ UU
1
2 (1 − U

1
2 )

(
−3

2
τ + 1 + τ�

)
≤ 0

and

dD2[W ] + cW ′ + r(1 − W)(hU − W)

≤ W(1 − W)

[
dτ1 − 1

2
cμ̄ − r + (−2dτ1 + rh + dχ1τ

2
1 )W

]

≤ 0,

which are valid by the conditions (3.10) and (3.11). The proof is thus complete. �
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4. Existence and the estimation of the critical value of h

In this section, we will study the linear/nonlinear speed selection in terms of h when other 
parameters are fixed. More precisely, we will investigate the existence of a threshold value hc of 
h in the sense that, when h crosses from the left side of hc to the right, the minimal wave speed 
selection changes from linear to nonlinear. We begin with a comparison on the parameter h as 
follows:

Lemma 4.1. If the minimal wave speed of the system (1.5) is linearly selected for some 
h = hϑ > 1, then it is linearly selected for all 1 < h ≤ hϑ .

Proof. When h = hϑ , we denote the corresponding solution by (Uϑ, Wϑ). Then we have

⎧⎪⎪⎨
⎪⎪⎩
D2[Uϑ ] + cU ′

ϑ + Uϑ(1 − k − Uϑ + kWϑ) = 0,

cW ′
ϑ + r(1 − Wϑ)(hϑUϑ − Wϑ) = 0,

(Uϑ,Wϑ)(−∞) = (1,1), (Uϑ,Wϑ)(+∞) = (0,0).

(4.1)

To confirm that the pair of functions (Uϑ, Wϑ) is an upper solution to system (1.6) for h < hϑ , 
we need to prove

⎧⎪⎪⎨
⎪⎪⎩
D2[Uϑ ] + cU ′

ϑ + Uϑ(1 − k − Uϑ + kWϑ) ≤ 0,

cW ′
ϑ + r(1 − Wϑ)(hUϑ − Wϑ) ≤ 0,

(Uϑ,Wϑ)(−∞) = (1,1), (Uϑ,Wϑ)(+∞) = (0,0).

(4.2)

In fact, when h < hϑ , the first equation of (4.2) is naturally satisfied since the first equation of 
(4.1) remains unchanged. As for the second equation of (4.2), we have

cW ′
ϑ + r(1 − Wϑ)(hU − Wϑ) = r(h − hϑ)(1 − Wϑ)Uϑ ≤ 0.

Hence, (Uϑ, Wϑ) is an upper solution. By Lemma 2.4, we know that the minimal wave speed is 
linearly selected for 1 < h ≤ hϑ . �

Lemma 4.1 allows us to define a critical value of h as

hc = sup{h > 1| the minimal wave speed of system (1.6) is linearly selected}.
We have the following result.

Theorem 4.2. The minimal wave speed of system (1.6) is linearly selected when 1 < h ≤ hc , and 
nonlinearly selected when h > hc.

Now, we are in a position to give an estimation for h. For this, we need the following properties 
of Y1(z) and Y2(z).

Lemma 4.3. Y1(z, h) and Y2(z, h) defined in (2.21) and (2.28) are increasing with respect to h.
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Proof. By noting that U and U are independent of h, it is sufficient to prove W and W are 
increasing with respect to h. This can be verified directly from (2.3). �

In view of Lemma 4.3, we can define

h− = sup{h > 1| the inequality (2.23) is valid for all z ∈ (−∞,∞)},
h+ = inf{h > 1| the inequality (2.29) is valid for all z ∈ (−∞,∞)}.

It is obvious 1 ≤ h− ≤ hc ≤ h+ < ∞. From the previous section, we will give more estimates 
for them.

Theorem 4.4. When 0 ≤ d < 1 + 1−k
τ

, we have

hc ≥ M[(1 − d)τ + (1 − k) + r]
kr

.

Theorem 4.5. When 1 + 1−k
τ

< d < 1 + (1−k)+r
τ

, we have

hc ≥ r + (1 − k) − (d − 1)τ

r
min

{
d(2τ − χτ 2)

(d − 1)τ − (1 − k)
,

2τ − χτ 2

k

}
.

Theorem 4.6. If 2τ + τ 2 < 1, or equivalently, 0 < τ < −1 + √
2, then we have

hc ≤ (d + 1)τ + dτ 2 + (1 − k) + r

r(1 − 2τ − τ 2)
.

5. Numerical simulations

In this section, we will perform numerical simulations to manifest the results obtained in 
Sections 3 and 4, and also give a numerical verification of the Conjecture 1.1 we raised in the 
Introduction.

