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Abstract

We study the existence of multiple positive solutions for a superlinear elliptic PDE with a
sign-changing weight. Our approach is variational and relies on classical critical point theory
on smooth manifolds. A special care is paid to the localization of minimax critical points.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

We consider positive solutions of the boundary value problem,

Au+ (ay(x) — pa—(x)|ul'u =0, x € Q,

u(x) =0, xe€iQ, (1.1)
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where Q@ c RY is a bounded domain of clag¥, a, anda_ are continuous functions
which are positive on non-overlapping domains gnds a large parameter. Positive
solutionsu are defined to be such thatx) > 0 for almost everyx € Q.

Problems with a sign varying coefficient were already studied in 1976 by B&jer
In this paper, he proved existence of infinitely many periodic solutions for the nonlinear
Hill equation

u +a@®)|ul’u=0

with a sign changing weight(z). Results concerning Dirichlet problems for ODE'’s
were obtained irf12,14] However, all these results concern multiplicity of oscillating
solutions. For the ODE equivalent of.() and for large values ofi, complete results
were worked out ir{6,7] concerning, respectively, the cases of the weightr) being
positive in two or three non-overlapping intervals. These results were obtained from
an elementary shooting method. Although the argument becomes clumsy, it extends to
the general case af;(¢) being positive inn non-overlapping intervals. In this case,
2" — 1 positive solutions can be obtained. For PDEs, related problems were studied
by several authors using topological and variational metja@s4,11] In the present
paper, using a variational approach we extend to the PDE problefh the results
obtained in[6,7].

Notice first that finding positive solutions of problem.1) is equivalent to find
non-trivial solutions of

Au + (ay(x) — pa— ()c))uﬂfzL =0 xeQ,

u(x) =0, x e 0Q, (1.2)

whereu; = maxu, 0}, since non-trivial solutions ofl(2) are positive. In the sequel
we also writeu_ = max{—u, 0}.
We suppose throughout the paper the following assumptions:

H) y>0,7+2<2"= % if N>3, a4, a_: Q— R are continuous functions and
there existn disjoint domainsw; c Q, with i = 1,...,n, which are of clasg’?

and such that

n

(a) for all x € @, := | J wi, a_(x) =0, ay(x) > 0 and
i=1

(b) forall x e Q_ :=Q\Qy,a_(x) >0, a;(x) =0.

The existence of at least one positive solution for a superlinear equationlliKe (
follows easily from the Mountain Pass Theorem of Ambrosetti and Rabinowitz applied
to (1.2, see e.g[13]. Indeed,u = 0 is a local minimizer of the action functional
I : H}(Q) — R defined by

742
W= (é'v”(”'z — (@0 = ua_(x>)”§+(zX)) o
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and we can easily find a functiane Hol(Q) such that/ (v) < 0. For the same reason,
we also infer the existence of a local positive solution in eaghi.e. a solution of
the Dirichlet problem

Au + (a4 (x) — ,ua_()c))ui+1 =0, xe€w, (1.3)
u(x)=0, x € dw;.

As the superlinear term is homogeneous of degreel, solutions of {.1) can be
alternatively obtained as critical points of the energy functional under a convenient
constraint. Namely, we define the constraint functioval: H3(Q) — R by

742
uy (x)

V() ::/Q(a+(x)—,ua_(x)) ) dx. (1.4)

From the continuous imbedding df3(Q) into L7+2(Q), it can be seen tha¥,(u) is
of classCl1. Next, we define the manifold

B, = {u € H}Q) | Vy(u) = 1) (1.5)

and the energy functional : H}(Q) — R, u + J(u), where

J(u) = %/Q|Vu(x)|2dx. (1.6)

We consider then critical points df under the constraint € B,,. It is a standard fact
that such critical points satisfy the Euler-Lagrange equation

VJ (u) = AVV,(u)

for somelLagrange multiplierZ € R, i.e. for anyw € Hol(Q),

f Vu(x)Vw(x)dx = }v/ (a4 (x) — ,ua_(x))uf_l(x)w(x) dx. a.7)
Q Q

It then follows thatu solves the problem

Au + Jas(x) — ,ua_(x))ufl =0, xeQ,

u(x) =0, x e df.

Taking u as test function inX.7), we obtain

/ IVu(x)|?>dx = Ay + 2),
Q
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which implies/ > 0 since 0¢ B,. Hence, any critical point ad on B, is such that the
rescaled function = /Y7 is a positive solution of {.1). The existence of the above-
mentioned local solutions in eaah; now also follows from constraint minimization
arguments in classes of functions with support in the adherence of one damain

Our purpose in this paper is to prove the existence of multiple solutions for large
values of the parametgr. When y is large, functions: € B, with finite energyJ ()
have to be small if2_. Indeed, the condition

/ a0 dx — 1= u/ a0 ax
Q Q

implies that for largeu

/ _( )u+ (x)d
Q

becomes small, i.e. the functianis small in Q_. Further if this function is a solution
of (1.1, it is small ondw; C 02U 0Q2_. Hence, it is reasonable to guess that such
a solution is close to solutions of Dirichlet problems in the domainsi.e. to solu-
tions of (L.3). Basically, the profile of these solutions consists then in various bumps
concentrated in some of the sets. A solution which concentrates only in one of the
w; will be referred to as aingle-bumpsolution while it will be calledmulti-bumps
solution if it has a significative contribution in more than one of the

These intuitive observations suggest the existence of at 18asi Dositive solutions
as on each domaiw;, such solutions are close either to 0 or to a positive solution of
(1.3). Though the existence of some of those solutions seem straightforward, it is quite
tricky to catch all of them.

Let us now give a more precise definition pdbumps solutions.

