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Abstract

We study the existence of multiple positive solutions for a superlinear elliptic PDE with a
sign-changing weight. Our approach is variational and relies on classical critical point theory
on smooth manifolds. A special care is paid to the localization of minimax critical points.
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1. Introduction

We consider positive solutions of the boundary value problem,

�u+ (a+(x)− �a−(x))|u|�u = 0, x ∈ �,
u(x) = 0, x ∈ ��,

(1.1)
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where� ⊂ RN is a bounded domain of classC1, a+ and a− are continuous functions
which are positive on non-overlapping domains and� is a large parameter. Positive
solutionsu are defined to be such thatu(x) > 0 for almost everyx ∈ �.

Problems with a sign varying coefficient were already studied in 1976 by Butler[5].
In this paper, he proved existence of infinitely many periodic solutions for the nonlinear
Hill equation

u′′ + a(t)|u|�u = 0

with a sign changing weighta(t). Results concerning Dirichlet problems for ODE’s
were obtained in[12,14]. However, all these results concern multiplicity of oscillating
solutions. For the ODE equivalent of (1.1) and for large values of�, complete results
were worked out in[6,7] concerning, respectively, the cases of the weighta+(t) being
positive in two or three non-overlapping intervals. These results were obtained from
an elementary shooting method. Although the argument becomes clumsy, it extends to
the general case ofa+(t) being positive inn non-overlapping intervals. In this case,
2n − 1 positive solutions can be obtained. For PDEs, related problems were studied
by several authors using topological and variational methods[1,3,4,11]. In the present
paper, using a variational approach we extend to the PDE problem (1.1) the results
obtained in[6,7].

Notice first that finding positive solutions of problem (1.1) is equivalent to find
non-trivial solutions of

�u+ (a+(x)− �a−(x))u�+1
+ = 0, x ∈ �,

u(x) = 0, x ∈ ��,
(1.2)

whereu+ = max{u,0}, since non-trivial solutions of (1.2) are positive. In the sequel
we also writeu− = max{−u,0}.

We suppose throughout the paper the following assumptions:
(H) � > 0, �+ 2 < 2∗ = 2N

N−2 if N�3, a+, a− : � → R are continuous functions and
there existn disjoint domains�i ⊂ �, with i = 1, . . . , n, which are of classC1

and such that

(a) for all x ∈ �+ :=
n⋃
i=1

�i , a−(x) = 0, a+(x) > 0 and

(b) for all x ∈ �− := �\�+, a−(x) > 0, a+(x) = 0.
The existence of at least one positive solution for a superlinear equation like (1.1)

follows easily from the Mountain Pass Theorem of Ambrosetti and Rabinowitz applied
to (1.2), see e.g.[13]. Indeed,u = 0 is a local minimizer of the action functional
I : H 1

0 (�)→ R defined by

I (u) :=
∫
�

(
1
2|∇u(x)|2 − (a+(x)− �a−(x))

u
�+2
+ (x)

�+2

)
dx
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and we can easily find a functionv ∈ H 1
0 (�) such thatI (v) < 0. For the same reason,

we also infer the existence of a local positive solution in each�i , i.e. a solution of
the Dirichlet problem

�u+ (a+(x)− �a−(x))u�+1
+ = 0, x ∈ �i ,

u(x) = 0, x ∈ ��i .
(1.3)

As the superlinear term is homogeneous of degree� + 1, solutions of (1.1) can be
alternatively obtained as critical points of the energy functional under a convenient
constraint. Namely, we define the constraint functionalV� : H 1

0 (�)→ R by

V�(u) :=
∫
�
(a+(x)− �a−(x))

u
�+2
+ (x)

�+2 dx. (1.4)

From the continuous imbedding ofH 1
0 (�) into L�+2(�), it can be seen thatV�(u) is

of classC1,1. Next, we define the manifold

V� := {u ∈ H 1
0 (�) | V�(u) = 1} (1.5)

and the energy functionalJ : H 1
0 (�)→ R, u �→ J (u), where

J (u) := 1

2

∫
�
|∇u(x)|2 dx. (1.6)

We consider then critical points ofJ under the constraintu ∈ V�. It is a standard fact
that such critical points satisfy the Euler–Lagrange equation

∇J (u) = �∇V�(u)

for someLagrange multiplier� ∈ R, i.e. for anyw ∈ H 1
0 (�),∫

�
∇u(x)∇w(x) dx = �

∫
�
(a+(x)− �a−(x))u�+1

+ (x)w(x) dx. (1.7)

It then follows thatu solves the problem

�u+ �(a+(x)− �a−(x))u�+1
+ = 0, x ∈ �,

u(x) = 0, x ∈ ��.

Taking u as test function in (1.7), we obtain

∫
�
|∇u(x)|2 dx = �(�+ 2),
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which implies� > 0 since 0/∈ V�. Hence, any critical point ofJ on V� is such that the
rescaled functionv = �1/�u is a positive solution of (1.1). The existence of the above-
mentioned local solutions in each�i now also follows from constraint minimization
arguments in classes of functions with support in the adherence of one domain�i .

Our purpose in this paper is to prove the existence of multiple solutions for large
values of the parameter�. When� is large, functionsu ∈ V� with finite energyJ (u)
have to be small in�−. Indeed, the condition

∫
�
a+(x)

u
�+2
+ (x)

�+2 dx − 1= �
∫
�
a−(x)

u
�+2
+ (x)

�+2 dx

implies that for large�

∫
�−

a−(x)
u

�+2
+ (x)

�+2 dx

becomes small, i.e. the functionu is small in �−. Further if this function is a solution
of (1.1), it is small on ��i ⊂ �� ∪ ��−. Hence, it is reasonable to guess that such
a solution is close to solutions of Dirichlet problems in the domains�i , i.e. to solu-
tions of (1.3). Basically, the profile of these solutions consists then in various bumps
concentrated in some of the sets�i . A solution which concentrates only in one of the
�i will be referred to as asingle-bumpsolution while it will be calledmulti-bumps
solution if it has a significative contribution in more than one of the�i .

These intuitive observations suggest the existence of at least 2n−1 positive solutions
as on each domain�i , such solutions are close either to 0 or to a positive solution of
(1.3). Though the existence of some of those solutions seem straightforward, it is quite
tricky to catch all of them.

Let us now give a more precise definition ofp-bumps solutions.

Definitions 1.1. A function w ∈ H 1
0 (�) is a p-bumps function(p = 1, . . . , n) if there

exist p non-zero functionsej ∈ H 1
0 (�), with suppej ⊂ �ij , ij ∈ {1, . . . , n} and ij �= ik

for j, k ∈ {1, . . . , p}, such thatw = ∑p
j=1 ej . Given a set� = �i1 ∪ . . . ∪ �ip , a

family of functions {u�|���0} ⊂ H 1
0 (�) is said to be afamily of p-bumps solutions

of (1.1) with limit support in� if for each � large enoughu� solves (1.1), it has a
cluster value for the weak topology inH 1

0 (�) as� goes to infinity, and any such value
is a p-bumps functionw ∈ H 1

0 (�) with support in�.

