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1. INTRODUCTION

The study of systems which have a principal linear part at infinity is
commonly based on analysis of the asymptotic behavior of the nonlinear
terms. For solvability of problems with bounded functional nonlinearities,
the asymptotic Landesman�Lazer condition plays a major role ([8, Sects
24, 25]; see also [4, 5, 17, 19]). In the context here, it suggests that the
nonlinearity f (x) has finite limits as x � \�. The superposition operator
generated by such a nonlinearity has the following principal property [8],

lim
\ � �, + � +0

sup
&y(t)&E�+

& f (t, \u
*

(t)+\y(t))&�(t)&E1
=0, (1)
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with the function u
*

(t), determined by the linear part of the problem, and
with appropriate choice of the function �(t) and the spaces E, E1 . The
property (1) makes it possible to calculate important topological charac-
teristics of asymptotically degenerate operator equations. It leads to
existence results for boundary-value problems, problems on nonlinear
oscillations, bifurcation problems, and the like.

This paper studies Hopf bifurcation at infinity in autonomous control
systems, depending on a parameter [3, 6, 11, 12, 18]. Hopf bifurcation at
infinity is said to occur if the system has cycles of arbitrarily large
amplitudes for parameter values close to a critical point. For control
systems with Landesman�Lazer type nonlinearities satisfying some addi-
tional regularity assumptions at infinity, we develop a method to study
existence and uniqueness of large-amplitude cycles, and to analyze stability
of each cycle.

Formulated in operator terms, the Landesman�Lazer condition can be
used to study systems with nonlinearities of various types. In particular, it
is observed in [1, 9] that analogs of equation (1) hold for many hysteresis
nonlinearities: the stop operator, some classes of hysterons, the Ishlinskii
nonlinearity, the Preisach nonlinearity and so on (for the general theory of
hysteresis operators, see [2, 14, 16, 20]). Although hysteresis nonlinearities
are not differentiable, those above prove to satisfy regularity assumptions
sufficient for our method to be applicable. As an example, Hopf bifurcation
in a control system with the stop nonlinearity is considered.

The paper is organized as follows. Section 2 contains some preliminary
notions and states the problem. Section 3 proves the principal result of the
paper on control systems with functional nonlinearities. First the problem is
reduced to the analysis of specific operator equations in the phase space Rl of
the system. For their construction, the technique of parameter functionaliza-
tion is used [7, 15]. In Subsection 2.4, with the aid of the lemmas from Subsec-
tions 2.2 and 2.3, monotonicity and concavity (or convexity) of the operators
involved are proved. Then, existence, uniqueness, and stability (or instability)
of solutions follow from general theorems on monotone concave and convex
operators, acting in spaces partially ordered in the sense of Krein [10, 13].
Section 4 proves similar results for systems with a stop nonlinearity.

2. PRELIMINARIES

Let the polynomials, of degree l, m, l>m,

L* (s)=sl+a1 (*) sl&1+ } } } +al (*),

M* (s)=b0 (*) sm+b1 (*) sm&1+ } } } +bm (*),
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depend continuously on a real parameter *. Suppose that the polynomials
are coprime and that b0 (*){0 for every * in some neighborhood of a point
*0 . Consider the scalar equation

L* \ d
dt+ x(t)=M* \ d

dt+ f (x(t)) (2)

associated with a single-circuit autonomous control system including a
linear unit, with rational transfer function W* (s)=M* (s)�L* (s) and non-
linear feedback f. It is well-known that Eq. (2) is equivalent to the
l-dimensional system

dz
dt

=A(*) z+#(*) f (x(t)), x(t)=cTz(t), (3)

where c, #(*) # Rl and the eigenvalues of the square matrix A(*) of order
l are zeros of the polynomial L* (s). The vector z # Rl is the state vector
of the control system. In particular, Eq. (2) and the system (3) are equiv-
alent if

0 1 0 } } } 0 1

0 0 1 } } } 0 0

A(*)=\ b b b
. . . b + , c=\ b+ ,

0 0 0 } } } 1 0

&al (*) &al&1 (*) &al&2 (*) } } } &a1 (*) 0

and the components of the vector #=#(*) are given by #1= } } } =
#l&m&1=0,

#l&m=b0 , #l&m+1+a1#l&m

=b1 , ..., #l+a1#l&1+ } } } +am#l&m=bm .

In this last, aj=aj (*), bj=bj (*), j=0, ..., m.
In all that follows it is supposed that

(i) The numbers \i are simple zeros of the polynomial L*0
(s), while

every other zero of this polynomial has a negative real part.

Hence, \i are simple eigenvalues of the matrix A(*0). Denote by E the
corresponding two-dimensional invariant subspace of this matrix and let its
complementary invariant subspace of A(*0) in Rl be E$. Let P be the
projection of Rl onto E. In the sequel, it is also assumed that

(ii) The inequality cTP#(*0){0 holds.
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By definition, the plane E/Rl consists of the stable 2?-periodic cycles
of the linear system z* =A(*0) z. We study existence and stability of large
periodic cycles of the system (3) with the bounded nonlinearity f for * close
to *0 . Below only cycles of periods T near 2? are considered. More
precisely, T # (3?�2, 5?�2).

3. SYSTEMS WITH FUNCTIONAL NONLINEARITIES

3.1. Main Result

Let the function f satisfy the following conditions:

(j) There exist finite limits f&=limx � &� f (x), f+=limx � � f (x)
and f& { f+ .

(jj) The function f is globally Lipschitz continuous and moreover,

| f (x1)& f (x2)|�:(r) |x1&x2 |, |x1 |, |x2 |�r, x1x2>0,

where :(r)=o(r&1), r � �.

Since the polynomial L* (s) depends continuously on *, the condition (i)
implies that for every * close to *0 the polynomial L* has the simple zeros
&(*)\i|(*), where &(*), |(*) are continuous functions such that &(*0)=0,
|(*0)=1. Set

}=2( f+& f&) cTP#(*0)

and define

4$
+=[* : &(*) }�0, |*&*0 |<$],

4$
&=[* : &(*) }<0, |*&*0 |<$], (4)

where $>0. The same notation z(t; *) is used below both for a periodic
solution of the system (3) and for the corresponding cycle in the phase
space Rl. We say that the cycle z(t; *) is r0 -large if &z( } ; *)&C=
max[ |z(t; *)| : t # R]�r0 .

Theorem 1. Let the conditions (j), (jj) hold. Then there exist r0>0 and
$>0 such that the system (3) has no r0 -large periodic cycles whenever
* # 4$

+ . The system (3) has a unique r0 -large periodic cycle z
*

(t; *) for every
* # 4$

& . The cycle z
*

(t; *) depends continuously on * and &z
*

( } ; *)&C � �
as * � *0 , * # 4$

& .
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Theorem 2. Under the assumptions of Theorem 1, every r0 -large cycle
z
*

(t; *), * # 4$
& , is orbitally asymptotically stable if }>0 and orbitally

unstable if }<0.

In particular, 4$
& is either (*0&$, *0) or (*0 , *0+$) if the function &(*)

is strictly monotone in the $-neighborhood of the point *0 .
The rest of this section is devoted to the proofs of Theorems 1 and 2.