Definitions 1.1. A function w € Hol(Q) is a p-bumps functionp =1, ..., n) if there
exist p non-zero functiong; € H3 (), with suppe; C ;;, iy €{l,...,n} andi; # ik
for j,k € {1,..., p}, such thatw = Zf:l ej. Given a setw = w; U...Uw;,, a
family of functions {u,|u> pg} C H(-}(Q) is said to be d@amily of p-bumps solutions
of (1.1) with limit support in@ if for each u large enoughu, solves (.1), it has a
cluster value for the weak topology iH()l(Q) as u goes to infinity, and any such value
is a p-bumps functionw € Hol(Q) with support inw.

Notice that our definition implies that a family @bumps solutions of1(1) {u, |
U= up} with limit support in@ is such that

uy— 0 in LZ7(Q\ w).

We can then state our main theorem.
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Theorem 1.1. Let assumptiongH) be satisfied. Therfor u > O large enough there
exist at leas®” —1 positive solutions of1.1). Moreover for each setv = w;, U. . .Uw; ,,
one of those solutions defines a family of positive p-bumps solutiofispfwith limit
support ino.

Our paper is organized as follows. In Section 2, we work out some preliminary results
and define the key ingredients of our approach. The existenpebafmps solutions for
any 1< p<n could follow from a unique proof. However, since much more intuitive
arguments work fine for the single-bump solutions andrtfimps solution, we treat
them separately. In fact, the main difficulty is not really to distinguish the various
type of solutions but rather those with the same number of bumps. For single-bump
solutions, this is easily done as minimization arguments can be used to single out
local minimizers in disjoint subsets &,. Section 3 deals with the existence of those
local minimizers. Solutions witlp bumps, 2 p<n — 1, correspond to critical values
between the smallest energy of the minima and the energy oh#hemps solution.
However, these critical values are not necessarily ordered according to the number of
bumps of the associated solutions. Nevertheless, a partial ordering holds,, laetd
up be two families of solutions with limit support im, and w, C w,. Then for u
large enough, the energy af, is larger than the energy of,. We considemp-bumps
solutions (X p<n—1) in Section 4. Here, the only use of classical minimax theorems
is not sufficient to our purpose. In order to distinguish the solutions, we need a careful
analysis and a localization of the deformation along the lines of the gradient flow
used to obtain the desired minimax critical values. Basically, we identify disconnected
regions from which these deformations cannot escape. At last, in Section 5, we prove
the existence of ar-bumps solution using a quite standard minimax principle. This
n-bumps solution has the greatest value of the energy among all the solutions we get.

2. Preliminary results

We first complete the description of our functional framework. To this end, we endow
H3(Q) with the usual inner product

(u, v) ::/ VuVvdx
Q

whose associated norm we denotellpy := [, |Vu(x)|*dx]*2. Throughout the paper,
orthogonality is understood in the sense of this inner product.

2.1. The manifold®,

The following lemma gives the basic properties Bf, and introduces a convenient
projector on this manifold.

Lemma 2.1. The set®B, defined from(1.5 is a non-emptyweakly closed and arc
connected manifold irHol(Q). Further the functionQ, defined ondom Q, = {u €



D. Bonheure et al. / J. Differential Equations 214 (2005) 36-64 41

H}(Q) | V() > 0} by
(Qun)(x) = [V ()] 72u(x)

is a continuous projector of,,.

Proof. Claim 1: The setB, is non-empty Consider a function: e H&(Q) such that
u>0,u #0 and supp C Q4. Then V,(u) # 0 so thatQ,u € B,,.

Claim 2: The setB, is weakly closedThis is a direct consequence of the compact
imbedding of H3(Q) into L7+2(Q) and the continuity ofV,.

Claim 3: Q, is continuous This claim follows from the continuity o¥V,.

Claim 4: The setB,, is arc connectedLet us first consider two functionsg,, uz € B,
with support in the same seb;. Each of them can be connected to its positive part
since the paths, := (u;)+ — s(u;)— are in Y, for all s € [0, 1]. Then, the function

=1 =)Dy +s(u2)+

is such that 1
Vi) 2 = )

for all s € [0, 1]. It follows that Q,¢; € B, for all s € [0, 1].
If uz, up € B, have supports in different sets;, then the path

1

1
2

st (L—5)"2uy + s 2up
stays in®B, for all s € [0, 1].

Now, to complete the proof, we only need to show that arin B, can be linked
by a path in, to somev with support in one of thé;. Observe that we necessarily
havea,u; # 0 in somew; with i € (1,...,n). Hence, we can choose an open set
wo in such a way thaitog C w; and for somed > 0,

1>/ s (x )“+ (")d >5>0 and (@, (x) — pa_(x))“ + (")d >0.
o Qo

Next, we define a smooth functidn: [0, 1] x 2 — [0, 1] such that

1 if x € o,
h(“)—{l—s if xcQ\ .

Then we compute
742
Vulh(s, Ju()) = | (a4(x) — pa—(x)) L2 gy
Q "

>0+ (1— s)”}’+2/ (a4 (x) — pa—(x)) 112 dx>9.
Q\wog
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Now, observe that (1, -)u(-) has support irto; and the path

s Quh(s, Ju(.))

stays in®B, for all s € [0,1]. O

2.2. Equivalence with the constraint problem

It is clear that positive solutions ofL(1) can be obtained from rescaling solutions of
the constraint probleml(7). As our main interest in this paper is to obtain multiplicity
results, we check next that different critical points bfconstrained by, lead to
distinct solutions of 1.1).

Lemma 2.2. If uy, up are different critical points of J in®,, then there exist
A1, 2 > 0 such thatv; = ii/"ul and vy = Z;/Vuz are two distinct positive solutions
of (1.2).

