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Abstract
Let Q be a bounded Lipschi nai R'(n=3). After giving several equivalent
characterization of harmonic Sq p $Paces and studying the mapping properties of

1. In

We stul e Neumann Problem (NP) for the Laplacian

Au=0inQ, Ou/dv=f onoQ (1.1)

with data in quasi-Banach boundary Besov spaces of domain @ in R"(n>3) with
Lipschitz boundary, where v denotes outward unit normal to 9Q.
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The Laplace’s equation in Lipschitz domains have been studied by many
mathematicians, see [Br,JK,DK,FMM,Z] and references therein. In [FMM], the
authors studied the Neumann boundary problem conditions

Au=finQ, Ou/dv=gondQ (1.2)

by establishing the invertibility of the classical layer potential operators on scales of
Sobolev—Besov spaces on Lipschitz boundaries. And they obtain
theorem.

feLi ,(Q) and geB, | |, (09Q) satisfying the com

{g,1>, (1.2) has a unique (modulo additive consta

(@) po<p<ppand 1/p<s<l
(b) 1<p<poand 3/p—1—

Wherein 1/py = 1 1/2 —¢/2.
In [Z], the auth inhomogeneous Neumann problem for ' € L/ (2) and
g =0 with (s, rem A via the estimates for the inverse Calderon

In [JK], ied the inhomogeneous Dirichlet problem
Au=finQ, Tru=0on0Q. (1.3)

via har measure techniques, here 7ru stands for the trace of function u.
, we mainly studied (NP) in Lipschitz domains with data in quasi-
Banach Besov spaces of order less than one for appropriate range p and s, where
p<l

Before stating our main theorem, we first recall the B- or F-spaces on domains.
For se R,0<p, ¢< o0, the definitions of B-spaces B = B(R") (or B = BP4(R"))
and F-spaces FP4 = [P9(R") (or FP¥ = [P4(R") (p# ) can be found in
[FJ, Tr1,ET], here we omit the details. In particular, we have the potential spaces
L?(R") = F''*(R")(p>1), the Hardy-Sobolev spaces h’(R") = F''*(R")(0<p<]1)
and the Besov spaces BY(R") = BlP(R")(0<p< o0). Let Q be a domain in R", we
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define
B(Q) ={feD(Q):IFeBYI(R"),s.t. Flo =1},
FP9(Q) = {feD(Q) : IF e FI(R"),s.t. Flo =1}

with the usual norm.

For Lipschitz domain Q, the scales of B- and F-spaces can be we d on the
boundary, and we use the notations B9(0Q) (or B24(0Q))
Fr4(0Q)), respectively, for appropriate s,p,q, more detai
[FMM,Z].

Throughout this paper, we use the notations /7 (£) ’ Q) =
B?(Q)(0<p< o) and B(0Q) = B'?(0Q) (See [ET,C " If no other
claim, the domain Q< R"(n>3) always means a bo i omain and let
M denote the Lipschitz constant of Lipschitz do or more details.

Now we state our main theorem as follows.

Theorem 1.1. Let Q be a bounded Lipschitz d|
be dependent in the Lipschitz constant of Q.

e exists ¢€ (0, 1], which may

n/(n+e¢)<p<l, n(1/ I/p<s<1+1/p, (1.4)

then for all f e B’

s—1-1/p(09), the

solution ue B (Q) to (NP)

Au=01i =fonB

Y 11, (09) (1.5)

with the estimate

Ul gpoy<clfily oo

s—1-1/p

& may be taken to be 1.

S ¥/p is understood as the open triangle CA'E in Fig. 1. Also note
arallel to CE in Fig. 1.

were making up and revising our paper, Mitrea obtained the similar
results as in Theorem 1.1 by using a Besov-based non-tangential maximal function
(see [MMI1]) or by establishing suitable square-function estimates for singular
integral of potential type (see [MM2]).

