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Abstract

The abstract theory of boundary triples is applied to the classical Jacobi differential operator and its 
powers in order to obtain the Weyl m-function for several self-adjoint extensions with interesting bound-
ary conditions: separated, periodic and those that yield the Friedrichs extension. These matrix-valued 
Nevanlinna–Herglotz m-functions are, to the best knowledge of the author, the first explicit examples to 
stem from singular higher-order differential equations.

The creation of the boundary triples involves taking pieces, determined in [26], of the principal and 
non-principal solutions of the differential equation and putting them into the sesquilinear form to yield 
maps from the maximal domain to the boundary space. These maps act like quasi-derivatives, which are 
usually not well-defined for all functions in the maximal domain of singular expressions. However, well-
defined regularizations of quasi-derivatives are produced by putting the pieces of the non-principal solutions 
through a modified Gram–Schmidt process.
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1. Introduction

The necessary boundary conditions for self-adjoint extensions of Sturm–Liouville operators 
with limit-circle endpoints are usually more difficult to determine than in the regular case (i.e. the 
1D Laplacian). This is mainly due to the fact that Dirichlet and Neumann boundary conditions 
no longer yield self-adjoint extensions in these cases. Other tools that come from perturbation 
theory and describe the spectral theory of changing boundary conditions also appear to have not 
been implemented yet for limit-circle endpoints [2,51].

Let �[ · ] be a symmetric differential expression on the weighted space L2[(a, b), w] that is in 
the limit-circle case at the endpoints a, b ∈R ∪{±∞}. This classification implies there exist two 
linearly independent solutions, say u(x, λ) and v(x, λ), to the equation

(� − λ)f = 0,

at each endpoint, where f is taken from the operator’s associated maximal domain Dmax. The 
Glazman–Krein–Naimark (GKN) theory says that all domains associated with self-adjoint ex-
tensions can be obtained by imposing boundary conditions that use these solutions, or other 
functions that satisfy the conditions of Theorem 2.11, in the sesquilinear form.

Boundary conditions in the regular case are often related to quasi-derivatives, which are nat-
ural building blocks for the sesquilinear form. These expressions are not well-defined for all 
f ∈ Dmax in the limit-circle case, and the culprit is the non-principal solution v(x, λ). This so-
lution in the sesquilinear form produces only a regularization of the 0-th quasi-derivative, which 
can be seen explicitly e.g. in the recent manuscript [29]. Fortunately, this regularization can still 
be used to create self-adjoint extensions and determine spectral properties by constructing the 
Weyl m-function. Analysis of boundary conditions and the m-function in the limit-circle case, in 
general and for examples, can be found in [3,7,8,10,22,27,28,30,34,35,41,47,49,53].

However, these problems become more pronounced and difficult when higher-order ordi-
nary differential equations are considered. Significant progress has been made in recent years 
in describing the boundary conditions that yield self-adjoint extensions for such operators 
[14,20,39,54–59]. Recent developments in left-definite theory [18,24,42–44] mean it is now more 
convenient to work with powers of Sturm–Liouville operators that are bounded from below. In 
this manuscript, we focus on powers of the Jacobi differential operator for several reasons: the 
Jacobi expression is extremely well-studied [4,7,21,36,40,52] and contains many interesting ex-
amples as special choices of its parameters, it is limit-circle at both endpoints, analytic properties 
of domains of powers were given in [23], and the recent manuscripts [25,26] gave new insight 
into the structure of the defect spaces of powers.
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Boundary triples [9,11,31,38] are naturally applicable to the study of boundary conditions for 
Sturm–Liouville operators [5,15,37,46] thanks to their connections with the sesquilinear form 
and quasi-derivatives. The recent book [6] gives an extensive treatment of these applications and 
forms the basis for the background of Section 2. In particular, the theory of boundary triples 
yields formulas for the γ -field, Weyl m-function [16,17] and the transformation of boundary 
conditions.

Indeed, we obtain the Weyl m-function explicitly for several important self-adjoint extensions 
of the Jacobi differential operator and its powers. Even in the uncomposed case, this is thought 
to be new despite how studied the operator is. Examples of Weyl m-functions for other classical, 
but surprisingly unknown, examples can be found in [29]. The analysis of the n-th power of 
the Jacobi operator yields a Weyl m-function that is a (2n × 2n) matrix-valued Nevanlinna–
Herglotz function, see [32] for more on these functions. Matrix-valued Nevanlinna–Herglotz 
functions have been obtained when using operator-valued potentials of Schrödinger operators, 
e.g. [33], and matrix-valued Sturm–Liouville operators, e.g. [12,13], but to the best knowledge 
of the author this is the first time one has been explicitly determined when singular endpoints are 
present.

The method of boundary triples is only able to be applied after obtaining operations that act 
as quasi-derivatives on Dmax. The linear span of pieces of principal and non-principal solutions 
were found to constitute a basis for the defect spaces in [26], implying that they should generate 
such operations when put into the sesquilinear form. This is partly true, as the 2n pieces of the 
principal solution generate exactly the n-th through 2n − 1-st quasi-derivatives at each endpoint, 
see Definition 4.1. However, the first n quasi-derivatives prove elusive; mimicking the main 
obstacle in the uncomposed Sturm–Liouville case. See i.e. [20] for more on how quasi-derivatives 
are central to the self-adjoint extension theory of higher-order ordinary differential equations.

A matrix of sesquilinear forms that shows the interaction between pieces of solutions reveals 
that the generated operations are degenerate in some sense. The pieces of the non-principal so-
lutions are then put through a modified Gram–Schmidt process, associated with the sesquilinear 
form instead of an inner product, and the resulting functions are shown to generate the proper 
operations. These well-defined regularizations of quasi-derivatives are thus suitable to build a 
boundary triple.

The use of pieces of solutions from [26] instead of the known full solutions is greatly bene-
ficial both for forming intuition and for calculations. Ostensibly, the full solutions can generate 
operations and because they form a basis for the defect spaces they should be able to form a 
boundary triple. In practice, these operations appear to be more “degenerate” than ours and are 
also very difficult to deal with in calculations, e.g. simply plugging two solutions into a sesquilin-
ear form associated with a general power seems unfeasible. Subsection 3.1 shows that these two 
methods yield the same operations in the uncomposed case.

The Jacobi differential operator having two limit-circle endpoints means that the spectrum is 
discrete, and in this case simple, so the spectrum for the powers of the operator can be inferred 
in some instances. The obtained Weyl m-functions for powers of the operator therefore don’t 
yield surprising information in the most common cases. The ease with which they are obtained 
does allow for interesting examples, such as separated and periodic boundary conditions though. 
Additionally, the method that produces the quasi-derivatives allows for the Weyl m-function to be 
determined for powers of other Sturm–Liouville operators, which can possess more complicated 
spectra, and possibly for more general higher-order ordinary differential equations. The only 
inhibiting factors to such generalizations are proving some structural results of [23] and [26] for 
the operator (or class of operators) of interest.
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1.1. Outline

Section 2 introduces tools from different fields that concern boundary conditions for self-
adjoint extensions. Sturm–Liouville operators and their powers are briefly discussed and 
then the classical framework for self-adjoint extensions, attributed collectively to Glazman–
Krein–Naimark, is presented in Subsection 2.1. Prerequisite facts and definitions in the theory of 
boundary triples are recalled from [6] in Subsection 2.2.

Section 3 illustrates how boundary triples can be used to compute the Weyl m-function by 
focusing on the classical Jacobi differential operator. Surprisingly, the resulting 2 × 2 matrix-
valued Nevanlinna–Herglotz function seems to be new to the literature. The maps that form the 
boundary triple are generated by full solutions but are shown to be equivalent to those created by 
just pieces of solutions in Subsection 3.1. The operations and boundary triples for the Legendre 
and Laguerre differential operators are also presented.

Section 4 contains the main results of the paper. Pieces of solutions to the Jacobi differential 
equation are shown to define some quasi-derivatives when placed into the sesquilinear form, 
but those coming from non-principal solutions require some alterations. They are put through a 
modified Gram–Schmidt process in Subsection 4.1 to help make their impacts not overlap with 
one another, and when put into the sesquilinear form these new functions yield regularizations of 
quasi-derivatives. Subsection 4.2 concludes that these operations create a boundary triple for the 
associated maximal domain.

The general theory of boundary triples is used on the setup of the previous Section to ob-
tain explicit Weyl m-functions for specific self-adjoint extensions in Section 5, including the 
Friedrichs extension. General expressions are also available to represent all possible self-adjoint 
extensions. Subsection 5.1 shows how the chosen boundary triple can be transformed to represent 
other interesting boundary conditions, including separated and periodic.

2. Background

Consider the classical Sturm–Liouville differential equation

d

dx

[
p(x)

df

dx
(x)

]
+ q(x)f (x) = −λw(x)f (x), (2.1)

where p(x), w(x) > 0 a.e. on (a, b) and q(x) real-valued a.e. on (a, b), with a, b ∈ R ∪ {±∞}. 
Furthermore, 1/p(x), q(x), w(x) ∈ L1

loc[(a, b), dx]. Additional details about Sturm–Liouville 
theory can be found in [1,4,21,34,61]. The differential expression can be viewed as a linear 
operator, mapping a function f to the function �[f ] via

�[f ](x) := − 1

w(x)

(
d

dx

[
p(x)

df

dx
(x)

]
+ q(x)f (x)

)
. (2.2)

This unbounded operator acts on the Hilbert space L2[(a, b), w], endowed with the inner product 
〈f, g〉 := ∫ b

a
f (x)g(x)w(x)dx. In this setting, the eigenvalue problem �[f ](x) = λf (x) can be 

considered. However, the operator acting via �[ · ] on L2[(a, b), w] is not self-adjoint a priori. 
Additional boundary conditions are required to ensure this property.

Additionally, the operator �n[ · ] is defined as the operator �[ · ] composed with itself n times, 
creating a differential operator of order 2n. Every formally symmetric differential expression 
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�n[ · ] of order 2n with coefficients ak : (a, b) → R and ak ∈ Ck(a, b), for k = 0, 1, . . . , n and 
n ∈ N , has the Lagrangian symmetric form

�n[f ](x) =
n∑

j=1

(−1)j (aj (x)f (j)(x))(j), x ∈ (a, b). (2.3)

Further details can be found in [19,24,45].

2.1. Extension theory

There is a vast amount of literature concerning the extensions of symmetric operators. Here 
we present only that which pertains to self-adjoint extensions.

Definition 2.1 (variation of [48, Section 14.2]). For a symmetric, closed operator A on a Hilbert 
space H, define the positive defect space and the negative defect space, respectively, by

D+ := {f ∈D(A∗) : A∗f = if
}

and D− := {f ∈ D(A∗) : A∗f = −if
}
.

Note that the self-adjoint extensions of a symmetric operator coincide with those of the closure 
of the symmetric operator [19, Theorem XII.4.8], so without loss of generality we assume that 
all considered operators are closed.

The dimensions dim(D+) = m+ and dim(D−) = m−, called the positive and negative defi-
ciency indices of A respectively, will play an important role. They are usually conveyed as the 
pair (m+, m−). The deficiency indices of T correspond to how “far” from self-adjoint A is. A 
symmetric operator A has self-adjoint extensions if and only if its deficiency indices are equal 
[48, Section 14.8.8].

Theorem 2.2 ([48, Theorem 14.4.4]). If A is a closed, symmetric operator, then the subspaces 
D(A), D+, and D− are linearly independent and their direct sum coincides with D(A∗), i.e.,

D(A∗) = D(A) �D+ �D−.

(Here, subspaces X1, X2, . . . , Xp are said to be linearly independent, if 
∑p

i=1 xi = 0 for xi ∈Xi

implies that all xi = 0.)

We now let �[ · ] be a Sturm–Liouville differential expression in order to introduce more spe-
cific definitions. It is important to reiterate that the analysis of self-adjoint extensions does not 
involve changing the differential expression associated with the operator at all, merely the do-
main of definition by applying boundary conditions.

Definition 2.3 ([48, Section 17.2]). The maximal domain of �[ · ] is given by

Dmax = Dmax(�) :=
{
f : (a, b) → C : f,pf ′ ∈ ACloc(a, b);f, �[f ] ∈ L2[(a, b),w]

}
.