Proof. Let u; and up be different critical points of) in B,. The existence of the
Lagrange multipliersiy, A2 follows from standard arguments and, as already observed,
we have

llui 12

)\,':
1 ’))+2

>0, i=12

Supposevy = vy, i.e. u1 = (J2/21)Y"us. We compute then

12
A2

V(1) = (7>  Vulu).
L1
As uy, up € B, we deducel; = /2, which contradicts the fact that; # up. [

2.3. The functional J

Many of our arguments in the proof of the main theorems rely on an analysis of
the functionalJ for functions with support in thep;’s. The following lemma is such
a result.

Lemma 2.3. The functional J has a non-negative minimdmon each of the disjoint
manifolds

B = {ueB,|suppuCcam), i=1...n (2.1)
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Remark 2.1. Notice that the set§3,- and the functiongi; are independent oft since
they only involve functionau so that supp C ;.

Proof. As 8B; is weakly closed and is coercive and weakly lower semi-continuous,
we can minimizeJ in each manifoldB; and obtainn distinct non-trivial minimizers
u; € B;. These are non-negative. Indeed, if such a minimizes such that(i;)_ # 0,

we have(i;), € ‘iii and J((&;)+) < J(u;) which is a contradiction. [J

We consider the gradient of constrained taB,,

(VJ (), VVyu(u))

Vi (u) = VJ(u) - 1V V()2

VV,(u). (2.2)

It is well known that the Palais—Smale condition holds for this gradient. For complete-
ness, we present here a proof of this property.

Lemma 2.4 (The Palais—-Smale conditipnLet J and V, be defined from(1.6) and
(1.4). Let (v,), be a sequence i3, so that

Hl
J(y) = c1 and V,J(v,) 20,

whereV, J(u) is defined in(2.2). Then there exist a subsequeneg;); andv € H(}(Q)
such that

Hl
Uy —> v, J() =c1 and V,J(v) =0.

Proof. There existv € H&(Q) and some subsequence still denotegl), such that

1 24y
0 L2+
v, —v and v, — v.

Let V,J (vy) = VJ(vp) — 4, VV,(v,) and compute

127 (vy,) — ;bn(“/ +2)| = (VJ(vn), vn) — j~n<vvu(vn), Un)|
< VI (vn) — ;anvu(vn)” lv.ll = O

so thatl, — % Next, we notice that

(VJ(vn),v)zf anVvdx—>/ |Vv|?dx
Q Q
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and
(VVi(vn), v) = / (as — pa_yoltvdx — /(a+ —ua ' tPdx=y+2
Q Q
so that
(VI (Un), v) = 2n(VV(vp), v) = 2J(v) —2¢1 = 0.

. o HE
As a consequencd (v,) — c1 = J(v), i.e. |lv,]l — |lv]l. This implies v, -2 v,

2
VY (0y) 2> V,J (v) and V,.J (v) = 0. O

2.4. Decomposition off}(Q)

The solutions we are interested in are near multi-bumps functions, i.e. large within
the setQ; and almost zero oM2_. It is then natural to decompose such a function
as a sum of a multi-bumps function and some small perturbation. Using this idea, we
introduce the following orthogonal decomposition Hﬂ(Q). Let H :={u € H&(Q) |
suppu C Q.} be the space of the multi-bumps functions a@fd= (H)" its orthogonal
complement. Given: € H&(Q), we define theri € H from the following lemma.

Lemma 2.5. Letu € H&(Q). Then the problem

/ Vu(x)Ve(x)dx :/ Vu(x)Vo(x)dx for all ¢ € H()l(Q+)
Q. Q4
has a unique solutio € H. Further the function

R:H}Q) — HCH}Q),u+— Ru=1u

is a continuous projector for the weak topologiés.

1 1
Hy . . —  Hy —
u, —u implies Ru, — Ru.

Also, we have
J(Ru) < J (u). (2.3)

At last the functionii := u — @ is in H and satisfies

/ Vi(x)Ve((x)dx =0 for all ¢ € H}(Q). (2.4)

Qy
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Proof. Existence and uniqueness of the solufioa Hol(m) follow from Lax—Milgram
Theorem. Next, we extend by

ux)=0 if x e Q\ Q.

It is clear thatu e H. Further, it also follows from Lax—Milgram Theorem that
depends continuously om e H(Q).

Notice then thati = u —u € H since

/ VuVidx = / VuVidx = / Vu(Vu — Vu)dx = 0.
Q Q. Q.

We also have2.4). To proof @.3), we compute

/|Vu|2dx=/ |sz|2dx+/ |Vi|? dx,
Q Q Q

which implies J (Ru) < J (u).

To complete the proof we check the continuity Bffor the weak topologies. Let
1

H
(up)n C H(}(Q) be such thaty, 2y and writeu,, = u, +u, andu = u + u, where
it, = Ru, andu = Ru. We know that for anyp € H}(Q;) we have

/ Vﬁ(x)qu(x)dx:/ Vu(x)Ve(x)dx
Qy

Qy
and

/Vﬁn(x)VQ(x)dx:/ Vu,(x)Ve(x)dx.
Q. Q.

_— Hg(Q4) _
Hence, the weak convergence of the sequeqgg, implies u, o u, that is
Hl
u, 2. O
Let us write

A uﬁr+2(x)
V(M) = Q+ a_,_(x)yT dX
and denote for any > 0, the ball

B, = {ueVBy|lull <r}.
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The following lemma controls’ ) if u € B, , and u is large enough. Notice that in

this Iemma\7(ﬁ) depends oru from the fact that we choose in the set®B, , which
depends on this parameter.

Lemma 2.6. Let r > 0 and ¢ > O be given. Thenfor all © > 0 large enough and
ueB,,,

Vi) =>1-—e.