To proceed, we numerically compute the spreading speed of traveling waves of (1.1), named 
cnum, and then compare it with c0 whose formula is given by (1.7). To obtain cnum, we solve 
the initial-boundary value problem of (1.1) by applying the 4th order Runge-Kutta method for 
ordinary differential systems, where the initial conditions are given as

uj (0) =
{

1, 1 ≤ j ≤ Nj ,

0, Nj + 1 ≤ j ≤ NL,
and vj (0) =

{
0, 1 ≤ j ≤ Nj ,

1, Nj + 1 ≤ j ≤ NL,
(5.1)

and the boundary conditions are

{
u1(t) − u2(t) = uNL

(t) − uNL−1(t) = 0,

v1(t) − v2(t) = vNL
(t) − vNL−1(t) = 0

(5.2)

where NL is a large positive integer.
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Fig. 5.1. (Color online) The solution uj (t) for t = 200, 202, 204, · · · , 224. The figure is depicted when k = 0.5, h = 1, 
r = 1, and d = 1.

Table 5.1
Numerical demonstrations of the theorems. The table is to verify Theorems 3.1-3.8.

Theorem k h d r c0 cnum c0 − cnum

3.1 0.1 2 2 10 1.9068 1.9598 0.001
3.5 0.1 20 0.5 3 1.9068 1.9588 0.002
3.7 0.5 1.5 3 5 1.4417 1.4414 0.0003
3.8 0.8 2 0.5 4 0.9017 0.9561 −0.0544

Via the theory of the spreading speed (see e.g. [8]), the solution with the above initial data 
will evolve into a traveling wave solution of (1.1) with the minimal wave speed; that is, cnum
is supposed to give an accurate approximation of cmin (see also [14]). Here Fig. 5.1 depicts the 
solution uj (t) at different time t . In this figure, the curves represent uj(t) and are recorded when 
t = 200, 202, 204, · · · , 224. As we can see, those curves do manifest one property of the traveling 
wave, i.e., translation invariance.

We then choose the set of coefficients from Theorems 3.1, 3.5, 3.7 and 3.8 respectively to 
show the examples of pulled (cmin = c0) and pushed (cmin > c0) wavefronts. The results are 
shown in Table 5.1. It is not hard to verify that the coefficients chosen in Table 5.1 satisfy the 
conditions of each theorem. Let’s take Theorem 3.1 as an example, i.e., the first row of data in 
Table 5.1. When k = 0.1, then c0 = 1.9608 and μ̄ = 0.8074; thus τ = 0.8008 and χ = 0.1089, 
which give 2τ −χτ 2 = 1.5317. Clearly, our choice hk = 0.2 < 1.5317 and 1 + 1−k

τ
= 2.124 > d . 

In summary, (3.1) holds true under the choice of the first row of data in Table 5.1. The last column 
of Table 5.1 shows the error between our computed speed cnum and the theoretically obtained c0. 
As the table shows, the first three groups of data demonstrate the linear selection since the relative 
error is as small as O(10−4); this means that the numerical simulations agree with the theoretical 
results from Theorems 3.1, 3.5, and 3.7, respectively. For an example of a pushed wave, we take 
the coefficients satisfying Theorem 3.8. The result is shown in the last row of Table 5.1. As we 
can see, the numerically computed speed cnum is greater than the linear speed c0. Actually, the 
coefficients chosen in this case imply that hk = 1.6 > 1, and we will use this set of parameters 
to do an extensive example to demonstrate Conjecture 1.1 later.

From Section 4, we have studied the speed selection mechanism in terms of h when other 
parameters are fixed; that is, there exists a critical number hc such that (1.6) is linearly selected 
if 1 < h ≤ hc and nonlinearly selected if h > hc (see details in Theorem 4.2). We also gave some 
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Fig. 5.2. (Color online) Linear and nonlinear selections of the minimal speed for varied values of h. The figure is depicted 
when k = 0.8, d = 0.5, and r = 4.

Table 5.2
The differences between the linear speed and the minimal speed. The table is obtained when h = 1.5 and k = 0.5.

r d = 0 d = 3

cnum c0 − cnum cnum c0 − cnum

0.1 1.4373 0.0044 1.4419 −0.0002
0.5 1.4379 0.0038 1.4382 0.0034
1.0 1.4394 0.0023 1.4368 0.0049
2.0 1.4408 0.0009 1.4401 0.0016
10.0 1.4433 −0.0016 1.4407 0.001
20.0 1.4404 0.0013 1.4396 0.0021

estimations on the value of hc, see Theorems 4.4-4.6. Now, we apply the same numerical method 
on (1.1), but with fixed d, r, k and varied h. The result is shown in Fig. 5.2. The figure is drawn 
when k = 0.8, d = 0.5, and r = 4. Under this choice of coefficients, we find a lower bound of 
hc as hc = 1.3428 by Theorem 4.4, and an upper bound of hc as h̄c = 1.9616 by Theorem 4.6
(since 0 < τ = 0.1939 < −1 + √

2). From the numerical simulation, see Fig. 5.2, we find that 
hc � 1.55, which is indeed in the interval [hc, h̄c]; thus, this is an example which demonstrates 
the results from Section 4.