The designation of “maximal” is appropriate in this case because Dmax(�) is the largest pos-
sible subspace that � maps back into L2[(a, b), w]. For f, g ∈ Dmax(�) and a < α ≤ β < b the
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sesquilinear form associated with � is defined by

[f,g]
∣∣∣∣β
α

:=
β∫

α

{
�[f (x)]g(x) − �[g(x)]f (x)

}
w(x)dx. (2.4)

Theorem 2.4 ([48, Section 17.2]). The limits [f, g](b) := limx→b−[f, g](x) and [f, g](a) :=
limx→a+[f, g](x) exist and are finite for f, g ∈Dmax(�).

The equation (2.4) is Green’s formula for �[ · ], and in the case of Sturm–Liouville operators 
it can be explicitly computed using integration by parts to be the modified Wronskian

[f,g]
∣∣∣∣b
a

:= p(x)[f ′(x)g(x) − f (x)g′(x)]
∣∣∣∣b
a

. (2.5)

Definition 2.5 ([48, Section 17.2]). The minimal domain of �[ · ] is given by

Dmin = Dmin(�) :=
{
f ∈ Dmax(�) : [f,g]∣∣b

a
= 0 ∀g ∈Dmax(�)

}
.

The maximal and minimal operators associated with the expression �[ · ] are then defined as 
Lmin = {�, Dmin} and Lmax = {�, Dmax} respectively. By [48, Section 17.2], these operators are 
adjoints of one another, i.e. (Lmin)

∗ = Lmax and (Lmax)
∗ = Lmin.

In the context of differential operators, Theorem 2.2 can be restated.

Theorem 2.6 ([48, Section 14.5]). Let Dmax and Dmin be the maximal and minimal domains 
associated with the differential expression �[ · ], respectively. Then,

Dmax = Dmin �D+ �D−. (2.6)

Equation (2.6) is commonly known as von Neumann’s formula. Here � denotes the direct 
sum, and D+, D− are the defect spaces associated with the expression �[ · ]. The decomposition 
can be made into an orthogonal direct sum by using the graph norm, see [25].

If the operator Lmin acts via an expression �[ · ] of order n and has any self-adjoint extensions, 
then the deficiency indices of Lmin have the form (m, m), where 0 ≤ m ≤ n [48, Section 14.8.8]. 
Hence, Sturm–Liouville expressions that generate self-adjoint operators have deficiency indices 
(0, 0), (1, 1) or (2, 2). If a differential expression is either in the limit-circle case or regular at the 
endpoint a, it requires a boundary condition at a. If it is in the limit-point case at the endpoint 
a, it does not require a boundary condition. The analogous statements are true at the endpoint b. 
These facts can be summed up in the following result.

Theorem 2.7. Let Lmin = {�, Dmin}, where � is a singular Sturm–Liouville differential expres-
sion.

m±(Lmin) =

⎧⎪⎪⎨⎪⎪⎩
2 if � is limit-circle at a and b,

1 if � is limit-circle at a and limit-point at b or vice versa,

0 if � is limit-point at a and b.
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Sturm–Liouville differential expressions are extremely well-researched, see e.g. [4,21] for an 
encyclopedic reference, so the deficiency indices are well-known in almost all cases of interest. 
Representative examples are the Jacobi operator, with deficiency indices (2, 2), the Laguerre 
operator, with indices (1, 1), and the Hermite operator, with indices (0, 0). Jacobi operators are 
in the limit-circle case at both -1 and 1 (for α, β both in [0, 1)), Laguerre operators are in the limit-
circle case at 0 and the limit point case at ∞ (for α ∈ [0, 1) and α2 �= 1/2), and Hermite operators 
are in the limit point case at both ±∞. Hermite operators are thus essentially self-adjoint and 
require no boundary conditions. Since we are primarily concerned with only the Jacobi operator 
this information will suffice, but any of [4,34,49,60,61] can be consulted for more information 
on the classification of endpoints.

The following Theorem explicitly shows how the defect spaces impact self-adjoint extensions. 
To this end, let ϕj , for j = 1, . . .m, denote an orthonormal basis of D+. The functions ϕj are 
thus an orthonormal basis of D−.

Theorem 2.8 ([48, Theorem 18.1.2]). Every self-adjoint extension L = {�, DL} of the minimal 
operator Lmin = {�, Dmin} with deficiency indices (m, m) can be characterized by means of a 
unitary m × m matrix u = [ujk] in the following way:

Its domain of definition DL is the set of all functions z(x) of the form

z(x) = y(x) + ψ(x),

where y(x) ∈ Dmin and ψ(x) is a linear combination of the functions

ψj (x) = ϕj (x) +
m∑

k=1

ukjϕk(x), j = 1, . . . ,m.

Conversely, every unitary m × m matrix u = [ujk] determines in the way described above a cer-
tain self-adjoint extension L of the operator Lmin. The correspondence thus established between 
L and u is one-to-one.

In order to formulate the core Glazman–Krein–Naimark (GKN) Theorems, we recall an gen-
eralization of linear independence to one that mods out by a subspace. This subspace will be the 
minimal domain in applications.

Definition 2.9 ([48, Section 14.6]). Let X1 and X2 be subspaces of a vector space X such that 
X1 ≤ X2. Let {x1, x2, . . . , xr} ⊆ X2. We say that {x1, x2, . . . , xr} is linearly independent mod-
ulo X1 if

r∑
i=1

αixi ∈ X1 implies αi = 0 for all i = 1,2, . . . , r.

Theorem 2.10 (GKN1, [48, Theorem 18.1.4]). Let L = {�, DL} be a self-adjoint extension of the 
minimal operator Lmin = {�, Dmin} with deficiency indices (m, m). Then the domain DL consists 
of the set of all functions f ∈Dmax, which satisfy the conditions

[f,wk]
∣∣∣∣b = 0, k = 1,2, . . . ,m, (2.7)

a
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where w1, . . . , wm ∈Dmax are linearly independent modulo Dmin for which the relations

[wj ,wk]
∣∣∣∣b
a

= 0, j, k = 1,2, . . . ,m (2.8)

hold.

The requirements in equation (2.8) are commonly referred to as Glazman symmetry condi-
tions. The converse of the GKN1 Theorem is also true.

Theorem 2.11 (GKN2, [48, Theorem 18.1.4]). Assume we are given arbitrary functions 
w1, w2, . . . , wm ∈Dmax which are linearly independent modulo Dmin and which satisfy the rela-
tions (2.8). Then the set of all functions f ∈ Dmax which satisfy the conditions (2.7) is domain of 
a self-adjoint extension of Lmin.

These two theorems completely answer the question of how boundary conditions can be used 
to create self-adjoint extensions. Applications of this theory hinge on determining the proper 
wk’s that will define the domain of a desired self-adjoint extension.

2.2. Boundary triples

The main tool used for calculating the Weyl m-function of examples will be boundary triples. 
Most of the material from this subsection is taken from an excellent book of Jussi Behrndt, Seppo 
Hassi, and Henk de Snoo [6], which should be consulted for more details. In particular, boundary 
triples are usually formulated not only for operators but for more general linear relations.

Definition 2.12. [6] Let h and K be Hilbert spaces over C. A linear subspace of h ×K is called a
linear relation H from h to K and the elements ̂h ∈ H will in general be written as pairs {h, h′}
with components h ∈ h and h′ ∈ K. If h = K then we will just say H is a linear relation in h.

Linear relations will play a large role in the determination of self-adjoint extensions in Sec-
tion 5.

Definition 2.13. [6, Definition 2.1.1] Let S be a closed symmetric relation in a Hilbert space h. 
Then {G, 	0, 	1} is a boundary triple for S∗ if G is a Hilbert space and 	0, 	1 : S∗ → G are 
linear mappings such that the mapping 	 : S∗ → G × G defined by

	f̂ = {	0f̂ ,	1f̂ }, f̂ = {f,f ′} ∈ S∗,

is surjective and the identity

〈f ′, g〉h − 〈f,g′〉h = 〈	1f̂ ,	0ĝ〉G − 〈	0f̂ ,	1ĝ〉G (2.9)

holds for all f̂ = {f, f ′}, ̂g = {g, g′} ∈ S∗.
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Notice that when S is a Sturm–Liouville differential operator the left-hand side of equation 
(2.9) is just the sesquilinear form given in equation (2.4).

The eigenspace of a closed symmetric relation S at λ ∈C will be written as

Nλ(S
∗) = ker(S∗ − λ) and N̂λ(S

∗) = {{fλ,λfλ} : fλ ∈Nλ(S
∗)
}
.

Let π1 denote the orthogonal projection from h × h onto h × {0}. Then π1 maps N̂λ(S
∗) bijec-

tively onto Nλ(S
∗).

Definition 2.14. [6, Definition 2.3.1] Let S be a closed symmetric relation in a complex Hilbert 
space h, let {G, 	0, 	1} be a boundary triple for S∗, and let A0 = ker	0. Then

ρ(A0) � λ �→ γ (λ) = {{	0f̂λ, fλ} : f̂λ ∈ N̂λ(S
∗)
}
,

or, equivalently,

ρ(A0) � λ �→ γ (λ) = π1
(
	0 � N̂λ(S

∗)
)−1

,

is called the γ -field associated with the boundary triple {G, 	0, 	1}.

The structure of boundary triples allows for the classical Weyl m-function to be obtained via 
a simple formula.

Definition 2.15. [6, Definition 2.3.4] Let S be a closed symmetric relation in a complex Hilbert 
space h, let {G, 	0, 	1} be a boundary triple for S∗, and let A0 = ker	0. Then

ρ(A0) � λ �→ M(λ) = {{	0f̂λ,	1f̂λ} : f̂λ ∈ N̂λ(S
∗)
}
,

or, equivalently,

ρ(A0) � λ �→ M(λ) = 	1
(
	0 � N̂λ(S

∗)
)−1

,

is called the Weyl m-function associated with the boundary triple {G, 	0, 	1}.

A closed symmetric relation S in h with equal defect indices (analogous to Definition 2.1) will 
admit self-adjoint extensions in h, each of which will give rise to a boundary triple for S∗ via [6, 
Theorem 2.4.1]. Hence, boundary triples for S∗ are not usually unique. Transforming boundary 
triples therefore plays an important role in obtaining desired sets of boundary conditions. Define 
the unitary and self-adjoint operator

Jh :=
(

0 −iIh
−iIh 0

)
,

on the product space h × h, where Ih denotes the identity operator in H.
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Theorem 2.16. [6, Theorem 2.5.1] Let S be a closed symmetric relation in h, assume that 
{G, 	0, 	1} is a boundary triple for S∗, and let G′ be a Hilbert space. Then the following state-
ments hold:

(i) Let W be a bounded linear operator from G × G to G′ × G′ such that

W∗JG′W = JG and WJGW∗ = JG′ , (2.10)

and define (
	′

0

	′
1

)
= W

(
	0

	1

)
=
(

W11 W12

W21 W22

)(
	0

	1

)
. (2.11)

Then {G′, 	′
0, 	

′
1} is a boundary triple for S∗.

(ii) Let {G′, 	′
0, 	

′
1} be a boundary triple for S∗. Then there exists a unique bounded linear 

operator W from G × G to G′ × G′ satisfying equation (2.10) such that equation (2.11)
holds.

Let {C2n, 	0, 	1} be a boundary triple for an operator A and the deficiency indices of the 
associated minimal domain Dmin be (2n, 2n). Then self-adjoint extensions Aθ ⊂ Dmax are in 
one-to-one correspondence with the self-adjoint relations θ ∈C2n via

dom Aθ = {f ∈Dmax : {	0,	1} ∈ θ} .

Hence, assume that θ is a self-adjoint relation in C2n. According to [6, Corollary 1.10.9], the 
relation θ can be represented with 2n × 2n matrices A and B satisfying the conditions A∗B =
B∗A, AB∗ = BA∗ and AA∗ +BB∗ = I = A∗A +B∗B such that

θ =
{
{Aϕ,Bϕ} : ϕ ∈C2n

}
= {{ψ,ψ ′} : A∗ψ ′ = B∗ψ

}
.

In that case, one has

dom Aθ = {f ∈ Dmax : A∗	1(f ) = B∗	0(f )
}
. (2.12)

Theorem 2.6.1 and Corollary 2.6.3 from [6] then say that for λ ∈ ρ(Aθ ) ∩ ρ(A0) the Krein 
formula for the corresponding resolvents are given by

(Aθ − λ)−1 = (A0 − λ)−1 + γ (λ)(θ − M(λ))−1γ (λ)∗

= (A0 − λ)−1 + γ (λ)A(B − M(λ)A)−1γ (λ)∗.
(2.13)

In the case of the examples in this manuscript, the spectrum of A0 is discrete and the difference 
of the resolvents of A0 and Aθ is an operator of rank ≤ 2n. Thus, the spectrum of the self-
adjoint operator Aθ is also discrete. Indeed, λ ∈ ρ(A0) is an eigenvalue of Aθ if and only if 
ker(θ − M(λ)), or equivalently, ker(B − M(λ)A) is nontrivial, and that
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ker(Aθ − λ) = γ (λ)ker(θ − M(λ)) = γ (λ)Aker(B − M(λ)A).