3.2. Auxiliary Lemma

Let C, C1, and L1 be the spaces of continuous, continuously differen-
tiable, and locally summable scalar-valued functions defined on the semi-
axis t�0. We use the notations &x&C , &y&C1 , &w&L1

for the C, C1, and
L1 -norm of the restrictions of the functions x # C, y # C1, w # L1 to the
segment [0, 5?�2]; here &y&C1=| y(0)|+&y&C+&y$&C . Define

K+, r (u
*

)=[x=\y : y # C 1, &y&u
*

&C1�+, \�r], +, r>0,

where u
*

(t)=sin t, t�0. Now introduce the function

f 0 (')= 1
2 ( f++ f&)+ 1

2 ( f+& f&) sgn ', ' # R,

where sgn denotes the signum function. Consider the superposition
operators

(Fx)(t)= f (x(t)), (F0x)(t)= f 0 (x(t)), x # C1.

The following lemma is a straightforward consequence of the assumptions
(j)�(jj).

Lemma 1. For all functions x, y # K+, r (u
*

) and every %>1,

&Fx&F0u
*

&L1
<=1 (+, r), &F (%x)&Fx&L1

<=2 (+, r)(%&1), (5)

&Fx&Fy&L1
<=3 (+, r) &x& y&C , (6)

where =k (+, r) � 0 as + � 0, r � �, for each k=1, 2, 3.

3.3. Operator of the Periodic Problem

Fix a nonzero vector g0 # E such that cTg0=0. Note that since the pair
g0 , A(*0) g0 is a basis in E, the condition (ii) implies that p=
cTA(*0) g0 {0. Define g= p&1g0 , h= p&1A(*0) g0 . By construction,

cTg=0, cTh=1, h=A(*0) g, g=&A(*0) h.
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Also, the vectors g, h # E are linearly independent, hence for every z0 # Rl

there is a unique representation z0=!(z0) g+'(z0) h+`(z0), where !(z0),
'(z0) # R, `(z0) # E$:

'(z0)=cTPz0 , '(z0) h=Pz0&!(z0) g, `(z0)=z0&Pz0 .

It follows from the condition (i) that there exists q<1 such that the
estimate |+|<q<1 holds for every eigenvalue + of the restriction of the
matrix e2?A(*0) to its invariant subspace E$. Therefore there is a norm | } | q

on E$ such that

|e2?A(*0)`|q�q |`|q , ` # E$. (7)

From now on, denote by | } | the extension |z0 |= |!(z0)|+|'(z0)|+|`(z0)|q

of the norm | } |q to all of Rl.
Set Rl

+=[z0 # Rl : !(z0)>0] and define the functional

{(z0)=2?&arctan
'(z0)
!(z0)

, z0 # Rl
+ . (8)

Since f is a bounded Lipschitz function, every initial condition z(0)=z0

determines a unique solution z(t; z0 , *) of the system (3) on the semiaxis
t�0. Consider the operator

U *
1 (z0)=z({(z0); z0 , *), z0 # Rl

+ .

By definition, U *
1 is a translation along the trajectories of the system (3) for

the time (8) depending on the argument z0 . Therefore, every fixed point z
*

of the operator U *
1 is contained in a T-periodic cycle of the system (3),

where T={(z
*

). Since cycles do not intersect by uniqueness, z
*

is confined
to a single cycle.

Write U *
1 in the form U *

1=G*+Q* , where

G* (z0)=eA(*) {(z0)z0 . (9)

Equation (8) yields {(%z0)#{(z0), %>0, and so

G* (%z0)=%G* (z0), z0 # Rl
+ , %>0, (10)

that is, the operator G* is positively homogeneous of order 1. From

z(t; z0 , *)=eA(*) tz0+|
t

0
eA(*)(t&s)#(*) f (cTz(s; z0 , *)) ds, t�0, (11)

it follows that

Q* (z0)=|
{(z0)

0
eA(*)({(z0)&s)#(*) f (cTz(s; z0 , *)) ds.

6 DIAMOND, KUZNETSOV, AND RACHINSKII



Lemma 2. For every * sufficiently close to *0 , the nonlinear operator G*

has eigenvector g* , G* (g*)=;* g* , where g* , ;* depend continuously on *
and g*0

= g, ;*0
=1. Moreover, sgn(;*&1)=sgn &(*).

Proof. Denote by E* the two-dimensional invariant subspace of the
matrix A(*) corresponding to the eigenvalues &(*)\i|(*). Consider the
intersection L* of the subspace E* with the hyperplane Rl&1

* =[z0 # Rl :
'(z0)=&!(z0) tan(2?�|(*))]. Put L+

* =L* & Rl
+ . First note that E*0

=E,
Rl&1

*0
=[z0 # Rl : '(z0)=0], and so L*0

is the line [!g : ! # R] and L+
*0

is
the ray [!g : !>0]. Since the subspaces E* , Rl&1

* depend continuously on
*, it follows that L* is a line and L+

* is a ray for every * close to *0 and
both L* and L+

* depend continuously on *.
Denote by g* the unit vector generating the ray L+

* =E* & Rl&1
* & Rl

+ .
Note that {(z0)=2?�|(*) for every z0 # Rl&1

* & Rl
+ . Furthermore,

e2?A(*)�|(*)z0=e2?&(*)�|(*)z0 , z0 # E* ,

hence

G* (g*)=eA(*) {(g*)g*=e2?A(*)�|(*)g*=e2?&(*)�|(*)g* ,

that is, g* is the eigenvector of the eigenvalue ;*=e2?&(*)�|(*) for the
operator G* . By definition, g* , ;* depend continuously on *, g*0

= g, and
sgn(;*&1)=sgn &(*). K

Clearly, the operator G* (z0) is differentiable at each point z0 # Rl
+ and

its derivative, the Jacobian matrix G$* (z0), depends continuously on z0 , *.
By Lemma 2, G*0

(g)= g. From (10), this yields G$*0
(g) g= g, whence g is

the eigenvector of the eigenvalue 1 for the matrix G$*0
(g). Furthermore, by

direct calculation

G$*0
(g) h=0, G$*0

(g) `=e2?A(*0)`, ` # E$. (12)

Therefore 6=[z0 # Rl : !(z0)=0] is an invariant subspace for the matrix
G$*0

(g) and all the spectrum of G$*0
(g), except for the simple eigenvalue 1,

lies in the circle [ |+|<q] of the complex plane. Equations (7), (12) imply
the important estimate

|G$*0
(g) z0 |�q |z0 |, z0 # 6. (13)

Now, consider the operator Q* . Since f is bounded, it follows that

M$=sup [ |Q* (z0)| : z0 # Rl
+ , |*&*0 |�$]<�, $>0. (14)
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Introduce the cone

K_=[z0 # Rl : !(z0)�0, |z0&!(z0) g|�_!(z0)], _�0.

Note that the domain Rl
+ of U *

1 contains the set K_ (\)=[z0 # K_ :
!(z0)�\] for each \>0. Define

d=|
2?

0
eA(*0)(2?&s)#(*0) f 0 (u

*
(s)) ds.

Lemma 3. For every z0 , z01 , z02 # K_ (\) and every %>1,

|Q* (z0)&d |<=1 (_, \, *), |Q* (%z0)&Q* (z0)|<=2 (_, \, *)(%&1), (15)

|Q* (z01)&Q* (z02)|<=3 (_, \, *) |z01&z02 |, (16)

where =k (_, \, *) � 0 as _ � 0, \ � �, * � *0 for each k=1, 2, 3.

Proof. Let z0=!g+'h+` # K_ (\), z(t)=z(t; z0 , *). Equation (11)
yields

z* (t)=A(*) eA(*) tz0+|
t

0
A(*) eA(*)(t&s)#(*) f (cTz(s)) ds+#(*) f (cTz(t)),

t�0,

hence

!&1cTz* (t)&cTA(*) eA(*) tg

=cTA(*) eA(*) t (!&1z0& g)

+!&1 _|
t

0
cTA(*) eA(*)(t&s)#(*) f (cTz(s)) ds+cT#(*) f (cTz(t))& .