Proof. Let r > 0 ande > 0 be given and defing > 0 to be such that
A+n?1-¢ <1

If the claim does not hold, there exist sequenegs);, (uj);j C %Mj,, such that
lim u; = +oc0 and

j—o00
N 1 _ 42
v(uj)z},+_2/Qa+(uj)jr dx <1—c¢,

for j large enough.
As the sequenceéu;); is bounded inH(}(Q), going to subsequence we can assume

1
Hy
uj—\u

and therefore using Lemma5 we infer that

_ Hg | _ L%
wj—u and u; — iu.

Claim 1: i, (x) = 0 a.e. inQ_. We compute for som& > 0,

1+uj/Q a_ (i) dx 1+uj/Q a_(uj)? dx

It follows that
/ a_ﬁ3_+2dx = lim f a_(ﬁj)fzdx =0
Q_ J70JQ_

and asa_(x) > 0 in Q_, the claim follows.
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Claim 2: i, (x) = 0 a.e. in Q. As Q. is of classC!, we deduce from Claim 1
that iy € H(}(Q+) (see[10, Chapter 1-8.3] Further, using Z.4) and the maximum
principle (se€[8, Theorem 8.1)] we obtain sup: < supu <O0.

Q4 0Q4

Conclusion:Notice that

(uj)+ < @)+ + @j)p < maxd+m@;)4, (1+ 1)(uj)+}

so that
WP <A+ 2@+ @+ H2a

It follows that
+2 1p)1+2 ") (142y+2 Y 42
1< ,+2/Qa+(u,)* x<(1;+)2/9 a (@) dx + =i Qa+(u,»)i dx.

Using Claim 2, we obtain then the contradiction

A2
1< T2

Iim / a+(ﬁj)i+2 dx<(1+ ;7)V+2(1 —¢) < 1 O
- JQ
2.5. The nonlinear simples®

Let i; be the local minimizers of in ﬁs,- defined by Lemm&.3 and consider the
nonlinear simplex

n 1
S = {M: Sl.H-zﬁi |(S1,...,Sn)€A}C%ﬂ’

where

A::[(sl,...,sn)eR’i|Zsi:l}.

i=1

We can evaluatd along functions of& and introduce

1 2
(s)—J<Zs 20 ) Zs 2 J@bi), s eA. (2.5)

Notice that the se® will be a key ingredient in the minimax characterization of the
multi-bumps solutions as the geometry fodbn A is a good model of the geometry of
J on B, for large u. The following lemmas study this geometry. As their proofs are
elementary we omit them.
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Lemma 2.7. The functionf : A — R defined from(2.5) is such that the apexes
(1,0,...,0),...,(0,...,0,1) of A are strict local minima of .f

Lemma 2.8. LetE := {i1, ..., ix}, 2<k<n, A i={s = (s1.....50) € RE [ Y5 5 =

1} and leti; be the local minimizers irﬁ?i defined by Lemma&.3. Then the function
fE : Ay — R defined from

ko 2
fe(s) = s T (@)

j=1

has a unique global maximume at some points* = (s7,...,s;) € 4; such that
s;‘ >0forall j =1,...,k. Further, if F % E, thencp < cg.

2.6. Projection onS

The following lemmas define a continuous projector on the nonlinear sintpléxat
increases the energy as little as we wish.

Lemma 2.9. The mappingR, : H3(Q) — H(Q), defined by

Ryu := Qu((u)+),
is continuous. Further it > 0 and § > 0 are given then for u > 0 large enough and

ueB,,,

J(Ryu) <J(u) + 0. (2.6)

Proof. Notice that the mapping € H&(Q) —> uy € H&(Q) is continuous. This follows
from [8, Lemma 7.6] The continuity ofR, follows.
To prove @.6), we first fix r > 0 andd > 0. Next, we choose € ]0, 1/2] such that

Crie
2

ga’

whereC > 0 verifies(l—t)_% <1+Ct for r €10, 1/2]. From Lemma2.6 we know
that for 4 > 0 large enoughy ((w)+) = V(u) > 1 — ¢. Recalling that

J(@)4) <J@) < J (u)

we compute

TRty = V(@) 72 (@) <A+ Ca)J ) < Jw) + 2 <T@y +6. O
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For the next lemma, it is convenient to define the local constraints

742
uy (x)

\71(14) ::/ a4 (x) 2 dx.
o;

These are such that if € B, and supp C Q. then
V) = V(u) = Z Vi) = 1.
i=1

Lemma 2.10. The mappingP, : H}(Q) — S C H(Q), defined by

n
~ 1.
P =Y [Vi(Ruu)]72il;,
i=1

where u; are the local minimizers irii},-, is continuous. Further ifr > 0 and o > 0
are given then for u > 0 large enough and: € B,

J(P) < J (u) 4 9.

Proof. Clearly, P, is continuous.
We next denote the local componentsRyfu by R;,u := (Ryu)y,,, , wherey,, is the

characteristic function of the set;. Wheneverf/,-(RHu) # 0, we haveQ,R;u € ﬁ%i
and therefore/ (Q, R;,u) > J(i;) or equivalently

A 2
J(Ripu) 2 Vi (Ruu) 72 J (it;).

We now come out with the estimate

n n R 2
J(Ruw) =" J(Rigu)= Y Vi(Rat) 2 J (ki) = J (Puu)
i=1 i=1

and the proof follows from Lemma.9. [

3. Single-bump solutions

In this section, we prove the existence of positive solutions that concentrate mainly
on a single domainw;. To obtain such solutions we penalize in some sense the
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action in the otherw;’s by assuming that the contribution to the constraint mainly
occurs inw;.

Theorem 3.1. Let AssumptiongH) be satisfied. Then for eveliy= 1, ..., n there is
a family of positive single-bump solutions @f.1) with limit support in®;.

Proof. (1) Existence of n positive solutiariset iz; be the minimizers defined in Lemma
2.3 From Lemmaz2.7, we can choosey,...,p, € [%, 1] and 04, ...,0, > 0 such
that for alli =1,...,n ands € A with s; = p;,

f(sla"'vpiv"‘9sn)>J(ﬁl‘)_‘_gia

wheref is defined by 2.5), and

fs) > J () (3.1

for any (s1,...,s,) € A with s; € [p;, 1[.