In the special case that the self-adjoint relation θ in C2n is a 2n × 2n matrix, the boundary 
condition for the domain of Aθ can be written as

dom Aθ = {f ∈Dmax : θ	0(f ) = 	1(f )} . (2.14)

The spectral properties of the operator Aθ can also be described with the help of the function

λ �→ (θ − M(λ))−1; (2.15)

the poles of the matrix function (2.15) coincide with the discrete spectrum of Aθ and the dimen-
sion of the eigenspace ker(Aθ − λ) coincides with the dimension of the range of the residue of 
the function (2.15) at λ.

We now let L be a Sturm–Liouville operator defined on a subset (a, b) of R ∪ {±∞} with 
associated maximal domain Dmax and sesquilinear form [·, ·]L. The boundary triples for L will 
be formed with quasi-derivatives.

Definition 2.17. Let u and v be linearly independent real solutions of the equation (L −λ0)y = 0
for some λ0 ∈R and assume that the solutions are normalized by [u, v]L = 1. Let f be a complex 
function on (a, b) for which f, pf ′ ∈ AC(a, b). Then the quasi-derivatives of f , induced by the 
normalized solutions u and v, are defined as complex functions on (a, b) given by

f [0] := [f, v]L and f [1] := −[f,u]L.

Fix a fundamental system (u1(·, λ); u2(·, λ)) for the equation (L − λ)f = 0 by the initial 
conditions (

u
[0]
1 (a,λ) u

[0]
2 (a,λ)

u
[1]
1 (a,λ) u

[1]
2 (a,λ)

)
=
(

1 0
0 1

)
. (2.16)

Recall that for all f ∈ Dmax the quasi-derivatives f [0](a), f [1](a), f [0](b) and f [1](b) are well-
defined due to Theorem 2.4.

Proposition 2.18. [6, Proposition 6.3.8] Assume that the endpoints a and b are in the limit-circle 
case. Then {C2, 	0, 	1}, where

	0f :=
(

f [0](a)

f [0](b)

)
, 	1f :=

(
f [1](a)

−f [1](b)

)
, f ∈ domTmax, (2.17)

is a boundary triple for Dmax. The self-adjoint extension L0 corresponding to 	0 is the restriction 
of Dmax defined on

dom L0 = {f ∈ domDmax : f [0](a) = f [0](b) = 0},
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and u[0]
2 (b, λ) �= 0 for all λ ∈ ρ(L0). Moreover, the corresponding γ -field and Weyl function are 

given by

γ (λ) = ( u1(·, λ) u2(·, λ) )
1

u
[0]
2 (b,λ)

(
u

[0]
2 (b,λ) 0

−u
[0]
1 (b,λ) 1

)
,

and

M(λ) = 1

u
[0]
2 (b,λ)

(
−u

[0]
1 (b,λ) 1

1 −u
[1]
2 (b,λ)

)
,

for λ ∈ ρ(L0).

The Proposition will be used as a shortcut in the analysis of the uncomposed Jacobi operator 
in Section 3. The solutions u and v from Definition 2.17 fall into two disjoint categories.

Definition 2.19. [6, Definition 6.10.3] Let (L − λ0)f = 0 with λ0 ∈ R be non-oscillatory at the 
endpoint a and let u and v be real solutions of (L − λ0)f = 0. Then u is said to be principal at 
a if 1/pu2 is not integrable at a and v is said to be non-principal at a if 1/pv2 is integrable at 
a.

However, in Subsection 3.1 and Section 4 we will not rely on solutions to generate the quasi-
derivatives from Definition 2.17.

3. The Jacobi differential operator

Let 0 < α, β < 1, and consider the classical Jacobi differential expression given by

�α,β [f ](x) = − 1

(1 − x)α(1 + x)β
[(1 − x)α+1(1 + x)β+1f ′(x)]′ (3.1)

on the maximal domain

D(α,β)
max = {f ∈ L2

α,β(−1,1) | f,f ′ ∈ ACloc;�α,β [f ] ∈ L2
α,β(−1,1)},

where the Hilbert space L2
α,β(−1, 1) := L2

[
(−1,1), (1 − x)α(1 + x)β

]
. This maximal domain 

defines the associated minimal domain given in Definition 2.5 with defect indices (2, 2). The 
specified values of α, β will ensure that the differential expression is in the limit-circle non-
oscillating case at both endpoints, and so are assumed throughout. If either parameter is equal 
to or larger than 1, then all of our conclusions still hold, but some boundary conditions will be 
satisfied trivially. If either are less than 0, the corresponding endpoint is regular and although 
it still requires a boundary condition, these are much simpler and don’t need the machinery 
used here. The case where α = β = 0 describes the Legendre differential equation, and will be 
discussed briefly in Subsection 3.1.
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The Jacobi polynomials P (α,β)
m (x), m ∈ N0, form a complete orthogonal set in L2

α,β(−1, 1)

for which f (x) = P
(α,β)
m (x) solves the eigenvalue equation of the symmetric expression given in 

equation (3.1), that is:

�α,β [f ](x) = m(m + α + β + 1)f (x) (3.2)

for each m. The Jacobi polynomials can be represented via a Rodrigues’ formula as

P (α,β)
m (x) = (−1)n

2nn! (1 − x)−α(1 + x)−β dn

dxn

{
(1 − x)α(1 + x)β(1 − x2)n

}
,

and P (α,β)
m ∈ D(α,β)

max .
The associated sesquilinear form is defined, for f, g ∈ D(α,β)

max , via equation (2.4). Integration 
by parts easily yields the explicit expression

[f,g]1(±1) := lim
x→±1∓(1 − x)α+1(1 + x)β+1[g′(x)f (x) − f ′(x)g(x)].

Note that the dependence of the sesquilinear form on the parameters α and β is suppressed in 
the definition for the sake of notation. Theorem 2.4 also says that the sesquilinear form is both 
well-defined and finite for all f, g ∈ D(α,β)

max .
Both solutions to the equation �α,β[f ] = λf are easily given in terms of hypergeometric 

functions. In order to take advantage of this fact, we begin by transforming the equation into the 
hypergeometric differential equation

z(1 − z)f ′′(z) + [c − (a + b + 1)z]f ′(z) − abf (z) = 0 for z ∈C, (3.3)

where, in general a, b, c ∈ C. The equation has three regular singular points: z = 0, 1, ∞ [50, 
Section 15.10]. This description is powerful because any second-order differential equation with 
three regular singular points can be converted to the hypergeometric equation by a change of vari-
ables. Indeed, the hypergeometric equation is a special case of Riemann’s differential equation, 
which also has three regular singular points.

Hence, rewrite equation (3.1) and make the change of variables x = 1 − 2t and t = (1 − x)/2
so that it is equal to

�α,β [f ](t) = t (1 − t)f ′′(t) + [(α + 1) − (α + β + 2)t]f ′(t) = −λf (t), (3.4)

with the spectral parameter λ ∈ C. For simplicity, write λ = μ(μ + α + β + 1) to help denote 
the natural eigenfunctions. This leads to the connecting formulas between equations (3.3) and 
(3.4):

c = α + 1, a + b = α + β + 1, ab = −λ. (3.5)

There are then two choices for a and b, but the slots are interchangeable so we choose a = −μ

and b = μ + α + β + 1. See [21, Section 9] and [53, Chapter IV, Section 4.18] for more. Lastly, 
we assume throughout our discussion that a − b is not equal to an integer.
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Define the Gauss hypergeometric series (or function) as

F(a, b; c; z) := 2F1(a, b; c; z) = F(b, a; c; z) =
∞∑

n=0

(a)(n)(b)(n)

(c)(n)

zn

n! , (3.6)

and (x)n = x(x + 1)(x + 2) · · · (x +n − 1) denotes the Pochhammer function, or rising factorial, 
on the disk |z| < 1. This notation is usually written as a subscript in the hypergeometric commu-
nity, but we use the stated form now due to additional uses in other contexts. There is conditional 
convergence for |z| = 1, except z=1, due to the fact that c− a − b = −β ∈ (−1, 0]. We also point 
out that

F(a, b; c;0) = 1 for all a, b, c ∈ C. (3.7)

Finally, recall two formulas for derivatives of hypergeometric functions that will be useful:

dn

dzn
F (a, b; c; z) = (a)(n)(b)(n)

(c)(n)
F (a + n,b + n; c + n; z),

dn

dzn
[zc−1F(a, b; c; z)] = (c − n)(n)zc−n−1F(a, b; c − n; z).

(3.8)

The hypergeometric function has been extensively studied due to a wide range of applications, 
see [50, Section 15.2] for basic properties and further references.

Two linearly independent solutions of the differential equation (3.4) in neighborhoods of t = 0
and t = 1 (respectively x = 1 and x = −1) are known [50, Equations 15.10.2-4] to be

w1(t, λ) :=
{

F(−μ,μ + α + β + 1;α + 1; t) near t = 0

−F(−μ,μ + α + β + 1;β + 1;1 − t) near t = 1

}
,

w2(t, λ) :=

⎧⎪⎪⎨⎪⎪⎩
t−α

α2α+β+1 F(−μ − α,μ + β + 1;1 − α; t) near t = 0

(1 − t)−β

β2α+β+1 F(−μ − β,μ + α + 1;1 − β;1 − t) near t = 1

⎫⎪⎪⎬⎪⎪⎭ ,

(3.9)

where the constants will help with normalization later and the dependence on the choice of λ
stems from equation (3.5).

However, in order to generate operations it is convenient to take a fixed λ = λ0 = 0. This 
choice immediately yields that a = 0 = μ and b = α + β + 1 in equation (3.5). Thus, define

w̃1(t) :=
{

F(0, α + β + 1;α + 1; t) near t = 0

−F(0, α + β + 1;β + 1;1 − t) near t = 1

}
=
{

1 near t = 0

−1 near t = 1

}
,

w̃2(t) :=

⎧⎪⎪⎨⎪⎪⎩
t−α

α2α+β+1 F(−α,β + 1;1 − α; t) near t = 0

(1 − t)−β

α+β+1 F(−β,α + 1;1 − β;1 − t) near t = 1

⎫⎪⎪⎬⎪⎪⎭ .

(3.10)
β2
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The operations, after changing the variable back to x, are then generated via these particular 
solutions:

f [0](x) := [f, w̃2]1(x) and f [1](x) := [f, w̃1]1(x). (3.11)

Indeed, the operations differ by a minus sign from those in Definition 2.17 but the properties in 
equations (3.13) and (3.14) are sufficient to utilize Proposition 2.18 still.

Equations (3.7) and (3.8) can be used to simplify

f [0](−1) = [f, w̃2]1(−1) = lim
x→−1+ −f (x) − (1 + x)f ′(x)

β
,

f [0](1) = [f, w̃2]1(1) = lim
x→1− f (x) − (1 − x)f ′(x)

α
,

f [1](−1) = [f, w̃1]1(−1) = [f,−1]1(−1) = lim
x→−1+ −(1 − x)α+1(1 + x)β+1f ′(x),

f [1](1) = [f, w̃1]1 = [f,1]1(1) = lim
x→1−(1 − x)α+1(1 + x)β+1f ′(x).

(3.12)

All of the previous limits are guaranteed to exist and be finite by Theorem 2.4. Notice that the 
chosen constants [50, Equations 15.10.3-5] have the effect of making

[w̃1, w̃2]1(−1) = [w̃1, w̃2]1(1) = [w1,w2]1(−1) = [w1,w2]1(1) = 1. (3.13)

This process easily verifies that the fundamental system of solutions (w1(x, λ), w2(x, λ)) for 
the equation (� − λ)f = 0 given in (3.9) satisfies the initial conditions(

w
[0]
1 (−1, λ) w

[0]
2 (−1, λ)

w
[1]
1 (−1, λ) w

[1]
2 (−1, λ)

)
=
(

1 0
0 1

)
. (3.14)

Furthermore, use the above operations to define

	0f :=
(

f [0](−1)

f [0](1)

)
, 	1f :=

(
f [1](−1)

−f [1](1)

)
, f ∈ domTmax. (3.15)

Proposition 2.18 can be invoked to conclude {C2, 	0, 	1} is a boundary triple for D(α,β)
max . 