Notice that our definition implies that a family ofp-bumps solutions of (1.1) {u� |
���0} with limit support in � is such that

u� → 0 in L2+�(� \ �).

We can then state our main theorem.
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Theorem 1.1. Let assumptions(H) be satisfied. Then, for � > 0 large enough, there
exist at least2n−1 positive solutions of(1.1). Moreover, for each set� = �i1∪. . .∪�ip ,
one of those solutions defines a family of positive p-bumps solutions of(1.1) with limit
support in�.

Our paper is organized as follows. In Section 2, we work out some preliminary results
and define the key ingredients of our approach. The existence ofp-bumps solutions for
any 1�p�n could follow from a unique proof. However, since much more intuitive
arguments work fine for the single-bump solutions and then-bumps solution, we treat
them separately. In fact, the main difficulty is not really to distinguish the various
type of solutions but rather those with the same number of bumps. For single-bump
solutions, this is easily done as minimization arguments can be used to single out
local minimizers in disjoint subsets ofV�. Section 3 deals with the existence of those
local minimizers. Solutions withp bumps, 2�p�n− 1, correspond to critical values
between the smallest energy of the minima and the energy of then-bumps solution.
However, these critical values are not necessarily ordered according to the number of
bumps of the associated solutions. Nevertheless, a partial ordering holds. Letua and
ub be two families of solutions with limit support in�a and �b ⊂ �a . Then for �
large enough, the energy ofua is larger than the energy ofub. We considerp-bumps
solutions (2�p�n−1) in Section 4. Here, the only use of classical minimax theorems
is not sufficient to our purpose. In order to distinguish the solutions, we need a careful
analysis and a localization of the deformation along the lines of the gradient flow
used to obtain the desired minimax critical values. Basically, we identify disconnected
regions from which these deformations cannot escape. At last, in Section 5, we prove
the existence of an-bumps solution using a quite standard minimax principle. This
n-bumps solution has the greatest value of the energy among all the solutions we get.

2. Preliminary results

We first complete the description of our functional framework. To this end, we endow
H 1

0 (�) with the usual inner product

〈u, v〉 :=
∫
�
∇u∇v dx

whose associated norm we denote by‖u‖ := [∫� |∇u(x)|2 dx]1/2. Throughout the paper,
orthogonality is understood in the sense of this inner product.

2.1. The manifoldV�

The following lemma gives the basic properties ofV� and introduces a convenient
projector on this manifold.

Lemma 2.1. The setV� defined from(1.5) is a non-empty, weakly closed and arc
connected manifold inH 1

0 (�). Further the functionQ� defined ondomQ� = {u ∈
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H 1
0 (�) | V�(u) > 0} by

(Q�u)(x) := [V�(u)]−
1

�+2u(x)

is a continuous projector onV�.

Proof. Claim 1: The setV� is non-empty. Consider a functionu ∈ H 1
0 (�) such that

u�0, u �= 0 and suppu ⊂ �+. ThenV�(u) �= 0 so thatQ�u ∈ V�.
Claim 2: The setV� is weakly closed. This is a direct consequence of the compact

imbedding ofH 1
0 (�) into L�+2(�) and the continuity ofV�.

Claim 3: Q� is continuous. This claim follows from the continuity ofV�.
Claim 4: The setV� is arc connected. Let us first consider two functionsu1, u2 ∈ V�

with support in the same set�i . Each of them can be connected to its positive part
since the paths�s := (ui)+ − s(ui)− are in V� for all s ∈ [0,1]. Then, the function

�s := (1− s)(u1)+ + s(u2)+

is such that

V�(�s)�
1

2�+2

for all s ∈ [0,1]. It follows that Q��s ∈ V� for all s ∈ [0,1].
If u1, u2 ∈ V� have supports in different sets�i , then the path

s �→ (1− s)
1

�+2u1 + s
1

�+2u2

stays inV� for all s ∈ [0,1].
Now, to complete the proof, we only need to show that anyu in V� can be linked

by a path inV� to somev with support in one of the�i . Observe that we necessarily
have a+u+ �= 0 in some�i with i ∈ (1, . . . , n). Hence, we can choose an open set
�0 in such a way that�0 ⊂ �i and for some� > 0,

1 >

∫
�0

a+(x)
u

�+2
+ (x)

�+2 dx�� > 0 and
∫
�\�0

(a+(x)− �a−(x))
u

�+2
+ (x)

�+2 dx�0.

Next, we define a smooth functionh : [0,1] × � → [0,1] such that

h(s, x) =
{

1 if x ∈ �0,

1− s if x ∈ � \ �i .

Then we compute

V�(h(s, ·)u(·)) =
∫
�
(a+(x)− �a−(x)) (h(s,x)u+(x))

�+2

�+2 dx

��+ (1− s)�+2
∫
�\�0

(a+(x)− �a−(x))
u

�+2
+

�+2 dx��.
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Now, observe thath(1, ·)u(·) has support in�i and the path

s �→ Q�(h(s, .)u(.))

stays inV� for all s ∈ [0,1]. �

2.2. Equivalence with the constraint problem

It is clear that positive solutions of (1.1) can be obtained from rescaling solutions of
the constraint problem (1.7). As our main interest in this paper is to obtain multiplicity
results, we check next that different critical points ofJ constrained byV� lead to
distinct solutions of (1.1).

Lemma 2.2. If u1, u2 are different critical points of J inV�, then there exist

�1, �2 > 0 such thatv1 = �1/�
1 u1 and v2 = �1/�

2 u2 are two distinct positive solutions
of (1.1).

Proof. Let u1 and u2 be different critical points ofJ in V�. The existence of the
Lagrange multipliers�1, �2 follows from standard arguments and, as already observed,
we have

�i = ‖ui‖2

�+ 2
> 0, i = 1,2.

Supposev1 = v2, i.e. u1 = (�2/�1)
1/�u2. We compute then

V�(u1) =
(

�2

�1

) �+2
�

V�(u2).

As u1, u2 ∈ V�, we deduce�1 = �2, which contradicts the fact thatu1 �= u2. �

2.3. The functional J

Many of our arguments in the proof of the main theorems rely on an analysis of
the functionalJ for functions with support in the�i ’s. The following lemma is such
a result.

Lemma 2.3. The functional J has a non-negative minimumûi on each of the disjoint
manifolds

V̂i := {u ∈ V� | suppu ⊂ �i}, i = 1, . . . , n. (2.1)
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Remark 2.1. Notice that the setŝVi and the functionŝui are independent of� since
they only involve functionsu so that suppu ⊂ �i .

