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Abstract

We prove homogenization for a class of viscous Hamilton-Jacobi equations in the stationary & ergodic 
setting in one space dimension. Our assumptions include most notably the following: the Hamiltonian is 
of the form G(p) + βV (x, ω), the function G is coercive and strictly quasiconvex, minG = 0, β > 0, the 
random potential V takes values in [0, 1] with full support and it satisfies a hill condition that involves 
the diffusion coefficient. Our approach is based on showing that, for every direction outside of a bounded 
interval (θ1(β), θ2(β)), there is a unique sublinear corrector with certain properties. We obtain a formula 
for the effective Hamiltonian and deduce that it is coercive, identically equal to β on (θ1(β), θ2(β)), and 
strictly monotone elsewhere.
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1. Introduction

Consider a Hamilton-Jacobi (HJ) equation of the form

∂tu
ε = ε tr

(
A

(x

ε
,ω

)
D2

xxu
ε
)

+ H
(
Dxu

ε,
x

ε
,ω

)
, (t, x) ∈ (0,+∞) ×Rd, (1.1)

where ω is an element of a probability space (�, F , P ), and ε > 0. Assume that the diffusion 
matrix A(x, ω) and the Hamiltonian H(p, x, ω) are stationary & ergodic processes in x, the 
former is positive semidefinite (for all x) and the latter diverges (uniformly in x) as |p| → +∞. 
We refer to such HJ equations as inviscid if A ≡ 0 and viscous otherwise.

As ε → 0, (1.1) is said to homogenize to an inviscid HJ equation of the form

∂tu = H (Dxu) , (t, x) ∈ (0,+∞) ×Rd, (1.2)

if, for any initial condition from a prescribed class, the unique viscosity solution of (1.1) with that 
initial condition converges locally uniformly on [0, +∞) ×Rd to the unique viscosity solution 
of (1.2) with the same initial condition. The function H is called the effective Hamiltonian.

1.1. Brief overview of our results

In this paper, we study the homogenization of (1.1) under the following additional assump-
tions: d = 1, the diffusion coefficient (which replaces A(x, ω) and is denoted by a(x, ω)) takes 
values in (0, 1], the Hamiltonian is separable, i.e., it is of the form

H(p,x,ω) = G(p) + βV (x,ω), (1.3)

G is a nonnegative and strictly quasiconvex (a.k.a. level-set convex) function that vanishes at the 
origin, V ( · , ω) is a [0, 1]-valued potential whose range includes (0, 1) for P -a.e. ω, and β > 0. 
We also put various regularity conditions on a( · , ω) and V ( · , ω), but we postpone such details 
to Section 2. Last but not least, we impose what we call the scaled hill condition on the pair 
(a, V ) (see (2.11)) which holds for wide and natural classes of examples, but fails (most notably) 
in the periodic case. See Appendix A for details and references.

In the special case we described in the previous paragraph, we prove that, for P -a.e. ω, as 
ε → 0, (1.1) homogenizes to an inviscid HJ equation. We establish this result first with linear 
initial data (see Theorem 2.4) and then with uniformly continuous initial data (see Corollary 2.5). 
Moreover, we give a formula for the effective Hamiltonian and deduce the following: H(θ) is 
identically equal to β on a bounded interval (θ1(β), θ2(β)) that contains 0, strictly decreasing on 
(−∞, θ1(β)], strictly increasing on [θ2(β), +∞), and divergent as θ → ±∞.

Our approach is based on correctors (see Subsection 1.2 for a general and informal defini-
tion as well as for background and context). We show that, for every θ /∈ (θ1(β), θ2(β)), there 
is a unique sublinear corrector in a certain class of functions (see Theorems 2.1–2.2 and Re-
mark 2.3) and the desired homogenization result with initial condition x �→ θx follows. To cover 
θ ∈ (θ1(β), θ2(β)) and obtain the flat piece of the graph of the effective Hamiltonian H , we 
use the sublinear correctors for θ1(β) and θ2(β) in combination to construct subsolutions and 
supersolutions. This is where we rely on the scaled hill condition.
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1.2. Background and context

In the general setting of (1.1), given any θ ∈Rd , if there exist λ(θ) ∈ R and Fθ : Rd ×� → R
such that

tr
(
A(x,ω)D2

xxFθ

)
+ H (θ + DxFθ , x,ω) = λ(θ), x ∈Rd , (1.4)

and |Fθ(x, ω)| = o(|x|) as |x| → +∞ for P -a.e. ω, then Fθ is referred to as a sublinear corrector 
in the literature. The motivation behind this definition lies in the observation that

uε(t, x,ω) = tλ(θ) + θ · x + εFθ

(x

ε
,ω

)

gives a solution of (1.1) and, for P -a.e. ω, as ε → 0, it converges to u(t, x) = tλ(θ) + θ · x which 
defines a solution of (1.2) with H(θ) = λ(θ).

The first instances of sublinear correctors in the context of HJ equations were introduced 
in [23] when d ≥ 1, A ≡ 0 and x = (x1, . . . , xd) �→ H(p, x, ω) is 1-periodic in xi for each 
i ∈ {1, . . . , d}. The authors of that seminal paper used the compactness of the unit cube [0, 1]d to 
prove that there is a periodic (and hence bounded) corrector for every θ ∈ Rd and then provided 
some additional arguments to conclude that (1.1) homogenizes to (1.2) with H(θ) = λ(θ) as in 
the paragraph above. This result was subsequently adapted in [13] to the case where d ≥ 1, A
is positive definite and (A, H) is periodic in the same way. Moreover, it was generalized in [19]
and [25] to almost periodic settings (which still enjoy underlying compactness) in the inviscid 
and viscous cases, respectively.

When p �→ H(p, x, ω) is convex, (1.1) homogenizes for P -a.e. ω without any periodicity or 
almost periodicity assumption. Results of this form were first obtained in [29,28] for inviscid 
equations and then in [26,21] for their viscous counterparts. The starting point of all four of 
the cited papers is a variational formula for the viscosity solutions of (1.1) involving the convex 
conjugate of p �→ H(p, x, ω). The first three papers then apply the subadditive ergodic theorem 
to this variational formula whereas the fourth one uses ideas and techniques from the theory of 
large deviations (as outlined in [20]). In particular, none of them rely on the existence of sublinear 
correctors (although their connection to homogenization is given in [28] as a separate result, cf. 
[24]).

It is natural to ask if homogenization takes place under the weaker assumption of quasiconvex-
ity, i.e., when the sublevel sets of p �→ H(p, x, ω) are convex. This question has been answered 
positively for inviscid equations in [11] and [2] when d = 1 and d ≥ 1, respectively. The proof 
in [11] involves correctors as well as approximate correctors which are solutions of (1.4) when 
an error margin is introduced on the right-hand side of that equality, whereas the strategy in 
[2] is to apply the subadditive ergodic theorem to certain solutions of (1.4) when the condition 
x ∈ Rd there is replaced with x ∈ Rd \ {y} for any y ∈ Rd , bypassing the existence of sublinear 
correctors.

To the best of our knowledge, outside of periodic and almost periodic settings, Theorem 2.4
and Corollary 2.5 are the first homogenization results for a class of viscous HJ equations with 
quasiconvex Hamiltonians that are not necessarily convex. The effective Hamiltonian that we 
give in Theorem 2.4 has the same qualitative properties (recall the second paragraph of Sub-
section 1.1) as the effective Hamiltonian for the inviscid counterparts (covered by [11,2]) of the 
equations we study.
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If quasiconvexity is violated, then there is no general answer to the question of homogeniza-
tion. Indeed, when d ≥ 2, there are positive results for certain classes of such HJ equations (see 
[4,6,1,27,18]) as well as negative results for others (see [32,15,14]). The counterexamples in the 
latter collection of papers involve Hamiltonians with saddle points, so they cannot be adapted to 
d = 1. In fact, in one dimension, we expect (1.1) to homogenize for P -a.e. ω under only mild 
regularity and growth assumptions. This has already been proved in [5,17] for inviscid equations. 
Moreover, in that case, if the original Hamiltonian is separable (as in (1.3)), then we can obtain 
a detailed picture of the effective Hamiltonian (see [30]).

It has been shown in the past several years that homogenization takes place at least for certain 
classes of viscous HJ equations in one dimension with Hamiltonians that are not quasicon-
vex but piecewise convex. The first such result was given in [9] which studies Hamiltonians 
H(p, x, ω) that are pinned at finitely many points p1 < p2 < · · · < pn on the p-axis (i.e., for 
every i ∈ {1, . . . , n}, there is an hi ∈ R such that H(pi, x, ω) = hi for every (x, ω) ∈ R × �) 
and convex in p on the intervals (−∞, p1), (p1, p2), . . . , (pn−1, pn), (pn, +∞). This work was 
followed by [31,22,10] which consider separable Hamiltonians that satisfy, in particular, hill and 
valley conditions that are closely related to our scaled hill condition (see Appendix A for details). 
The first of those three papers is concerned with a homogenization problem for controlled ran-
dom walks in random potentials. It was adapted in [22] to the continuous setting (i.e., involving 
Brownian motion instead of random walk) to prove that the HJ equation (HJε,ω) (see Section 2) 
homogenizes when G is given by G(p) = 1

2 min{(p − c)2, (p + c)2} for some c > 0. This is 
the continuous version of the main result in [31], and it was recently generalized in [10] to the 
case where G is the minimum of a finite number of convex functions with the same absolute 
minimum, albeit using a different toolbox as we briefly describe below.

In all three of the aforementioned papers [31,22,10] as well as in this paper, homogenization 
(outside the flat parts of the graph of the effective Hamiltonian) is obtained by showing the 
existence of sublinear correctors that satisfy certain derivative bounds. In [31] and [22], sublinear 
correctors have explicit control representations from which the desired derivative bounds are 
easily deduced. In contrast, the approach in [10] does not rely on explicit representations. Instead, 
the existence of sublinear correctors is shown by exploiting a general result from [6] (and this 
is the only point where the piecewise convexity of G is used), while the derivative bounds are 
established by proving suitable comparison principles. This elegant approach (which relies solely 
on PDE methods) is the main inspiration for the strategy that we follow in this paper. The novelty 
of our work lies in proving the existence and uniqueness of sublinear correctors satisfying the 
needed derivative bounds in a direct way by ODE methods (which are applicable since we are 
in one space dimension). Finally, since any continuous and coercive function on the real line 
is piecewise quasiconvex, we think that our results constitute a major step toward generalizing 
those in [10] and establishing homogenization for a wide class of viscous HJ equations in one 
dimension.