Then we proceed to numerically verify Conjecture 1.1. For the first part, i.e., the linear selec-
tion conjecture, we fix h = 1.5 and k = 0.5, which clearly give hk = 0.75 < 1. Thus, we expect 
that, for all r ≥ 0, the system (1.1) will be linearly selected. We take two values of d to perform 
the simulations, and the results are shown in Table 5.2. Due to the error induced by the scheme 
and Matlab itself, we are not able to obtain exactly cnum = c0, but their difference is relatively 
as small as O(10−3). As we can see, even when r is as large as 20, we still get that the speed is 
almost c0. Thus, our simulations have demonstrated the linear selection part of the conjecture.

The last example is to demonstrate the existence of “rc” when hk > 1. As aforementioned, in 
the example for Theorem 3.8, when r = 4, we do have a traveling wave whose minimal speed 
cmin � cnum > c0. By extending that example, we fix k = 0.8, h = 2, d = 0.5, and vary the value 
of r , and compute cnum for each r . The results are shown in Fig. 5.3. As the picture shows, c is 
an increasing function with respect to r when r > rc and c � c0 when r ≤ rc . Moreover, it can 
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Fig. 5.3. (Color online) Linear and nonlinear selections of the minimal speed for varied values of r . The figure is depicted 
when k = 0.8, d = 0.5, and h = 2.

be seen that in our chosen case, rc � 1. This example combined with Table 5.2 seems to have 
numerically verified Conjecture 1.1.

6. Conclusion

By making use of the upper-lower solution method, we investigate the speed selection mecha-
nism for traveling waves to the lattice Lotka-Volterra system, which can be regarded as a discrete 
version of the classical diffusive Lotka-Volterra competition system. New results on the linear 
and nonlinear speed selection are established, aiming to contribute an answer toward the new 
conjecture raised here for the lattice system.

For the linear speed selection, the new conditions on the parameters r, d, k, h (see Theo-
rems 3.1, 3.5 and 3.7) extend the previous results in [11]. More precisely, we want to emphasize 
the following comparisons between our results and those in [11]:

(1). The comparison between A1 in [11] and (3.1). When choosing k = 0.1, by the software 
Matlab, we can calculate c0 ≈ 1.9608 and μ1(c0) ≈ 0.8674. Moreover τ = e0.8674 + e−0.8674 −
2 ≈ 0.8008. Therefore, 2τ − χτ 2 ≈ 1.5318 > 1. This means our result is better that A1. It is 
worth mentioning that, in this case, 1 + 1−k

τ
≈ 2.1239 > 2.

(2). The comparison between A2 and (3.6). One can easily find that the range of d given in 
condition (3.6) is larger than the result in A2. In this sense, we provide a more general result 
concerning the linear speed selection. Even in the region d ∈ (0, 1], our range for r is larger than 
that in A2. In fact, by taking k = 0.1, h = 20, d = 0.5, we can calculate the upper bound in A2, 
which is given by 1−k

hk−1 = 0.9; while for our result in (3.6), the upper bound is approximated by 
L[(1−d)τ+(1−k)]

h−L
≈ 4.2545 > 0.9.

(3). By our notations, the number d∗ appeared in A3 is equal to 1 + 1−k
τ

. From Theorem 3.7, 
we have extended the range of d to a larger upper bound d∗ + r

τ
, which is not contained in [11].

Most importantly, for the nonlinear speed selection, we have established a crucial Theo-
rem 2.10, by which we successfully obtained novel results on this direction (see Theorem 3.8) 
that has never been studied historically.

Finally, the existence of a critical value of h, denoted by hc, is proved by a comparison lemma 
coupled with the upper-lower solution method. Several estimations of hc for the linear/nonlinear 
speed selection are provided, see Theorems 4.4-4.6.



JID:YJDEQ AID:10040 /FLA [m1+; v1.304; Prn:14/10/2019; 12:50] P.23 (1-23)

H. Wang et al. / J. Differential Equations ••• (••••) •••–••• 23
Our numerical simulations demonstrate the realizations of the linear and nonlinear speed se-
lections. Furthermore, we seem to numerically confirm the conjecture raised in our paper.
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