Additionally, the self-adjoint extension A0 corresponding to 	0 is the restriction of D(α,β)
max to

dom A0 = {f ∈ domD(α,β)
max : f [0](−1) = f [0](1) = 0},

and w[0]
2 (1, λ) �= 0 for all λ ∈ ρ(A0). The corresponding γ -field and Weyl function are given by

γ (λ) = ( w1(·, λ) w2(·, λ) )
1

w
[0]
2 (1, λ)

(
w

[0]
2 (1, λ) 0

−w
[0]
1 (1, λ) 1

)
,

and
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M(λ) = 1

w
[0]
2 (1, λ)

(
−w

[0]
1 (1, λ) 1

1 −w
[1]
2 (1, λ)

)
,

for λ ∈ ρ(A0). Concrete expressions for the γ -field and Weyl function can then be found by 
taking advantage of the initial conditions. There exist connection formulas between the endpoints 
for the hypergeometric function [50, Equation 15.8.21] which allow the solution w1(x, λ) near 
the endpoint x = 1 to be rewritten as

w1(x,λ) = F

(
−μ,μ + α + β + 1;α + 1; 1 − x

2

)
= 	(α + 1)	(−β)

	(μ + α + 1)	(−μ − β)
F

(
−μ,μ + α + β + 1;β + 1; 1 + x

2

)
+ 	(α + 1)	(β)2β(1 + x)−β

	(−μ)	(μ + α + β + 1)
F

(
−μ − β,μ + α + 1;1 − β; 1 + x

2

)
.

(3.16)

Notice that now w1(1, λ) = c1w1(−1, λ) + c2w2(−1, λ), where c1, c2 do not depend on x. Ex-
plicitly,

c1 = −	(α + 1)	(−β)

	(μ + α + 1)	(−μ − β)
,

c2 = β2α+β+1	(α + 1)	(β)

	(−μ)	(μ + α + β + 1)
.

(3.17)

The solution w2(x, λ) near the endpoint x = 1 can also be rewritten with the help of [50, 
Equation 15.8.22] as

w2(x,λ) = 2α(1 − x)−α

α2α+β+1 F

(
−μ − α,μ + β + 1;1 − α; 1 − x

2

)
= 	(1 − α)	(−β)

α2α+β+1	(1 + μ)	(−μ − α − β)
F

(
−μ,μ + α + β + 1;β + 1; 1 + x

2

)
− 	(1 − α)	(β)2β(1 + x)−β

α2α+β+1	(−μ − α)	(μ + β + 1)
F

(
−μ − β,μ + α + 1;1 − β; 1 + x

2

)
.

It is now possible to write w2(1, λ) = c3w1(−1, λ) + c4w2(−1, λ), where c3, c4 do not depend 
on x. In particular,

c3 = 	(1 − α)	(−β)

α2α+β+1	(1 + μ)	(−μ − α − β)

c4 = β	(1 − α)	(β)

α	(−μ − α)	(μ + β + 1)
.

(3.18)
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These calculations combined with the initial conditions in equation (3.14) allow operations to be 
easily performed on the solutions. For instance, we have

w
[0]
1 (1, λ) = c1, w

[0]
2 (1, λ) = c3,

w
[1]
1 (1, λ) = c2, w

[1]
2 (1, λ) = c4.

(3.19)

Therefore, the self-adjoint extension A0 with domain

dom A0 = {f ∈ domD(α,β)
max : f [0](−1) = f [0](1) = 0},

thus has γ -field and Weyl function, respectively,

γ (λ) = ( w1(·, λ) w2(·, λ) )
1

c3

(
c3 0

−c1 1

)
and

M(λ) = 1

c3

(
−c1 1

1 −c4

)
,

for λ ∈ ρ(A0). Notice that the function 1/	(z) is analytic for all z ∈C. However, 	(z) has simple 
poles when z is a non-positive integer, and is analytic otherwise. The spectrum of A0 can thus 
be extracted from the 1/c3 term in the Weyl function. In particular, if 1 + μ = −m, for m ∈ N0, 
then μ = −m − 1. Alternatively, if −μ −α −β = −m, then μ = m −α −β and a = α +β −m. 
In either case, we have

λ = μ(μ + α + β + 1) = (−m − 1)(−m + α + β) = (m + 1)(m − α − β),

for m ∈ N0. The lowest eigenvalue of the self-adjoint extension is therefore −α − β , keeping in 
mind that α, β ∈ (0, 1).

The domain of A0 is just the kernel of the operation 	0, and the imposed conditions represent 
the limit-circle analog of Dirichlet boundary conditions. We can interchange our definitions of 	0
and 	1 to yield another important self-adjoint extension, call it A1, with domain that is the kernel 
of 	1. This extension has boundary conditions that are the analog of von Neumann conditions. 
The boundary triple is still clearly well-defined, and solutions and operations in the γ -field and 
Weyl function are all switched. Respectively, these are now given by

γ (λ) = ( w1(·, λ) w2(·, λ) )
1

c2

(
c2 0

−c4 1

)

and

M(λ) = 1

c2

(−c4 1
1 −c1

)
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for λ ∈ ρ(A1). Spectral information about A1 can be extracted from the 1/c2 term and there are 
poles when μ = m and μ = m + α + β + 1 for m ∈ N0. Hence, simple eigenvalues of A1 occur 
at

λ = m(m + α + β + 1) for m ∈N0.

The lowest eigenvalue of A1 is 0. Corollary 6.11.9(iii) of [6] identifies A1 as the important 
Friedrichs extension of the minimal operator, and gives a few other descriptions. This set of 
eigenvalues is completely generated by the Jacobi polynomials, see equation (3.2), and hence A1
is the classical self-adjoint extension that is commonly used in the literature.

A discussion of more general self-adjoint extensions for the minimal domain D(α,β)
min is avoided 

here for brevity. As a consolation, this matter will be discussed in the more difficult case of 
powers of the Jacobi differential operator in Subsection 5.1.

3.1. Remarks on generating functions and other examples

The operations defined in equation (3.12) were essential to building the boundary triple for 
the Jacobi differential operation and beg for a more nuanced analysis. Some other examples of 
differential equations are also briefly mentioned.

Begin by defining a C2 function, which is clearly in D(α,β)
max :

v(x) :=

⎧⎪⎪⎨⎪⎪⎩
(1 + x)−β

β2α+1 for x near − 1

(1 − x)−α

α2β+1 for x near 1

⎫⎪⎪⎬⎪⎪⎭ , (3.20)

so that another operation can be defined as f ∗(x) := [f, v](x). Observe that, upon inspection,

f ∗(−1) = f [0](−1), and f ∗(1) = f [0](1),

with the operation f [0] given by equation (3.12). The function v(x) therefore generates the same 
operations as w̃2(x) at the endpoints and trivially defines the same boundary triple. This is sur-
prising mostly because the function v(x) is not a solution of

(�α,β − λ0)f = 0,

for any λ0 ∈R, as might be expected from Definition 2.17. Indeed, the behavior of the functions 
w̃1(x) and v(x) was essentially determined in [26]. There, the asymptotic behavior of functions 
in the maximal domain near the endpoints was described and the two options are indicated by 
these two functions.

Alternatively, the function v(x) can be thought of as the truncation of the power series solu-
tion w̃2(x) to the first term, and then multiplied by some constant. Importantly, functions like 
v(x) generating quasi-derivatives will offer much more flexibility when powers of the Jacobi op-
erator are considered in Section 4. Calculations involving the full solution w2(λ, x) in the simple 
sesquilinear form for the uncomposed Jacobi operator were feasible, but it quickly becomes too 
difficult to get explicit answers for powers.



D. Frymark / J. Differential Equations 269 (2020) 7931–7974 7949
While v(x) is not a solution, this is offset by the fact that v(x) does have the property that 
1/pv2 is integrable at each endpoint; a key property in Definition 2.19 of non-principal solutions. 
Another important fact is still able to be derived due to this property.

Theorem 3.1. Let f ∈ D(α,β)
max . Then

lim
x→−1+

f (x)

v(x)
= lim

x→−1+ β2α+1(1 + x)βf (x), and

lim
x→1−

f (x)

v(x)
= lim

x→1− α2β+1(1 − x)αf (x)

exist and are finite.

Proof. This is simply the analog of [6, Theorem 6.10.9 (i)] when v is not a solution. A slight 
modification to [6, Lemma 6.11.3] and an application of [6, Lemma 6.10.1] shows that the hy-
potheses of [6, Theorem 6.10.9 (i)] still hold. �

Although this could have been concluded by analyzing w̃2(x), not having to use solutions here 
gives hope for a higher power analog with other quasi-derivatives. This final characterization of 
f/v allows for a new set of boundary conditions in a boundary triple.

Theorem 3.2. Let f ∈ D(α,β)
max . Then {C2, 	0, 	1}, where

	0f :=
(

f ∗(−1)

f ∗(1)

)
, 	1f :=

(
limx→−1+ f (x)

v(x)

limx→1− −f (x)
v(x)

)
, f ∈D(α,β)

max , (3.21)

is a boundary triple for D(α,β)
max . Explicitly, we have

	0f :=

⎛⎜⎜⎝ limx→−1+ −f (x) − (1 + x)f ′(x)

β

limx→1− f (x) − (1 − x)f ′(x)

α

⎞⎟⎟⎠ , 	1f :=
(

limx→−1+ β2α+1(1 + x)βf (x)

limx→1− −α2β+1(1 − x)αf (x)

)
.

Proof. Omitted for brevity. It follows by writing out

[f,g]∣∣1−1 = 〈	1f,	0g〉 − 〈	0f,	1g〉,

and plugging constant multiples of 1, (1 − x)−α and (1 + x)−β into the maps to show surjectiv-
ity. �

Other differential operators that are bounded from below and in the limit-circle case at an 
endpoint can benefit from this analysis. A simple example is the classical Legendre differential 
expression, which is a special case of the Jacobi expression when α = β = 0, defined as

�[f ](x) = −((1 − x2)f ′(x))′,
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on the maximal domain

Dmax = {f : (−1,1) →C : f,f ′ ∈ ACloc(−1,1);f, �[f ] ∈ L2(−1,1)}.
This maximal domain defines the associated minimal domain given in Definition 2.5, and the 
defect indices are (2, 2), with both endpoints in the limit-circle case. The Weyl m-function for 
this operator is obtained explicitly in the recent manuscript [29] via a different method. The 
operator was also analyzed in [26] and the types of asymptotic behavior of functions in Dmax at 
the endpoints was described. Hence, the operations can again be generated by simple functions. 
Define a C2 function:

v(x) :=

⎧⎪⎨⎪⎩
ln (1 + x)

2
for x near − 1

ln (1 − x)

2
for x near 1

⎫⎪⎬⎪⎭ ,

so that another operation can be defined as f ∗(x) := [f, v](x). It can be shown that a boundary 
triple for Dmax can be defined using this operation and f [1](x) from equation (3.12). However, 
in this case the function v(x) is essentially Q0(x), the first Legendre function of the second 
kind.

A second example is the classical Laguerre differential expression given by

Lα[f ](x) = − 1

xαe−x

[
xα+1e−xf ′(x)

]′
,

on the maximal domain

Dα
max =

{
f : (0,∞) → C : f,f ′ ∈ ACloc(0,∞);f, �[f ] ∈ L2

α(0,∞)
}

where α > −1, α2 �= 1/2 and the Hilbert space L2
α(0, ∞) := L2

[
(0,∞), xαe−x

]
. This maximal 

domain defines the associated minimal domain given in Definition 2.5, and the defect indices are 
(1, 1), with 0 being in the limit-circle case and ∞ in the limit-point case. Again, an explicit Weyl 
m-function is given in [29] and remarks are made about asymptotic behavior of functions in [26, 
Remark 4.15]. The two C2 functions

u(x) :=
{

−1 for x near 0

0 otherwise

}
, v(x) :=

{
x−α for x near 0

0 otherwise

}
,

can define operations f [0](0) = [f, v](0) and f [1](0) = [f, u](0) for f ∈ Dα
max. It can be easily 

shown that such operations generate a boundary triple for Dα
max and the Weyl function then 

ascertained via an analog of Proposition 2.18.