2. Our results

Throughout the paper, for any domain of the form X = I × J or X = J where I ⊂ [0, +∞)

and J ⊂ R are open intervals, C(X), UC(X), Lip(X) and Liploc(X) stand for the space of contin-
uous, uniformly continuous, Lipschitz continuous and locally Lipschitz continuous real-valued 
functions on X, respectively. Similarly, Ck(X), k ∈ {1, 2}, stand for the space of real-valued func-
tions on X with continuous derivatives of order k. These definitions extend to the closure of X
as usual.
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Let (�, F , P ) be a probability space equipped with a group of measure-preserving transfor-
mations τx : � → �, x ∈ R, such that (x, ω) �→ τxω is measurable. Assume that P is ergodic 
under this group of transformations, i.e.,

P (∩x∈RτxA) ∈ {0,1} for every A ∈ F .

Write E[ · ] to denote expectation with respect to P .
For every ε > 0 and ω ∈ �, we consider the viscous HJ equation

∂tu
ε = εa

(x

ε
,ω

)
∂2
xxu

ε + G(∂xu
ε) + βV

(x

ε
,ω

)
, (t, x) ∈ (0,+∞) ×R, (HJε,ω)

under the following assumptions:

G : R→ [0,+∞) is coercive, i.e., lim
p→±∞G(p) = +∞,

G ∈ Liploc(R);
(2.1)

G(0) = 0, G1 := G|(−∞,0] is strictly decreasing,

G2 := G|[0,+∞) is strictly increasing;
(2.2)

a : R× � → (0,1] and V :R× � → [0,1] are stationary, i.e.,

a(x,ω) = a(0, τxω) and V (x,ω) = V (0, τxω) for every (x,ω) ∈R× �;
(2.3)

inf{V (x,ω) : x ∈R} = 0 and sup{V (x,ω) : x ∈R} = 1 for P -a.e. ω; (2.4)

a( · ,ω) and V ( · ,ω) are in C(R) for every ω ∈ �; (2.5)

and β > 0 (which is fixed throughout the paper).
Two remarks are in order. First, G is strictly quasiconvex, i.e.,

G(cp + (1 − c)q) < max{G(p),G(q)}

whenever p 
= q and 0 < c < 1. (See Fig. 1.) Second, (2.4) is essentially equivalent to

P (V (0,ω) = h) < 1 for every h ∈ [0,1].

This is due to ergodicity, the presence of the parameter β and the observation that adding a 
constant to the right-hand side of (HJε,ω) corresponds to adding a linear (in time) term to uε .

2.1. The static HJ equation

Our first couple of results are on the static (i.e., time-independent) version of (HJε,ω) with 
ε = 1. We prove them in Section 3.

Theorem 2.1. Assume (2.1)–(2.5). For every λ ≥ β and ω ∈ �, the static viscous HJ equation

a(x,ω)F ′′ + G(F ′) + βV (x,ω) = λ, x ∈R, (2.6)
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Fig. 1. The graph of a function G that satisfies (2.1)–(2.2).

has a unique solution Fλ
1 ( · , ω) ∈ C2(R) such that

Fλ
1 (0,ω) = 0 and (F λ

1 )′(x,ω) ∈ [G−1
1 (λ),G−1

1 (λ − β)] for all x ∈ R.

Similarly, it has a unique solution Fλ
2 ( · , ω) ∈ C2(R) such that

Fλ
2 (0,ω) = 0 and (F λ

2 )′(x,ω) ∈ [G−1
2 (λ − β),G−1

2 (λ)] for all x ∈ R. (2.7)

Moreover, (F λ
1 )′ and (F λ

2 )′ are stationary, i.e.,

(F λ
i )′(x,ω) = (F λ

i )′(0, τxω)

for every i ∈ {1, 2}, x ∈R and ω ∈ �.

Theorem 2.2. Assume (2.1)–(2.5). With the notation in Theorem 2.1,

θ1(λ) := E[(F λ
1 )′(0,ω)] and θ2(λ) := E[(F λ

2 )′(0,ω)] (2.8)

satisfy

θ1(λ) ∈ (G−1
1 (λ),G−1

1 (λ − β)) and θ2(λ) ∈ (G−1
2 (λ − β),G−1

2 (λ))

for every λ ≥ β . These quantities define two continuous bijections

θ1 : [β,+∞) → (−∞, θ1(β)] and θ2 : [β,+∞) → [θ2(β),+∞)

which are decreasing and increasing, respectively. Moreover, their inverses θ−1
1 and θ−1

2 are 
locally Lipschitz continuous on their domains.

Remark 2.3. Recall the first paragraph of Subsection 1.2 and note that, for every λ ≥ β and 
i ∈ {1, 2}, the function (x, ω) �→ Fλ

i (x, ω) − θi(λ) · x is a sublinear corrector. However, we will 
avoid the corrector terminology in the rest of the paper because we will work directly with Fλ

1
and Fλ rather than their sublinearized versions.
2
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2.2. Homogenization

When ε = 1, we drop the superscript of uε in (HJε,ω) and write

∂tu = a(x,ω)∂2
xxu + G(∂xu) + βV (x,ω), (t, x) ∈ (0,+∞) ×R. (HJω)

We assume that,

for every ω ∈ � and θ ∈R, (HJω) has a unique viscosity solution

uθ ( · , · ,ω) ∈ UC([0,+∞) ×R) such that uθ (0, x,ω) = θx for all x ∈ R,
(2.9)

which carries over to (HJε,ω) with an arbitrary ε > 0. Indeed, the unique viscosity solution of the 
latter equation with the same initial condition is given by

uε
θ (t, x,ω) = εuθ

(
t

ε
,
x

ε
,ω

)
.

See Subsection 4.1 for some preliminaries regarding viscosity solutions.
We strengthen assumption (2.5) as follows:

√
a( · ,ω) ∈ Lip(R) and V ( · ,ω) ∈ UC(R) for every ω ∈ �. (2.10)

In Subsection 4.2, we use Theorems 2.1–2.2 and a comparison principle to prove that, for each 
θ /∈ (θ1(β), θ2(β)), the function uε

θ ( · , · , ω) converges locally uniformly as ε → 0 for P -a.e. 
ω. Then, in Subsection 4.3, we obtain the same result for each θ ∈ (θ1(β), θ2(β)) under the 
following additional assumption:

for every h ∈ (0,1), C > 0 and P -a.e. ω, there is an interval [L1,L2] such that

L2∫
L1

dy

a(y,ω)
≥ C and V ( · ,ω) ≥ h on [L1,L2].

(2.11)

We refer to (2.11) as the scaled hill condition. See Appendix A for a detailed discussion.
The set of ω for which uε

θ ( · , · , ω) does not converge locally uniformly as ε → 0 is a P -null 
set, but it may depend on θ . In order to treat all θ ∈ R simultaneously, we make the following 
assumption:

for every ω ∈ � and θ ∈R, there exists an 
θ = 
θ (ω) > 0 such that

|uθ (t, x,ω) − uθ (t, y,ω)| ≤ 
θ |x − y| for all t ∈ [0,+∞) and x, y ∈R.
(2.12)

Here is the precise statement of our homogenization result with linear initial data. We com-
plete its proof in Subsection 4.4.
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Theorem 2.4. Assume (2.1)–(2.4) and (2.9)–(2.12). Define H ∈ Liploc(R) by

H(θ) =

⎧⎪⎨
⎪⎩

θ−1
1 (θ) for θ ∈ (−∞, θ1(β)] (strictly decreasing),

β for θ ∈ (θ1(β), θ2(β)) (flat piece),

θ−1
2 (θ) for θ ∈ [θ2(β),+∞) (strictly increasing),

with the continuous bijections θ1 and θ2 in Theorem 2.2. For P -a.e. ω, as ε → 0, when subject 
to linear initial data, (HJε,ω) homogenizes to the inviscid HJ equation

∂tu = H(∂xu), (t, x) ∈ (0,+∞) ×R. (HJ)

Precisely, there exists an �0 ∈F with P (�0) = 1 such that, for every ω ∈ �0 and θ ∈R, as ε →
0, the unique viscosity solution uε

θ ( · , · , ω) of (HJε,ω) with the initial condition uε
θ (0, x, ω) = θx, 

x ∈R, converges locally uniformly on [0, +∞) ×R to uθ defined by

uθ (t, x) = tH(θ) + θx,

which is the unique (classical and hence viscosity) solution of (HJ) with the same initial condi-
tion.

Finally, replacing (2.9) with the stronger assumption that

the Cauchy problem for (HJω) is well-posed in UC([0,+∞) ×R) for every ω ∈ �, (2.13)

which is defined in Subsection 4.1, we generalize Theorem 2.4 to uniformly continuous initial 
data by citing a result from [9] which is based on the perturbed test function method (see [12]).

Corollary 2.5. Assume (2.1)–(2.4) and (2.10)–(2.13). For P -a.e. ω, as ε → 0, when subject to 
uniformly continuous initial data, (HJε,ω) homogenizes to the inviscid HJ equation (HJ) with the 
effective Hamiltonian H in Theorem 2.4. Precisely, there exists an �0 ∈F with P (�0) = 1 such 
that, for every ω ∈ �0 and g ∈ UC(R), as ε → 0, the unique viscosity solution uε

g( · , · , ω) of 
(HJε,ω) with the initial condition uε

g(0, · , ω) = g( · ) converges locally uniformly on [0, +∞) ×R

to the unique viscosity solution ug of (HJ) with the same initial condition.