The inclusion z0 # K_ (\) implies that |!&1z0& g|�_, !&1�\&1, so taking
into account the continuity of A(*) and the boundedness of f, obtain

&!&1cTz* (t)&cTA(*0) eA(*0) tg&C<=(_, \, *), z0 # K_ (\),

where =( } , } , } ) � 0 as _ � 0, \ � �, * � *0 . But

cTA(*0) eA(*0) tg=cTA(*0)(g cos t+h sin t)

=cT (h cos t& g sin t)=cos t=u*
*

(t),

that is, &!&1cTz* (t)&u*
*

(t)&C<=(_, \, *). At the same time,

|!&1cTz(0)&u
*

(0)|=|!&1cTz0 |= |cT (!&1z0& g)|�c0_,
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where c0 is the norm of the linear functional cTz. Therefore, for every
z0 # K\ (_) we have &!&1cTz(t)&u

*
(t)&C1<=(_, \, *)+c0_. Since !�\,

this implies that

cTz(t; z0 , *) # K+, \ (u
*

) for every z0 # K_ (\), (17)

where +=+(_, \, *)�=(_, \, *)+c0_ and hence +( } , } , } ) � 0 as _ � 0,
\ � �, * � *0 . Now the first of the estimates (5) yields

sup[& f (cTz(t; z0 , *))& f 0 (u
*

(t))&L1
: z0 # K_ (\)] � 0

as _ � 0, \ � �, * � *0 .

In addition, |'(z0)|�_!(z0) and so |{(z0)&2?|�arctan _ for every z0 #
K_ (\), thus

sup
z0 # K_ (\) } |

{(z0)

0
eA(*0)({(z0)&s)#(*) f (cTz(t; z0 , *)) ds&d }

= sup
z0 # K_ (\)

|Q* (z0)&d | � 0

as _ � 0, \ � �, * � *0 , that is, the first of the estimates (15) holds.
By definition of Q* , there are numbers M1 , M2>0 such that

|Q* (z01)&Q* (z02)|

�M1& f (cTz(t; z01 , *))& f (cTz(t; z02 , *))&L1
+M2 |{(z01)&{(z02)|

for z01 , z02 # Rl
+ . Let z01 , z02 # K_ (\). Then cTz(t; z0i , *) # K+, \ (u

*
), i=1, 2

and by (6),

& f (cTz(t; z01 , *))& f (cTz(t; z02 , *))&L1

<=3 (+, \) &cTz(t; z01 , *)&cTz(t; z01 , *)&C .

Let a>0 be fixed but otherwise arbitrary. Since the function f (x) is
globally Lipschitz, there is a L>0 such that |z(t; z01 , *)&z(t; z02 , *)|�
L |z01&z02 | for all z01 , z02 # Rl, t # [0, 5?�2], |*&*0 |�a. So

& f (cTz(t; z01 , *))& f (cTz(t; z02 , *))&L1
<=3 (+(_, \, *), \) Lc0 |z01&z02 |

and further,

|Q* (z01)&Q* (z02)|<=(_, \, *) |z01&z02 |+M2 |{(z01)&{(z02)|,

z01 , z02 # K_ (\), (18)
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where =( } , } , } ) � 0 as _ � 0, \ � �, * � *0 . By the mean value theorem,

{(z01)&{(z02)=(!2 (s)+'2 (s))&1 ('(s)[!1&!2]&!(s)['1&'2]),

where !i=!(z0i), ' i='(z0i) and !(s)=s!1+(1&s) !2 , '(s)=s'1+
(1&s) '2 for some s # [0, 1]. But !i�\, |'i |�_!i , hence !(s)�\, |'(s)|
�_!(s) and therefore

|{(z01)&{(z02)|�!&1 (s)(_ |!1&!2 |+ |'1&'2 | )�\&1 (_+1) |z01&z02 |.

Combining this with (18), we obtain (16).
Finally set z(t)=z(t; z0 , *), z% (t)=z(t; %z0 , *), where %>1, z0 # K_ (\).

Recall that {(%z0)={(z0), and so

|Q* (%z0)&Q* (z0)|�M1& f (cTz% (t))& f (cTz(t))&L1
. (19)

But cTz(t) # K+, \ (u
*

) and therefore %cTz(t) # K+, \ (u
*

). Also, %z0 # K_ (\)
yields cTz% (t) # K+, \ (u

*
). It follows from the second of the estimates (5)

and from (6) that

& f (%cTz(t))& f (cTz(t))&L1
<(%&1) =2 ,

& f (cTz% (t))& f (%cTz(t))&L1
<=3&cTz% (t)&%cTz(t)&C ,

hence

& f (cTz% (t))& f (cTz(t))&L1
�(%&1) =2+=3&cTz% (t)&%cTz(t)&C , (20)

where =i==i (+(_, \, *), \), i=2, 3. Multiplying (11) by % and subtracting
from

z% (t)=%eA(*) tz0+|
t

0
eA(*)(t&s)#(*) f (cTz% (s)) ds,

we obtain

z% (t)&%z(t)=|
t

0
eA(*)(t&s)#(*)[ f (cTz% (s))&%f (cTz(s))] ds.

Set M=sup[ |cTeA(*) t#(*)| : t # [0, 5?�2], |*&*0 |�a], f� =5? sup | f (x)|�2.
Then

&cTz% (t)&%cTz(t)&C�M& f (cTz% (t))& f (cTz(t))&L1
+(%&1) Mf� .
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Now (20) gives (1&=3M ) & f (cTz% (t))& f (cTz(t))&L1
�(%&1)(=2+=3Mf� ).

But =2 , =3 � 0, so

& f (cTz% (t))& f (cTz(t))&L1
<=(_, \, *)(%&1), z0 # K_ (\), %>1,

where =( } , } , } ) � 0 as _ � 0, \ � �, * � *0 . Hence from (19) the second
of the estimates (15) follows. This completes the proof of Lemma 3. K

3.4. Existence, Uniqueness, and Stability of a Fixed Point

Let K be a cone in Rl, that is, K+K=K, &K & K=[0], and %K=K
for every %>0. The cone K generates a partial order in Rl: write z1�z2

if z1&z2 # K. If K has nonempty interior, also write z1>z2 whenever
z1&z2 # int K.

An operator B is said to be monotone on a set 0/K if

B(z1)�B(z2) for every z1�z2 ; z1 , z2 # 0.

Let K have nonempty interior. Suppose that 0�int K and %0=0 for
every %>1. Then an operator B is called strongly concave on the set 0 if

B(%z0)<%B(z0) for every z0 # 0, %>1.

An operator B is called strongly convex on 0 if

B(%z0)>%B(z0) for every z0 # 0, %>1.

Further constructions are based on the well-known fact that any monotone
operator, strongly concave on 0, has at most one fixed point z

*
in 0.

Moreover, if 0 has nonempty interior and z
*

# int 0, then the fixed point
z
*

is asymptotically stable. On the other hand, every fixed point z
*

# int 0
of a monotone operator, strongly convex on 0, is unstable. Note that a
convex operator may have more than one fixed point. These are simple
cases of general theorems [10] on monotone concave and convex
operators, acting in partially ordered Banach spaces with cones of various
types.

From the formula

eA(*0) t (!g+'h)=(! cos t&' sin t) g+(! sin t+' cos t) h,

it follows that

!(d )=|
2?