We fix thenr = max J(i;) + 1, 6 €10, min; 6;[, and ug > O large enough so that
the conclusion of Lemma&.10 holds for 1> ug. Define then for eacti = 1, ..., n the
sets

Fip = {u € By | Vi(Puu) = Vi(Ryu) = p;)

and notice that since; >§, these sets are disjoint.
As in Lemma2.3 we can prove thal has minimizersy;, in each set{;,. This
implies
J (i) < J(W;). (3.2)

Assume now thav;, € 0%y, i.e. f/,-(P#v,-u) = p;. We deduce from Lemma.10 the
estimate

J(Puvip) <J (i) + 0;.

Now, observe that there existse A with s; = p; such that
nooo 1
Pﬂvi“ = Z S;+2LAtj.
j=1

Hence
J(Puvip) = f (51,0, pjs vy Sp—1) > J (i) + 0;.
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We deduce then that
J i) = J (Pyvig) — 0; > J(i;)

which contradicts the fact that;, is a minimizer. It follows thatv;, is in the interior
of &ix so thatv;, is a critical point ofJ in B,. Solutions of {.1) are then obtained
from rescaling as in Lemma.2

(2) Claim: v;, is a family of single-bump solution with limit supportis. We write
Vig = Vip + Vi, Wherev;, H and Viy € H. It follows from (3.2) that the family
{viu | ©= e} is uniformly bounded inH(}(Q). Hence the family;,, has cluster values
for the weak topology inH&(Q). Let v be such a value, i.e. there exists a sequence
(viuj)j with fj —> 00 SO that

Hé‘ L2+
vig; ~ v and v, — v.

We deduce from Lemma.5 that

Hence, we have

24y 24y
_ L7 ~ L ~
Vip; —> ¥ and Vi, — 0.

Arguing as in Claim 1 in the proof of Lemma.6, we infer thatu(x)<0 almost
everywhere inQ_. As

_ " L2+y N
Uiﬂj = Ui,uj — viﬂj —> UV —UV

we deduce that G= v(x) — v(x) >v(x) almost everywhere if2_. Notice also that
viﬂj>o for anyj so thatv(x)>0 almost everywhere if2. Consequentlyy(x) =
v(x) = 0 on Q_. Arguing now as in Claim 2 in the proof of Lemma6 (with v
instead ofii,), we obtaini(x) = 0 on Q so thatv = v € H. We also have for any

A A’, 2
Vi) = V() = ,J%Z /;2a+(x)v++ (x)dx.
On the other hand, we have the estimate

V2 y2
7o /Q a4 () (Vi) ) dx = 1+ /Q pja— () i) () dx>1
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so that

V() = _) ulrgfga+(x)(vzu )’+2(x)dx>1.

Observe tha,v = [V(v)]_vﬁv is independent of: so thatQ,v € B, for any u > 0
and

A2
J(Quv) =[V()] m2J ()< J(v).
We now deduce from the lower semi-continuity bfand @.2) that

JQu) KT lim T (i) <J (@) (3.3)
Jj—>00

Assume by contradiction that the supportwfs not included inw;. Hence, we have
for somek # i that ;v # 0, wherey, is the characteristic function of the sei;.
From the definition ofP, we computeV; (P viy,) = Vi(Ruviy,) SO that

Pi <‘A/i(PuUi,uj) = ‘,}i(Ruviuj) = ﬁ/‘ a+Q,u((ii,uj)+)y+2dx
w;

and

Vo) S et tde R
5 = V2 = lim +2/ a+Q,u((Ui/zj)+)' dx > p;. (3.4)
V(v) fQ+ ayvy “dx o 7 J o
V(z,v) : : .
As furtherZ =1, using 8.4) and @.1) we obtain the estimate
V(v)

j=1

whereF ={i =1,...,n| yv # 0}. This contradicts3.3). O

4. Multi-bumps solutions

We already know that there exist families of positive single-bump solutions. We
prove in this section that for anywith 1 < p < n we can findC? families of positive
p-bumps solutions of1(1). For that purpose we introduce the following notations.
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Let us fix p of the functionsi; defined by Lemma2.3. To simplify the notations,
we assume that these functions are numbered in such a way that they correspond to
il1,...,4,. We denote byE = {1, ..., p} the set of corresponding indices. Define then
the corresponding nonlinear simpl€ constructed on the functioa, ..., i,

P 1
yTZA
Cg = u:Zsj ijl(sy,....sp) €Ayt
=1

where 4, is defined in Lemma2.8. It follows from this lemma thatl has a unique

global maximum on&g at some interior pointw = (sf)v%ﬁl + ...(s;‘;)v%ﬁp. We
therefore expect, for large, the existence of a critical point dfin B, whose projection

in & is close tow. The corresponding solution would define a family of positpre
bumps solutions. In order to obtain this, a standard tool would be a general minimax
principle. Define the class

He :=1{h € C(SE, B,) | Yu € Gk, h(u) = u andVu € Sg, J (h(u)) < J ()}
which can be seen as the class of continuous deformatiodg®f which fix

P
0@p:=qu=Y s/7d;|s=0 forsomei=1...,p (4.1)
=1

and decrease the energy. It is then rather easy to check that the minimax value

inf max J(h(u))

heH ueSg

is a critical value ofJ in B, if u is sufficiently large. This follows from a general
linking theorem, see e.d15]. However, it is not clear that for different seks this
minimax characterization produces different critical points and even that the correspond-
ing solutions argx-bumps solutions. This comes from a lack of information about the
localization of the critical points. To overcome this difficulty, we base our approach
on deformation arguments and localize the deformation along the lines of the gradient
flow.