In Theorem 1.1, the important ingredients in this regard are establishing the
equivalent characterization to harmonic Hardy—Sobolev spaces /(Q) for p<1, and
the techniques of the single potential estimates on the boundary Besov spaces

Bl;q/pq(ag) for p<1 as the following theorems.
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Fig. 1.

Theorem 1.2. Let Q be a bounded Lipschitz dom

Sfunction in Q. Let 0<s<1,0<p<1 and kglNu{0}®
statements:

(@) u belongs to I, (Q),

(b) u belongs to B, (Q),

(c) 51_52‘1|:k+]D“u, 2w <k D*u bell
(d) 5752|a‘:kD°‘u, > <k—1D*u belong

se th u is a harmonic
nsider the following

5

Then, (a) < (b) < (c)

When 1<p<oo, T
interpolation theor
Let w, = |B(0,

s studied in [JK,FMM] by using the abstract
, we h¥ve not utilized the abstract theorems.
at the Newtonian potential is defined by

— 2-n) "o '|X*", XeR'-{0}. (1.6)
For f o ayer potential operator is defined by

(SNX) = S .N(X =), XeQ. (1.7)
Sf is harm functions in R" — 9Q.

Theorem 1.3. For any 0<s<1 and (n—1)/n<p<1 with s+n(1/p—1)<1/p, the
single layer potential S is a bounded linear map from B? (0Q) into BY (Q), that is,

1+1/p—s
there exists a constant C = C(M,n), such that
1571y, @ <cllflle, 00

In particular, S = TrS maps B’ (0Q) into B]_(9Q).
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The paper is arranged as follows. In Section 2, we will recall some fundamental
definitions and notations, including the atomic characterization of the
boundary Besov spaces. Section 3 contains the proof of several equivalent
characterization to harmonic Hardy—Besov spaces, i.e., Theorem 1.2. Section 4
contains general estimates and their invertibility results of the single
potential operators on the boundary Besov spaces, i.e., Theorem 1.3. We
also discuss the trace theorems in there. In Section 5, we will p ur main
Theorem, Theorem 1.1.

2. Some fundamental definitions and notations

In this section, we first recall some fundamenta jons an® notations.

For se R, denote s, = max(s,0), and [s] stands for the er functions. If Q is a
cube whose sides are parallel to the axes, the center, sidelength of
Q, respectively. Let ¢ be a positive constant, ts the cube Q(xg, clp). If no
other claim, Q always stands for a dyadic ¢

The dilates or dyadic dilates of g are de
2g(2x) for jeNuU{0}.

The definitions of the scales of Be
their related matters, such as
atomic decompositions and
the details.

The scales of Besov 8cl-Lizorkin spaces can be naturally transported
from R"' to the b i pounded) Lipschitz domain Q via pull-back

=1"g(x/t) or g;(x) =

iebel-Lizorkin spaces on R"” and
ing theorems, the dual theorems, the
found in [FJ,Tr1,ET], here we omit

for
by [FMM,Z].

Let do den
is well-de

¢ boundary spaces were deliberately studied

Lipschitz graph, if there exists a Lipschitz function ¢ :
Q={(x,1)eR": t>¢(x)}. The definitions of the bounded
ain can be found in [St], here we omit the details.

When )/n<p,g<oo,(n—1)(1/p—1), <s<1, we say that f belongs to
Br4(9Q) if Y(x,¢(x)) belongs to BrY(R"'). When (n—1)/n<p,q<oo,(n—
N(/p—-1),<1—-s<1, we say that [ belongs to B(0Q) if
S, 0(x))y/T+ [Vo(x)] belongs to B2(R").

The definitions of the boundary function spaces can be extended to the case of the
bounded Lipschitz domain via a simple partition of unity argument. The related
matters of the boundary function spaces, such as the embedding theorems, the dual
theorems, remain valid. For example, for —1<s<0 and 1<p,g< oo, we have
B4(0Q) = (B (0Q))*, where 1/p+1/p' =1,1/¢+1/¢ =1, and the duality

Lipschi
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pairing between f € B)?(0Q) and geB{'f'(c‘?Q) is [, fg do. See [FMM,Z] for more
details.