0
(!(#0) cos s+'(#0) sin s) f 0 (sin s) ds

=( f+& f&) |
?

0
(!(#0) cos s+'(#0) sin s) ds,
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where #0=#(*0), that is !(d )=2( f+& f&) '(#0)=2( f+& f&) cTP#0=}.
By assumptions (ii) and (j), }{0 and so }d # Rl

+ . Fix _0>0 large enough
so that }&1d # int K_0

. In what follows, Rl is regarded as partially ordered
by the cone K_0

. The symbols �, > and the terms monotone, concave,
convex are given the meaning corresponding to this order.

Define D by Dz0=!(z0) g and write

U *
&1 (z0)=(2D&I )(2Dz0&U *

1 (z0)), z0 # Rl
+ ,

where I is the identity. Since D2=D, (2D&I)&1=2D&I, the equations
z0=U *

&1 (z0) and z0=U *
1 (z0) are equivalent, that is, the fixed points of U *

1

and U *
&1 are the same.

Theorem 3. There are positive numbers $, \1 , _1 , with _1<_0 , such that
for every * # (*0&$, *0+$) the operators U *

1 and U *
&1 are monotone on the

set K_1
(\1). Moreover, the operator U *

k is strongly concave on K_1
(\1), while

the operator U *
&k is strongly convex on K_1

(\1), where k=sgn }.

Theorem 4. Let $>0 be sufficiently small. Then there are no fixed
points of the operator U *

1 in the set K_1
(\1) whenever * # 4$

+ , while for every
* # 4$

& the operator U *
1 has a fixed point z

*
(*), depending continuously on *,

such that

(1&;*) !
*

(*) � }, !
*
&1 (*) z

*
(*) � g as * � *0 , * # 4$

& , (21)

where !
*

(*)=!(z
*

(*)). Here, by Lemma 2, (1&;*) }>0, * # 4$
& , and

;* � 1 as * � *0 .

Equations (21) imply that for each * # 4$
+ sufficiently close to *0 the

estimates !
*

(*)>\1 , |z
*

(*)&!
*

(*) g|<_1 !
*

(*) hold, that is z
*

(*) #
int K_1

(\1). By Theorem 3, the operator U *
k , where k=sgn }, is monotone

and strictly concave on K_1
(\1). Therefore the solution z

*
(*) of the equiv-

alent equations z0=U *
k (z0) and z0=U *

&k (z0) is unique in K_1
(\1).

Moreover, z
*

(*) is an asymptotically stable fixed point of the concave
operator U *

k , while it is an unstable fixed point of the convex operator
U*

&k .

Proof of Theorem 3. Let z0 {0, z0 # K_ , that is, !(z0)>0, |!&1 (z0) z0

& g|�_. Since the Jacobian matrix G$* (z0) depends continuously on z0 , *,
we have

|G$* (!&1 (z0) z0)&G$*0
(g)|<=0 (_, *), z0 {0, z0 # K_ ,
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where =0 ( } , } ) � 0 as _ � 0, * � *0 and | } | denotes the matrix norm.
Equation (10) implies the identity G$* (%z0)#G$* (z0) for all z0 # Rl

+ , %>0.
Hence

|G$* (z0)&G$*0
(g)|<=0 (_, *), z0 {0, z0 # K_ . (22)

Let z0i # K_ (\) and so z0i # K_"[0], i=1, 2. By definition K_"[0] is a
convex set, hence it contains the segment sz01+(1&s) z02 , 0�s�1. It
follows from the formula

G* (z01)&G* (z02)&G$*0
(g)(z01&z02)

=|
1

0
(G$* (sz01+(1&s) z02)&G$*0

(g))(z01&z02) ds

and from the estimate (22) that

|G* (z01)&G* (z02)&G$*0
(g)(z01&z02)|<=0 (_, *) |z01&z02 |. (23)

Since G*=U *
1&Q* , then (16), (23) give

|U *
1 (z01)&U *

1 (z02)&G$*0
(g)(z01&z02)|�=(_, \, *) |z01&z02 | , (24)

where ===0 ( } , } )+=3 ( } , } , } ) � 0 as _ � 0, \ � �, * � *0 . Using the
representations

z01&z02=!0g+ y0 , U *
1 (z01)&U *

1 (z02)=!1 g+ y1 ,

G$*0
(g)(z01&z02)=!2g+ y2 ,

where !i # R, yi # 6=[z0 # Rl: !(z0)=0], i=0, 1, 2, we can rewrite (24)
as |(!1&!2) g+ y1& y2 |�= |!0 g+ y0 |. But |!g+ y|=|!|+| y|, ! # R,
y # 6, consequently

|!1&!2 |�= |!0 |+= | y0 |, | y1& y2 |�= |!0 |+= | y0 |.

Recall that 6 is an invariant subspace of the matrix G$*0
(g) and that

G$*0
(g) g= g. Therefore !2=!0 , y2=G$*0

(g) y0 and by (13), | y2 |�q | y0 |.
Hence

|!1&!0 |�= |!0 |+= | y0 |, | y1 |� | y1& y2 |+ | y2 |�= |!0 |+= | y0 |+q | y0 |.

(25)
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Now consider the vector U *
&1 (z01) & U *

&1 (z02) = !&1 g + y&1 , where
!&1 # R, y&1 # 6, that is !&1g=D(U *

&1(z01)&U *
&1 (z02)), y&1=(I&D)

(U *
&1 (z01)&U *

&1 (z02)). Note that

DU *
&1 (z0)=2Dz0&DU *

1 (z0),

(I&D) U *
&1 (z0)=(I&D) U *

1 (z0) for all z0 # Rl
+ ,

hence !&1=2!0&!1 , y&1= y1 . Therefore the estimates (25) hold also for
!&1 , y&1 in place of !1 , y1 . If z01�z02 , then !0�0, | y0 |�_0 !0 and so

|!i&!0 |�=!0 (1+_0), | yi |�=!0 (1+_0)+q_0 !0 , i=\1.

Since q<1, this gives | yi |�_0! i , i=\1 whenever ===(_, \, *) is suf-
ficiently small. Equivalently, there is a large \>0 and small _, $>0 such
that z01�z02 implies U *

i (z01)�U *
i (z02) for every z01 , z02 # K_ (\), |*&*0 |

<$, i=\1. Thus the operators U *
1 , U *

&1 are monotone on the set K_ (\).
Now let z0 # K_ (\), %>1. By (10), %U *

1 (z0)&U *
1 (%z0)=%Q* (z0)&

Q* (%z0). Hence

(%&1)&1 (%U *
1 (z0)&U *

1 (%z0))&d

=Q* (z0)&d+(%&1)&1 (Q* (z0)&Q* (%z0)).

The estimates (15) give

|}(%&1)&1 (%U *
1 (z0)&U *

1 (%z0))&}d |<}=1 (_, \, *)+}=2 (_, \, *).

But }d # int K_0
. Therefore }(%U *

1 (z0)&U *
1 (%z0))>0 whenever =1 ( } , } , } )

and =2 ( } , } , } ) are sufficiently small. Finally note that

%U *
&1 (z0)&U *

&1 (%z0)=&(2D&I )(%U *
1 (%z0)&U *

1 (%z0))

for every z0 # Rl
+ .

So taking into account that the operator 2D&I maps the set int K_0
into

itself, from }(%U *
1 (z0)&U *

1 (%z0))>0 we obtain }(%U *
&1 (z0)&U *

&1 (%z0))
<0. That is, for k=sgn },

%U *
k (z0)>U *

k (%z0), %U *
&k (z0)<U *

&k (%z0), z0 # K_ (\), %>1.