Proof. As V̂i is weakly closed andJ is coercive and weakly lower semi-continuous,
we can minimizeJ in each manifoldV̂i and obtainn distinct non-trivial minimizers
ûi ∈ V̂i . These are non-negative. Indeed, if such a minimizerûi is such that(ûi)− �= 0,
we have(ûi)+ ∈ V̂i and J ((ûi)+) < J (ûi) which is a contradiction. �

We consider the gradient ofJ constrained toV�

∇�J (u) := ∇J (u)− 〈∇J (u),∇V�(u)〉
‖∇V�(u)‖2 ∇V�(u). (2.2)

It is well known that the Palais–Smale condition holds for this gradient. For complete-
ness, we present here a proof of this property.

Lemma 2.4 (The Palais–Smale condition). Let J and V� be defined from(1.6) and
(1.4). Let (vn)n be a sequence inV� so that

J (vn)→ c1 and ∇�J (vn)
H1

0→ 0,

where∇�J (u) is defined in(2.2). Then there exist a subsequence(vni )i and v ∈ H 1
0 (�)

such that

vni
H1

0−→ v, J (v) = c1 and ∇�J (v) = 0.

Proof. There existv ∈ H 1
0 (�) and some subsequence still denoted(vn)n such that

vn
H1

0
⇀ v and vn

L2+�−→ v.

Let ∇�J (vn) = ∇J (vn)− �n∇V�(vn) and compute

|2J (vn)− �n(�+ 2)| = |〈∇J (vn), vn〉 − �n〈∇V�(vn), vn〉|
� ‖∇J (vn)− �n∇V�(vn)‖ ‖vn‖ → 0

so that�n → 2c1
�+2. Next, we notice that

〈∇J (vn), v〉 =
∫
�
∇vn∇v dx →

∫
�
|∇v|2 dx
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and

〈∇V�(vn), v〉 =
∫
�
(a+ − �a−)v�+1

n v dx →
∫
�
(a+ − �a−)v�+2 dx = �+ 2

so that

〈∇J (vn), v〉 − �n〈∇V�(vn), v〉 → 2J (v)− 2c1 = 0.

As a consequenceJ (vn) → c1 = J (v), i.e. ‖vn‖ → ‖v‖. This implies vn
H1

0−→ v,

∇�J (vn)
L2−→ ∇�J (v) and∇�J (v) = 0. �

2.4. Decomposition ofH 1
0 (�)

The solutions we are interested in are near multi-bumps functions, i.e. large within
the set�+ and almost zero on�−. It is then natural to decompose such a function
as a sum of a multi-bumps function and some small perturbation. Using this idea, we
introduce the following orthogonal decomposition ofH 1

0 (�). Let H := {u ∈ H 1
0 (�) |

suppu ⊂ �+} be the space of the multi-bumps functions andH̃ := (H)⊥ its orthogonal
complement. Givenu ∈ H 1

0 (�), we define thenu ∈ H from the following lemma.

Lemma 2.5. Let u ∈ H 1
0 (�). Then the problem

∫
�+
∇u(x)∇�(x) dx =

∫
�+
∇u(x)∇�(x) dx f or all � ∈ H 1

0 (�+)

has a unique solutionu ∈ H . Further the function

R : H 1
0 (�)→ H ⊂ H 1

0 (�), u �→ Ru = u

is a continuous projector for the weak topologies, i.e.

un
H1

0
⇀ u implies Run

H1
0

⇀ Ru.

Also, we have

J (Ru)�J (u). (2.3)

At last, the functionũ := u− u is in H̃ and satisfies

∫
�+
∇ũ(x)∇�(x) dx = 0 f or all � ∈ H 1

0 (�+). (2.4)
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Proof. Existence and uniqueness of the solutionu ∈ H 1
0 (�+) follow from Lax–Milgram

Theorem. Next, we extendu by

u(x) = 0 if x ∈ � \ �+.

It is clear thatu ∈ H . Further, it also follows from Lax–Milgram Theorem thatu
depends continuously onu ∈ H 1

0 (�).
Notice then thatũ = u− u ∈ H̃ since

∫
�
∇u∇ũ dx =

∫
�+
∇u∇ũ dx =

∫
�+
∇u(∇u− ∇u) dx = 0.

We also have (2.4). To proof (2.3), we compute

∫
�
|∇u|2 dx =

∫
�
|∇ũ|2 dx +

∫
�
|∇u|2 dx,

which impliesJ (Ru)�J (u).
To complete the proof we check the continuity ofR for the weak topologies. Let

(un)n ⊂ H 1
0 (�) be such thatun

H1
0

⇀ u and writeun = un + ũn and u = u + ũ, where
un = Run and u = Ru. We know that for any� ∈ H 1

0 (�+) we have∫
�+
∇u(x)∇�(x) dx =

∫
�+
∇u(x)∇�(x) dx

and ∫
�+
∇un(x)∇�(x) dx =

∫
�+
∇un(x)∇�(x) dx.

Hence, the weak convergence of the sequence(un)n implies un
H1

0 (�+)
⇀ u, that is

un
H1

0
⇀ u. �

Let us write

V̂ (u) :=
∫
�+

a+(x)
u

�+2
+ (x)

�+2 dx

and denote for anyr > 0, the ball

B�,r := {u ∈ V� | ‖u‖ < r}.
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The following lemma controlsV̂ (u) if u ∈ B�,r and � is large enough. Notice that in
this lemmaV̂ (u) depends on� from the fact that we chooseu in the setB�,r which
depends on this parameter.

Lemma 2.6. Let r > 0 and 	 > 0 be given. Then, for all � > 0 large enough and
u ∈ B�,r ,

V̂ (u)�1− 	.

Proof. Let r > 0 and 	 > 0 be given and define
 > 0 to be such that

(1+ 
)�+2(1− 	) < 1.

If the claim does not hold, there exist sequences(�j )j , (uj )j ⊂ B�j ,r such that
lim
j→∞ �j = +∞ and

V̂ (uj ) = 1
�+2

∫
�
a+(uj )�+2

+ dx < 1− 	,

for j large enough.
As the sequence(uj )j is bounded inH 1

0 (�), going to subsequence we can assume

uj
H1

0
⇀ u

and therefore using Lemma2.5 we infer that

ũj
H1

0
⇀ ũ and ũj

L2+�−→ ũ.

Claim 1: ũ+(x) = 0 a.e. in�−. We compute for someC > 0,

1+ �j

∫
�−

a−(ũj )�+2
+ dx = 1+ �j

∫
�−

a−(uj )�+2
+ dx

= 1+ �j

∫
�
a−(uj )�+2

+ dx =
∫
�
a+(uj )�+2

+ dx�Cr�+2.