For a bounded Lipschitz domain, a set Q<=0 is said to be a “dyadic” cube if
there exists a constant d, which is dependent in the Lipschitz constant, and a dyadic
cube Q' in R""! such that Q = {(x, ¢(x)) : xe Q'} with the length /py <Jy. If no other
claim, we always set o9 = 1.

Definition 2.1. Let Q be a bounded Lipschitz domain and (n ,(n—
1)(1/p —1)<1+s<1. A function a associated to a dyadic cube G o<l,
is said to be a boundary atom of the Besov spaces B?4(9Q) 4

supp ap =20, lag| <|QI""" """ and = 0

Now the atomic characterization [FJ] can be lift
belongs to the Besov space B7(9Q) if onlyg

/=Y soag with [|s

Definition 2.1, and ||S||l}‘?"’(ag) = {Z/?OO

to s below. The function f
has t omic decomposition
ary atom of B’(9Q) as in
4

bou

p9(o0) < 0, Where ag f

q/p
. Moreover, we have

1o o0) 24

3. Harmonic Sobol sov spaCes of order less than one

For any do x,0Q) be the distance from x to 9Q. We know

5(x)< xeQ, (i) 6(x)e C*(Q) and |075(x)| < cydist(x, 5Q)'
for all oW : . are independent of Q (see [St]).

To clheoren 1.2, we first introduce a kind of a partition of unit
for a 8 pschitz domain Q. That is, there exist {y; : k>0}cCy°(Q),

such that

(1) 0y <l,and >,y =11in Q;
(1) supp yrc{xeQ: (1 —e)27F1<o(x)<(1 +¢)27F};
(i) . =1 for {(1 —&/2)27%"'<(x) < (1 +¢/2)27} (¢ small enough).

When € is a bounded Lipschitz domain, for s,p with sp<l1, there
exists an equivalent characterization to F/9(Q) which can be found in [W1] as
follows.
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Lemma 3.1. Let Q be a bounded Lipschitz domain, let se R, 0<p,q< oo with sp<1,
then

(1) Cy°(Q) is dense in FI(Q).
W perra@) i (i, @m0 (1))

1/
)’ < 0. Moreover, we have

0
1 1leroo) {Z 2N (F 1) el o)
k=0

In particular, when p = ¢, by Bl¥ = FI'’, we hav,

Zi) el gr)

0
“f”B’S’” {Z 2k (s+n(1-1/,
k=0

Proof of Theorem 1.2. To prove Theor
fact, let Q@ be a bounded
ue Fr4(Q) iff u, Vue Fy~'4

enough to show the case k = 0. In
ain, for seR,0<p,g< o0, we know
le, when keN, then we can found

1,2,...,n, by ps<1, for every harmonic function ueBg’(Q) we cons1der

h

16" 0l ()

1/p
(k=P (51 ")l pr2) } (i)

7 -

1/p
S, 4 <aiu>xk>2k||Fg,z>P} (e =27/100) i)
0

I
——
T
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© 1/p
kn(1-1 1-
DR g (i), s )l o)
=

:{i 2kn1 1/p) || 51 s —1 )(2k.)

(vi)

<cllullpg)- (vid)

Here, the form i) 1 ined by (3.1),

(ii) is obtain * @, (W= u(x) since u is harmonic in Q and ¢ is a radial
function wit

(iii) is obtai pport of the function y; and ¢,

The i 1 obtained by the pointwise multiplier theorem. In fact,
(o' and 07 (8" 1 ) (2F) | < 2% for all m, see [Trl] for more
details

(v) is ined by the convolution properties. More details can be found in
rl, p. 127].

(vi) is obtained by the imbedding theorem B{)""’CF{)”2 for p<1<2, see [Trl, p. 47]
for more details.

(vii) is obtained by BY < Bi” for s>0 and (3.2).

So we obtain the proof of the case (b) = (c).