In the next lemma, we identify disconnected regions where the gradiedtcoh-
strained to®B, is bounded away from zero. As in Lemn2a8, we write cp = J(w),

1
where w = Zj.’:l(s;‘.‘)mﬁj is the maximizer ofJ on the corresponding nonlinear
simplex Sg, and we define fop €]0, 1/4[,

Cu(p) :={u e B, | Jw)<cg and
Vi=1...,p, s5i=Vi(Ruu)=p, |s;i —s}|=p}.
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Lemma 4.1. There exists) > 0 such that for anyu > 0 large enough and alk €
Cu(p), IVud ()|l =0, where

(VJ (), VVy(u))

Yl W =V =gy

VVu(u). (4.2)
Proof. Let us assume by contradiction that there e)@@t)j CRand(u;); C (Euj (p)
such that

lim u; =oco and ,ETO IVi; J ()l = 0.

j—o00

As the sequenceéu;); is bounded inH&(Q), going to a subsequence if necessary, we
can assume there existse H&(Q) such that

H& L2+'f
uj—u and wu; — u.

We introduce now the manifold
B = {u e H&(.Q) | suppu C §+, ‘7(“) =1},

which is such that ¢ B, for any u > 0. We denote the tangent space‘iBoat u by
TM(QAB) ={ve H&(Q) | suppv C §+, / a+u1+lv dx = 0}.
Q

Claim 1: (VJ(u),v) =0 for all v e TM(@). Letv € TM(QAB). We first observe that
we can choose,; such thatv — Z;u; € T,;(By,), where

Tuy () i= v € B@ | [ (@ = pap s =0)

is the tangent space tﬂ%uj at u;. Indeed, asv is supported inQ, we just need to
take

1 7+1
j = VTZ Qa+(uj)i:_ vdx.

24y A
We then notice that since;) i uy andv € T,(B), we have

/a+(uj)1+lvdx — / a+ui+lv dx =0.
Q Q
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Hence, we deduce thédt; — 0. Computing

(VJ(u), v) =/ VuVvdx
Q

=/(Vu —Vuj)Vvdx+f Vu V(v —)Ljuj)dx+/1j/ |Vuj|2dx
Q Q Q
and using the fact that

H
wj—u, v—2Ajuj €Ty (By), VyJwuj)—0 and i; -0,

the claim follows as
f (Vu —Vu;)Vvdx — 0,
Q

/ Vu;V(v—2Ajuj)dx = (V#jJ(uj), v—Ajuj)—0
Q

and
)vjf |Vuj|>dx — 0.
Q

Claim 2: u € H so thatu = u. We write u; = u; +i; andu = u + i, where
u;, ueH andii;, it € H. We first deduce from Lemma.5 that

_ Hy _ . Hg |
uj—u and u; — i

so that
L2ty L2+

u; —u and u; — u.

The arguments of Claims 1 and 2 in the proof of Lem&&then imply thatiz, = 0.
Let us prove thaii_ =0 a.e. inQ_. Since

lim Vi, J )]l =0,
J—>00
and (u;)_ € Tuj(%ﬂj), we deduce that

/Q|V(uj)_|2dx = (Vi J(u)), (uj)-) — 0.
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This means(x;)— — 0 in H&(Q) and thereforeu_ = 0. This in turn implies that
i_(x)=0 for a.e.x € Q_. It follows thatu is supported inQ, which means: € H.

Define w; := y; u, where y; is the characteristic function of the sef;, and let
F:={i=1...,n|w #0}. Observe thatw; 0 for all i =1, ..., p. Indeed, this
follows from the convergence of; in L?t7(Q) and the definition of,(p). Changing
the order of the indices of the subdomaing’s for i > p if necessary, we may
assume without loss of generality that = {1,2,...,m} for some p<m<n. Next,
we introduce the function

P(s) := Z S; Q,uwz € %

wheres € A, andA,, is defined in Lemm&.8. Observe thaiQ,w; is independent of
u since thew;’s are, rgspectively, supported ;. We also defines to be such that

=) — o V) -
¢G) = Quu, i.e.s; = TR and we write

2

g(s) = J(§(s) = Z s T(Quwi).

i=1

Claim 3:Vi € E = {1,...,p},5;2p and [5; — s*|=p. This follows from the
convergence ofi; in LZ77(Q).
Claim 4: V(1) >1. For all j € N, we have

V(uj):/a(u,)’Jrz x:l—i—/uja_(uj)fzdx)l.
Q Q

Using the convergence of; in L?%7(Q), we deduce thaV (u) = / a+uf2 dx>1.

Q
Claim 5: g(s) = J(Quu) <cg. Using the convexity ofl and the weak convergence
of the sequenceu;);, we can write

cp= lim Juj)>J(w).
j—oo
It then follows from Claim 4 that

J(u) = V72 ) T (Quun) = T (Que).

Claim 6: g(5) < max g(s). In casem > p, we have

sedy

L
2 g

g&)= > s = fr(s)

m
i=1
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and therefore we infer from Lemm2.8 that

max g(s)=cp > cg = c2g(s).

SEA,

On the other hand, ifn = p and for someip € E, J(Quwiy) # J(il;y), we have

2 2

p 2 2

g&)= Y s/ PTG + 557 (J(Quwig) — T (ig)) = fr(s) + 5.7 (J(Quwip) — J (fiig))
i=1

where fr is defined in Lemm&.8, and

Yne"lgx g(s)=c+ (S?O)V%(J(Quwio) — J(lip)) > ¢ >g(5).

At last, if m = p and for alli = 1,...,m, J(Quw;) = J(@;), theng(s) = fr(s) so
that the claim follows from Claim 3 and Lemn#al as [s; — s[> p.