Remark 2.6. Some of the assumptions in the statements of Theorem 2.4 and Corollary 2.5, 
namely (2.1)–(2.4) and (2.10)–(2.11), are of concrete nature, whereas the remaining ones are 
abstract. These hybrid sets of assumptions are formed precisely by what we use in our proofs of 
these results and we do not claim in any way that they are the most natural or streamlined. Our 
goal with this style of exposition is to make our proofs more transparent and thereby hopefully 
facilitate future progress. For the sake of completeness, we provide in Appendix B a concrete 
and natural set of conditions (which are not meant to be sharp and are not used anywhere in the 
paper) under which the abstract assumptions in the statements of Theorem 2.4 and Corollary 2.5
are valid.
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3. The static HJ equation

In the following two lemmas leading to the proof of Theorem 2.1, we drop ω and assume that

a :R→ (0,1] and V : R→ [0,1] are in C(R). (3.1)

Lemma 3.1. Assume (2.1)–(2.2) and (3.1). For every λ ≥ β , L ∈ R and c ∈ [G−1
2 (λ −

β), G−1
2 (λ)], the equation

a(x)f ′(x) + G(f (x)) + βV (x) = λ, x ∈ [L,+∞), (3.2)

has a unique (classical) solution f λ
2 ( · | L, c) that satisfies

f λ
2 (L |L,c) = c. (3.3)

Moreover,

f λ
2 (x |L,c) ∈ [G−1

2 (λ − β),G−1
2 (λ)] for all x ∈ [L,+∞). (3.4)

Proof. We rearrange (3.2) and write

f ′(x) = 1

a(x)
(λ − G(f (x)) − βV (x)) . (3.5)

By the Picard-Lindelöf theorem, there is a unique local solution f λ
2 ( · | L, c) in a neighborhood 

of L that satisfies (3.3). Let us check that there is no blow-up at any x ∈ (L, +∞).

• Suppose f λ
2 (x | L, c) < G−1

2 (λ − β) for some x ∈ (L, +∞). Let

x∗ = max{y ∈ [L,x) : f λ
2 (y |L,c) ≥ G−1

2 (λ − β)}.

By the mean value theorem, there exists an x∗∗ ∈ (x∗, x) such that

(f λ
2 )′(x∗∗ |L,c) = f λ

2 (x |L,c) − f λ
2 (x∗ |L,c)

x − x∗ < 0.

However,

λ − G(f λ
2 (x∗∗ |L,c)) − βV (x) > λ − (λ − β) − β = 0

and (f λ
2 )′(x∗∗ | L, c) > 0 by (3.5), which is a contradiction. Hence, f λ

2 (x | L, c) ≥ G−1
2 (λ −

β) for all x ∈ (L, +∞).
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• Suppose f λ
2 (x | L, c) > G−1

2 (λ) for some x ∈ (L, +∞). Let

x∗ = max{y ∈ [L,x) : f λ
2 (y |L,c) ≤ G−1

2 (λ)}.

By the mean value theorem, there exists an x∗∗ ∈ (x∗, x) such that

(f λ
2 )′(x∗∗ |L,c) = f λ

2 (x |L,c) − f λ
2 (x∗ |L,c)

x − x∗ > 0.

However,

λ − G(f λ
2 (x∗∗ |L,c)) − βV (x) < λ − λ − 0 = 0

and (f λ
2 )′(x∗∗ | L, c) < 0 by (3.5), which is a contradiction. Hence, f λ

2 (x | L, c) ≤ G−1
2 (λ)

for all x ∈ (L, +∞).

We conclude that f λ
2 ( · | L, c) is the unique solution of (3.2) that satisfies (3.3). Moreover, the 

bounds in (3.4) hold. �
Lemma 3.2. Assume (2.1)–(2.2) and (3.1). For every λ ≥ β , the equation

a(x)f ′(x) + G(f (x)) + βV (x) = λ, x ∈ R, (3.6)

has a unique solution f λ
2 ∈ C1(R) such that

f λ
2 (x) ∈ [G−1

2 (λ − β),G−1
2 (λ)] for all x ∈ R. (3.7)

Proof. For every λ ≥ β , there is a strictly increasing and continuous function mλ
2 such that

G2(p + q) − G2(p) ≥ mλ
2(q) whenever G−1

2 (λ − β) ≤ p ≤ p + q ≤ G−1
2 (λ). (3.8)

Equivalently, (mλ
2)−1 is a modulus of continuity for G−1

2 on [λ −β, λ]. Without loss of generality, 
assume that

mλ
2(q) ≤ q.

Fix any L ∈ R and c, d ∈ [G−1
2 (λ − β), G−1

2 (λ)] such that c < d . Recall Lemma 3.1 and let 
f λ

2 ( · | L, c) and f λ
2 ( · | L, d) be the unique solutions of (3.2) that satisfy

f λ
2 (L |L,c) = c and f λ

2 (L |L,d) = d.

Note that

λ = a(x)(f λ
2 )′(x |L,c) + G2(f

λ
2 (x |L,c)) + βV (x)

= a(x)(f λ
2 )′(x |L,d) + G2(f

λ
2 (x |L,d)) + βV (x)
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for every x ∈ [L, +∞) by (3.4). Rearranging the second equality, we get

a(x)
[
(f λ

2 )′(x |L,d) − (f λ
2 )′(x |L,c)

] + G2(f
λ
2 (x |L,d)) − G2(f

λ
2 (x |L,c)) = 0.

It follows that f λ
2 (x | L, d) ≥ f λ

2 (x | L, c) for every x ∈ [L, +∞). Therefore,

hλ
2(x |L,c, d) := f λ

2 (x |L,d) − f λ
2 (x |L,c)

is a nonnegative function in C1([L, +∞)) such that

hλ
2(L |L,c, d) = d − c ∈ (0,G−1

2 (λ)]

and

a(x)(hλ
2)′(x |L,c, d) + mλ

2(hλ
2(x |L,c, d)) ≤ 0

by (3.8). We apply a variant of the Grönwall-Bellman lemma (see Lemma C.1 in Appendix C) 
and deduce that

hλ
2(x |L,c, d) ≤ (�λ

2)−1

⎛
⎝

x∫
L

dy

a(y)

⎞
⎠ , (3.9)

where

�λ
2(p) =

G−1
2 (λ)∫
p

dq

mλ
2(q)

and (as shown in Lemma C.1) its inverse satisfies

lim
z→+∞(�λ

2)−1(z) = 0. (3.10)

Fix any x ∈ R. For every L ∈ (−∞, x), c, d ∈ [G−1
2 (λ − β), G−1

2 (λ)] and L′, L′′ ∈ (−∞, L], 
we can restrict the functions f λ

2 ( · | L′, c) and f λ
2 ( · | L′′, d) to the interval [L, +∞). If

f λ
2 (L |L′, c) = f λ

2 (L |L′′, d),

then f λ
2 (x | L′, c) = f λ

2 (x | L′′, d) by the uniqueness in Lemma 3.1. Otherwise, we use (3.9) to 
deduce that

|f λ
2 (x |L′, c) − f λ

2 (x |L′′, d)| ≤ (�λ
2)−1

⎛
⎝

x∫
L

dy

a(y)

⎞
⎠ . (3.11)

By (3.10) and the Cauchy criterion for convergence, the limit
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f λ
2 (x) := lim

L→−∞f λ
2 (x |L,c) (3.12)

exists, f λ
2 (x) ∈ [G−1

2 (λ −β), G−1
2 (λ)] and it is independent of c ∈ [G−1

2 (λ −β), G−1
2 (λ)]. More-

over, it follows from (3.10) and (3.11) that the limit in (3.12) is uniform on bounded intervals.
Fix any c ∈ [G−1

2 (λ − β), G−1
2 (λ)]. Note that, for every x1, x2 ∈ R such that x1 < x2,

gλ
2 (x) := lim

L→−∞(f λ
2 )′(x |L,c) = lim

L→−∞
1

a(x)

(
λ − G(f λ

2 (x |L,c)) − βV (x)
)

(3.13)

= 1

a(x)

(
λ − G(f λ

2 (x)) − βV (x)
)
.

Since the limit in (3.12) is uniform on [x1, x2], so are the limits in (3.13). Consequently,

x2∫
x1

gλ
2 (x)dx = lim

L→−∞

x2∫
x1

(f λ
2 )′(x |L,c)dx = lim

L→−∞(f λ
2 (x2 |L,c) − f λ

2 (x1 |L,c))

= f λ
2 (x2) − f λ

2 (x1)

and gλ
2 (x) = (f λ

2 )′(x). We conclude that f λ
2 is a solution of (3.6) in C1(R).

Finally, once we impose the bounds in (3.7), uniqueness follows. Indeed, suppose f λ
2 , f̃ λ

2 ∈
C1(R) are solutions of (3.6) that both satisfy (3.7). For any x ∈ R, if there exists an L ∈ (−∞, x)

such that f λ
2 (L) = f̃ λ

2 (L), then f λ
2 (x) = f̃ λ

2 (x) by the uniqueness in Lemma 3.1. Otherwise,

0 ≤ |f λ
2 (x) − f̃ λ

2 (x)| ≤ lim
L→−∞(�λ

2)−1

⎛
⎝

x∫
L

dy

a(y)

⎞
⎠ = 0

as in (3.9)–(3.10). �
We are ready to go back to the stochastic setting.

Proof of Theorem 2.1. For every λ ≥ β and ω ∈ �, by Lemma 3.2, the equation

a(x,ω)f ′ + G(f ) + βV (x,ω) = λ, x ∈R,

has a unique solution f λ
2 ( · , ω) ∈ C1(R) such that f λ

2 (x, ω) ∈ [G−1
2 (λ − β), G−1

2 (λ)] for all 
x ∈R. Define Fλ

2 ( · , ω) by setting

Fλ
2 (x,ω) =

x∫
0

f λ
2 (y,ω)dy

for every x ∈R. It follows immediately that Fλ
2 ( · , ω) is the unique solution of (2.6) in C2(R) that 

satisfies (2.7). The uniqueness of the solution in this class, in combination with the stationarity 
of the functions a and V , implies that (F λ)′ is stationary. Indeed, for every x, y ∈ R and ω ∈ �,
2
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λ = a(x + y,ω)(Fλ
2 )′′(x + y,ω) + G((Fλ

2 )′(x + y,ω)) + βV (x + y,ω)

= a(x, τyω)(Fλ
2 )′′(x + y,ω) + G((Fλ

2 )′(x + y,ω)) + βV (x, τyω).