4. Powers of the Jacobi differential operator

Let 0 < α, β < 1 and n ∈ N . It is known [23] that the nth power of the Jacobi differential 
expression (3.1), defined as composing the expression with itself n times, can be expressed in 
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Lagrangian symmetric form as

�n
J[f ](x) = − 1

(1 − x)α(1 + x)β

n∑
k=1

(−1)k[C(n, k,α,β)(1 − x)α+k(1 + x)β+kf (k)(x)](k),

(4.1)

on the maximal domain

DJ,n
max = {f ∈ L2

α,β(−1,1) | f,f ′, . . . , f (2n−1) ∈ ACloc(−1,1);�n
J[f ] ∈ L2

α,β(−1,1)},

where the Hilbert space L2
α,β(−1, 1) = L2

[
(−1,1), (1 − x)α(1 + x)β

]
. This maximal domain 

defines the associated minimal domain given in Definition 2.5, and the defect indices are 
(2n, 2n). To make the notation more accessible, we are suppressing the dependence on α and 
β in the definition of DJ,n

max, DJ,n
min and the defect spaces DJ,n

+ , DJ,n
− , see equation (2.6). Explicit 

values for the constants C(n, k, α, β) can also be found in [23].
The associated sesquilinear form is defined, for f, g ∈ DJ,n

max, via equation (2.4). It can be 
written explicitly [25, Section 6] as

[f,g]n(x) :=
n∑

k=1

k∑
j=1

(−1)k+j

{[
ak(x)g(k)(x)

](k−j)
f (j−1)(x)− (4.2)

[
ak(x)f (k)(x)

](k−j)
g(j−1)(x)

}
,

where ak(x) = (1 − x)α+k(1 + x)β+k .
We now recall a definition of general quasi-derivatives by Naimark [48, Section 15.2] that 

will serve as an abstraction of Definition 2.17. Within this section, we will use this more general 
definition and hope this will not cause any confusion.

Definition 4.1. Let the function f be in the domain of the differential operator that acts via

�[f ] =
n∑

k=0

(−1)k
[
akf

(k)
](k)

,

where a0, . . . , an are real, sufficiently often differentiable coefficients. The quasi-derivatives of 
f are defined by the formulas

f [k] = f (k), for k = 1, . . . , (n − 1);
f [n] = anf

(n),

f [n+k] = an−kf
(n−k) −

[
f [n+k−1]]′ , for k = 1, . . . , (n − 1);

f [2n−1] = a1f
′ −
[
f [2n−2]]′ .

(4.3)

For convenience, we also write f [0] = f .
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Note that this definition immediately applies to the operator �n
J given by equation (4.1) with 

ak(x) = (1 − x)α+k(1 + x)β+k for k = 1, . . . , n. The main advantage of this general definition of 
quasi-derivatives is that they create the sesquilinear form a priori. For f, g ∈DJ,n

max, we have

〈�n
J[f ], g〉 − 〈f, �n

J[g]〉 = [f,g]n =
n∑

k=1

{
f [k−1]g[2n−k] − f [2n−k]g[k−1]} . (4.4)

Equation (4.4) will serve as a guide for building a boundary triple for the expression �n
J , and 

we turn our attention to creating well-defined operations which mimic these quasi-derivatives. 
This task has no obvious solution, as the lower quasi-derivatives (k = 1, . . . , n) are clearly not 
well-defined for all f ∈DJ,n

max.
The manuscript [26] can be of some help here, and we begin by defining four classes of 

C∞(−1, 1) functions by their boundary asymptotics. Elements of the classes are denoted by 
ψ+

j , ψ−
j , ϕ+

j and ϕ−
j for j ∈N:

ϕ+
j :=

{
(1 − x)j−1, for x near 1

0, for x near − 1

}
,

ϕ−
j :=

{
0, for x near 1

(1 + x)j−1, for x near − 1

}
,

(4.5)

ψ+
j (x) :=

{
(1 − x)−α+j−1, for x near 1

0, for x near − 1

}
,

ψ−
j (x) :=

{
0, for x near 1

(1 + x)−β+j−1, for x near − 1

}
.

(4.6)

Note that the functions ϕ+
1 and ϕ−

1 simply behave like the function 1 near the endpoints 1 and 
−1 respectively. The dependence of the functions ψ+

j and ψ−
j on the parameters α and β is 

suppressed here for simplicity. All of these functions are in the maximal domain [26, Lemma 
4.3] and for j ≤ n they are also not in the minimal domain [25, Theorem 4.4]. The functions can 
also be used to define two finite-dimensional subspaces of DJ,n

max:

Dn− := span

{{
ϕ−

j

}n

j=1
,
{
ψ−

j

}n

j=1

}
, Dn+ := span

{{
ϕ+

j

}n

j=1
,
{
ψ+

j

}n

j=1

}
.

Corollary 4.2 ([26, Corollary 4.8]). The defect spaces DJ,n
+ �DJ,n

− = Dn− � Dn+.

Regularity properties of functions in the maximal domain can also be shown using these 
functions. These properties will be useful in some of the proofs later on.

Theorem 4.3. [26, Theorem 4.1] If f ∈DJ,n
max, then for j = 0, . . . , n

lim
x→±1∓(1 − x)α+j (1 + x)β+j f (j)(x) is finite. (4.7)
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Furthermore, for k = 0, . . . , n and each j ∈ N such that j < k,

lim
x→±1∓

[
(1 − x)α+k(1 + x)β+kf (k)(x)

](k−j)

is finite. (4.8)

The convenient basis for the defect spaces given above should allow for operations to be 
defined that recreate quasi-derivatives. Indeed, this is the case for the functions ϕ+

j and ϕ−
j .

Lemma 4.4. The (2n − s) quasi-derivative of f ∈ DJ,n
max at x = 1 and x = −1 is generated by 

ϕ+
s and ϕ−

s , respectively, for s = 1, . . . , n. Explicitly, we have

f [2n−s](1) = (−1)s

(s − 1)! [f,ϕ+
s ]n(1)

−f [2n−s](−1) = 1

(s − 1)! [f,ϕ−
s ]n(−1).

(4.9)

Proof. We will prove the result for the endpoint x = 1 and the analogous result for x = −1
will follow. Consider (1 − x)s−1, for fixed s ∈ N and s ≤ n. Deconstruct the expression for the 
sesquilinear form given by (4.2) into the terms

P(x) :=
n∑

k=1

k∑
j=1

(−1)k+j

[
(1 − x)α+k(1 + x)β+k

[
(1 − x)s−1

](k)
](k−j)

f (j−1)(x),

N(x) :=
n∑

k=1

k∑
j=1

(−1)k+j+1
[
(1 − x)α+k(1 + x)β+kf (k)(x)

](k−j) [
(1 − x)s−1

](j−1)

,

so that [f, (1 − x)s−1]n = limx→1−[P(x) + N(x)]. We first analyze limx→1− P(x) and notice 
that any terms with k > s − 1 are automatically 0 for all j . Therefore, fix k such that k ≤ s − 1
and calculate

lim
x→1− P(x) ≈ lim

x→1−

n∑
k=1

k∑
j=1

(−1)k+j
[
(1 + x)β+k(1 − x)α+k(1 − x)s−1−k

](k−j)

f (j−1)(x)

≈ lim
x→1−

n∑
k=1

k∑
j=1

k−j∑
i=0

(1 + x)β+k−i (1 − x)α+s−1−k+j+if (j−1)(x).

For each j , we see that the factor in the sum is 0 as x → 1− because of equation (4.7) and 
s − 1 − k + j + i > j − 1. We conclude that P(x) = 0 as x → 1−.

The expression N(x) is clearly 0 for all j > s. Similarly, if j < s then a factor of (1 − x)

survives differentiation and equation (4.8) implies that the entire product has a limit of 0 as 
x → 1−. We therefore limit our attention to the case j = s, which only occurs when k ≥ s. This 
leaves us with
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lim
x→1− N(x) = lim

x→1−

n∑
k=s

(−1)k+s+1
[
(1 − x)α+k(1 + x)β+kf (k)(x)

](k−s)

(−1)s−1(s − 1)!

= lim
x→1−

n∑
k=s

(−1)k(s − 1)!
[
(1 − x)α+k(1 + x)β+kf (k)(x)

](k−s)

. (4.10)

We see from equation (4.3) that we can rewrite

f [2n−s](±1) = lim
x→±1∓

n∑
k=s

(−1)k
[
ak(x)f (k)(x)

](k−s)

for s even,

f [2n−s](±1) = lim
x→±1∓

n∑
k=s

(−1)k+1
[
ak(x)f (k)(x)

](k−s)

for s odd.

(4.11)

A comparison of equations (4.10) and (4.11) yields the result for f [2n−s](1). �
Note that the Lemma holds only at the endpoints, and not for x in the interior of the interval. 

These operations are particularly important because they are 0 when applied to the functions ϕ+
j

and ϕ−
j for other values of j .

Corollary 4.5. Let j, k ∈ N such that j, k < n. Then

[
ϕ+

j

][2n−k]
(1) =

[
ϕ−

j

][2n−k]
(−1) = 0.

Proof. The result follows immediately from Lemma 4.6 of [26], which says that two ϕ±
j ’s 

against each other in the sesquilinear form is 0. �
4.1. Regularizations of quasi-derivatives

The quasi-derivatives f [j ](x), for j ∈ N0 and j < n, are not well-defined for all f ∈ DJ,n
max, 

so it is necessary to generate operations that represent regularizations of these quasi-derivatives 
which are well-defined. Unfortunately, the functions ψ+

j and ψ−
j , for j ∈ N and j < n, seem 

to be unsuitable for this purpose due to some built-in degeneracy. This is discussed in more 
detail after Corollary 4.11, as the main problem is only identifiable after some other structure is 
introduced. Instead, begin by renumbering the elements so that, for k = 1, . . . , n, yields

v+
k (x) :=

{
(1 − x)−α+n−k, for x near 1

0, for x near − 1

}
,

v−
k (x) :=

{
0, for x near 1

(1 + x)−β+n−k, for x near − 1

}
.

We now carry out a modified version of the Gram–Schmidt procedure on each set of functions {
v+}n and 

{
v−}n in order to ensure that
k k=1 k k=1
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[ϕ+
j , v+

k ]n(1) = [ϕ−
j , v−

k ]n(−1) = 0, (4.12)

for all j �= k. The new sets of functions will be denoted by 
{
u+

k

}n
k=1 and 

{
u−

k

}n
k=1. The usual 

Gram–Schmidt procedure with inner products replaced by sesquilinear forms will not suffice 
here because any real-valued function set against itself in the sesquilinear form yields 0. The 
procedure for the construction of the functions 

{
u+

k

}n
k=1 is now described and the set 

{
u−

k

}n
k=1

will be constructed analogously. Define

u+
1 := v+

1 /[ϕ+
1 , v+

1 ](1),

u+
2 :=

{
v+

2 − [ϕ+
1 , v+

2 ](1)

[ϕ1, u
+
1 ](1)

u+
1

}
/[ϕ+

2 , v+
2 ](1),

...

u+
k :=

⎧⎨⎩v+
k −

k−1∑
j=1

[ϕ+
j , v+

k ](1)

[ϕ+
j , u+

j ](1)
u+

j

⎫⎬⎭/[ϕ+
k , v+

k ](1),

(4.13)

and the subscript n is suppressed on all of the sesquilinear forms for the sake of simplicity. This 
convention will continue to be used when exploring some of the consequences of this construc-
tion. First, recall a result from [26] formatted to match the current notation.

Lemma 4.6. Let s, t ∈N such that s, t ≤ n. If s > t , then

[
ϕ+

s , v+
t

]
n
(1) = [ϕ−

s , v−
t

]
n
(−1) = 0.

Proof. The exponent of (1 ± x) for the function ϕ±
s is s − 1 and n − t for the function v±

t , not 
counting the −α or −β . Their sum is thus n − 1 + s − t . Lemma 4.5 of [26] says that if the sum 
of these exponents is greater than n − 1, equivalently s > t in this case, then the sesquilinear 
form will yield a value of 0. The result follows. �

The Lemma can be easily modified to work for the new functions 
{
u+

k

}n
k=1 and 

{
u−

k

}n
k=1.

Corollary 4.7. Let s, t ∈N such that s, t ≤ n. If s > t , then

[
ϕ+

s , u+
t

]
n
(1) = [ϕ−

s , u−
t

]
n
(−1) = 0.