It follows that ∫
�−

a−ũ�+2
+ dx = lim

j→∞

∫
�−

a−(ũj )�+2
+ dx = 0

and asa−(x) > 0 in �−, the claim follows.
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Claim 2: ũ+(x) = 0 a.e. in �. As �+ is of classC1, we deduce from Claim 1
that ũ+ ∈ H 1

0 (�+) (see [10, Chapter 1-8.2]). Further, using (2.4) and the maximum
principle (see[8, Theorem 8.1]), we obtain sup

�+
ũ� sup

��+
ũ�0.

Conclusion:Notice that

(uj )+�(uj )+ + (ũj )+� max{(1+ 
)(uj )+, (1+ 1

 )(ũj )+}

so that

(uj )
�+2
+ �(1+ 
)�+2(uj )

�+2
+ + (1+ 1


 )
�+2(ũj )

�+2
+ .

It follows that

1� 1
�+2

∫
�
a+(uj )�+2

+ dx� (1+
)�+2

�+2

∫
�
a+(uj )�+2

+ dx + (1+ 1

 )

�+2

�+2

∫
�
a+(ũj )�+2

+ dx.

Using Claim 2, we obtain then the contradiction

1� (1+
)�+2

�+2 lim
j→∞

∫
�
a+(uj )�+2

+ dx�(1+ 
)�+2(1− 	) < 1. �

2.5. The nonlinear simplexS

Let ûi be the local minimizers ofJ in V̂i defined by Lemma2.3 and consider the
nonlinear simplex

S :=
{
u =

n∑
i=1

s
1

�+2
i ûi | (s1, . . . , sn) ∈ �

}
⊂ V�,

where

� :=
{
(s1, . . . , sn) ∈ Rn+ |

n∑
i=1

si = 1

}
.

We can evaluateJ along functions ofS and introduce

f (s) := J

(
n∑
i=1

s
1

�+2
i ûi

)
=

n∑
i=1

s
2

�+2
i J (ûi), s ∈ �. (2.5)

Notice that the setS will be a key ingredient in the minimax characterization of the
multi-bumps solutions as the geometry off on � is a good model of the geometry of
J on V� for large �. The following lemmas study this geometry. As their proofs are
elementary we omit them.
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Lemma 2.7. The functionf : � → R defined from(2.5) is such that the apexes
(1,0, . . . ,0), . . . , (0, . . . ,0,1) of � are strict local minima of f.

Lemma 2.8. LetE := {i1, . . . , ik}, 2�k�n, �k := {s = (s1, . . . , sk) ∈ Rk+ |
∑k

j=1 sj =
1} and let ûi be the local minimizers in̂Vi defined by Lemma2.3. Then the function
fE : �k → R defined from

fE(s) :=
k∑

j=1

s
2

�+2
j J (ûij )

has a unique global maximumcE at some points∗ = (s∗1, . . . , s∗k ) ∈ �k such that
s∗j > 0 for all j = 1, . . . , k. Further, if F ⊂�= E, then cF < cE .

2.6. Projection onS

The following lemmas define a continuous projector on the nonlinear simplexS that
increases the energy as little as we wish.

Lemma 2.9. The mappingR� : H 1
0 (�)→ H 1

0 (�), defined by

R�u := Q�((u)+),

is continuous. Further ifr > 0 and � > 0 are given, then for� > 0 large enough and
u ∈ B�,r ,

J (R�u)�J (u)+ �. (2.6)

Proof. Notice that the mappingu ∈ H 1
0 (�)→ u+ ∈ H 1

0 (�) is continuous. This follows
from [8, Lemma 7.6]. The continuity ofR� follows.

To prove (2.6), we first fix r > 0 and� > 0. Next, we choose	 ∈ ]0,1/2] such that

Cr2	
2

��,

whereC > 0 verifies(1− t)
− 2

�+2 �1+Ct for t ∈ ]0,1/2]. From Lemma2.6 we know
that for � > 0 large enough,V̂ ((u)+) = V̂ (u)�1− 	. Recalling that

J ((u)+)�J (u)�J (u)

we compute

J (R�u) = [V̂ ((u)+)]−
2

�+2J ((u)+)�(1+ C	)J (u)�J (u)+ Cr2	
2 �J (u)+ �. �
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For the next lemma, it is convenient to define the local constraints

V̂i(u) :=
∫
�i

a+(x)
u

�+2
+ (x)

�+2 dx.

These are such that ifv ∈ V� and suppv ⊂ �+ then

V�(v) = V̂ (u) =
n∑
i=1

V̂i(v) = 1.

Lemma 2.10. The mappingP� : H 1
0 (�)→ S ⊂ H 1

0 (�), defined by

P�u :=
n∑
i=1

[V̂i(R�u)]
1

�+2 ûi ,

where ûi are the local minimizers inV̂i , is continuous. Further ifr > 0 and � > 0
are given, then for � > 0 large enough andu ∈ B�,r

J (P�u)�J (u)+ �.

Proof. Clearly, P� is continuous.
We next denote the local components ofR�u by Ri�u := (R�u)��i

, where��i
is the

characteristic function of the set�i . WheneverV̂i(R�u) �= 0, we haveQ�Ri�u ∈ V̂i

and thereforeJ (Q�Ri�u)�J (ûi) or equivalently

J (Ri�u)� V̂i(R�u)
2

�+2J (ûi).

We now come out with the estimate

J (R�u) =
n∑
i=1

J (Ri�u)�
n∑
i=1

V̂i(R�u)
2

�+2J (ûi) = J (P�u)

and the proof follows from Lemma2.9. �

3. Single-bump solutions

In this section, we prove the existence of positive solutions that concentrate mainly
on a single domain�i . To obtain such solutions we penalize in some sense the
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action in the other�j ’s by assuming that the contribution to the constraint mainly
occurs in�i .

Theorem 3.1. Let Assumptions(H) be satisfied. Then for everyi = 1, . . . , n there is
a family of positive single-bump solutions of(1.1) with limit support in�i .

Proof. (1) Existence of n positive solutions. Let ûi be the minimizers defined in Lemma
2.3. From Lemma2.7, we can choose
1, . . . ,
n ∈ [2

3,1] and �1, . . . , �n > 0 such
that for all i = 1, . . . , n and s ∈ � with si = 
i ,

f (s1, . . . ,
i , . . . , sn) > J (ûi)+ �i ,

where f is defined by (2.5), and

f (s) > J (ûi) (3.1)

for any (s1, . . . , sn) ∈ � with si ∈ [
i ,1[.
We fix then r = maxi J (ûi)+ 1, � ∈ ]0,mini �i[, and �0 > 0 large enough so that

the conclusion of Lemma2.10 holds for ���0. Define then for eachi = 1, . . . , n the
sets

Fi� := {u ∈ V� | V̂i(P�u) = V̂i(R�u)�
i}

and notice that since
i � 2
3, these sets are disjoint.