Therefore, Fλ
2 (x + y, ω) − Fλ

2 (y, ω) = Fλ
2 (x, τyω) and (F λ

2 )′(x + y, ω) = (F λ
2 )′(x, τyω).

For every p, x ∈R and ω ∈ �, let

G̃(p) = G(−p), ã(x,ω) = a(−x,ω), Ṽ (x,ω) = V (−x,ω) and F̃ (x,ω) = F(−x,ω).

(3.14)
After these substitutions, (2.6) becomes

ã(x,ω)F̃ ′′ + G̃(F̃ ′) + βṼ (x,ω) = λ, x ∈ R.

Moreover, assumptions (2.1)–(2.5) translate to G̃, ã and Ṽ (if we introduce and work with τ̃x =
τ−x ). The desired conclusions regarding the existence & uniqueness of Fλ

1 and the stationarity 
of (F λ

1 )′ follow. �
For every λ ≥ β and P -a.e. ω,

lim
x→±∞

1

x
Fλ

2 (x,ω) = lim
x→±∞

1

x

(
Fλ

2 (x,ω) − Fλ
2 (0,ω)

)

= lim
x→±∞

1

x

x∫
0

(F λ
2 )′(y,ω)dy = E[(F λ

2 )′(0,ω)] = θ2(λ)

(3.15)

by Theorem 2.1, the Birkhoff ergodic theorem and the definition of θ2(λ) in (2.8).

Lemma 3.3. Assume (2.1)–(2.5). For every λ ≥ β and ε ∈ (0, 1),

θ2(λ + ε) − θ2(λ) ≥ ε/κ̃λ
2 ,

where κ̃λ
2 is a Lipschitz constant for G2 on [G−1

2 (λ − β), G−1
2 (λ + 1)].

Proof. For every λ ≥ β , ε ∈ (0, 1) and ε′ ∈ (0, ε), let δ = (ε − ε′)/κ̃λ
2 and note that

a(x,ω)(Fλ
2 )′′(x,ω) + G2((F

λ
2 )′(x,ω) + δ) + βV (x,ω)

≤ a(x,ω)(Fλ
2 )′′(x,ω) + G2((F

λ
2 )′(x,ω)) + βV (x,ω) + ε − ε′ = λ + ε − ε′, (x,ω) ∈ R× �,

by (2.6) and the following bounds due to (2.7):

λ − β ≤ G2((F
λ
2 )′(x,ω)) < G2((F

λ
2 )′(x,ω) + δ) < G2((F

λ
2 )′(x,ω) + 1/κ̃λ

2 ) ≤ λ + 1.

Since

a(x,ω)(Fλ+ε)′′(x,ω) + G2((F
λ+ε)′(x,ω)) + βV (x,ω) = λ + ε, (x,ω) ∈ R× �, (3.16)
2 2
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we deduce that

a(x,ω)
[
(F λ+ε

2 )′′(x,ω) − (F λ
2 )′′(x,ω)

]
+ G2((F

λ+ε
2 )′(x,ω)) − G2((F

λ
2 )′(x,ω) + δ) ≥ ε′

(3.17)
for every x ∈R and ω ∈ �.

Let

h
λ,ε
2 (x,ω) = (F λ+ε

2 )′(x,ω) − (F λ
2 )′(x,ω) (3.18)

and note that hλ,ε
2 (x, ω) ≥ −G−1

2 (λ) by (2.7). If −G−1
2 (λ) ≤ h

λ,ε
2 (x, ω) ≤ δ, then

(h
λ,ε
2 )′(x,ω) ≥ a(x,ω)(h

λ,ε
2 )′(x,ω) ≥ ε′

by (3.17). Hence, for every x1 ∈R, there exists an x2 ∈ [x1, x1 + G−1
2 (λ)+δ

ε′ ] such that hλ,ε
2 (x, ω) ≥

δ whenever x ≥ x2. Therefore, in fact, hλ,ε
2 (x, ω) ≥ δ for every x ∈ R. We recall (3.15) and 

conclude that

θ2(λ + ε) − θ2(λ) = lim
x→+∞

1

x

x∫
0

h
λ,ε
2 (y,ω)dy ≥ δ = (ε − ε′)/κ̃λ

2 .

Since ε′ ∈ (0, ε) is arbitrary, the desired inequality follows. �
Lemma 3.4. Assume (2.1)–(2.5). For every λ ≥ β and ε ∈ (0, 1),

θ2(λ + ε) − θ2(λ) ≤ (m̃λ
2)−1(ε),

where (m̃λ
2)−1 is a modulus of continuity for G−1

2 on [λ − β, λ + 1].

Proof. For every λ ≥ β , ε ∈ (0, 1) and ε′ ∈ (0, 1 − ε), let δ = (m̃λ
2)−1(ε + ε′) and note that

a(x,ω)(Fλ
2 )′′(x,ω) + G2((F

λ
2 )′(x,ω) + δ) + βV (x,ω)

≥ a(x,ω)(Fλ
2 )′′(x,ω) + G2((F

λ
2 )′(x,ω)) + βV (x,ω) + ε + ε′ = λ + ε + ε′, (x,ω) ∈ R× �,

by (2.6) and the following bounds due to (2.7):

λ − β ≤ G2((F
λ
2 )′(x,ω)) < G2((F

λ
2 )′(x,ω)) + ε + ε′ < G2((F

λ
2 )′(x,ω)) + 1 ≤ λ + 1.

Comparing this inequality with (3.16), we deduce that

a(x,ω)
[
(F λ+ε

2 )′′(x,ω) − (F λ
2 )′′(x,ω)

]
+ G2((F

λ+ε
2 )′(x,ω)) − G2((F

λ
2 )′(x,ω) + δ) ≤ −ε′

(3.19)
for every x ∈R and ω ∈ �.
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Recall

h
λ,ε
2 (x,ω) = (F λ+ε

2 )′(x,ω) − (F λ
2 )′(x,ω)

from (3.18) and note that hλ,ε
2 (x, ω) ≤ G−1

2 (λ + 1) by (2.7). If δ ≤ h
λ,ε
2 (x, ω) ≤ G−1

2 (λ + 1), 
then

(h
λ,ε
2 )′(x,ω) ≤ a(x,ω)(h

λ,ε
2 )′(x,ω) ≤ −ε′

by (3.19). Hence, for every x1 ∈ R, there exists an x2 ∈ [x1, x1 + G−1
2 (λ+1)−δ

ε′ ] such that 

h
λ,ε
2 (x, ω) ≤ δ whenever x ≥ x2. Therefore, in fact, hλ,ε

2 (x, ω) ≤ δ for every x ∈ R. We recall 
(3.15) and conclude that

θ2(λ + ε) − θ2(λ) = lim
x→+∞

1

x

x∫
0

h
λ,ε
2 (y,ω)dy ≤ δ = (m̃λ

2)−1(ε + ε′).

Since ε′ ∈ (0, 1 − ε) is arbitrary, the desired inequality follows. �
Proof of Theorem 2.2. For every λ ≥ β and ω ∈ �,

(F λ
2 )′′(x,ω) = 1

a(x,ω)
(λ − G((Fλ

2 )′(x,ω)) − βV (x,ω)), x ∈R.

Since P (V (0, ω) ∈ (0, 1)) > 0, it follows (by a slight modification of the itemized argument in 
the proof of Lemma 3.1) that

P
(
(F λ

2 )′(0,ω) ∈ (G−1
2 (λ − β),G−1

2 (λ))
)

> 0.

Therefore, θ2(λ) ∈ (G−1
2 (λ − β), G−1

2 (λ)) by (2.7)–(2.8). In particular,

lim
λ→+∞ θ2(λ) = +∞.

We combine this limit with Lemmas 3.3 and 3.4 to deduce that θ2 : [β, +∞) → [θ2(β), +∞) is 
a continuous and increasing bijection. Moreover, its inverse θ−1

2 satisfies

0 < θ−1
2 (θ2(λ) + ε/κ̃λ

2 ) − θ−1
2 (θ2(λ)) ≤ ε

for every λ ≥ β and ε ∈ (0, 1), so θ−1
2 is locally Lipschitz continuous on its domain. This con-

cludes the proof of the desired results regarding θ2. The analogous ones regarding θ1 follow after 
suitable substitutions (see (3.14)). �
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4. Homogenization

4.1. Viscosity solutions

In this subsection, we recall some basic definitions regarding viscosity solutions and record 
a comparison principle. All statements are specialized to our particular setting and purposes. 
For general background on the theory of viscosity solutions of second-order partial differential 
equations and its applications, we refer the reader to [7,16].

We consider a HJ equation of the form

∂tu = a(x)∂2
xxu + G(∂xu) + βV (x), (t, x) ∈ (0,+∞) ×R, (4.1)

where β > 0, G : R → [0, +∞) and a, V :R → [0, 1]. It covers both (HJω) and (HJ).

Definition 4.1. A function v ∈ C((0, +∞) × R) is said to be a viscosity subsolution of (4.1)
if, for every (t0, x0) ∈ (0, +∞) × R and ϕ ∈ C2((0, +∞) × R) such that v − ϕ attains a local 
maximum at (t0, x0), the following inequality holds:

∂tϕ(t0, x0) ≤ a(x0)∂
2
xxϕ(t0, x0) + G(∂xϕ(t0, x0)) + βV (x0).

Similarly, a function w ∈ C((0, +∞) ×R) is said to be a viscosity supersolution of (4.1) if, for 
every (t0, x0) ∈ (0, +∞) ×R and ϕ ∈ C2((0, +∞) ×R) such that w−ϕ attains a local minimum 
at (t0, x0), the following inequality holds:

∂tϕ(t0, x0) ≥ a(x0)∂
2
xxϕ(t0, x0) + G(∂xϕ(t0, x0)) + βV (x0).

Finally, a function u ∈ C((0, +∞) × R) is said to be a viscosity solution of (4.1) if it is both a 
viscosity subsolution and a viscosity supersolution of this equation.