That is, the operator U *
k is strongly convex on K_ (\), while the operator

U*
&k is strongly concave on K_ (\) for every sufficiently small _, \&1 and

|*&*0 |, which completes the proof. K
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Proof of Theorem 4. Let z0 # K_ (\), !0=!(z0). The estimate (23),
where we take z01=z0 , z02=!0 g, gives |G* (z0)&G* (!0 g)|�|G$*0

(g)
(z0&!0 g)|+=0 (_, *) |z0&!0g|. Also, (13) implies that |G$*0

(g)(z0&!0g)|�
q |z0&!0 g| and hence

|G* (z0)&G*0
(!0 g)|�|G* (!0 g)&G*0

(!0 g)|+(q+=0 (_, *)) |z0&!0g|.

From G*0
(g)= g and (10), this can be rewritten as

|G* (z0)&!0 g|�!0=(*)+(q+=0 (_, *)) |z0&!0g| ,

where =(*)=|G* (g)&G*0
(g)| � 0 as * � *0 . By (14), |Q* (z0)|�M$ , hence

|U *
1 (z0)&!0 g|

� |G* (z0)&!0g|+M$�!0=(*)+(q+=0 (_, *)) |z0&!0 g|+M$

for every |*&*0 |�$. But !0�\, |z0&!0 g|�_!0 , consequently

|!&1
0 U *

1 (z0)& g|

�=(*)+(q+=0 (_, *)) _+\&1M$ , z0 # K_ (\), |*&*0 |<$. (26)

Now note that the ball B_=[z0 # Rl : |z0& g|�_] is contained in K_ for
each _�1. By (26), given any small _, there is a sufficiently large \=\(_)
and a $=$(_) such that for all z0 # K_ (\), |*&*0 |<$ the inclusion
!&1

0 U *
1 (z0) # B_ holds and hence U *

1 (z0) # K_ . Also note that !&1
0 (2Dz0&

U*
1 (z0))& g= g&!&1

0 U *
1 (z0). Therefore !&1

0 U *
1 (z0) # B_ gives !&1

0 (2Dz0&
U*

1 (z0)) # B_ and so 2Dz0&U *
1 (z0) # K_ . Further, since (2D&I ) K_=K_ ,

it follows that U *
&1 (z0)=(2D&I)(2Dz0&U *

1 (z0)) # K_ . Thus, each of
the operators U *

1 , U *
&1 maps the set K_ (\) into the cone K_ whenever

|*&*0 |<$.
By Lemma 2, g* � g as * � *0 . Therefore, g*>0 for * close to *0 .

Moreover, for any _, \>0 we have xg* # K_ (\) whenever x is large
enough and |*&*0 | is sufficiently small. So the first of the estimates (15)
gives Q* (xg*) � d as x � �, * � *0 . Equivalently,

}&1Q* (xg*)=}&1 (U *
1 (xg*)&G* (xg*))=}&1 (U *

1 (xg*)&;*xg*) � }&1d.

But }&1d>0. Therefore there are x0 , $>0 such that }&1 (U *
1 (xg*)&

;* xg*)�0, that is }&1 (U *
1 (xg*)&xg*)�}&1 (;*&1) xg* for x�x0 ,

|*&*0 |<$. By Lemma 2, if * # 4$
+ , then (;*&1) }�0. Hence

}&1 (;*&1) xg*�0 and so

}&1 (U *
1 (xg*)&xg*)�0, x�x0 , |*&*0 |<$. (27)
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Note that U *
&1 (z0)&z0=(2D&I)(z0&U *

1 (z0)), z0 # Rl
+ . But (2D&I )

K_0
=K_0

, whence

U *
1 (z0)�z0 gives U *

&1 (z0)�z0 ,
(28)

U *
1 (z0)�z0 gives U *

&1 (z0)�z0 ,

for every z0 # Rl
+ . Therefore, (27) implies that

U *
k (xg*)�xg* , x�x0 , * # 4$

+ . (29)

Take _1 , \1 , with _1<_0 , such that the conclusions of Theorem 3 hold.
Without loss of generality, assume that g* # K_1

, |*&*0 |<$. Let
z0 # K_1

(\1), * # 4$
+ . Since _1<_0 , then K_1

(\1)/int K_0
and hence z0>0.

Also, g*>0, and so there are positive numbers %1 , %2 such that 0<
%1 g* � z0 � %2 g* . But K_0

is a closed set, so the number %0=
max[%>0 : z0�%g*] is well defined. Take x large enough for the inclusion
xg* # K_1

(\1) and the estimates x>x0 , x>%0 to hold. By Theorem 3,
the operator U *

k is strictly concave and monotone on K_1
(\1). Hence

the estimates x%&1
0 >1 and x%&1

0 z0�xg* imply that x%&1
0 U *

k (z0)>
U*

k (x%&1
0 z0) and U *

k (x%&1
0 z0)�U *

k (xg*). Combining this with (29), we
obtain x%&1

0 U *
k (z0)>xg* . Therefore, %0 g*<U *

k (z0), that is U *
k (z0)&%0 g*

# int K_0
. At the same time, by definition of %0 , the point z0&%0g* lies on

the boundary of K_0
, hence z0 {U *

k (z0). This means that the operator U *
k

does not have fixed points in K_1
(\1) whenever * # 4$

+ .
Now let * # 4$

& . Recall that !(}&1d )=1. Hence there are numbers c1 , c2

such that

0<c1<1<c2 , c1g<}&1d<c2g. (30)

By Lemma 2, (1&;*) }>0, * # 4$
& . Set : i (*)=(1&;*)&1 }ci , i=1, 2.

Since ;* � 1, then :i (*) � � as * � *0 , * # 4$
& , i=1, 2. So the first of the

estimates (15) gives Q* (:i (*) g*) � d. It follows from the equalities

Q* (:i (*) g*)=U *
1 (: i (*) g*)&G* (:i (*) g*)=U *

1 (:i (*) g*)&;* :i (*) g*

that U *
1 (:i (*) g*)&:i (*) g*=Q* (:i (*) g*)&}ci g* and therefore that

}&1[U *
1 (: i (*) g*)&: i (*) g*] � }&1d&ci g as * � *0 , * # 4$

& .

Hence (30) gives }&1[U *
1(:1 (*) g*)&:1 (*) g*]�0, while }&1[U *

1 (:2 (*) g*)
&:2 (*) g*]�0 for every * # 4$

& close to *0 . So using (28), we obtain

:1 (*) g*�U *
k (:1 (*) g*), U *

k (:2 (*) g*)�:2 (*) g* .
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However, given any small _>0, there are \, $>0 such that U *
k K_ (\)

�K_ , |*&*0 |<$. Take _ # (0, _1) and \ # (\1 , �) for this inclusion to
hold. Denote by 0* the intersection of the cone K_ with the conical interval

(:1 (*) g* ; :2 (*) g*)=[z0 # Rl : :1 (*) g*�z0�:2 (*) g*].

By definition, 0* is a convex compact set. Note that

:1 (*) !(g*)�!(z0)�:2 (*) !(g*) for every z0 # (:1 (*) g* ; :2 (*) g*).