(¢) implies (b): Given any harmonic function u with ' °Vu, ue h”(Q), we should
prove ue BY(Q), ie., u, Vue B! (Q) by (3.3). In fact, by s<1, if ueh’(Q), then
ueB’_(Q) by W (Q) = F?*(Q)c=B)” ()= B, (Q) = B'_,(Q), see [Trl, p. 47 for

N
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more details. Now by Lemma 3.1 and using the imbedding theorem /7 (Q) = B, | (Q)
again, we can obtain the case of (c) implies (b) by the following formulas as similar to
the proof in the case of that (b) implies (c) (for i =1, ..., n).

8

1/p
ol s ={ 3 sl |
k=0

' I/p
c{ 2kn 1-1/p)) ||(61_Saquk)2k||Bf1)p}
k=0

)

o0
C{Z 2=/ | (8" Dy )
k=0

of the assertion
in 2, we can complete

(d) implies (c): The proof of this case is simi
(¢)<>(b). In fact, by the facts that 0<s<1 and ujs harm
the proof by the following:

/p

8

||51 vau”hp _{Z 2kl’l(1 1/P|| 1 vauxk

k=0

(2 =1/pl 51 2k|\F,)z (tx = 27%/100)

l/p

) * Uk 2’<||F”2
1/p
U (1), + umzk“Fs’”p}
1/p
(n(1=1/PD (5% uXk)zkHF’z) }

y 1/p
Z(zk"<‘-l/P>||<aSuxk>2k||Fg«z>"} = 116"l

k=0

(a)<=> (c): Using the similar methods as the previous proof, we can also prove this
assertion and so we omit the details.

4. The single layer potential

In this section, we study the bounds and the invertibility of the single layer
potential on the boundary Besov spaces of order less than one.
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Recall that the Newtonian potential is defined by
NX)=Q2-n) "o |X*", XecR'-/{0}.
For f on 0%, the single potential operator is defined by

(SNX) = NX ~)), XeQ

The boundary layer potential and its adjoint are defined by

Kf(P)=po— [ <O— P.n(Q)>|0— P|"f(0)dg

Dn Jo

e—0 @y

1
=1im—/ (O Pn(0)>]0—
P-0|>

Lemma 4.1. Let u be harmonic in
Sueh’(Q) iff ueh?(Q,6%dx) iff ue L

Q 0<p<l, —l<s<l, then

Proof of Theorem 1.3. Let s, heorem 1.3, then 1<1+1/p—s<1+
n/(n— 1)<3. There are threg AW hi ould be considered.
in Theorem 1.2, we should prove

5”171/”8,0;(8]”),&5]‘, or i,j = 1,...,n. By the atomic characterization
of Besov spaces (see k.ecmma 4.1, it is enough to prove

for every i o of B’ (0Q). We first show
/ S(X)P N (8:0:Sap) (X)) dx<ec. (4.2)
Q

Via a partitid@of unity, there is no loss of generality in assuming that the support of
a contained in a coordinate patch where 0 is given by the graph of a Lipschitz
function ¢ : R"~'— R. The problem localizes and, since the only nontrivial case is
when X is close to the boundary, it suffices to prove the estimates

/g 9(X)[0(X) 77|10 Sag) (X) dX <c,

uniformly for ge L7, ,(Q) with [|g]|,- o) <1.

comp
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For the sake of the brevity, we set the center of the “‘cube” Q,z = 0, and denote ap
by a. Let O, = {Xe€0Q:|X|<cr} and 0, = {(x,) : |x] + t<10c+/nr}, where the
constant c is a large enough constant dependent in the Lipschitz constant M.

When X € Q,, by the definition of the single layer (see (1.7)), we have

@ajSa)(x)|<er* 0 [ ¥ — g dog)

r

After a change of variables based on the representations X,=
(v, @()), by (4.3), we get (XeQy)

|(0:0,Sa)(X)|< ers~=Vlp / (v — ]

Y+ |<er

< s =l/p / (Ix =y +9"
l<er

And so by a change of variables again, w@lhave

When X¢Q7, using th ion of a, we get

(0:0;Sa QN (X — q) — 0:0;N(X))a(q) do(q)

—l" n—s—(n— -
o X7 la(q)| do(q) <>~ =Die x| (4.5)

Therefo

lg()S(X )" (9,0;Sag) (X)) dX

(0
¢ / PP = (x| o) TP d d
er< x|+ <

=c / + / + /
r<|x|<d t<er x|<crer<t<c ar<|x| < er<t<c

x L= (x| 4 )P dx dit

=L+5L+ 1L
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The first plan is to estimate Iy, b, I5.