Assumption (2.13) (which is used in Corollary 2.5) involves the following notion.

Definition 4.2. We say that the Cauchy problem for (4.1) is well-posed in UC([0, +∞) × R) if 
the following hold.

(i) Existence: For every g ∈ UC(R), (4.1) has a viscosity solution u ∈ UC([0, +∞) ×R) such 
that u(0, · ) = g( · ) on R;

(ii) Stability: If u1, u2 ∈ UC([0, +∞) ×R) are viscosity solutions of (4.1), then

sup{|u1(t, x) − u2(t, x)| : (t, x) ∈ [0,+∞) ×R} = sup{|u1(0, x) − u2(0, x)| : x ∈ R}.

In the rest of this section, we repeatedly use the following comparison principle. It is covered 
by, e.g., [9, Proposition 2.3] which is a generalization of [8, Proposition 1.4].

Proposition 4.3. Assume G ∈ C(R), 
√

a ∈ Lip(R) and V ∈ UC(R). Let v ∈ UC([0, +∞) × R)

and w ∈ UC([0, +∞) ×R) be, respectively, a viscosity subsolution and a viscosity supersolution 
of (4.1). If {v(t, · ) : t ∈ [0, +∞)} is an equi-Lipschitz continuous family of functions, i.e.,
675



A. Yilmaz Journal of Differential Equations 300 (2021) 660–691
there exists an 
 > 0 such that |v(t, x) − v(t, y)| ≤ 
|x − y| for all t ∈ [0,+∞) and x, y ∈R,

or {w(t, · ) : t ∈ [0, +∞)} is an equi-Lipschitz continuous family of functions, then

sup{v(t, x) − w(t, x) : (t, x) ∈ [0,+∞) ×R} = sup{v(0, x) − w(0, x) : x ∈ R}.

4.2. Locally uniform convergence for each θ /∈ (θ1(β), θ2(β))

Lemma 4.4. Assume (2.3) and (2.9). For every θ ∈ R, there exists an �θ
ue ∈ F with P (�θ

ue) = 1
such that {uε

θ (t, · , ω) : ε ∈ (0, 1], t ∈ [0, +∞), ω ∈ �θ
ue} is a uniformly equicontinuous family 

of functions.

Proof. Fix any θ ∈ R. For every ω ∈ �, the function mθ( · , ω) : [0, +∞) → [0, +∞), defined 
by

mθ(δ,ω) = sup
t∈[0,+∞)

sup
|x−y|≤δ

|uθ (t, x,ω) − uθ (t, y,ω)|,

is uniformly continuous by (2.9). For every z ∈R, mθ(δ, ω) = mθ(δ, τzω) by (2.3), (2.9) and the 
observation that

uθ (t, x + z,ω) − uθ (t, y + z,ω) = uθ (t, x, τzω) − uθ (t, y, τzω)

for all t ∈ [0, +∞) and x, y ∈ R. Therefore, by ergodicity (and the countability of Q), there 
exists an �θ

ue ∈ F with P (�θ
ue) = 1 and a function mθ : [0, +∞) ∩ Q → [0, +∞) such that 

mθ(δ, ω) = mθ(δ) for all δ ∈ [0, +∞) ∩Q and ω ∈ �θ
ue. It follows that mθ is uniformly contin-

uous on its domain and the uniformly continuous extension of mθ to [0, +∞) (still denoted by 
mθ ) satisfies

|uθ (t, x,ω) − uθ (t, y,ω)| ≤ mθ(|x − y|,ω) = mθ(|x − y|)

for all t ∈ [0, +∞), x, y ∈ R and ω ∈ �θ
ue. Finally, for every ε ∈ (0, 1], by letting k = � 1

ε
� and 

noting that 1
ε

≤ k < 1
ε

+ 1 ≤ 2
ε

, we obtain the following inequality:

|uε
θ (t, x,ω) − uε

θ (t, y,ω)| = ε

∣∣∣∣uθ

(
t

ε
,
x

ε
,ω

)
− uθ

(
t

ε
,
y

ε
,ω

)∣∣∣∣
≤ εkmθ

( |x − y|
εk

)
≤ 2mθ(|x − y|). �

Lemma 4.5. Assume (2.1)–(2.4) and (2.9)–(2.10).

(a) For every θ ∈ (−∞, θ1(β)], there exists an �θ
0 ∈ F with P (�θ

0) = 1 such that, for every 
ω ∈ �θ

0 and T , L > 0,

lim
ε→0

sup sup |uε
θ (t, x,ω) − tθ−1

1 (θ) − θx| = 0.

t∈[0,T ] x∈[−L,L]
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(b) For every θ ∈ [θ2(β), +∞), there exists an �θ
0 ∈ F with P (�θ

0) = 1 such that, for every 
ω ∈ �θ

0 and T , L > 0,

lim
ε→0

sup
t∈[0,T ]

sup
x∈[−L,L]

|uε
θ (t, x,ω) − tθ−1

2 (θ) − θx| = 0.

Proof. We prove part (b). (The proof of part (a) is similar.) Fix any θ ∈ [θ2(β), +∞) and let 
λ = θ−1

2 (θ). It follows immediately from Theorem 2.1 that, for every ω ∈ �,

uλ
2(t, x,ω) = tλ + Fλ

2 (x,ω)

gives a solution of (HJω) in Lip∩ C2([0, +∞) ×R).
For every δ ∈ (0, 1), define vλ

2,δ( · , · , ω) by

vλ
2,δ(t, x,ω) = t (λ − (κ + 1)δ) + Fλ

2 (x,ω) − δψ(x) − K

= uλ
2(t, x,ω) − t (κ + 1)δ − δψ(x) − K,

where κ is a Lipschitz constant for G on the interval [G−1
2 (λ − β) − 1, G−1

2 (λ) + 1],

ψ(x) = 2

π

x∫
0

arctan(y)dy

which satisfies

0 ≤ ψ ′′(·) ≤ 1, −1 ≤ ψ ′(·) ≤ 1, (4.2)

lim
x→−∞ψ ′(x) = −1 and lim

x→+∞ψ ′(x) = 1, (4.3)

and K > 0 is to be determined. Note that, for every (t, x) ∈ (0, +∞) ×R,

a(x,ω)∂2
xxv

λ
2,δ(t, x,ω) + G(∂xv

λ
2,δ(t, x,ω)) + βV (x,ω)

= a(x,ω)(∂2
xxu

λ
2(t, x,ω) − δψ ′′(x)) + G(∂xu

λ
2(t, x,ω) − δψ ′(x)) + βV (x,ω)

≥ a(x,ω)∂2
xxu

λ
2(t, x,ω) − δ + G(∂xu

λ
2(t, x,ω)) − κδ + βV (x,ω) (4.4)

= ∂tu
λ
2(t, x,ω) − (κ + 1)δ = ∂tv

λ
2,δ(t, x,ω).

The inequality in (4.4) follows from (4.2) and the following bounds due to (2.7):

G−1
2 (λ − β) − 1 ≤ G−1

2 (λ − β) − δ ≤ (F λ
2 )′(x,ω) − δ

< (Fλ
2 )′(x,ω) + δ < G−1

2 (λ) + δ ≤ G−1
2 (λ) + 1.

Hence, vλ ( · , · , ω) is a subsolution of (HJω) in Lip∩ C2([0, +∞) ×R).
2,δ

677



A. Yilmaz Journal of Differential Equations 300 (2021) 660–691
For P -a.e. ω,

lim
x→−∞

1

x
vλ

2,δ(0, x,ω) = θ2(λ) + δ = θ + δ and lim
x→+∞

1

x
vλ

2,δ(0, x,ω) = θ2(λ) − δ = θ − δ

by (3.15) and (4.3). Therefore,

vλ
2,δ(0, x,ω) ≤ θx = uθ (0, x,ω)

for every x ∈ R when K = K(θ, δ, ω) > 0 is sufficiently large. By the comparison principle in 
Proposition 4.3,

vλ
2,δ(t, x,ω) ≤ uθ (t, x,ω) for every (t, x) ∈ [0,+∞) ×R.

In particular,

lim inf
ε→0

uε
θ (1,0,ω) = lim inf

ε→0
εuθ

(
1

ε
,0,ω

)
≥ lim

ε→0
εvλ

2,δ

(
1

ε
,0,ω

)
= λ − (κ + 1)δ.

Similarly,

wλ
2,δ(t, x,ω) = t (λ + (κ + 1)δ) + Fλ

2 (x,ω) + δψ(x) + K

defines a supersolution of (HJω) in Lip∩ C2([0, +∞) ×R), and, for P -a.e. ω,

wλ
2,δ(0, x,ω) ≥ θx = uθ (0, x,ω)

for every x ∈ R when K = K(θ, δ, ω) > 0 is sufficiently large. By the comparison principle in 
Proposition 4.3,

lim sup
ε→0

uε
θ (1,0,ω) = lim sup

ε→0
εuθ

(
1

ε
,0,ω

)
≤ lim

ε→0
εwλ

2,δ

(
1

ε
,0,ω

)
= λ + (κ + 1)δ.

Since δ ∈ (0, 1) is arbitrary, we deduce that

lim
ε→0

uε
θ (1,0,ω) = λ = θ−1

2 (θ) for P -a.e. ω. (4.5)

Finally, the desired locally uniform convergence follows from (4.5) and Lemma 4.4 by a gen-
eral and now standard argument involving Egorov’s theorem and the Birkhoff ergodic theorem. 
See [21, pp. 1501–1502] or [9, Lemma 4.1] which is based on [3, Lemma 2.4]. �
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4.3. Locally uniform convergence for each θ ∈ (θ1(β), θ2(β))

In this subsection, we will take λ = β and denote the derivatives of the unique solutions in 
Theorem 2.1 by f β

i = (F
β
i )′, i ∈ {1, 2}. We will also use the following notation:

s(x,ω) =
x∫

0

dy

a(y,ω)
. (4.6)

Lemma 4.6. Given any ω ∈ �, δ ∈ (0, β) and L1, L2 ∈ R such that

s(L2,ω) − s(L1,ω) >
1

δ

(
G−1

2 (β) − G−1
1 (β)

)
and βV ( · ,ω) ≥ β − δ on [L1,L2],

we have the following implications for every x1, x2 ∈ [L1, L2].