As in Lemma 2.3, we can prove thatJ has minimizersvi� in each setFi�. This
implies

J (vi�)�J (ûi). (3.2)

Assume now thatvi� ∈ �Fi�, i.e. V̂i(P�vi�) = 
i . We deduce from Lemma2.10 the
estimate

J (P�vi�)�J (vi�)+ �i .

Now, observe that there existss ∈ � with si = 
i such that

P�vi� =
n∑

j=1

s
1

�+2
j ûj .

Hence

J (P�vi�) = f (s1, . . . ,
i , . . . , sn−1) > J (ûi)+ �i .
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We deduce then that

J (vi�)�J (P�vi�)− �i > J (ûi)

which contradicts the fact thatvi� is a minimizer. It follows thatvi� is in the interior
of Fi� so thatvi� is a critical point ofJ in V�. Solutions of (1.1) are then obtained
from rescaling as in Lemma2.2.
(2) Claim: vi� is a family of single-bump solution with limit support in�i . We write

vi� = ṽi� + vi�, where ṽi� ∈ H̃ and vi� ∈ H . It follows from (3.2) that the family
{vi� | ���0} is uniformly bounded inH 1

0 (�). Hence the familyvi� has cluster values
for the weak topology inH 1

0 (�). Let v be such a value, i.e. there exists a sequence
(vi�j )j with �j →∞ so that

vi�j

H1
0

⇀ v and vi�j
L2+�−→ v.

We deduce from Lemma2.5 that

vi�j

H1
0

⇀ v.

Hence, we have

vi�j
L2+�−→ v and ṽi�j

L2+�−→ ṽ.

Arguing as in Claim 1 in the proof of Lemma2.6, we infer that ṽ(x)�0 almost
everywhere in�−. As

vi�j = vi�j − ṽi�j
L2+�−→ v − ṽ

we deduce that 0= v(x) − ṽ(x)�v(x) almost everywhere in�−. Notice also that
vi�j �0 for any j so that v(x)�0 almost everywhere in�. Consequently,v(x) =
ṽ(x) = 0 on �−. Arguing now as in Claim 2 in the proof of Lemma2.6 (with ṽ

instead ofũ+), we obtainṽ(x) = 0 on � so thatv = v ∈ H . We also have for any�

V�(v) = V̂ (v) = 1
�+2

∫
�
a+(x)v�+2

+ (x) dx.

On the other hand, we have the estimate

1
�+2

∫
�
a+(x)(vi�j )

�+2
+ (x) dx = 1+ 1

�+2

∫
�

�j a−(x)(vi�j )
�+2
+ (x) dx�1
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so that

V̂ (v) = lim
j→∞

1
�+2

∫
�
a+(x)(vi�j )

�+2
+ (x) dx�1.

Observe thatQ�v = [V̂ (v)]− 1
�+2v is independent of� so thatQ�v ∈ V� for any � > 0

and

J (Q�v) = [V̂ (v)]− 2
�+2J (v)�J (v).

We now deduce from the lower semi-continuity ofJ and (3.2) that

J (Q�v)�J (v)� lim
j→∞ J (vi�j )�J (ûi). (3.3)

Assume by contradiction that the support ofv is not included in�i . Hence, we have
for somek �= i that �kv �= 0, where�k is the characteristic function of the set�k.
From the definition ofP� we computeV̂i(P�vi�j ) = V̂i(R�vi�j ) so that


i � V̂i(P�vi�j ) = V̂i(R�vi�j ) = 1
�+2

∫
�i

a+Q�((vi�j )+)
�+2 dx

and

V̂ (�iv)

V̂ (v)
=
∫
�i
a+v�+2

+ dx∫
�+ a+v

�+2
+ dx

= lim
j→∞

1
�+2

∫
�i

a+Q�((vi�j )+)
�+2 dx�
i . (3.4)

As further
n∑

j=1

V̂ (�j v)

V̂ (v)
= 1, using (3.4) and (3.1) we obtain the estimate

J (Q�v) =
∑
j∈F

V̂
2

�+2 (�j v)

V̂
2

�+2 (v)

J (Q�(�j v))�
n∑

j=1

V̂
2

�+2 (�j v)

V̂
2

�+2 (v)

J (ûj ) > J (ûi),

whereF = {i = 1, . . . , n | �iv �= 0}. This contradicts (3.3). �

4. Multi-bumps solutions

We already know that there existn families of positive single-bump solutions. We
prove in this section that for anyp with 1 < p < n we can findCp

n families of positive
p-bumps solutions of (1.1). For that purpose we introduce the following notations.
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Let us fix p of the functionsûi defined by Lemma2.3. To simplify the notations,
we assume that these functions are numbered in such a way that they correspond to
û1, . . . , ûp. We denote byE = {1, . . . , p} the set of corresponding indices. Define then
the corresponding nonlinear simplexSE constructed on the function̂u1, . . . , ûp,

SE :=

u =

p∑
j=1

s
1

�+2
j ûj | (s1, . . . , sp) ∈ �p


 ,

where �p is defined in Lemma2.8. It follows from this lemma thatJ has a unique

global maximum onSE at some interior pointw = (s∗1)
1

�+2 û1 + . . . (s∗p)
1

�+2 ûp. We
therefore expect, for large�, the existence of a critical point ofJ in V� whose projection
in S is close tow. The corresponding solution would define a family of positivep-
bumps solutions. In order to obtain this, a standard tool would be a general minimax
principle. Define the class

HE := {h ∈ C(SE,V�) | ∀u ∈ �SE, h(u) = u and ∀u ∈ SE, J (h(u))�J (u)}

which can be seen as the class of continuous deformations ofIdSE
which fix

�SE :=

u =

p∑
j=1

s
1

�+2
j ûj | si = 0 for some i = 1, . . . , p


 (4.1)

and decrease the energy. It is then rather easy to check that the minimax value

inf
h∈H max

u∈SE

J (h(u))

is a critical value ofJ in V� if � is sufficiently large. This follows from a general
linking theorem, see e.g.[15]. However, it is not clear that for different setsE this
minimax characterization produces different critical points and even that the correspond-
ing solutions arep-bumps solutions. This comes from a lack of information about the
localization of the critical points. To overcome this difficulty, we base our approach
on deformation arguments and localize the deformation along the lines of the gradient
flow.

In the next lemma, we identify disconnected regions where the gradient ofJ con-
strained toV� is bounded away from zero. As in Lemma2.8, we write cE = J (w),

where w = ∑p
j=1(s

∗
j )

1
�+2 ûj is the maximizer ofJ on the corresponding nonlinear

simplex SE , and we define for
 ∈ ]0,1/4[,

E�(
) := {u ∈ V� | J (u)�cE and
∀i = 1, . . . , p, si = V̂i(R�u)�
, |si − s∗i |�
}.