Conclusion:As ¢(s) € B, we deduced’(s5) e T¢(S)(ﬁ3), and it follows from Claim
1 that

§'G) = (VI(@G)), ') = (VI(Quu), §'(5)) = 0.

Since the only stationary point af is its maximum, this contradicts Claim 6]

We now turn to the proof of the existence 6ff families of positive p-bumps
solutions of (.1) for any p with 2<p<n — 1.

Theorem 4.2. Let assumptiongH) be satisfied. Let» = w;, U. . Vaw;, with 2< p<n—

1. Then for u sufficiently large there exists a family of positive p-bumps solutions of
(1.2) with limit support in®.

Proof. Choice of r:For any setF = {i1, ..., iy} with 2<k <n, we define from Lemma
2.8 the pointwr which maximizesJ on the set

k 1
72 A
SF = MZZSj @i; | (s1,...,86) € Ar
=1

where

k
Ak:: (Sl7""sk)€Rk+|ZSj=l
j=1

We choose them > 0 to be such that the neighbourhooBiéwr, 2r) do not intersect.
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Choice of p: Consider nowp setsw; and assume these are numbeted..., w,.

Define

p

w = U wj.

i=1

Let #ig, ..., 14, be the respective minimizers as in Lemi23. We then denote by
1 1

the nonlinear simplex withE = {1, ..., p} and bywg := (s7) 721 + ...+ (s;)mﬁ,,
the point which maximized on Sg. We write cg := J(wg) and we fixp €]0, 711[ in
such a way thau € B, andr <||P,u — wg|| <2r implies that for alli = 1,..., p,

we haves; = V;(Ruu)>p and|s; — s7| > p.

Claim 1: There exists > 0 such that for allu > 0, if u, v € B, satisfy J(u) <cg,
J()<cp and [lu — v| <s, then || Pyu — Pyol|<r. If the claim is false, there exist
(w)n C RY, (uy)n C B, and (v,), C By, such that] (u,)<cg, J(vp)<ck, llup —
vnll — O and|| Py, u, — Py, vall=r. We then infer up to a subsequence that

Hy H} 24y 24y
0 0 L L
Uy —u, v, —u, u, — u andv, — u.

On the other hand, we also have

_ Hg _ _ Hy_ g2 L
Uy —u, gy —u, (Up)y —> (U)+ and W)+ — @)+

Hence, we deduce that

L2ty 1 _ L2+ 1 -
Ry, un — —— W) and Ry vy — —— ().
V((@)+) V((@)4)

This in turn implies that for any = 1,...,n, V;(Ry us) — Vi(Ry va) — 0O so that
finally || P, un — Py vl — O which is a contradiction.

The setQ: Let 0 be given by Lemmat.1 and definey > 0 to be such that2< %
and

Yu € Sg \ B(wg,r), Ju) <cg—1.

We also choose €10, y] and¢ > 0 small enough to verify

2
1—(—ple)*tecgzcg —y

and

2 . N

7+2 min  J(i1;) > cg + 6.
i=p+1,.n

2
1—(m—pe)t2cg +e
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Let us write

[QR
I
=
I
U
I
Nl
S

[
+
o

I

N
5)
o
V
o
L
V
o
U
+
o
1
o

0 =ueS| max §<el,

00 ={ueS| max § =g}

Notice that ifu € 80, we can compute

2 " 2
JW) =§72¢cg + Z §,~’+2J(12i)

i=p+1 (4.3)
2 2
>(1—(m—p)e)*2cg+e*2  min Jw;) >cg+0
i=p+1,...n
and if u € 0, we have
2
Jw)=1— (n— p)e)*2cp =cg — . (4.4)

Choose nexjiy > 0 large enough so that Lemn2al0 applies (withr = cg +1 and
0 as above) and so that Lemmal holds. From now on we assume> ug.
The deformationConsider the Cauchy problem

Vi (1)

—— T _
1 T vl

1n(0) = uo. (4.5)

where Vv, J(u) is defined in 4.2) and ® : R — [0, 1] is a smooth function such that

0 if r <cop,
PO =11 g, @FCETT
2
1
where cg := max{(J(w) | u = Y01 s/, (s1....,5p) € A, and Is; = 0}. The

problem &.5) has a unique solution(-; ug) defined onR and continuous in¢, uo).
Claim 2: For all t>0 and ug € Sg, J(Pu(n(t; uo)) <cg + 6. To prove this claim,
we have to notice that

J(1(0; ug)) = J(uo)<ck
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and J decreases along solutions @f.%) as

[V d (n(t; uo)) |I?
L+ Ve (5 uo))ll

d
77 (1t u0)) = —P(J (5(r: uo)))

It then follows using Lemma.10 that
J(Pu(n(t; u0))) < J(n(t; uo)) + 0<cg + 0.

Claim 3: For all 1 >0, there existat, € Sg such thatP,(n(t; u;)) € 0. Let us write

n i
Pu(n(t; u)) = ) v/t un)iy
i=1

_yhy [(w u»)

i=1

~ (5] )}
1

1 n 1
ST 2. -
+Y " Pwp + E yi (s i,
i=p+1

P
whereY = Z vi(t;ug). Itis clear thatP,(n(t; u,)) € € if and only if
i=1

filtt,u) = yi(t;u) —Ysf =0, i=1,...,n (4.6)

It follows now from a degree argument (sg& Lemma 1.2) that there exists a con-
nected set C Ry x &g of solutions(z, u,) of (4.6) so that for allz >0 there exists
u, € Sg with (¢, u,) € 2. Hence the set

= (Put;u)) | t,u) e Xy €

is connected. As(O, wg) is the only solution of 4.6) with + = 0, we know that
P,(n(0; wg)) = wg € Q. Also, it follows from @.3) and Claim 2 that there is no
(t;u0) € X so that P,(n(t; uo)) € 8Q. Hence, the connected sét is in Q which
proves the claim.