I< / P9~ gy / PPN (x| 1) dt
er<|x[<¢ cr<t<c

< 9= / P dx< 9= 4 ee (4.6)
ar<|x|<¢

Here we use s +n(1/p —1)<1/p and r<1.
Similarly, by s+n(l/p —1)<1/p,r<land (n—1)/n<p<l, ¢

L< rp(n—s)—(n—l) / / tsp+p71(|x| + [)*HP
a<t<c Jx|<cr

< e =9—(n-1) / x| (12 + 1) P di<e.  (48)
ar<|x|< ¢

By (4.6)—(4.8), we obtain the
/~ (0:0;Sap)(X))f dx<c. (4.9)
G

Combining (4.4) ain (4.2).
The methods o

DiSag(X)|7 + |Sag(X)[ dx<c

is similg ¥ and so we omit the details.

q emecmplete estimate (4.1).
1/p —s<2. By Theorem 12, we should prove & 78,(Sf),
b the estimate

AéMWﬂN&QMW+W%MWM<a

The methods of the proof is similar as in Case 1, and the details are omitted.

Case 3: 1+ 1/p—s=2. This case can be proved by the interpolation theorem
using Cases 1 and 2.

Note the inequality s +n(1/p —1)<1/p is equivalent the inequality (1+1/p —
$)>m—1)(1/p—1)+1/p. By 0<s<1 and (n—1)/n<p<1, we know the trace



H. Wang, H. Jia | J. Differential Equations 204 (2004) 123-138 135

theorem remains true for the bounded Lipschitz domain. Therefore we complete the
proof of Theorem 1.3. [

In the next part of this section, we will show that the single layer potentials are
invertible on various subspaces of B(0Q) for 1/(1 +¢)<p<1.

Recall 12(0Q)/{1} = {f e L’(9Q) : [,,, [ do = 0}, H?(0Q) = F}*(9Q), H? (9Q) =

F 2(89) and 7 is an identification operator, see [DK,Br] for more g

Lemma 4.2. Let Q be a bounded Lipschitz domain, then there exg
that

, such

(a.1) (IDK) 1/2+K*:L7(0Q)/{1}—>Lr(0Q)/{1} and
L7 (09Q)/{1} are invertible, whenever 1 <p<2
(a.2) ([Br]) 1/2 - K*: HP(0Q)— HP(0Q) and 1/2
vertible, whenever 1/(1 +¢)<p<1.
(b.1) (IDK]) S: LP(0Q)— L5 (0Q) and S : L,
Il<p<2+e.
(b.2) ([Br]) S: H?(9Q) — HY(0Q) is invertiblq@@uhenevd@ill /(1 + &) <p<1.

Q)/{1} -

HP(0Q) are in-

L’ (0 e invertible, whenever

Using the above lemma, we have
similar results can also be found in |

ing interpolation theorem, and the

Proposition 4.3. Let Q be

e(M,n)e(0,1/n], for 1/(
I1/2+K*: B'(0Q)—> B

schitz domain, then there exists &=
l<s<0, 1/p<l+e(s+1), such that
B

1.,(0Q) are invertible.

Proof. Firstly, we at, wherever the domains of the operators S, 7/2+ K*
of definition int these operators coincide, so that we will obtain our
theorem by i g between a rather wide selection of pairs of these operators

by (a.l) az se the interpolation theorem (H™ (9Q), L™, (0Q)/{1}), =
B(Q her p0<1 p1>1,s=—0and 1/p=(1-0)/py+ 0/p1. And then

we ob¥ B (0Q)— B2 (0Q) is invertible. The rest can similarly be
obtained 8 .1) and (b 2).