54 D. Bonheure et al. / J. Differential Equations 214 (2005) 36–64

Lemma 4.1. There exists� > 0 such that for any� > 0 large enough and allu ∈
E�(
), ‖∇�J (u)‖��, where

∇�J (u) = ∇J (u)− 〈∇J (u),∇V�(u)〉
‖∇V�(u)‖2 ∇V�(u). (4.2)

Proof. Let us assume by contradiction that there exist(�j )j ⊂ R and (uj )j ⊂ E�j (
)
such that

lim
j→∞ �j = ∞ and lim

j→∞ ‖∇�j J (uj )‖ = 0.

As the sequence(uj )j is bounded inH 1
0 (�), going to a subsequence if necessary, we

can assume there existsu ∈ H 1
0 (�) such that

uj
H1

0
⇀ u and uj

L2+�−→ u.

We introduce now the manifold

V̂ := {u ∈ H 1
0 (�) | suppu ⊂ �+, V̂ (u) = 1},

which is such thatV̂ ⊂ V� for any � > 0. We denote the tangent space toV̂ at u by

Tu(V̂) := {v ∈ H 1
0 (�) | suppv ⊂ �+,

∫
�
a+u�+1

+ v dx = 0}.

Claim 1: 〈∇J (u), v〉 = 0 for all v ∈ Tu(V̂). Let v ∈ Tu(V̂). We first observe that
we can choose�j such thatv − �j uj ∈ Tuj (V�j ), where

Tuj (V�j ) := {v ∈ H 1
0 (�) |

∫
�
(a+ − �j a−)(uj )

�+1
+ v dx = 0}

is the tangent space toV�j at uj . Indeed, asv is supported in�+, we just need to
take

�j = 1

�+ 2

∫
�
a+(uj )�+1

+ v dx.

We then notice that since(uj )+
L2+�−→ u+ and v ∈ Tu(V̂), we have

∫
�
a+(uj )�+1

+ v dx →
∫
�
a+u�+1

+ v dx = 0.
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Hence, we deduce that�j → 0. Computing

〈∇J (u), v〉 =
∫
�
∇u∇v dx

=
∫
�
(∇u− ∇uj )∇v dx +

∫
�
∇uj∇(v − �j uj ) dx + �j

∫
�
|∇uj |2 dx

and using the fact that

uj
H1

⇀ u, v − �j uj ∈ Tuj (V�j ), ∇�j J (uj )→ 0 and �j → 0,

the claim follows as ∫
�
(∇u− ∇uj )∇v dx → 0,

∫
�
∇uj∇(v − �j uj ) dx = 〈∇�j J (uj ), v − �j uj 〉 → 0

and

�j

∫
�
|∇uj |2 dx → 0.

Claim 2: u ∈ H so that u = u. We write uj = uj + ũj and u = u + ũ, where
uj , u ∈ H and ũj , ũ ∈ H̃ . We first deduce from Lemma2.5 that

uj
H1

0
⇀ u and ũj

H1
0

⇀ ũ

so that

uj
L2+�−→ u and ũj

L2+�−→ ũ.

The arguments of Claims 1 and 2 in the proof of Lemma2.5 then imply thatũ+ = 0.
Let us prove that̃u− = 0 a.e. in�−. Since

lim
j→∞ ‖∇�j J (uj )‖ = 0,

and (uj )− ∈ Tuj (V�j ), we deduce that

∫
�
|∇(uj )−|2 dx = 〈∇�j J (uj ), (uj )−〉 → 0.
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This means(uj )− → 0 in H 1
0 (�) and thereforeu− = 0. This in turn implies that

ũ−(x) = 0 for a.e.x ∈ �−. It follows that u is supported in�+ which meansu ∈ H .
Define wi := �i u, where �i is the characteristic function of the set�i , and let

F := {i = 1, . . . , n | wi �= 0}. Observe thatwi �= 0 for all i = 1, . . . , p. Indeed, this
follows from the convergence ofuj in L2+�(�) and the definition ofE�(
). Changing
the order of the indices of the subdomains�i ’s for i > p if necessary, we may
assume without loss of generality thatF = {1,2, . . . , m} for somep�m�n. Next,
we introduce the function

�(s) :=
m∑
i=1

s
1

�+2
i Q�wi ∈ V̂,

wheres ∈ �m and �m is defined in Lemma2.8. Observe thatQ�wi is independent of
� since thewi ’s are, respectively, supported in�i . We also defines to be such that

�(s) = Q�u, i.e. si = V̂ (wi)

V̂ (u)
, and we write

g(s) := J (�(s)) =
m∑
i=1

s
2

�+2
i J (Q�wi).

Claim 3: ∀i ∈ E = {1, . . . , p}, si �
 and |si − s∗i |�
. This follows from the
convergence ofuj in L2+�(�).
Claim 4: V̂ (u)�1. For all j ∈ N, we have

V̂ (uj ) =
∫
�
a(uj )

�+2
+ dx = 1+

∫
�

�j a−(uj )
�+2
+ dx�1.

Using the convergence ofuj in L2+�(�), we deduce that̂V (u) =
∫
�
a+u�+2

+ dx�1.

Claim 5: g(s) = J (Q�u)�cE . Using the convexity ofJ and the weak convergence
of the sequence(uj )j , we can write

cE� lim
j→∞ J (uj )�J (u).

It then follows from Claim 4 that

J (u) = V̂
2

�+2 (u)J (Q�u)�J (Q�u).

Claim 6: g(s) < max
s∈�m

g(s). In casem > p, we have

g(s)�
m∑
i=1

s
2

�+2
i J (ûi) = fF (s)
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and therefore we infer from Lemma2.8 that

max
s∈�m

g(s)�cF > cE = c�g(s).

On the other hand, ifm = p and for somei0 ∈ E, J (Q�wi0) �= J (ûi0), we have

g(s)�
p∑
i=1

s
2

�+2
i J (ûi)+ s

2
�+2
i0

(J (Q�wi0)− J (ûi0)) = fE(s)+ s
2

�+2
i0

(J (Q�wi0)− J (ûi0)),

wherefE is defined in Lemma2.8, and

max
s∈�m

g(s)�c + (s∗i0)
2

�+2 (J (Q�wi0)− J (ûi0)) > c�g(s).

At last, if m = p and for all i = 1, . . . , m, J (Q�wi) = J (ûi), then g(s) = fE(s) so
that the claim follows from Claim 3 and Lemma4.1 as |si − s∗i |�
.