Existence of a Palais—Smale sequelicg),: From the preceding claim, we can find
a sequencéu,), C Sk so thatP,(n(n; u,)) € 0 and using 4.4) we have

J(Py(n(n; up))) Zce — .
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A subsequence(u,,); converges toug € &g which is such that for allz>0,
J(Pu(n(t; uo))) =ceg — . Hence

J((t; u0)) 2 J (Pu(n(t; u0))) —0=cp —y —0=cp — 2), (4.7)
which implies that there exist somg and a sequencg,), with t, — oo such that
J(n(tn; uo)) — c1

and

IV (1t u0))|I?

1% ns

Vud (1t ) — O.

Hence, we can chooss, := #(t,; uo).

Claim 4: We claim that for all n||P,(v,) — wg|| <2r. Suppose the claim is false.
In this case, it follows from the definition of that P, ((0; uo)) = uo € B(wg,r).
Therefore, we can findy, r, > 0 such that

| Pu(n(t1; uo)) — well =r, [|Pu(n(t2; uo)) — well = 2r
and
r <[ Pu(n(t; uo)) — well <2r
for all ¢ € [r1, 12]. It follows from Claim 1 and the definition of the deformation that
2 — 11| = lIn(r2; uo) — n(t1; uo)ll = .

On the other hand, usingd(/), we havecg — 2y<J((t; ug)) <cg which implies
|J (n(t2; ug)) — J (y(t1; uo))| = 2y. Further, we infer from the choice ¢f that#(zs; ug) €
C.(p) for anyt € [11, 12]. Using

2|V, ((s; uo) |12
J (n(t2; u0)) — J (n(ty; =
|J (n(t2; uo)) — J (n(t1; uo))| /tl 1+ Ve d (n(s; uo) |
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we deduce then from Lemmé&.l that

2 2

S
—tp— 11| >,
1702 =1

2y >

which contradicts the choice of

Conclusion: Since we proved in Lemma.4 that the Palais—Smale condition holds,
there existv, € S, and a subsequence we still denote (by), such that

vy = vy, Vd () = Vi J(vy) and V J (v,) = 0.

To complete the proof, it remains to show thaf, | u> ug} is a family of p-bumps
solutions with limit support inw. Let v be a cluster value for the weak convergence
in Hol(Q), i.e. there exists a sequence;); C R* such that

Hl
pj — 00 andv# 2.

Arguing as in the proof of Theorer.1 we infer thatv is positive and has support

in Q. It also follows from Claim 4 thatP, v,, € B(wg,?2r) for anyj. We claim
Pyvu, — wg as j — oo. Otherwise, there exist > 0 and a subsequenge, such

that Vu;, € (Sﬂ (p) for any k but then foru; large enough Vﬂ J(Uu ) # 0 by
Lemma4.1 On the other hand, using by now familiar arguments it ‘can be checked
that

1
no/o 752
Vitw)\ ™ .
Pﬂjvuj — E —
S \V)

We therefore conclude that;(v) # 0 for i € E and V;(v) =0 for i ¢ E so thatv is
a p-bumps function with support im. This completes the proof.[J

5. A n-bumps solution

We have proven in the preceding sections the existencé ef 2 positive solutions
of (1.1) for sufficiently large u. Indeed, the families of solutions we obtained have
different limit supports so that they certainly differ for large In this last section, we
state the existence of a solution whose energy is greater than all the previous ones.
For that purpose we consider the class

—(heC(S, B, | YuedS, h(u)=u andVu € S, J(h(w)<J W)},
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where 0& is the boundary ofS defined as in 4.1). We then define for each the
minimax value

Cp =

inf max J(h(u))

heH ue

and claim that, is a critical value ifu is sufficiently large. Observe that this minimax
characterization corresponds to the chakte- {1, ..., n} and the critical value defined

in Section 4. However in this case, the energy level of the solution allows to distinguish
it from the others.

Let wg be the point in& which maximizes] and writecg = J(wg). Let 6 > 0 be
such that

max J(u) + 20<cg.

uedS

Let u > 0 be sufficiently large so that Lemna10 holds with this choice o and
r = cg + 1. We then define the closed set

S=(ue B, | Py(u) =w and J (u) <r}.

We clairp thatS has the intersection property by which we mean that for exesyH ,
h(S)NES # @. Indeed, the functiorP, o i is a continuous deformation didg so that
for all u € 0S, Py(h(u)) —w =u —w # 0. It follows that

degPyoh —w,S) =deqldg —w,S) =1

and the claim easily follows as for evebye H and allu € S, J(h(u))< maxs J <cg.
We therefore deduce that the min—max vatyeis well defined as

max J (h(u)) = min J(u) > min J(Puu) — 6 = cg — 0.

ueo ue® ue®
Notice that foru € &, we have
Jw)<cg — 20

so that we easily conclude that is a critical value ofJ in 8,. Moreover,c, >cg —
0> max,_,z J(u)+9 so that foru large enough the corresponding solution is different
from any p-bumps solution with X p<n — 1.
It seems natural that the above minimax principle leads mebamps solution. How-
ever, this additional information requires a localization of the Palais—Smale sequence.

Using the arguments of Section 4, we can derive a precise result.
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Theorem 5.1. For u large enoughthere exists a family of positive n-bumps solutions
of (1.2) with limit support in Q.

Since the proof consists in slight modifications of the arguments used in the proof
of Theorem4.2, we leave it to the reader.

Remark 5.1. We would like to emphasize that our approach only requires the quadratic-
ity, the coercivity and the weak lower semi-continuity bfTherefore, the method can

be used for more general equations thanl)( One could add for example a linear
term —V (x)u in the equation provided that is above—/1(Q), the first eigenvalue of

—A with Dirichlet boundary conditions inf2.
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