Remarks. The above results in Lemma 4.2 and Proposition 4.3 are seemly sharp in

the class of Lipschitz domains. Moreover, when dQe C', we can take ¢ = 1/n, see
[FMM,JK] for more details.

Lastly, we give a note here. Let Q be a bounded Lipschitz domain of R", and let
s,p satisfy n/(n+1)<p<oo, n(l/p—1)+1/p<s<1+1/p, then the operator 3,

originally defined in C* (), can be extended from Bf(Q) to B” | | / p(ag). This fact
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can be deduced by the atomic characterization of B7(Q). By the atom definition of
B (Q) (see [TW, p. 658]) and the atom decomposition theorem (see [TW, p. 664]), for
every atom function a(x) which belongs to B?(2), we can get that % satisfies the
formula

@da

% <|suppan0Q|E1-VP/=D=Upang =0.

0
Ov

supp% csuppan 09,

That is, 4 is an atom B! | , /p((’?Q). Here we omit the details.

5. Proof of Theorem 1.1

In this section, we will prove our main Theorem ann problem.

ic characterization of
,(02) has the

,(02) with

Proof of Theorem 1.1. Existence: Firstly, we t
the boundary spaces (see Section 2). We kn
form f =3, s0ag, where >, |sol’ < oo al ispdtom of B!
f ap do = 0.

For every atom aQeLw(aﬂ)cLz(
up =8(1/2-K*)" aQeL3/2( ) (see [
data ape L*(Q)/{1}.

Therefore, if we recall the

we know that there exists a unique
lution to (1.5) with the boundary

1/2 — K* (see Proposition 4.3) and the
), the operator S(I/2 — K*)fl, originally

pded from B | 1/,(02) to B}(Q). Moreover, we

mapping properties of S
defined in L*(0Q)/{1}

have the estimate

- ||5(1/2 ~ K*)ag|

BXI’(Q)SC, (51)

ing properties. There exists a positive numbers & =

e1)<p<l and 1/p<l+¢|(s—1—1/p)+1] by Proposi-

If letting ¢ = ney, these imply

D) n/(n+e)<p<l, (i) e 'n(1/p—1)+ 1/p<s<1+1/p.

After careful computation, we can obtain n(1/p —1)+1—¢+1/p>1n(1/p—1)
+1/p.

Therefore, if s, p satisfy (1.4), we have estimate (5.1). Combining this fact with the
atomic characterization of B-spaces, we can complete the proof of existence and their
estimates.
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Unigueness: The uniqueness of Theorem 1.1 means that if ue B?(€) is the solution
to the equation

Au=0in B ,(Q), u _ 0 in B’

- ", (09), (52)

then u = const.
Assume that s,p satisfy (1.4), we will choose s;,p; such that isfy the
condition (b) in Theorem A and that the embedding resultg

Bl ,,(02) =B} | (0Q) hold. Therefore by (5.2) we can b3

Au=0in B" ,(Q), —=0in B" _ (5.3)

Then u = const by Theorem A.
Remember the embedding theorems

B(Q) = BI(Q) = F{*(Q)

B, (0Q) =B (9Q)

1 cBﬁ‘;l = Bf]‘f" (0Q)

1-1/pi

where s>s1, s1 =s—n(l/p—1/p1) a
For s,p as in (1.4), now we choose p , such that

l<pi< 3/piPl —e<s <1+ 1/p

as stated in Theorem A

In fact, we choose hl< n—3)/(n—2—1/p)<2byn=3, then we have
)—e+1+1/p—n(l/p—1/p1)

l/p+n(l/pr—1)+1—-e>3/p)—1—c.

> n(

On the o 1 <pi, then we have

p—n(l/p—1/p1) =1+ (1 —n)/p+n/p1<1+1/p.

lete the proof of uniqueness.
Combinin® the existence and the uniqueness, we complete the proof of
Theorem 1.1. O
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