Proof. The function u±
t is constructed by adding and subtracting finitely many v±

i functions, for 
i ≤ t , in certain proportions. Hence, if s > t then s > i for each v±

i and Lemma 4.6 proves the 
result. �

Finally, it is possible to show that the modified Gram–Schmidt procedure has produced func-
tions which satisfy the analog of equation (4.12).
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Theorem 4.8. Let j, k ∈ N and j, k ≤ n. Then for all j �= k we have

[ϕ+
j , u+

k ]n(1) = [ϕ−
j , u−

k ]n(−1) = 0. (4.14)

Additionally,

[ϕ+
k , u+

k ]n(1) = [ϕ−
k , u−

k ]n(−1) = 1. (4.15)

Proof. We prove the result for the endpoint x = 1 and x = −1 will follow analogously. Proceed 
by induction on k. Let j ∈ N . Equation (4.14) holds for the base case of

[ϕ+
j , u+

1 ](1) = 0, (4.16)

for j > 1 by Lemma 4.6, and equation (4.15) clearly holds when j = 1.
Make the inductive hypothesis that the two claims in equations (4.14) and (4.15) hold if k ≤ i

and consider the case where k = i + 1:

[ϕ+
j , u+

i+1](1) =
{

[ϕ+
j , v+

i+1](1) −
i∑

l=1

[ϕ+
l , v+

i+1](1)

[ϕ+
l , u+

l ](1)
[ϕ+

j , u+
l ](1)

}
/[ϕ+

i+1, v
+
i+1](1).

(4.17)

If j > i + 1 then equation (4.14) holds by Corollary 4.7. Let j < i + 1. Terms when l < j in 
equation (4.17) are then also zero by Corollary 4.7. But terms when l > j are also zero by the 
inductive hypothesis. The one remaining term in the sum, when l = j , is then cancelled by the 
term in front. Hence, equation (4.14) has been proven when k = i + 1.

Let j = i + 1. Then each term in the sum is zero by Corollary 4.7 and equation (4.15) is 
immediately shown when k = i + 1. The Theorem then follows at the endpoint x = 1 by the 
principle of mathematical induction for k ∈ N and k ≤ n. �

We now see that the denominators in the modified Gram–Schmidt process are equal to 1 by 
construction. However, the intended cancellation of operations is more clear without simplifying 
these terms, so they will continue to be expressed in the form of equation (4.13).

The theorem determines the interaction between u’s and ϕ’s in the sesquilinear form. Corol-
lary 4.5 showed how the functions ϕ behave against each other, so it remains only to analyze the 
behavior of the new u functions.

Lemma 4.9. Let s, t ∈N such that s, t ≤ n. Then

[v+
s , v+

t ]n(1) = [v−
s , v−

t ]n(−1) = 0.

Proof. We prove the result for the endpoint x = 1 and x = −1 will follow analogously. Let 
s, t ∈ N , s, t ≤ n and without loss of generality assume that s �= t . Deconstruct the expression 
for the sesquilinear form given by (4.2) into the terms
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P(x) :=
n∑

k=1

k∑
j=1

{
ak(x)

[
(1 − x)−α+n−t

](k)
}(k−j) [

(1 − x)−α+n−s
](j−1)

,

N(x) :=
n∑

k=1

k∑
j=1

(−1)k+j+1
{
ak(x)

[
(1 − x)−α+n−s

](k)
}(k−j) [

(1 − x)−α+n−t
](j−1)

,

so that [v+
s , v+

t ]n(1) = limx→1−[P(x) + N(x)]. We first analyze limx→1− P(x) and calculate

lim
x→1− P(x) ≈ lim

x→1−

n∑
k=1

k∑
j=1

(−1)k+j
[
(1 + x)β+k(1 − x)n−t

](k−j)

(1 − x)−α+n−s−j+1(x)

≈ lim
x→1−

n∑
k=1

k∑
j=1

k−j∑
i=0

(1 + x)β+k−i (1 − x)−α+2n−t−s+1−k+i ,

when i ≤ n − t , otherwise the result is 0. If the exponent −α + 2n − k − t − s + i + 1 is positive 
for a combination of k, i then the limit of such a term is clearly 0. If the exponent is negative, 
group together like terms and observe that the minimum possible exponent occurs when k = n, 
s = n, t = n − 1 and i = 0, and is −α − n + 2. This allows for the decomposition

lim
x→1− P(x) ≈ lim

x→1−

n−2∑
l=0

hl(x)(1 − x)−α−l , (4.18)

with functions hl(x) that are constants times powers of (1 + x), but may be identically 0 (de-
pending on the choice of s and t). A similar analysis clearly holds for N(x), with the condition 
that i ≤ n − s naturally arising. The analog of equation (4.18) for N(x) can then be added to 
equation (4.18) so that

[v+
s , v+

t ]n(1) = lim
x→1− P(x) + N(x) ≈ lim

x→1−

n−2∑
l=0

h̃l(x)(1 − x)−α−l ,

for some functions h̃l(x) that don’t go to 0 in the limit unless they are identically 0. Indeed, 
assume that at least one h̃l function is nonzero. The left hand side of this equation is finite and 
exists by Theorem 2.4, and the right hand side consists of one or more nonzero terms which go 
to infinity at different rates in the limit. This is a contradiction to Theorem 2.4, and thus each ̃hl

function must be identically 0. The result follows for the endpoint x = 1. �
Corollary 4.10. Let j, k ∈N such that j, k ≤ n. Then

[u+
j , u+

k ]n(1) = [u−
j , u−

k ]n(−1) = 0.

Proof. The Corollary follows from Lemma 4.9 because the function u±
k is just a finite linear 

combination of v± functions, where i ≤ k. �
i
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The functions 
{
u+

k

}n
k=1 and 

{
u−

k

}n
k=1 now produce a much simpler structure for the defect 

spaces when put into a matrix of sesquilinear forms, similar to that of [25, Equation 4.22], as 

compared to the starting families 
{
ψ+

j

}n

j=1
and 

{
ψ−

j

}n

j=1
. At the endpoint x = 1, observe

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

[ϕ1, ϕ1] . . . [ϕ1, ϕn]
... . .

. ...

[ϕn,ϕ1] . . . [ϕn,ϕn]

[ϕ1, un] . . . [ϕ1, u1]
... . .

. ...

[ϕn,un] . . . [ϕn,u1]
[un,ϕ1] . . . [un,ϕn]

... . .
. ...

[u1, ϕ1] . . . [u1, ϕn]

[un,un] . . . [un,u1]
... . .

. ...

[u1, un] . . . [u1, u1]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0 1

. .
.

1 0

0 1

. .
.

1 0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

(4.19)

where each sesquilinear form is evaluated at 1 and the “+” superscripts on functions are sup-
pressed for the sake of simplicity. The upper-right and lower-left quadrants were determined by 
Theorem 4.8. The upper-left and bottom-right quadrants are results of Corollaries 4.5 and 4.10, 
respectively. Define two finite-dimensional subspaces of DJ,n

max:

D̃n− := span

{{
ϕ−

j

}n

j=1
,
{
u−

j

}n

j=1

}
, D̃n+ := span

{{
ϕ+

j

}n

j=1
,
{
u+

j

}n

j=1

}
.

Corollary 4.11. The defect spaces DJ,n
+ �DJ,n

− = D̃n− � D̃n+.

Proof. Notice that

span
{
u+

j

}n

j=1
= span

{
ψ+

j

}n

j=1
and span

{
u−

j

}n

j=1
= span

{
ψ−

j

}n

j=1
.

The result thus follows from Corollary 4.2. �
Taking a brief aside, it is now possible to discuss why the change from the ψj functions to the 

uj functions was so essential. The ψj functions plugged into the matrix of sesquilinear forms in 
equation (4.19) instead of the uj ’s yields a very different picture. The situation is described in [26, 
Theorem 4.7], with the key being that the upper-right and lower-left quadrants are merely upper 
triangular and not diagonal. This interaction between the functions ψj and ϕj in the sesquilinear 
form yields much more complicated operations that are not able to be easily analyzed. Indeed, 
the operations seem degenerate in some way, making it difficult to isolate the terms responsible 
for new behavior as j increases.

The structure created by these new functions allows for the definition of operations which 
will be forged into a boundary triple. First, we investigate how these new functions act in the 
sesquilinear form.

Lemma 4.12. Let f ∈ DJ,n
max. Then, for j ∈N and j ≤ n, the representation

[f,u±
j ]n(±1) = lim

x→±1∓(∓1)j−1 f (j−1)(x)

(j − 1)! +
⎧⎨⎩

2n−1∑
hj,k(x)f (k)(x)

⎫⎬⎭ , (4.20)

k=j
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holds for some functions hj,k(x).

Proof. We prove the result for the endpoint x = 1 and x = −1 will follow analogously. To 
this end, the + superscript on functions and the n subscript on the sesquilinear form will be 
suppressed during the proof. Let j ∈ N such that j ≤ n. It is clear from the definition of the 
sesquilinear form in equation (4.2) that the finitely many terms can be written out and rearranged 
so that

[f,uj ](1) = lim
x→1−

2n−1∑
l=0

hj,l(x)f (l)(x), (4.21)

for some functions hj,l(x) which may go to infinity in the limit.
The claim is then that both hj,l(x) = 0 for l < j −1 and hj,j−1(x) = (−1)j−1/(j −1)!. These 

properties follow from the modified Gram–Schmidt procedure carried out in equation (4.13). 
Notice that it can be easily shown that the limits of these functions have the desired values using 
equation (4.19) and induction. However, the Gram–Schmidt procedure from equation (4.13) will 
show the stronger fact that the functions are identically the desired constants. Begin by defining 
an analogous decomposition to equation (4.21) for the functions vj :

[f, vj ](1) = lim
x→1−

2n−1∑
l=0

gj,l(x)f (l)(x). (4.22)

Let j = 1. By equation (4.13) we have

[ϕ1, u1](1) = lim
x→1−

{ [ϕ1, v1](x)

[ϕ1, v1](x)

}
= lim

x→1−
g1,0(x)

g1,0(x)
= lim

x→1− 1 · ϕ1
(0)(x),

so that h1,0(x) = 1. Theorem 2.4 was used as the definition for the sesquilinear form in the 
denominator, and this allowed the limit to be pulled outside of the calculations.

Proceed by induction on j to prove the two claims. Let j = 2 be the base case. Again, using 
equation (4.13) it can be written

[ϕ1, u2](1) = lim
x→1−

{[
g2,0(x) − g2,0(x)h1,0(x)

h1,0(x)

]
/g2,1(x)

}
= lim

x→1− 0 · ϕ1
(0)(x),

so that h2,0(x) = 0. The fact that h2,1(x) = −1 follows analogously by calculating

[ϕ2, u2](1) = lim
x→1− 1 = lim

x→1−
−1

1! · ϕ(1)
2 (x).

Assume the inductive hypothesis that hj1,l(x) = 0 for l < j1 −1 and hj1,j1−1(x) = 1 for arbitrary 
2 < j1 < n. Consider j = j1 + 1. Then for each i ∈ N such that i ≤ j1

[ϕi, uj1+1](1) = lim
x→1−

⎧⎨⎩[ϕi, vj1+1](x) −
j1∑ [ϕm,vj1+1](x)

[ϕm,um](x)
[ϕi, um](x)

⎫⎬⎭ /[ϕj1+1, vj1+1](x)
m=1
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= lim
x→1−

{
gj1+1,i−1 − gj1+1,i−1(x)

gi,i−1(x)
gi,i−1(x)

}
/gj1+1,j1(x)

= lim
x→1− 0 · ϕ+

i

(i−1)
(x),

so that hj1+1,i−1(x) = 0. The inductive hypothesis was used in reducing the sum to one term. 
The fact that hj1+1,j1(x) = (−1)j−1/(j − 1)! follows analogously by calculating

[ϕj ,uj ](1) = lim
x→1− 1 = lim

x→1−
(−1)j−1

(j − 1)! · ϕ(j−1)
j (x).

The principle of mathematical induction then says that, for all j ∈ N such that j ≤ n, both 
hj,l(x) = 0 for l < j − 1 and hj,j−1(x) = 1. The Lemma has thus been proven for the endpoint 
x = 1. �

As mentioned in the proof, the Lemma is stronger than saying that the functions hj,l(x) =0, 
for l < j − 1, and hj,j−1(x) = 1 in their limits. A priori, the functions hj,l going to 0 in the limit 
when l < j − 1 is insufficient, as f (l)(x) may go to infinity at a faster rate for some f ∈ DJ,n

max. 
Corollary 4.11 and Theorem 2.6 allow any function f ∈DJ,n

max to be written as

f = f0 + c1ϕ
+
1 + · · · + cnϕ

+
n + cn+1ϕ

−
1 + · · · + c2nϕ

−
n

+ c2n+1u
+
1 · · · + c3nu

+
n + c3n+1u

−
1 + · · · + c4nu

−
n ,

(4.23)

for some constants c1, . . . , c4n that are determined by f and f0 ∈ DJ,n
min. The definition of the 

minimal domain and equation (4.19) thus say that

[f,u+
j ]n(1) = cj [ϕ+

j , u+
j ]n(1) = cj .