(31)

Therefore !(z0)�\, z0 # 0* , whenever * # 4$
& is sufficiently close to *0 and

hence

0*=0* & [z # Rl : !(z0)�\]

=(:1 (*) g* ; :2 (*) g*) & K_ & [z0 # Rl : !(z0)�\],

that is, 0* = (:1 (*) g* ; :2 (*) g*) & K_ (\). Since the operator U *
k is

monotone on the subset K_ (\) of K_1
(\1) and : i (*) g* # K_ (\), i=1, 2 for

* # 4$
& close to *0 , then

:1 (*) g*�U *
k (:1 (*) g*)�U *

k (z0)

�U *
k (:2 (*) g*)�:2 (*) g* , z0 # 0* ,

which means that U *
k 0* /(:1 (*) g* ; :2 (*) g*). But U *

k 0* �U *
k K_ (\)

�K_ , so the operator U *
k maps the set 0* into itself. By the Brouwer fixed

point principle, the equation z0=U *
k (z0) has a solution z

*
(*) in 0* .

By (31), c1�(1&;*) }&1!&1 (g*) !
*

(*)�c2 , where !
*

(*)=!(z
*

(*)).
Recall that the partial order in Rl is generated by the cone K_0

with _0

fixed, but arbitrarily large. Clearly, given =>0, there is a _0 such that
the estimates (30) hold for c1=1&=, c2=1+=. Therefore, |(1&;*)
}&1!&1 (g*) !

*
(*)&1|�= for all * # 4$

& if $ is sufficiently small. Since
!(g*) � 1 as * � *0 , this gives the first of equations (21). Also, for every
given _>0, we have z

*
(*) # K_ and so |!

*
&1 (*) z

*
(*)& g|�_ whenever

* # 4$
& is close to *0 , which implies the second of Eqs. (21).

Finally, take $>0 small enough for z
*

(*) # int K_1
(\1) to hold for every

* # 4$
& . Clearly, given a * # 4$

& and a =>0, there is a % close to 1, %>1,
such that the conical interval (%&1z

*
(*), %z

*
(*))=[z0 # Rl : %&1z

*
(*)�

z0�%z
*

(*)] is included in the neighborhood [z0 # Rl : |z0&z
*

(*)|<=] &

int K_1
(\1) of the point z

*
(*). Since the operator U *

k is strictly concave on
K_1

(\1), then

U *
k (%z

*
(*))<%U *

k (z
*

(*))=%z
*

(*),

U *
k (%&1z

*
(*))>%&1U *

k (z
*

(*))=%&1z
*

(*).
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Besides, U *
k is monotone on K_1

(\1), so for each z0 # (%&1z
*

(*), %z
*

(*))
we have

%&1z
*

(*)<U * (%&1z
*

(*))�U *
k (z0)�U *

k (%z
*

(*))<%z
*

(*),

that is the operator U *
k maps the conical interval (%&1z

*
(*), %z

*
(*)) into

its interior. By continuity, every operator U *1
1 , where *1 # 4$

& is sufficiently
close to *, maps this conical interval into itself. Therefore a unique fixed
point z

*
(*1) of U *1

k in the set K_1
(\1) satisfies z

*
(*1) # (%&1z

*
(*), %z

*
(*))

/[z0 # Rl : |z0&z
*

(*)|<=], which proves the continuity of the curve z
*

(*),
* # 4$

& , and completes the proof of Theorem 4. K

3.5. Proof of Theorems 1, 2

Set w
*

(t)= g cos t+h sin t, t # R. That is, w
*

(t) is a 2?-periodic solution
of the system z* =A(*0) z; &w

*
&C=- 2. It can be easily shown that for

every large-amplitude periodic solution z(t; *) of the system (3) there is a
number . # [0, 2?) such that

&- 2r&1z(t; *)&w
*

(2?t�T+.)&C<=1 (r, *), |T&2?|<=2 (r, *), (32)

where T is the period of the solution, r=&z(t; *)&C , and =i (r, *) � 0 as
r � �, * � *0 , i=1, 2. Denote by 1_ the arc w

*
(s), &arctan _�s�

arctan _, of the ellipse w
*

. If _ # (0, _1) is fixed, then 1_ /int K_1
. By (8),

the functional {( } ) maps the arc 1_ onto the segment [2?&_, 2?+_]. So
the a priori estimates (32) imply that the equation {(z0)=T has a solution
zT # - 2r&1z(t; *) & int K_1

whenever the numbers r&1 and |*&*0 | are suf-
ficiently small. Therefore the point z

*
=rzT �- 2 lies on the T-periodic cycle

z(t; *). Since {(z
*

)={(zT)=T, it follows that z
*

is a fixed point of the
translation operator U *

1 . Now note that zT # K_1
gives z

*
# K_1

, which
implies |z

*
&!(z

*
) g|�_1 !(z

*
) and hence (1+_1)&1 |z

*
|�!(z

*
)�|z

*
|.

Also, by (32), - 2 r&1 mint |z(t; *)|�w
�
&=1 (r, *), where w

�
=mint |w

*
(t)|

>0; therefore

!(z
*

)�(1+_1)&1 |z
*

|�(1+_1)&1 mint |z(t; *)|

�r(- 2 (1+_1))&1 (w
�
&=1 (r, *)).

It follows that !(z
*

)�\1 and so z
*

# K_1
(\1) if r is sufficiently large and

* is close to *0 . Thus, there are numbers r0 , $>0 such that every r0 -large
periodic cycle z(t; *), * # (*0&$, *0+$), of the system (3) intersects the set
K_1

(\1) and moreover, the intersection contains a fixed point of the
operator U *

1 .
If * # 4$

+ , then by Theorem 4, there are no fixed points of the operator
U*

1 in K_1
(\1) and hence the system (3) has no r0 -large periodic cycles.
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If * # 4$
& , then by Theorems 3 and 4, the translation operator U *

1 has a
fixed point z

*
(*) which is unique in K_1

(\1), depends continuously on *,
and satisfies (21). Therefore the solution z

*
(t; *) originating from the point

z
*

(*) is a {(z
*

(*))-periodic cycle of the system (3). Moreover, this cycle
depends continuously on *. Also, the first of equations (21) gives
!
*

(*) � � as * � *0 . It follows from &z
*

(t; *)&C�|z
*

(*)|�!
*

(*) that
&z

*
(t; *)&C � � as * � *0 . So &z

*
(t; *)&C�r0 , * # 4$

& , if $ is sufficiently
small. The uniqueness of the fixed point z

*
(*) in K_1

(\1) implies that
z
*

(t; *) is a unique r0-large cycle for each * # 4$
& , which completes the

proof of Theorem 1. Finally, if }>0, then the fixed point z
*

(*) of the
translation operator U *

1 is asymptotically stable and hence the cycle z
*

(t; *)
is orbitally asymptotically stable. If }<0, the fixed point z

*
(*) is unstable,

therefore the cycle z
*

(t; *) is orbitally unstable. This proves Theorem 2.

Note that Eqs. (21) imply the asymptotic formula

&(1&;*) z
*

(t; *)&}w
*

(t)&C � 0 as * � *0 , * # 4$
&

for the periodic cycle z
*

(t; *) of the system (3).

4. SYSTEMS WITH HYSTERESIS NONLINEARITIES

4.1. System with stop

In this section we study system of the form (2) with a simple hysteresis
nonlinearity called stop [14] in the feedback. The inputs of stop are
arbitrary continuous scalar-valued functions x(t), t�t0 . The stop state
space is the interval [&1, 1]. For every given initial state v0 and input x(t),
t�t0 , the input�state operator

v(t)=S[t0 , v0] x(t) (33)

determines the state of stop at each instant t�t0 . The function v(t), t�t0

is also the output of stop. For monotone inputs

S[t0 , v0] x(t)={min[1, v0+x(t)&x(t0)]
max[&1, v0+x(t)&x(t0)]

for x(t) nondecreasing,
for x(t) nonincreasing.