(i) If

s(x1,ω) − s(L1,ω) > −1

δ
G−1

1 (β), (4.7)

then there is a z1 ∈ (L1, x1] such that

G1(f
β
1 (z1,ω)) ≤ 2δ and s(x1,ω) − s(z1,ω) ≤ −1

δ
G−1

1 (β).

(ii) If

s(L2,ω) − s(x2,ω) >
1

δ
G−1

2 (β), (4.8)

then there is a z2 ∈ [x2, L2) such that

G2(f
β
2 (z2,ω)) ≤ 2δ and s(z2,ω) − s(x2,ω) ≤ 1

δ
G−1

2 (β).

Proof. We prove the second implication. If G2(f
β
2 (x2, ω)) ≤ 2δ, then we can simply take z2 =

x2. Otherwise, for any z ∈ [x2, L2] such that G2(f
β
2 (x, ω)) ≥ 2δ holds for all x ∈ [x2, z], the 

equality

a(x,ω)(f
β
2 )′(x,ω) + G2(f

β
2 (x,ω)) + βV (x,ω) = β

yields

a(x,ω)(f
β
2 )′(x,ω) ≤ −δ

for all x ∈ [x2, z], and
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−G−1
2 (β)≤f

β
2 (z,ω)−f

β
2 (x2,ω)=

z∫
x2

(f
β
2 )′(y,ω)dy≤−δ

z∫
x2

dy

a(y,ω)
=−δ [s(z,ω) − s(x2,ω)] .

The first inequality uses the bounds in (2.7). Therefore,

z2 := sup{z ∈ [x2,L2] : G2(f
β
2 (x,ω)) ≥ 2δ for all x ∈ [x2, z]}

satisfies

s(z2,ω) − s(x2,ω) ≤ 1

δ
G−1

2 (β).

We recall (4.8) and deduce that z2 ∈ [x2, L2) and G2(f
β
2 (z2, ω)) = 2δ. This concludes the proof 

of the second implication. The first implication is proved similarly. �
Lemma 4.7. Assume (2.1)–(2.4) and (2.9)–(2.11). There exists an �0 ∈ F with P (�0) = 1 such 
that

lim
ε→0

uε
θ (1,0,ω) = β

for all θ ∈ (θ1(β), θ2(β)) and ω ∈ �0. Moreover, given any θ ∈ (θ1(β), θ2(β)), there exists an 
�θ

0 ∈ F with P (�θ
0) = 1 such that, for every ω ∈ �θ

0 and T , L > 0,

lim
ε→0

sup
t∈[0,T ]

sup
x∈[−L,L]

|uε
θ (t, x,ω) − tβ − θx| = 0. (4.9)

Proof. By the scaled hill condition (2.11), there exists an �sh ∈ F with P (�sh) = 1 such that, 
for every ω ∈ �sh, δ ∈ (0, β) and C > 0, there is an interval [L1, L2] such that

s(L2,ω) − s(L1,ω) ≥ C and βV ( · ,ω) ≥ β − δ on [L1,L2] (4.10)

with the notation in (4.6). This follows from the observation that it suffices to consider δ ∈
(0, β) ∩Q and C ∈N = {1, 2, 3, . . .}.

Asymptotic lower bound at (1, 0). For every ω ∈ �sh, δ ∈ (0, β) and C > 1
δ

(
G−1

2 (β) − G−1
1 (β)

)
, 

take an interval [L1, L2] that satisfies (4.10). Let x1 = L2 and x2 = L1. By Lemma 4.6, there 
exist z1 ∈ (L1, L2] and z2 ∈ [L1, L2) such that

s(z1,ω) − s(z2,ω) ≥ C − 1

δ

(
G−1

2 (β) − G−1
1 (β)

)
(4.11)

and

G(f
β
i (zi,ω)) ≤ 2δ, i ∈ {1,2}. (4.12)

In particular, L1 < z2 < z1 < L2. It follows from
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a(x,ω)(f
β
i )′(x,ω) + G(f

β
i (x,ω)) + βV (x,ω) = β, i ∈ {1,2},

and (4.12) that

−2δ ≤ a(zi,ω)(f
β
i )′(zi,ω) ≤ δ, i ∈ {1,2}. (4.13)

When C is sufficiently large, there is a g( · , ω) ∈ C1([z2, z1]) that satisfies the following con-
ditions:

g(z1,ω) = f
β
1 (z1,ω), g′(z1,ω) = (f

β
1 )′(z1,ω),

g(z2,ω) = f
β
2 (z2,ω), g′(z2,ω) = (f

β
2 )′(z2,ω);

(4.14)

G(g(x,ω)) ≤ 3δ for all x ∈ [z2, z1]; (4.15)

|a(x,ω)g′(x,ω)| ≤ 4δ for all x ∈ [z2, z1]. (4.16)

Indeed, for any h ∈ (0, z1−z2
2 ), there is a g( · , ω) ∈ C1([z2, z1]) such that the equalities in (4.14)

hold,

g′(x,ω) = m

a(x,ω)
for all x ∈ [z2 + h, z1 − h] (4.17)

with some constant m ∈ R, and g′( · , ω) is linear on each of the intervals [z2, z2 + h] and [z1 −
h, z1]. Note that m = m(h) is determined by

f
β
1 (z1,ω) − f

β
2 (z2,ω)=g(z1,ω) − g(z2,ω)

=
z1−h∫

z2+h

g′(x,ω)dx +
z2+h∫
z2

g′(x,ω)dx +
z1∫

z1−h

g′(x,ω)dx

=m(s(z1 − h,ω) − s(z2 + h,ω))

+ h

2

(
(f

β
2 )′(z2,ω) + m

a(z2 + h,ω)

)

+ h

2

(
(f

β
1 )′(z1,ω) + m

a(z1 − h,ω)

)

=m

{
s(z1 − h,ω) − s(z2 + h,ω) + h

2

(
1

a(z2 + h,ω)
+ 1

a(z1 − h,ω)

)}

+ h

2

(
(f

β
2 )′(z2,ω) + (f

β
1 )′(z1,ω)

)
.

Since

lim
h→0

(s(z1 − h,ω) − s(z2 + h,ω)) = s(z1,ω) − s(z2,ω) > 0 and

lim
h→0

h

2

(
1

a(z2 + h,ω)
+ 1

a(z1 − h,ω)

)
= 0,
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we recall (4.12) and deduce that

lim
h→0

m(h) = f
β
1 (z1,ω) − f

β
2 (z2,ω)

s(z1,ω) − s(z2,ω)
and

lim
h→0

|m(h)| = f
β
2 (z2,ω) − f

β
1 (z1,ω)

s(z1,ω) − s(z2,ω)
≤ G−1

2 (2δ) − G−1
1 (2δ)

s(z1,ω) − s(z2,ω)
.

Therefore, if the right-hand side of (4.11) is strictly greater than 1
δ

(
G−1

2 (2δ) − G−1
1 (2δ)

)
and h

is sufficiently small, then |m| < δ. By taking h even smaller (if necessary), we ensure that

G(g(x,ω)) ≤ 3δ for all x ∈ [z2, z2 + h] ∪ [z1 − h, z1], (4.18)

a(x,ω) ≤ 2 min{a(z2,ω), a(z2 + h,ω)} for all x ∈ [z2, z2 + h] and (4.19)

a(x,ω) ≤ 2 min{a(z1,ω), a(z1 − h,ω)} for all x ∈ [z1 − h, z1].

Combining (4.18) with the observation that g( ·, ω) is monotone on [z2 + h, z1 − h] (which 
follows from (4.17)), we verify (4.15). Combining (4.19) with the fact that

|g′(x,ω)| ≤ max{|g′(z2,ω)|, |g′(z2 + h,ω)|}

for all x ∈ [z2, z2 + h] (which is due to linearity), and using (4.13), we deduce that

|a(x,ω)g′(x,ω)|≤2 max{|a(z2,ω)g′(z2,ω)|, |a(z2 +h,ω)g′(z2 +h,ω)|}≤2 max{2δ, |m|} = 4δ

for all x ∈ [z2, z2 + h]. Similarly,

|a(x,ω)g′(x,ω)| ≤ 4δ

for all x ∈ [z1 − h, z1]. Recalling (4.17) once again, we conclude that (4.16) holds.
Construct Fβ

2,1( · , ω) by setting Fβ
2,1(0, ω) = 0 and

(F
β
2,1)

′(x,ω) =

⎧⎪⎨
⎪⎩

f
β
2 (x,ω) if x ≤ z2,

g(x,ω) if z2 < x < z1,

f
β
1 (x,ω) if x ≥ z1.

(4.20)

Note that Fβ
2,1( · , ω) ∈ Lip∩ C2(R) by (4.14)–(4.15). Moreover, since

β −5δ = −4δ+0+ (β −δ) ≤ a(x,ω)g′(x,ω)+G(g(x,ω))+βV (x,ω) ≤ 4δ+3δ+β = β +7δ

for all x ∈ [z2, z1] ⊂ [L1, L2] by (4.15)–(4.16),

β − 5δ ≤ a(x,ω)(F
β
2,1)

′′(x,ω) + G((F
β
2,1)

′(x,ω)) + βV (x,ω) ≤ β + 7δ

for all x ∈ R. It follows immediately that vβ
( · , · , ω), defined by
0,δ
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v
β
0,δ(t, x,ω) = t (β − 5δ) + F

β
2,1(x,ω) − K,

where K > 0 is to be determined, is a subsolution of (HJω) in Lip∩ C2([0, +∞) ×R).
By the definitions in (2.8) and the Birkhoff ergodic theorem, there exists an �1,2 ∈ F with 

P (�1,2) = 1 such that, for every ω ∈ �1,2,

lim
x→±∞

1

x
F

β
1 (x,ω) = θ1(β) and lim

x→±∞
1

x
F

β
2 (x,ω) = θ2(β). (4.21)

Let �0 = �sh ∩ �1,2 and note that P (�0) = 1. For every ω ∈ �0,

lim
x→−∞

1

x
v

β
0,δ(0, x,ω) = θ2(β) and lim

x→+∞
1

x
v

β
0,δ(0, x,ω) = θ1(β)

by (4.20)–(4.21). Therefore, given any θ ∈ (θ1(β), θ2(β)) and ω ∈ �0,

v
β
0,δ(0, x,ω) ≤ θx = uθ (0, x,ω)

for every x ∈ R when K = K(θ, δ, ω) > 0 is sufficiently large. By the comparison principle in 
Proposition 4.3,

v
β
0,δ(t, x,ω) ≤ uθ (t, x,ω) for every (t, x) ∈ [0,+∞) ×R.