Analogs of this reasoning hold for all of the operations in the matrix of equation (4.19).
Lemma 4.12 defines some regularizations of quasi-derivatives but these are not assumed to 

be unique, just as the boundary triple in the following Subsection will not be uniquely to the 
naturally generated self-adjoint extension. Unfortunately, it is unknown if anything can be said 
of the remaining functions hj,k(x) in Lemma 4.12.

4.2. A natural boundary triple

A representation like that of Lemma 4.12 allows for the explicit construction of a boundary 
triple using quasi-derivatives as a guide, via equation (4.4). In order for the new operations to 
match Definition 4.1, some slight modifications are needed. For f ∈ DJ,n

max and j ∈ N such that 
j ≤ n, define the operations

f {j−1}(1) := (−1)j−1(j − 1)! · [f,u+
j ]n(1),

f {j−1}(−1) := (j − 1)! · [f,u−] (−1).
(4.24)
j n
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Finally, we can define the maps 	0, 	1 : DJ,n
max →C2n via

	0f :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−f [n](−1)

...

−f [2n−1](−1)

f [n](1)

...

f [2n−1](1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 	1f :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f {n−1}(−1)

...

f {0}(−1)

f {n−1}(1)

...

f {0}(1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.25)

where the quasi-derivatives in the definition of 	0 are given by Lemma 4.4.

Theorem 4.13. Let 	0 and 	1 be given by equation (4.25). Then {C2n, 	0, 	1} is a boundary 
triple for DJ,n

max.

Proof. Let f, g ∈ DJ,n
max. We aim to show that

[f,g]n
∣∣∣∣1−1

= [f,g]n(1) − [f,g]n(−1) = 〈	1f,	0g〉 − 〈	0f,	1g〉.

Lemma 4.12 and equation (4.24) yield, for j ∈ N such that j ≤ n,

f {j−1}(1) = (−1)j−1(j − 1)! · [f,u+
j ]n(1) = lim

x→±1− f [j−1](x) +
⎧⎨⎩

2n−1∑
l=j

hj,l(x)f (l)(x)

⎫⎬⎭ ,

f {j−1}(−1) = (j − 1)! · [f,u−
j ]n(1) = lim

x→±−1+ f [j−1](x) +
⎧⎨⎩

2n−1∑
l=j

h̃j,l(x)f (l)(x)

⎫⎬⎭ ,

(4.26)
for some functions hj,l(x) and ̃hj,l(x). The inner product in C2n is a linear operator, so begin by 
considering only the quasi-derivative term in 	1. With this truncated 	1, it is clear that

〈	1f,	0g〉 − 〈	0f,	1g〉 =
n∑

k=1

{
f [k−1]g[2n−k] − f [2n−k]g[k−1]} .

Equation (4.4) says that the sesquilinear form evaluated at x = 1 is created, and the minus signs 
in all of the terms at x = −1 in 	0 ensure that −[f, g]n(−1) is also generated. Now consider 
	1 to be only the extra summation from equation (4.26). We analyze the endpoint x = 1 and 
our conclusions will hold analogously at x = −1. First, notice that if f ∈ DJ,n

max is such that 
f {j−1}(1) = 0 for some j ∈ N with j ≤ n, then
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0 = lim
x→±1− f [j−1](x) +

⎧⎨⎩
2n−1∑
l=j

hj,l(x)f (l)(x)

⎫⎬⎭ implies

lim
x→±1− −f [j−1](x) = lim

x→±1−

2n−1∑
l=j

hj,l(x)f (l)(x).

(4.27)

The boundary triple with the truncated 	1 now yields

〈	1f,	0g〉 − 〈	0f,	1g〉 = lim
x→1−

n∑
k=1

g[2n−k](x)

{
2n−1∑
l=k

yk,l(x)f (l)(x)

}

− f [2n−k](x)

{
2n−1∑
l=k

zk,l(x)g(l)(x)

}
,

(4.28)

for some functions yk,l(x) and zk,l(x).
The claim is that equation (4.28) is equal to 0 for all f, g ∈ DJ,n

max. However, equation (4.23)
implies that it is enough to consider f and g taken from the families {ϕ+

i }ni=1 and {u+
i }ni=1. If 

both f and g are constant multiples of functions from {u+
i }ni=1. Then equation (4.28) can be 

simplified by equation (4.27) to

〈	1f,	0g〉 − 〈	0f,	1g〉 = − lim
x→1−

n∑
k=1

g[2n−k](x)f [k−1](x) − f [2n−k](x)g[k−1]

= −[f,g]n(1) = 0.

Without loss of generality, consider the case where f (x) = ϕ+
s (x) and g(x) = ϕ+

t (x), for 
some s, t ∈ N and s, t ≤ n. Then

lim
x→1−

2n−1∑
l=k

yk,l(x)
[
ϕ+

s

](l)
(x) =

{
limx→1− − [ϕ+

s

][k−1]
(x) for k �= s,

limx→1−(−1)s−1(s − 1)! − [ϕ+
s

][s−1] for k = s,

where equation (4.27) can be easily modified to show the case k = s. In both cases the limit is 
clearly 0. An analog holds for g(x). As the limits of f [2n−k](x) and g[2n−k](x) are also zero by 
Corollary 4.5, we conclude that equation (4.28) is 0 for such functions.

Finally, without loss of generality, consider the case where f (x) = u+
t (x) and g(x) = ϕ+

s (x)

for s �= t . Then, using the above simplifications we have

〈	1f,	0g〉 − 〈	0f,	1g〉 = − lim
x→1−

n∑
k=1

[u+
t ][2n−k](x)[ϕ+

s ][k−1](x) − [ϕ+
s ][2n−k](x)[u+

t ][k−1](x)

− lim
x→1−[u+

t ][2n−s](−1)s−1(s − 1)! = −[ϕ+
s , u+

t ]n(1) − 0 = 0.

The case where s = t similarly yields
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〈	1f,	0g〉 − 〈	0f,	1g〉 = −[ϕ+
s , v+

t ]n(1) − lim
x→1−

(−1)s

(s − 1)! (−1)s−1(s − 1)! = −1 − (−1) = 0.

It is clear that if f , g, or both, belong to the minimal domain the result is also 0. The claim that 
equation (4.28) is equal to 0 for all f, g ∈DJ,n

max has thus been shown, and the desired form at the 
endpoint x = 1 follows.

It remains only to show that the mappings 	0 and 	1 are surjective onto C2n. However, 
equation (4.19) clearly shows that linear combinations of the family {v±

j }nj=1 will take all possible 

values in C2n under the map 	0 and linear combinations of the family {ϕ±
j }nj=1 will take all 

possible values in C2n under the map 	1. Thus, we conclude that {C2n, 	0, 	1} is a boundary 
triple for DJ,n

max. �
It should be noted that there are many possible ways to prove Theorem 4.13, some of which 

are shorter. The advantage of this proof is it shows how the decomposition from equation (4.23)
interacts with the extra summations from Lemma 4.12, which is valuable for building intuition.

5. Weyl m-functions

The constructed boundary triple in equation (4.25) allows for the determination of explicit 
Weyl m-functions using Subsection 2.2. In particular, four examples will be computed: the two 
natural self-adjoint extensions which have the kernels of 	0 and 	1 as their domains, separated 
boundary conditions, and an analog of periodic boundary conditions.

It is first necessary to make some comments about solutions to the differential equation �n
J

given by equation (4.1). The deficiency indices of the associated minimal domain are (2n, 2n) so 
given a λ ∈C, there are 2n linearly independent solutions to the equation

�n
J[f ] = λf. (5.1)

However, these solutions can be defined via solutions to the uncomposed equation

�J[f ] = λjf,

where each {λj }nj=1 is distinct and λn
j = λ. To each of these associated n equations there are two 

solutions guaranteed due to the fact that �J is in the limit-circle case at both endpoints. Denote 
these two solutions by fj and gj and decompose λj = μj (μj + α + β + 1) so that the equation 
is in the usual format. Using the change of variables t = (1 − x)/2, so that 1 − t = (1 + x)/2, the 
solutions to equation (5.1) are written as

fj (t) :=
{

ejF (−μj ,μj + α + β + 1;α + 1; t) at t = 0 (x = 1)

F (−μj ,μj + α + β + 1;β + 1;1 − t) at t = 1 (x = −1)

}
,

gj (t) :=
{

t−αF (−μj − α,μj + β + 1;1 − α; t) at t = 0 (x = 1)

(1 − t)−βF (−μj − β,μj + α + 1;1 − β;1 − t) at t = 1 (x = −1)

}
,

(5.2)

where the constant ej normalizes the sesquilinear form so that [fj , gj ](1) = 1 for all j . A priori, 
this constant is clearly just 1/[f̃j , gj ](1), where f̃j := fj/ej , but may be simplified in some 
cases.
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All calculations in this section will take place in DJ,n
max, so the sesquilinear form will always 

be [·, ·]n(x) and the n subscript will be omitted throughout for simplicity. We now assume that 
the fundamental system of solutions {f1, . . . , fn, g1, . . . , gn} to equation (5.1) has the property 
that the matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−f
[n]
1 (−1) . . . −f

[n]
n (−1)

... . .
. ...

−f
[2n−1]
1 (−1) . . . −f

[2n−1]
n (−1)

−g
[n]
1 (−1) . . . −g

[n]
n (−1)

... . .
. ...

−g
[2n−1]
1 (−1) . . . −g

[2n−1]
n (−1)

f
{n−1}
1 (−1) . . . f

{n−1}
n (−1)

... . .
. ...

f
{0}
1 (−1) . . . f

{0}
n (−1)

g
{n−1}
1 (−1) . . . g

{n−1}
n (−1)

... . .
. ...

g
{0}
1 (−1) . . . g

{0}
n (−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(5.3)

satisfies initial conditions that make it equal to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0 1

. .
.

1 0

0 1

. .
.

1 0

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that these conditions mean that [fj , gj ](−1) = 1 for all j automatically. These initial 
conditions will be taken advantage of by using [50, Equation 15.8.21-22] and defining four sets 
of parameters that will be dependent on the choice of the solution. For j ∈ N such that j ≤ n,

γj := 2β	(α + 1)	(β)

ej	(−μ)	(μ + α + β + 1)
,

εj := 2β	(1 − α)	(β)

2α	(−μ − α)	(μ + β + 1)
,

(5.4)

δj := 	(α + 1)	(−β)

ej	(μ + α + 1)	(−μ − β)
,

ηj := 	(1 − α)	(−β)

2α	(1 + μ)	(−μ − α − β)
.

(5.5)

Hence, the solutions at the endpoint x = 1 have the following decompositions for k ∈ N such 
that k ≤ n:

f
[2n−k]
j (1) = cjf

[2n−k]
j (−1) − γjg

[2n−k]
j (−1)

=
{

0 if k �= j

γk if k = j

}
,
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g
[2n−k]
j (1) = cjf

[2n−k]
j (−1) − εjg

[2n−k]
j (−1)

=
{

0 if k �= j

εk if k = j

}
,

due to the initial conditions, for some constants cj . The other operations act on the solutions 
similarly:

f
{k−1}
j (1) = δjf

{k−1}
j (−1) + djg

{k−1}
j (−1)

=
{

0 if k �= j

δk if k = j

}
,

g
{k−1}
j (1) = ηjf

{k−1}
j (−1) + djg

{k−1}
j (−1)

=
{

0 if k �= j

ηk if k = j

}
,

for some constants dj . Note that the functions fj and gj are used in these formulas with the 
variable x, as the 2α and 2β constants comes from switching the variable back from t .

We now utilize Definition 2.15 to determine the m-function associated with the self-adjoint 
extension An

0 corresponding to 	0, which is the restriction of DJ,n
max defined on

dom An
0 :=

{
f ∈DJ,n

max : f ∈ ker(	0)
}

. (5.6)

The boundary condition for the domain is an analog of the Neumann boundary conditions applied 
to regular Sturm–Liouville differential operators, as we will see.