(34)

For each locally piecewise monotone input the output is defined using the
semigroup property

S[t0 , v0] x(t)=S[{, S[t0 , v0] x({)] x(t), t0�{�t.
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Furthermore, it can be shown that for every pair of such inputs the outputs
satisfy

max
[t0 , t]

|S[t0 , v0] x1({)&S[t0 , v0] x2 ({)|�2 max
[t0 , t]

|x1 ({)&x2 ({)|, t�t0 .

(35)

Then, for any continuous input x(t), t�t0 , the output (33) is defined by

S[t0 , v0] x(t)= lim
n � �

S[t0 , v0] xn (t), t�t0 ,

where xn ( } ) is an arbitrary sequence of locally piecewise monotone inputs
such that max[ |xn ({)&x({)| : t0�{�t] � 0 for every t�t0 . By construc-
tion, the function (33) is continuous. The estimate (35) holds for every pair
of inputs. Further details can be found in [14].

Consider the equation

L* \ d
dt+ x(t)=M* \ d

dt+ S[0, v(0)] x(t)

and the equivalent autonomous system

dz
dt

=A(*) z+#(*) v(t), v(t)=S[0, v(0)](cTz(t)), (36)

where t�0. It is supposed that the conditions (i)�(ii) hold for the system.
The phase space of the system (36) is Rl_[&1, 1]. For every initial
condition

z(0)=z0 , v(0)=v0 (37)

the Cauchy problem (36)�(37) has a unique solution

[z(t), v(t)]=[z(t; z0 , v0 , *), v(t; z0 , v0 , *)]

on the whole semiaxis t�0. This solution depends continuously on the
initial data z0 # Rl, v0 # [&1, 1], and the parameter *. Moreover, it is
globally Lipschitz in z0 , v0 .

4.2. Existence and Stability of Large Cycles

The properties of the superposition operator F summarized in Lemma
1 turn out to be common for some classes of functional and hysteresis non-
linearities. In particular, this is the case for the input�output operator (33)
of stop.
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Lemma 4. For every x, y # K+, r (u
*

) and every v0 # [&1, 1], %>1

&S[0, v0] x&sgn u*
*

&L1
<=1 (+, r),

&S[0, v0](%x)&S[0, v0] x&L1
<=2 (+, r)(%&1), (38)

&S[0, v0] x&S[0, v0] y&L1
<=3 (+, r) &x& y&C . (39)

In addition, for t # [0, 5?�2],

S[0, v0] x(t)=sgn u*
*

(t) whenever |t&?n�2|>=4 (+, r),

n=0, 1, 3, 5. (40)

Here, each =k (+, r) � 0 as + � 0, r � �.

Proof. Take an arbitrarily small =>0. Since

u*
*

(t)>0 if |t&2?n|<?�2,

u*
*

(t)<0 if |t&?&2?n|<?�2,

where n=0, 1, then there are numbers :=:(=)>0 and +=+(=)>0 such
that for every function y from the ball B+ (u

*
)=[ y # C1 : &y&u

*
&C 1�+]

the estimates

y* (t)�: if |t&2?n|�?�2&=,

y* (t)�&: if |t&?&2?n|�?�2&=

hold. Let x # K+, r (u
*

), r�2�(:=). Then x=\y, where y # B+ (u
*

), \�
2�(:=). Hence,

x* (t)�2�= for t # [0, t1&=] _ [t3+=, t5&=],
(41)

x* (t)�&2�= for t # [t1+=, t3&=],

where tn=?n�2. Now take an arbitrary v0 # [&1, 1] and consider the
stop output v(t) = S[0, v0] x(t), t � 0. By the first of the estimates
(41), the function x(t) increases on the segment [0, t1 & =]. Moreover,
x(t)&x(0)+v0�2=&1t+v0�2=&1t&1�1 for t # [=, t1&=], so (34) gives
v(t)#1 on the segment t # [=, t1&=]. Similarly, v(t)=S[t3+=, v(t3+=)]
x(t)#1 for all t # [t3+2=, t5&=]. On the other hand, by the second of the
estimates (41), the input x(t) decreases on the segment [t1+=, t3&=].
Also, x(t)&x(0)+v0�&1 and hence v(t)#&1 for every t # [t1+2=, t3&=].
Thus,

v(t)#1 for t # [=, t1&=] _ [t3+2=, t5&=],

v(t)#&1 for t # [t1+2=, t3&=].
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Equivalently,

S[0, v0] x(t)=sgn u*
*

(t),

t # [=, t1&=] _ [t1+2=, t3&=] _ [t3+2=, t5&=]

for every x # K+, r (u
*

), v0 # [&1, 1], which proves (40).
Equation (40) immediately implies the first of the estimates (38).

Further, combining (35) with (40) gives the estimate (39).
Finally, take b>0, v0 # [&b, b] and consider the operator defined by

Sb[t0 , v0] x(t)=bS[t0 , b&1v0](b&1x(t)), t�t0 ,

acting in the space of continuous functions x(t), t�t0 . If b=1, it is the
stop input�output operator (33). An important fact (see, for example,
[14]) is that the estimate

|Sb1
[t0 , v0

1] x(t)&Sb2
[t0 , v0

2] x(t)|�|b1&b2 |, t�t0

holds for any input x whenever |v0
1&v0

2 |� |b1&b2 |. In particular,

|S[0, v0](%x(t))&S%[0, %v0](%x(t))|�%&1, t�0, %>1

for every x # C, v0 # [&1, 1]. Equivalently, |S[0, v0](%x(t))&%S[0, v0]
x(t)|�%&1, t�0. But &S[0, v0] x(t)&C�1, hence

&S[0, v0](%x)&S[0, v0] x&C�2(%&1), x # C, v0 # [&1, 1]. (42)

In addition, if x # K+, r (u
*

), then %x # K+, r (u
*

). By (40), S[0, v0](%x(t))=
S[0, v0] x(t) for every t # [0, 5?�2] such that |t&?n�2|>=4 (+, r),
n=0, 1, 3, 5. So (42) gives the second of the estimates (38) and the proof
is complete. K

Only slight modifications to the methods of Section 2 are required to
prove the analogs of Theorems 1 and 2 for the system (36). Let
[z

*
(t; *), v

*
(t; *)] be a periodic solution of this system. The same notation

is used for the cycle in the phase space Rl_[&1, 1]. Put

/([z0 , v0] , [z
*

( } ; *), v
*

( } ; *)])

=min[ |z0&z
*

({; *)|+|v0&v
*

({; *)| : { # R].
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The solution [z
*

(t; *), v
*

(t; *)] is called orbitally stable if for every =>0
there is a $>0 such that the estimate /([z0 , v0] , [z

*
( } ; *), v

*
( } ; *)])<$

implies

/([z(t; z0 , v0 , *), v(t; z0 , v0 , *)] , [z
*

( } ; *), v
*

( } ; *)])

<= for every t�0.

The definition of orbital instability of a solution follows in the usual way.
An orbitally stable periodic solution (a cycle) [z

*
(t; *), v

*
(t; *)] is called

orbitally asymptotically stable if there exists a a>0 such that

/([z(t; z0 , v0 , *), v(t; z0 , v0 , *)], [z
*

( } ; *), v
*

( } ; *)]) � 0 as t � �

whenever /([z0 , v0] , [z
*

( } ; *), v
*

( } ; *)])<a. We say that a periodic cycle
is r0 -large if its first component is r0 -large, that is &z

*
( } ; *)&C�r0 .