In particular,

lim inf
ε→0

uε
θ (1,0,ω) = lim inf

ε→0
εuθ

(
1

ε
,0,ω

)
≥ lim

ε→0
εv

β
0,δ

(
1

ε
,0,ω

)
= β − 5δ.

Since δ ∈ (0, β) is arbitrary, we deduce that

lim inf
ε→0

uε
θ (1,0,ω) ≥ β for all θ ∈ (θ1(β), θ2(β)) and ω ∈ �0. (4.22)

Asymptotic upper bound at (1, 0). For every ω ∈ �sh, δ ∈ (0, β) and C > 2
δ

(
G−1

2 (β) − G−1
1 (β)

)
, 

take an interval [L1, L2] that satisfies (4.10). Fix x1, x2 ∈ [L1, L2] such that (4.7), (4.8) and

s(x2,ω) − s(x1,ω) ≥ C

2

are satisfied. By Lemma 4.6, there exist z1, z2 ∈ R such that L1 < z1 ≤ x1 < x2 ≤ z2 < L2,

s(z2,ω) − s(z1,ω) ≥ s(x2,ω) − s(x1,ω) ≥ C

2

and

G(f
β
(zi,ω)) ≤ 2δ, i ∈ {1,2}.
i
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When C is sufficiently large, there is a g( · , ω) ∈ C1([z1, z2]) that satisfies (4.14) as well as the 
following conditions:

G(g(x,ω)) ≤ 3δ and |a(x,ω)g′(x,ω)| ≤ 4δ for all x ∈ [z1, z2]. (4.23)

This can be justified precisely as we did in the proof of the lower bound, so we skip the details 
here.

Construct Fβ
1,2( · , ω) by setting Fβ

1,2(0, ω) = 0 and

(F
β
1,2)

′(x,ω) =

⎧⎪⎨
⎪⎩

f
β
1 (x,ω) if x ≤ z1,

g(x,ω) if z1 < x < z2,

f
β
2 (x,ω) if x ≥ z2.

(4.24)

Note that Fβ
1,2( · , ω) ∈ Lip∩ C2(R) by (4.14) and (4.23). Moreover, since

β −5δ = −4δ+0+ (β −δ) ≤ a(x,ω)g′(x,ω)+G(g(x,ω))+βV (x,ω) ≤ 4δ+3δ+β = β +7δ

for all x ∈ [z1, z2] ⊂ [L1, L2] by (4.23),

β − 5δ ≤ a(x,ω)(F
β
1,2)

′′(x,ω) + G((F
β
1,2)

′(x,ω)) + βV (x,ω) ≤ β + 7δ

for all x ∈ R. It follows immediately that wβ
0,δ( · , · , ω), defined by

w
β
0,δ(t, x,ω) = t (β + 7δ) + F

β
1,2(x,ω) + K,

where K > 0 is to be determined, is a supersolution of (HJω) in Lip∩ C2([0, +∞) ×R).
For every ω ∈ �0 = �sh ∩ �1,2 (with the notation in the proof of the lower bound),

lim
x→−∞

1

x
w

β
0,δ(0, x,ω) = θ1(β) and lim

x→+∞
1

x
w

β
0,δ(0, x,ω) = θ2(β)

by (4.21) and (4.24). Therefore, given any θ ∈ (θ1(β), θ2(β)) and ω ∈ �0,

w
β
0,δ(0, x,ω) ≥ θx = uθ (0, x,ω)

for every x ∈ R when K = K(θ, δ, ω) > 0 is sufficiently large. By the comparison principle in 
Proposition 4.3,

w
β
0,δ(t, x,ω) ≥ uθ (t, x,ω) for every (t, x) ∈ [0,+∞) ×R.

In particular,

lim sup
ε→0

uε
θ (1,0,ω) = lim sup

ε→0
εuθ

(
1

ε
,0,ω

)
≤ lim

ε→0
εw

β
0,δ

(
1

ε
,0,ω

)
= β + 7δ.

Since δ ∈ (0, β) is arbitrary, we deduce that
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lim sup
ε→0

uε
θ (1,0,ω) ≤ β for all θ ∈ (θ1(β), θ2(β)) and ω ∈ �0. (4.25)

Pointwise convergence at (1, 0). Combining (4.22) and (4.25), we conclude that

lim
ε→0

uε
θ (1,0,ω) = β

for all θ ∈ (θ1(β), θ2(β)) and ω ∈ �0.

Locally uniform convergence. Fix any θ ∈ (θ1(β), θ2(β)). Recall from Lemma 4.4 that there 
exists an �θ

ue ∈ F with P (�θ
ue) = 1 such that {uε

θ (t, · , ω) : ε ∈ (0, 1], t ∈ [0, +∞), ω ∈ �θ
ue}

is a uniformly equicontinuous family of functions. By the general argument (involving Egorov’s 
theorem and the Birkhoff ergodic theorem) we cited at the end of the proof of Lemma 4.5, there 
exists an �θ

0 ⊂ �0 ∩ �θ
ue with P

((
�0 ∩ �θ

ue

) \ �θ
0

) = 0 (which implies P (�θ
0) = 1) such that 

(4.9) holds for every ω ∈ �θ
0 and T , L > 0. �

4.4. Completing the proofs of the homogenization results

Proof of Theorem 2.4. By Theorem 2.2, H ∈ Liploc(R) and it is coercive. Therefore, the 
Cauchy problem for (HJ) is well-posed in UC([0, +∞) × R) (see, e.g., [9, Theorem 2.5]). For 
every θ ∈ R, observe that the unique (classical and hence viscosity) solution uθ of (HJ) with the 
initial condition uθ (x) = θx, x ∈R, is given by

uθ (t, x) = tH(θ) + θx.

Let

�0 =
⋂
θ∈Q

�θ
0

with �θ
0 ∈ F provided in Lemma 4.5 and Lemma 4.7 when θ /∈ (θ1(β), θ2(β)) and θ ∈

(θ1(β), θ2(β)), respectively. Note that P (�0) = 1 and, for every ω ∈ �0 and θ ∈ Q, as ε → 0, 
uε

θ ( · , · , ω) converges locally uniformly on [0, +∞) × R to uθ . It remains to generalize this 
statement to all θ ∈ R.

Fix any θ ∈R. For every ω ∈ � and δ ∈ (0, 1), define vθ,δ( · , · , ω) and wθ,δ( · , · , ω) by

vθ,δ(t, x,ω) = uθ (t, x,ω) − t (κθ (ω) + 1)δ − δψ(x) − K and

wθ,δ(t, x,ω) = uθ (t, x,ω) + t (κθ (ω) + 1)δ + δψ(x) + K,
(4.26)

where κθ (ω) is a Lipschitz constant for G on the interval [−
θ (ω) − 1, 
θ (ω) + 1] which in turn 
involves the Lipschitz constant 
θ(ω) in (2.12),

ψ(x) = 2

π

x∫
arctan(y)dy
0
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which satisfies (4.2)–(4.3) from the proof of Lemma 4.5, and K > 0 is to be determined. Let us 
check that vθ,δ( · , · , ω) is a viscosity subsolution of (HJω). For every (t0, x0) ∈ (0, +∞) × R
and ϕ ∈ C2((0, +∞) ×R) such that vθ,δ( · , · , ω) − ϕ attains a local maximum at (t0, x0), define 
ϕ̃ ∈ C2((0, +∞) ×R) by

ϕ̃(t, x) = ϕ(t, x) + t (κθ (ω) + 1)δ + δψ(x) + K

and note that uθ( · , · , ω) − ϕ̃ = vθ,δ( · , · , ω) − ϕ. Therefore,

a(x0,ω)∂2
xxϕ(t0, x0) + G(∂xϕ(t0, x0)) + βV (x0,ω)

= a(x0,ω)(∂2
xxϕ̃(t0, x0) − δψ ′′(x)) + G(∂xϕ̃(t0, x0) − δψ ′(x)) + βV (x0,ω)

≥ a(x0,ω)∂2
xxϕ̃(t0, x0) − δ + G(∂xϕ̃(t0, x0)) − κθ (ω)δ + βV (x0,ω)

≥ ∂t ϕ̃(t0, x0) − (κθ (ω) + 1)δ = ∂tϕ(t0, x0).

Similarly, wθ,δ( · , · , ω) is a viscosity supersolution of (HJω).
Choose any θ ′ ∈ Q such that |θ − θ ′| < δ

2 . It follows from (4.3) that, when K = K(δ) > 0 is 
sufficiently large,

vθ,δ(0, x,ω) = θx − δψ(x) − K ≤ uθ ′(0, x,ω) = θ ′x ≤ θx + δψ(x) + K = wθ,δ(0, x,ω)

for every x ∈R. By the comparison principle in Proposition 4.3,

vθ,δ(t, x,ω) ≤ uθ ′(t, x,ω) ≤ wθ,δ(t, x,ω) for every (t, x) ∈ [0,+∞) ×R.

We combine these inequalities with the definitions in (4.26) and deduce that

|uθ (t, x,ω) − uθ ′(t, x,ω)| ≤ t (κθ (ω) + 1)δ + δ|x| + K

for every ω ∈ � and (t, x) ∈ [0, +∞) ×R.
Finally, for every ω ∈ �0 and T , L > 0,

lim sup
ε→0

sup
t∈[0,T ]

sup
x∈[−L,L]

|uε
θ (t, x,ω) − tH(θ) − θx|

≤ lim sup
ε→0

sup
t∈[0,T ]

sup
x∈[−L,L]

(|uε
θ ′(t, x,ω) − tH(θ ′) − θ ′x| + |uε

θ (t, x,ω) − uε
θ ′(t, x,ω)|)

+ T |H(θ) − H(θ ′)| + |θ − θ ′|L
≤ T

[
(κθ (ω) + 1)δ + |H(θ) − H(θ ′)|] + [

δ + |θ − θ ′|]L.