Conclusion:As �(s) ∈ V̂, we deduce�′(s) ∈ T�(s)(V̂), and it follows from Claim
1 that

g′(s) = 〈∇J (�(s)),�′(s)〉 = 〈∇J (Q�u),�
′(s)〉 = 0.

Since the only stationary point ofg is its maximum, this contradicts Claim 6.�
We now turn to the proof of the existence ofCp

n families of positivep-bumps
solutions of (1.1) for any p with 2�p�n− 1.

Theorem 4.2. Let assumptions(H) be satisfied. Let� = �i1∪. . .∪�ip with 2�p�n−
1. Then, for � sufficiently large, there exists a family of positive p-bumps solutions of
(1.1) with limit support in�.

Proof. Choice of r:For any setF = {i1, . . . , ik} with 2�k�n, we define from Lemma
2.8 the pointwF which maximizesJ on the set

SF =

u =

k∑
j=1

s
1

�+2
j ûij | (s1, . . . , sk) ∈ �k


 ,

where

�k :=

(s1, . . . , sk) ∈ Rk+ |

k∑
j=1

sj = 1


 .

We choose thenr > 0 to be such that the neighbourhoodsB(wF ,2r) do not intersect.
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Choice of 
: Consider nowp sets�i and assume these are numbered�1, . . . ,�p.
Define

� :=
p⋃
i=1

�i .

Let û1, . . . , ûp be the respective minimizers as in Lemma2.3. We then denote bySE

the nonlinear simplex withE = {1, . . . , p} and bywE := (s∗1)
1

�+2 û1 + . . .+ (s∗p)
1

�+2 ûp

the point which maximizesJ on SE . We write cE := J (wE) and we fix
 ∈ ]0, 1
4[ in

such a way thatu ∈ V� and r�‖P�u − wE‖�2r implies that for all i = 1, . . . , p,
we havesi = V̂i(R�u)�
 and |si − s∗i |�
.
Claim 1: There existss > 0 such that for all� > 0, if u, v ∈ V� satisfyJ (u)�cE ,

J (v)�cE and ‖u − v‖�s, then ‖P�u − P�v‖�r. If the claim is false, there exist
(�n)n ⊂ R+, (un)n ⊂ V�n and (vn)n ⊂ V�n such thatJ (un)�cE , J (vn)�cE , ‖un −
vn‖ → 0 and‖P�nun − P�nvn‖�r. We then infer up to a subsequence that

un
H1

0
⇀ u, vn

H1
0

⇀ u, un
L2+�−→ u and vn

L2+�−→ u.

On the other hand, we also have

un
H1

0
⇀ u, vn

H1
0

⇀ u, (un)+
L2+�−→ (u)+ and (vn)+

L2+�−→ (u)+.

Hence, we deduce that

R�nun
L2+�−→ 1

V̂ ((u)+)
(u)+ and R�nvn

L2+�−→ 1

V̂ ((u)+)
(u)+.

This in turn implies that for anyi = 1, . . . , n, V̂i(R�nun) − V̂i(R�nvn) → 0 so that
finally ‖P�nun − P�nvn‖ → 0 which is a contradiction.

The setQ̃: Let � be given by Lemma4.1 and define� > 0 to be such that 2� < s�2

1+�
and

∀u ∈ SE \ B(wE, r), J (u) < cE − �.

We also choose� ∈ ]0, �] and 	 > 0 small enough to verify

(1− (n− p)	)
2

�+2 cE�cE − �

and

(1− (n− p)	)
2

�+2 cE + 	
2

�+2 min
i=p+1,...,n

J (ûi) > cE + �.
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Let us write

S̃ := {u = s̃
1

�+2wE +
n∑

i=p+1

s̃
1

�+2
i ûi | s̃�0, s̃i �0, s̃ +

n∑
i=p+1

s̃i = 1},

Q̃ := {u ∈ S̃ | max
i=p+1,...,n

s̃i �	},

�Q̃ := {u ∈ S̃ | max
i=p+1,...,n

s̃i = 	}.

Notice that if u ∈ �Q̃, we can compute

J (u) = s̃
2

�+2 cE +
n∑

i=p+1

s̃
2

�+2
i J (ûi)

�(1− (n− p)	)
2

�+2 cE + 	
2

�+2 min
i=p+1,...,n

J (ûi) > cE + �

(4.3)

and if u ∈ Q̃, we have

J (u)�(1− (n− p)	)
2

�+2 cE�cE − �. (4.4)

Choose next�0 > 0 large enough so that Lemma2.10 applies (withr = cE + 1 and
� as above) and so that Lemma4.1 holds. From now on we assume���0.
The deformation:Consider the Cauchy problem


′ = −�(J (
))
∇�J (
)

1+ ‖∇�J (
)‖ , 
(0) = u0, (4.5)

where∇�J (u) is defined in (4.2) and � : R → [0,1] is a smooth function such that

�(r) =
{

0 if r < c0,

1 if r >
c0 + cE − �

2
,

where c0 := max{J (u) | u = ∑p
i=1 s

1
�+2
i ûi , (s1, . . . , sp) ∈ �p and ∃ si = 0}. The

problem (4.5) has a unique solution
(·; u0) defined onR and continuous in(t, u0).
Claim 2: For all t�0 and u0 ∈ SE , J (P�(
(t; u0))�cE + �. To prove this claim,

we have to notice that

J (
(0; u0)) = J (u0)�cE
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and J decreases along solutions of (4.5) as

d

dt
J (
(t; u0)) = −�(J (
(t; u0)))

‖∇�J (
(t; u0))‖2

1+ ‖∇�J (
(t; u0))‖�0.

It then follows using Lemma2.10 that

J (P�(
(t; u0)))�J (
(t; u0))+ ��cE + �.

Claim 3: For all t�0, there existsut ∈ SE such thatP�(
(t; ut )) ∈ Q̃. Let us write

P�(
(t; ut )) =
n∑
i=1

y
1

�+2
i (t; ut )ûi

= Y
1

�+2

p∑
i=1

[(
yi(t; ut )

Y

) 1
�+2 − (s∗i )

1
�+2

]
ûi

+Y
1

�+2wE +
n∑

i=p+1

y
1

�+2
i (t; ut )ûi ,

whereY =
p∑
i=1

yi(t; ut ). It is clear thatP�(
(t; ut )) ∈ S̃ if and only if

fi(t, ut ) = yi(t; ut )− Ys∗i = 0, i = 1, . . . , n. (4.6)

It follows now from a degree argument (see[2, Lemma 1.2]) that there exists a con-
nected set� ⊂ R+ ×SE of solutions(t, ut ) of (4.6) so that for allt�0 there exists
ut ∈ SE with (t, ut ) ∈ �. Hence the set