Set

}~ =4cTPA(*0) #(*0).

A direct calculation gives }~ =!(d� ), where

d� =|
2?

0
eA(*0)(2?&s)#(*0) sgn u*

*
(s) ds.

In this section, the number }~ plays the same role as does } in Section 2.
Suppose }~ {0. Here the same notations 4$

+ and 4$
& are used respectively

for the sets [* # R : &(*) }~ �0, |*&*0 |<$] and [* # R : &(*) }~ <0,
|*&*0 |<$] as in (4).

Theorem 5. There exist r0>0 and $>0 such that for every * # 4$
+ the

system (36) has no r0 -large periodic cycles, while for every * # 4$
& the system

has a unique r0 -large periodic cycle [z
*

(t; *), v
*

(t; *)]. This cycle depends
continuously on * and &z

*
( } ; *)&C � � as * � *0 , * # 4$

& . Moreover, if
}~ >0 the cycle is orbitally asymptotically stable. If }~ <0 the cycle is orbitally
unstable.

4.3. Proof of Theorem 5

First, consider the problem (36)�(37) with fixed initial value v0=1 of the
stop state. Define the operator W *

1 : Rl
+ � Rl by

W *
1 (z0)=z({(z0); z0 , 1, *), z0 # Rl

+ .
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Then W *
1=G*+Q� * , where G* is the operator (9) and

Q� * (z0)=|
{(z0)

0
eA(*)({(z0)&s)#(*) S[0, 1](cTz(s; z0 , 1, *)) ds.

It was proved in Section 2 that the estimates (5), (6) of Lemma 1 imply the
estimates (15), (16) of Lemma 3. In much the same way, Lemma 4 implies
the analog of Lemma 3 for the operator Q� * . More precisely, the estimates
(15), (16), where Q* is replaced with Q� * and d is replaced with d� , hold for
every z0 , z01 , z02 # K_ (\), %>1. This leads to the analogs of Theorems 3
and 4 for the operators W *

1 and W *
&1=(2D&I )(2D&W *

1). To obtain the
exact statements, it suffices to replace U *

i with W *
i for i=\1 and to take

k=sgn }~ in place of k=sgn } in the formulations of Theorems 3, 4. There-
fore, there are $, _1 , \1>0 such that the operator W *

1 does not have fixed
points in K_1

(\1) for * # 4$
+ , while W *

1 has a unique fixed point z
*

(*) in
K_1

(\1) for * # 4$
& . This fixed point depends continuously on * and

satisfies Eq. (21). Moreover, it is asymptotically stable if }~ >0, and
unstable if }~ <0.

Take _ # (0, _1), \ # (\1 , �) and consider the solution of the Cauchy
problem (36), (37) for arbitrary v0 # [&1, 1], z0 # K_ (\). Arguing as in the
proof of Lemma 3, obtain the inclusion

cTz(t; z0 , v0 , *) # K+, \ (u
*

) for every z0 # K_ (\),

v0 # [&1, 1], |*&*0 |<$,

in similar fashion to (17). Here, +=+(_, \, *) � 0 as _ � 0, \ � �, * � *0 .
But z0 # K_ (\) implies that |{(z0)&2?|�arctan _. Therefore

|{(z0)&?n�2|�|2?&?n�2|&|{(z0)&2?|�?�2&arctan _, n=0, 1, 3, 5.

If _, \&1, |*&*0 | are sufficiently small, then |{(z0)&?n�2|>=4 (r, +),
n=0, 1, 3, 5, and by (40), v({(z0); z0 , v0 , *)=S[0, v0](cTz({(z0); z0 , v0 , *))
=sgn u*

*
({(z0))=sgn cos {(z0), so {(z0) # (3?�2, 5?�2) gives

v({(z0); z0 , v0 , *)=1, z0 # K_ (\), v0 # [&1, 1], |*&*0 |<$. (43)

Let [z(t; *), v(t; *)] be a r0-large periodic cycle of the system (36) for
* # (*0&$, *0+$). Since the nonlinearity (33) is bounded, the a priori
estimates (32) hold for the first component of the periodic cycle and for its
period T. This implies that the curve z(t; *) contains a point z* # K_ (\)
such that {(z*)=T if r0 is large enough and $ is sufficiently small. Choose
t$ so that z*=z(t$; *) and take v*=v(t$; *), then by periodicity,
z({(z*); z*, v*, *)=z*, v({(z*); z*, v*, *)=v*. Now (43) gives v*=1 and
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hence z*=z({(z*); z*, 1, *). This means that every r0 -large cycle of the
system (36) contains the point [z*, 1] such that z*=W *

1 (z*) # K_ (\).
If * # 4$

+ , then there are no fixed points of the operator W *
1 in

K_ (\)/K_1
(\1) and therefore the system (36) has no r0 -large periodic

cycles. If * # 4$
& and * is sufficiently close to *0 , then Eqs. (21) imply that

the fixed point z
*

(*) # K_1
(\1) of the operator W *

1 lies in K_ (\), that is
z
*

(*)=z(T* ; z
*

(*), 1, *) # K_ (\), where T*={(z
*

(*)). Furthermore, (43)
gives v(T* ; z

*
(*), 1, *)=1 and hence

[z
*

(t; *), v
*

(t; *)]=[z(t; z
*

(*), 1, *), v(t; z
*

(*), 1, *)], * # 4$
& ,

is a T* -periodic cycle of the system (36). From continuity of z
*

(*) it
follows that this cycle depends continuously on *. Equations (21) imply
that &z

*
( } ; *)&C � � as * � *0 , * # *$

& . Also note that the cycles of the
system (36) do not intersect each other. Since every r0 -large cycle contains
a point [z0*, 1], where z0*=W *

1 (z0*) # K_ (\), then uniqueness of the fixed
point z

*
(*) of the operator W *

1 in K_ (\) implies that [z
*

(t; *), v
*

(t; *)] is
a unique r0-large cycle for every * # 4$

& close to *0 .
Finally, consider the operator H* : Rl

+ _[&1, 1] � Rl_[&1, 1] of
translation along the trajectories of the system (36) by the time {(z0) of (8),

H*[z0 , v0]=[z({(z0); z0 , v0 , *), v({(z0); z0 , v0 , *)],

z0 # Rl
+ , v0 # [&1, 1].

Take arbitrary z0 # K_ (\), v0 # [&1, 1] and consider the sequence of itera-
tions [zn+1 , vn+1]=H*[zn , vn], n=0, 1, 2, ... . If zn # K_ (\) for every n,
then by (43),

v1=v2= } } } =vn= } } } =1,

zn+1=z({(zn); zn , 1, *)=W *
1 (zn), n=1, 2, ...

So [zn+1 , vn+1]=[W *
1 (zn), 1], n=1, 2, ... . In addition, if v0=1, then also

[z1 , v1]=[W *
1 (z0), 1]. Therefore, asymptotic stability of the fixed point

z
*

(*) # int K_ (\) of the operator W *
1 implies asymptotic stability of the

fixed point [z
*

(*), 1] of the translation operator H* . Consequently, the
cycle [z

*
(t; *), v

*
(t; *)], * # 4$

& is orbitally asymptotically stable if }~ >0.
On the other hand, if }~ <0, then the fixed point z

*
(*) # int K_ (\) of W *

1 is
unstable and so is the fixed point [z

*
(*), 1] of the translation operator H* .

Thus, the cycle [z
*

(t; *), v
*

(t; *)], * # 4$
& is orbitally unstable for }~ <0.

This completes the proof of Theorem 5.
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