Since |θ − θ ′| ≤ δ
2 , H is continuous and δ ∈ (0, 1) is arbitrary, we conclude that

lim
ε→0

sup sup |uε
θ (t, x,ω) − tH(θ) − θx| = 0. � (4.27)
t∈[0,T ] x∈[−L,L]
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Remark 4.8. We had already shown in Lemmas 4.5 and 4.7 that, for every θ ∈ R, the locally 
uniform convergence in (4.27) holds on a set of probability 1 that is allowed to depend on θ . 
In the proof of Theorem 2.4 that we gave above, we show that this locally uniform convergence 
holds on a set of probability 1 that is independent of θ . This last step is in fact covered by [9, 
Lemma 4.1], albeit under certain additional mild assumptions (which we did not want to impose), 
most notably that the Lipschitz constant 
θ in (2.12) is locally bounded in θ .

Proof of Corollary 2.5. The desired result follows readily from Theorem 2.4 and [9, Theorem 
3.1]. The set �0 ∈ F with P (�0) = 1 is the one in Theorem 2.4. �
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Appendix A. On the scaled hill condition

With the notation

s(x,ω) =
x∫

0

dy

a(y,ω)

that we used in Subsection 4.3, the scaled hill condition (2.11) reads as follows:

for every h ∈ (0,1), C > 0 and P -a.e. ω, there is an interval [L1,L2] such that

s(L2,ω) − s(L1,ω) ≥ C and V ( · ,ω) ≥ h on [L1,L2].

It is a refinement of the following condition:

P (V ( · ,ω) ≥ h on [0,L]) > 0 for every h ∈ (0,1) and L > 0. (A.1)

Proposition A.1. Assume (2.3) and (2.5).

(a) (A.1) implies the scaled hill condition.
(b) If P (a(0, ω) ≥ κ) = 1 for some κ > 0, then (A.1) is equivalent to the scaled hill condition.

Proof. Suppose (A.1) holds. Fix any h ∈ (0, 1) and C > 0. By ergodicity, for P -a.e. ω, there is a 
z = z(ω) ∈ R such that V ( · , ω) ≥ h on [z, z+C]. Since s(z+C, ω) − s(z, ω) ≥ C, we conclude 
that the scaled hill condition holds. This proves part (a).

Suppose P (a(0, ω) ≥ κ) = 1 for some κ > 0 and the scaled hill condition holds. Fix any 
h ∈ (0, 1), L > 0 and C > L/κ . For P -a.e. ω, there is an interval [L1, L2] such that

L
< C ≤ s(L2,ω) − s(L1,ω) ≤ L2 − L1 and V ( · ,ω) ≥ h on [L1,L2].
κ κ

687



A. Yilmaz Journal of Differential Equations 300 (2021) 660–691
Therefore,

P (V ( · ,ω) ≥ h on [z, z + L] for some z ∈ Q) = 1,

and (A.1) follows from stationarity (and the countability of Q). This proves part (b). �
In general, (A.1) is not equivalent to the scaled hill condition. In fact, the latter can hold while 

the former fails in a remarkable way. To illustrate this, we introduce yet another condition:

for every c ∈ (0,1) and P -a.e. ω, there is a z ∈ R such that

a(z,ω) ≤ c and V (z,ω) ≥ 1 − c.
(A.2)

Proposition A.2. If a( · , ω) ∈ Lip(R) and V ( · , ω) ∈ UC(R) for every ω ∈ �, then (A.2) implies 
the scaled hill condition.

Proof. Suppose (A.2) holds. Fix any h ∈ (0, 1) and ε ∈ (0, 1 − h). There is an �0 ∈ F with 
P (�0) = 1 such that, for every ω ∈ �0 and c ∈ (0, 1 − h − ε), there is a z = z(ω) ∈ R such that 
a(z, ω) ≤ c and V (z, ω) ≥ 1 − c > h + ε (since it suffices to consider c ∈ (0, 1 − h − ε) ∩Q). If 
a( · , ω) ∈ Lip(R) and V ( · , ω) ∈ UC(R), then there exist K = K(ω) > 0 and δ = δ(ω) > 0 such 
that a(x, ω) ≤ c + K|x − z| for every x ∈R and V ( · , ω) ≥ h on [z − δ, z + δ]. Note that

s(z + δ,ω) − s(z − δ,ω) ≥
z+δ∫

z−δ

dx

c + K|x − z| = 2

δ∫
0

dy

c + Ky
= 2

K(ω)
log

(
c + K(ω)δ(ω)

c

)
.

Since c ∈ (0, 1 − h − ε) is arbitrary, we conclude that the scaled hill condition holds. �
The hill condition (A.1) and an analogous valley condition (obtained by replacing V with 

1 − V ) were initially formulated in [31] for potentials V :Z × � → [0, 1]. These hill and valley 
conditions were subsequently adapted in [22] to our continuous setting. Note that there was no 
need to introduce scaled hill and valley conditions in [31,22] because they assume that a ≡ 1

2 . 
In contrast, the latest version of [10] adopts such scaled conditions that originate from (2.11) but 
are defined slightly differently to cover possibly degenerate diffusion coefficients.

In the discrete setting, with our other assumptions in place, the hill condition (A.1) is satisfied 
when the law of (V (x, ω))x∈Z under P is a product measure, and more generally when the law 
of (V (x, ω))0≤x≤L under P is mutually absolutely continuous with the product measure formed 
by its marginals for every L > 0 (see [31, Example 1.2]). We can extend such potentials from 
Z to R by linear interpolation, make a change of variable that maps Z to a suitable stationary 
point process, perform a mollification if necessary, and thereby obtain stationary potentials that 
satisfy (A.1) (and hence the scaled hill condition) as well as any desired mixing (including finite-
range dependence) or regularity condition (see [10, Example B.1]). Moreover, a variant of this 
construction yields potentials that satisfy (A.1) but are not even weakly mixing (see [31, Example 
1.3]).

It is also easy to construct stationary potentials that satisfy (A.1) without starting from the 
discrete setting, e.g., by taking moving averages of truncated increments of a two-sided Brow-
nian motion or Poisson process (see [22, Example 1.3]) or by considering two-sided Brownian 
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motion that is confined to [0, 1] under reflecting boundary conditions and then mollified appro-
priately (see [10, Example B.3]). In fact, for any stationary potential V : R × � → [0, 1], the 
hill condition (A.1) holds unless x �→ V (x, ω) is almost surely rigid in the sense that it cannot 
stay arbitrarily close to a given height for arbitrarily long. From the perspective of stationary & 
ergodic processes, it can be argued that such rigid potentials are not typical (see [10, Section 
B.3]).

The scaled hill condition fails most notably when x �→ (a(x, ω), V (x, ω)) is periodic (which 
is the prime example of rigidity in the above sense). However, in that case, homogenization 
follows from compactness arguments that prove the existence of a periodic (and hence bounded) 
corrector for every direction (see Subsection 1.2 and the references therein).

Appendix B. Sufficient conditions

The following result provides concrete sufficient conditions (which are stronger versions of 
(2.1) and (2.10)) for the validity of the abstract assumptions (2.9), (2.12) and (2.13) in Theo-
rem 2.4 and Corollary 2.5. It is an instance of [9, Theorem 2.8] whose proof is based on [8, 
Theorem 3.2].

Theorem B.1. The Cauchy problem for (HJω) is well-posed in UC([0, +∞) ×R) for every ω ∈
� if G : R → [0, +∞), a( · , ω) : R → (0, 1] and V ( · , ω) : R → [0, 1] satisfy the following 
conditions:

there exist c1, c2 > 0 and γ > 1 such that c1|p|γ − 1

c1
≤ G(p) ≤ c2(|p|γ + 1) and

|G(p) − G(q)| ≤ c2(|p| + |q| + 1)γ−1|p − q| for every p,q ∈ R;√
a( · ,ω) and V ( · ,ω) are in Lip(R) for every ω ∈ �.

Moreover, under these conditions, for every ω ∈ � and θ ∈ R, the unique viscosity solution 
uθ ( · , · , ω) of (HJω) with the initial condition uθ(0, x, ω) = θx, x ∈ R, is in Lip([0, +∞) ×R)

with a Lipschitz constant that does not depend on ω.

Appendix C. A variant of the Grönwall-Bellman lemma

Lemma C.1. Given any K > 0 and L1, L2 ∈R such that L1 < L2, suppose

a : [L1,L2] → (0,+∞) is in C([L1,L2]),
h : [L1,L2] → [0,K] is in C1([L1,L2]) and 0 < h(L1) ≤ K , and

m : [0,K] → [0,+∞) is in C([0,K]), m(0) = 0 and 0 < m(q) ≤ q for every q ∈ (0,K].

If

a(x)h′(x) + m(h(x)) ≤ 0

for every x ∈ (L1, L2), then
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h(x) ≤ �−1

⎛
⎜⎝

x∫
L1

dy

a(y)

⎞
⎟⎠ (C.1)

for every x ∈ (L1, L2), where � : (0, K] → (0, +∞) is defined by

�(p) =
K∫

p

dq

m(q)

and its inverse satisfies

lim
z→+∞�−1(z) = 0. (C.2)

Proof. For every p ∈ (0, K], let

�(p) =
h(L1)∫
p

dq

m(q)
.

Note that �(p) ≤ �(p) because h(L1) ≤ K . By the chain rule,

d

dx
�(h(x)) = − h′(x)

m(h(x))
≥ 1

a(x)
.

Integrating both sides and using �(h(L1)) = 0, we get

�(h(x)) ≥ �(h(x)) ≥
x∫

L1

dy

a(y)
.

Since � is strictly decreasing, (C.1) holds. Finally, (C.2) follows from the observation that

lim
p↓0

�(p) =
K∫

0

dq

m(q)
≥

K∫
0

dq

q
= +∞. �
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