�̃ = {P�(
(t; ut )) | (t, ut ) ∈ �} ⊂ S̃

is connected. As(0, wE) is the only solution of (4.6) with t = 0, we know that
P�(
(0;wE)) = wE ∈ Q̃. Also, it follows from (4.3) and Claim 2 that there is no
(t; u0) ∈ � so thatP�(
(t; u0)) ∈ �Q̃. Hence, the connected set�̃ is in Q̃ which
proves the claim.
Existence of a Palais–Smale sequence(vn)n: From the preceding claim, we can find

a sequence(un)n ⊂ SE so thatP�(
(n; un)) ∈ Q̃ and using (4.4) we have

J (P�(
(n; un)))�cE − �.
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A subsequence(uni )i converges tou0 ∈ SE which is such that for allt�0,
J (P�(
(t; u0)))�cE − �. Hence

J (
(t; u0))�J (P�(
(t; u0)))− ��cE − �− ��cE − 2�, (4.7)

which implies that there exist somec1 and a sequence(tn)n with tn →∞ such that

J (
(tn; u0))→ c1

and

〈∇�J (
(tn; u0)), 
′(tn; u0)〉 = − ‖∇�J (
(tn; u0))‖2

1+ ‖∇�J (
(tn; u0))‖ → 0,

i.e.

∇�J (
(tn; u0))→ 0.

Hence, we can choosevn := 
(tn; u0).
Claim 4: We claim that for all n, ‖P�(vn) − wE‖�2r. Suppose the claim is false.

In this case, it follows from the definition of� that P�(
(0; u0)) = u0 ∈ B(wE, r).
Therefore, we can findt1, t2 > 0 such that

‖P�(
(t1; u0))− wE‖ = r, ‖P�(
(t2; u0))− wE‖ = 2r

and

r�‖P�(
(t; u0))− wE‖�2r

for all t ∈ [t1, t2]. It follows from Claim 1 and the definition of the deformation that

|t2 − t1|�‖
(t2; u0)− 
(t1; u0)‖�s.

On the other hand, using (4.7), we havecE − 2��J (
(t; u0))�cE which implies
|J (
(t2; u0))−J (
(t1; u0))|�2�. Further, we infer from the choice of
 that 
(t; u0) ∈
E�(
) for any t ∈ [t1, t2]. Using

|J (
(t2; u0))− J (
(t1; u0))| =
∫ t2

t1

‖∇�J (
(s; u0)‖2

1+ ‖∇�J (
(s; u0)‖ ds,
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we deduce then from Lemma4.1 that

2�� �2

1+ �
|t2 − t1|� s�2

1+ �
,

which contradicts the choice of�.
Conclusion:Since we proved in Lemma2.4 that the Palais–Smale condition holds,

there existv� ∈ S� and a subsequence we still denote by(vn)n such that

vn → v�, ∇�J (vn)→ ∇�J (v�) and∇�J (v�) = 0.

To complete the proof, it remains to show that{v� | ���0} is a family of p-bumps
solutions with limit support in�. Let v be a cluster value for the weak convergence
in H 1

0 (�), i.e. there exists a sequence(�j )j ⊂ R+ such that

�j →∞ and v�j

H1
0

⇀ v.

Arguing as in the proof of Theorem3.1 we infer thatv is positive and has support
in �+. It also follows from Claim 4 thatP�j v�j ∈ B(wE,2r) for any j. We claim
P�j v�j → wE as j → ∞. Otherwise, there exist̂
 > 0 and a subsequence�jk such
that v�jk

∈ E�jk
(
̂) for any k but then for �jk large enough,∇�jk

J (v�jk
) �= 0 by

Lemma 4.1. On the other hand, using by now familiar arguments, it can be checked
that

P�j v�j →
n∑
i=1

(
V̂i(v)

V̂ (v)

) 1
�+2

ûi .

We therefore conclude that̂Vi(v) �= 0 for i ∈ E and V̂i(v) = 0 for i �∈ E so thatv is
a p-bumps function with support in�. This completes the proof.�

5. A n-bumps solution

We have proven in the preceding sections the existence of 2n − 2 positive solutions
of (1.1) for sufficiently large�. Indeed, the families of solutions we obtained have
different limit supports so that they certainly differ for large�. In this last section, we
state the existence of a solution whose energy is greater than all the previous ones.
For that purpose we consider the class

H := {h ∈ C(S,V�) | ∀u ∈ �S, h(u) = u and ∀u ∈ S, J (h(u))�J (u)},
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where �S is the boundary ofS defined as in (4.1). We then define for each� the
minimax value

cn := inf
h∈H max

u∈S
J (h(u))

and claim thatcn is a critical value if� is sufficiently large. Observe that this minimax
characterization corresponds to the choiceE = {1, . . . , n} and the critical value defined
in Section 4. However in this case, the energy level of the solution allows to distinguish
it from the others.

Let wE be the point inS which maximizesJ and writecE = J (wE). Let � > 0 be
such that

max
u∈�S

J (u)+ 2��cE.

Let � > 0 be sufficiently large so that Lemma2.10 holds with this choice of� and
r = cE + 1. We then define the closed set

S̃ := {u ∈ V� | P�(u) = w and J (u)�r}.

We claim thatS̃ has the intersection property by which we mean that for everyh ∈ H ,
h(S)∩ S̃ �= ∅. Indeed, the functionP� ◦h is a continuous deformation ofIdS so that
for all u ∈ �S, P�(h(u))− w = u− w �= 0. It follows that

deg(P� ◦ h− w,S) = deg(IdS − w,S) = 1

and the claim easily follows as for everyh ∈ H and allu ∈ S, J (h(u))� maxS J �cE .
We therefore deduce that the min–max valuecn is well defined as

max
u∈S

J (h(u))� min
u∈S̃

J (u)� min
u∈S̃

J (P�u)− � = cE − �.

Notice that foru ∈ �S, we have

J (u)�cE − 2�

so that we easily conclude thatcn is a critical value ofJ in V�. Moreover,cn�cE −
�� maxu∈�S J (u)+� so that for� large enough the corresponding solution is different
from any p-bumps solution with 1�p�n− 1.

It seems natural that the above minimax principle leads to an-bumps solution. How-
ever, this additional information requires a localization of the Palais–Smale sequence.
Using the arguments of Section 4, we can derive a precise result.
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Theorem 5.1. For � large enough, there exists a family of positive n-bumps solutions
of (1.1) with limit support in�+.

Since the proof consists in slight modifications of the arguments used in the proof
of Theorem4.2, we leave it to the reader.

Remark 5.1. We would like to emphasize that our approach only requires the quadratic-
ity, the coercivity and the weak lower semi-continuity ofJ. Therefore, the method can
be used for more general equations than (1.1). One could add for example a linear
term−V (x)u in the equation provided thatV is above−�1(�), the first eigenvalue of
−� with Dirichlet boundary conditions in�.
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