Finally, we denote by Im the m × m square matrix with 1’s on the anti-diagonal and Im the 
identity matrix of size m. Notice that, thanks to equations (5.4) and (5.5), 	0{fj , gj } is equal to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 In

f
[n]
1 (1) . . . f

[n]
n (1)

... . .
. ...

f
[2n−1]
1 (1) . . . f

[2n−1]
n (1)

g
[n]
1 (1) . . . g

[n]
n (1)

... . .
. ...

g
[2n−1]
1 (1) . . . g

[2n−1]
n (1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and simplifies to

	0{fj , gj } =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 In

0 γn

. .
.

γ 0

0 εn

. .
.

ε 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.7)
1 1
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from the connecting formulas above. The analogous expression for 	1{fj , gj } similarly collapses 
to

	1{fj , gj } =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
In 0

0 δn

. .
.

δ1 0

0 ηn

. .
.

η1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.8)

Recall the well-known block matrix inversion formula

(
A B

C D

)
=
(

(A − BD−1C)−1 −(A − BD−1C)−1BD−1

−D−1C(A − BD−1C)−1 D−1(I + C(A − BD−1C)−1BD−1

)
, (5.9)

which is valid when D and A − BD−1C are invertible. Note that 	0{fj , gj } satisfies these 
properties (matching the quadrants appropriately) as D is trivially invertible and

(A − BD−1C)−1 =

⎛⎜⎜⎜⎜⎝
0 − ε1

γ1

. .
.

− εn

γn

0

⎞⎟⎟⎟⎟⎠ .

Definition 2.15 thus yields

	1
(
	0{fj , gj }

)−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
In 0

0 δn

. .
.

δ1 0

0 ηn

. .
.

η1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − ε1

γ1

. .
.

− εn

γn

0

0
1

γ1

. .
.

1

γn

0

In 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− εn

γn

0

. . .

0 − ε1

γ1

1

γn

0

. . .

0
1

γ1

1

γn

0

. . .

0
1

γ1

δn

γn

0

. . .

0
δ1

γ1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
:= Mn

0 (λ). (5.10)

The lower left quadrant in the last matrix was simplified by the assumption that [fj , gj ](1) = 1
for all j . Indeed, the entries for this quadrant are of the following form:

γjηj − δj εj

γj

= f
[2n−j ]
j (1)g

{j−1}
j (1) − f

{j−1}
j (1)g

[2n−j ]
j (1)

γj

(5.11)

= [fj , gj ](1)

γj

= 1

γj

.

Mn
0 (λ) is the m-function for the boundary triple {C2n, 	0, 	1} associated with the self-adjoint 

extension An
0 of DJ,n

min and domain given in equation (5.6). The spectrum of An
0 is discrete and 

eigenvalues are located at those z ∈C which are poles of Mn
0 (λ).

The function 1/	(z) is analytic, so all spectral information will come from the 1/γj terms. 
Poles thus occur when −μj = −m or μj + α + β + 1 = −m, for m ∈ N0. Hence, μj = m or 
μj = −m − α − β − 1. In both cases, the formula λ = μn

j (μj + α + β + 1)n yields the same 
result and the spectrum, σn

0 , of An
0 is

σn
0 = {mn(m + α + β + 1)n : m ∈N0

}
. (5.12)

The operator A0 clearly includes all of the Jacobi polynomials in its domain, and upon in-
spection they must be the eigenfunctions associated with the eigenvalues in equation (5.12). We 
conclude that dom A0 coincides with the n/2 left-definite domain due to [26, Theorem 5.2], 
which analyzes such domains. See also [23,42] for more on left-definite operators and domains. 
It seems that this is the first instance in which it can be stated that a left-definite domain is actually 
the Friedrichs extension.

Corollary 5.1. The operator An
0 associated with dom An

0 is the Friedrichs extension of the mini-

mal operator An
min associated with DJ,n

min.

Proof. Let the Friedrichs Extension associated with the differential expression �n
J be denoted by 

AF . Theorem 13 of [47] states that the boundary conditions imposed on DJ,n
max are of the form

dom AF =
{
f ∈ DJ,n

max : [f,y(k)]n(−1) = [f,y(n+k)]n(1) = 0, k = 1, . . . , n.
}

,
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where y(k) and y(n+k) denote the principal solutions of the equation �n
J[f ] = λf at the endpoints 

x = −1 and x = 1 respectively. Notice that if f ∈ dom An
0 then f ∈ dom AF also, as the principal 

solutions must take the same form near the relevant endpoint as fj from equation (5.2) and 
the decomposition from Corollary 4.11 still holds. Hence, dom An

0 ⊆ dom AF . However, both 
domains are extensions of DJ,n

min by 2n dimensions and are associated with self-adjoint operators, 
so we conclude that dom An

0 = dom AF . �
The above process can be repeated to determine the m-function associated with the self-

adjoint extension An
1 corresponding to 	1, which is the restriction of DJ,n

max defined on

dom An
1 :=

{
f ∈ DJ,n

max : f ∈ ker(	1)
}

. (5.13)

The boundary condition for the domain is an analog of the Dirichlet boundary conditions applied 
to regular Sturm–Liouville differential operators, as we will see.

The formulas (5.7) and (5.8) can again be used in conjunction with Definition 2.15 to deter-
mine 	0

(
	1{fj , gj }

)−1, but first (	1{fj , gj }−1 must be computed. Again, matrix block inver-
sion can be used, this time with the alternate formula

(
A B

C D

)
=
(

A−1(I + B(D − CA−1B)−1CA−1) −AB(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
,

which is valid when A and D − CA−1B are invertible. Note that 	1{fj , gj } satisfies these prop-
erties (matching the quadrants appropriately) as A is trivially invertible and

(D − CA−1B)−1 =

⎛⎜⎜⎜⎜⎝
0

1

η1

. .
.

1

ηn

0

⎞⎟⎟⎟⎟⎠ .

Thus, calculate

	0
(
	1{fj , gj }

)−1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 In

0 γn

. .
.

γ1 0

0 εn

. .
.

ε1 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

In 0

0 − δ1

η1

. .
.

− δn 0

0
1

η1

. .
.

1
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ηn ηn
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=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− δn

ηn

0

. . .

0 − δ1

η1

1

ηn

0

. . .

0
1

η1

1

ηn

0

. . .

0
1

η1

εn

ηn

0

. . .

0
ε1

η1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
:= Mn

1 (λ). (5.14)

The entries of the lower left quadrant of Mn
1 (λ) were again simplified by equation (5.11). Mn

1 (λ)

is the m-function for the boundary triple {C2n, 	0, 	1} associated with the self-adjoint extension 
An

1 of DJ,n
min and domain given in equation (5.13). The spectrum of An

1 is discrete and eigenvalues 
are located at those z ∈C that are poles of Mn

1 (λ), which come from the 1/ηj terms.
Poles thus occur when 1 +μj = −m or −μj −α−β = −m, for m ∈ N0. Hence, μj = −m −1

or μj = m − α − β . In both cases, the formula λ = μn
j (μj + α + β + 1)n yields the same result 

and the spectrum, σn
1 , of An

1 is

σn
1 = {(m + 1)n(m − α − β)n : m ∈ N0

}
. (5.15)

The operator A1 clearly includes all of the Jacobi functions of the second kind in its domain, 
and upon inspection the eigenfunctions associated with the eigenvalues in equation (5.15) must 
be such functions.

It is thought that the operator A1 is the von Neumann–Krein extension of DJ,n
min. Unfortunately, 

a theorem analogous to [47, Theorem 13] that relates this extension with the non-principal solu-
tions does not seem to exist in the literature.

5.1. Other boundary conditions

The two-self-adjoint extensions analyzed thus far were naturally defined by the choice of 
the boundary triple. But the theory of boundary triples provides many tools for analyzing other 
boundary conditions. Two additional scenarios are now explored: when so-called separated 
boundary conditions are imposed, and when an analog of periodic boundary conditions are im-
posed. In each case, an explicit m-function is able to be derived thanks to the formula for Mn

0 (λ)

in equation (5.10).
Consider the matrix

θ =
⎛⎜⎝ c1 0

. . .

0 c2n

⎞⎟⎠ ,

so that the operator An
θ is the self-adjoint extension of DJ,n

min which acts on

dom An
θ =

{
f ∈DJ,n

max : θ	0[f ] = 	1[f ]
}

. (5.16)
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There are thus n boundary conditions imposed on dom An
θ at each endpoint, each con-

dition involving two quasi-derivatives: −cjf
[n+j−1](−1) = f {n−j}(−1) when j ≤ n and 

−cjf
[j−1](1) = f {2n−j}(1) when n < j ≤ 2n.

The m-function associated with the self-adjoint extension An
θ is then given via equation (2.15)

as (θ − Mn
0 (λ))−1, which can be simplified to

Mn
θ (λ) =

(
Ã B̃

C̃ D̃

)
, (5.17)

where

Ã =

⎛⎜⎜⎜⎜⎝
γn(cn+1γn − δn)

(c1γn + εn)(cn+1γn − δn) − 1
0

. . .

0
γ1(c2nγ1 − δ1)

(cnγ1 + ε1)(c2nγ1 − δ1) − 1

⎞⎟⎟⎟⎟⎠ ,

B̃ = C̃ =

⎛⎜⎜⎜⎜⎝
−γn

(c1γn + εn)(cn+1γn − δn) − 1
0

. . .

0
−γ1

(cnγ1 + ε1)(c2nγ1 − δ1) − 1

⎞⎟⎟⎟⎟⎠ ,

D̃ =

⎛⎜⎜⎜⎜⎝
γn(c1γn + εn)

(c1γn + εn)(cn+1γn − δn) − 1
0

. . .

0
γ1(cnγ1 + ε1)

(cnγ1 + ε1)(c2nγ1 − δ1) − 1

⎞⎟⎟⎟⎟⎠ .

The spectral properties given by Mn
θ (λ) are not as easy to determine as in the previous exam-

ples. They arise when

(cj γn−j+1 + εn−j+1)(cn+j γn−j+1 − δn−j+1) = 1,

but the explicit values that μj must take are unclear. Indeed, closed form solutions may not be 
able to be determined for such an equation. The expression does resemble the form for reg-
ular Sturm–Liouville (n = 1) operators with separated boundary conditions, i.e. [6, Example 
6.3.6].

Finally, we consider an analog of periodic boundary conditions by using Theorem 2.16. Let

W = 1√
2

⎛⎜⎜⎝
In In

0 0
0 0
In −In

0 0
−In In

In In

0 0

⎞⎟⎟⎠=
(
B∗ −A∗
A∗ B∗

)
. (5.18)
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Note the 2n ×2n matrices A and B satisfy the conditions A∗B = B∗A, AB∗ = BA∗ and AA∗ +
BB∗ = I = A∗A + B∗B. A new boundary triple for DJ,n

max is thus {C2n, 	′
0, 	

′
1}, where 	′

0 and 
	′

1 are given by (
	′

0

	′
1

)
= W

(
	0

	1

)
.

Explicitly, the maps 	′
0, 	

′
1 : DJ,n

max → C2n act via

	′
0f :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−f [n](−1) + f [n](1)
...

−f [2n−1](−1) + f [2n−1](1)

f {n−1}(−1) − f {n−1}(1)
...

f {0}(−1) − f {0}(1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, 	′

1f :=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f {n−1}(−1) + f {n−1}(1)
...

f {0}(−1) + f {0}(1)

f [n](−1) + f [n](1)
...

f [2n−1](−1) + f [2n−1](1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and there is a 1/
√

2 factor hidden from each term for simplicity. The m-function associated with 
the self-adjoint extension of DJ,n

min which acts on

dom Bn
0 =

{
f ∈ DJ,n

max : f ∈ ker	′
0

}
, (5.19)

is then given by

M ′
0(λ) = (A∗ +B∗Mn

0 (λ))(B∗ −A∗Mn
0 (λ))−1.

Of course this domain will only include functions that have the same value for each quasi-
derivative at each endpoint. We have

M ′
0(λ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2ηn

εn − δn + 2
0

. . .

0
2η1

ε1 − δ1 + 2

εn + δn

εn − δn + 2
0

. . .

0
ε1 + δ1

ε1 − δ1 + 2
εn + δn

εn − δn + 2
0

. . .

0
ε1 + δ1

ε1 − δ1 + 2

2γn

εn − δn + 2
0

. . .

0
2γ1

ε1 − δ1 + 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Note that in the calculation for the upper-left quadrant the fact that (1 + εj δj )/γj = ηj was used. 
The spectral properties revealed by M ′

0(λ) are again difficult to determine. Eigenvalues arise 
when
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δj − εj = 2,

but the explicit values that μj must take are unclear. The expression does resemble that arising 
from a simpler example for regular Sturm–Liouville (n = 1) operators [6, Example 6.3.6].
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