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Abstract

Hierarchies of evolution equations of pseudo-spherical type are introduced, thereby generalizing the no-
tion of a single equation describing pseudo-spherical surfaces due to S.S. Chern and K. Tenenblat, and
providing a connection between differential geometry and the study of hierarchies of equations which are
the integrability condition of sl(2,R)-valued linear problems. As an application, it is shown that there exist
local correspondences between any two (suitably generic) solutions of arbitrary hierarchies of equations of
pseudo-spherical type.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The class of differential equations of pseudo-spherical type (or “describing pseudo-spherical
surfaces”) was introduced by S.S. Chern and K. Tenenblat [7] in 1986, motivated by the fol-
lowing observation (R. Sasaki [27]): the domains of generic—in a sense to be made precise in
Section 2—solutions u(x, t) of equations integrable by the Ablowitz, Kaup, Newell, and Segur
(AKNS) inverse scattering approach can be equipped, whenever their associated linear problems
are real, with Riemannian metrics of constant Gaussian curvature equal to −1. Chern and Tenen-
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blat called a partial differential equation Ξ = 0 of pseudo-spherical type if generic solutions of
Ξ = 0 determine Riemannian metrics of constant Gaussian curvature −1 on open subsets of their
domains (a precise definition is given in Section 2). An example of such a PDE is of course the
ubiquitous sine-Gordon equation [7,27,31].

The importance of this structure was recognized first in the realm of integrable systems: some
fundamental properties of equations of pseudo-spherical type, such as the existence of conserva-
tion laws, symmetries, and Bäcklund transformations, can be studied by geometrical means [3,
7,20–23,27,31] and moreover, equations describing pseudo-spherical surfaces are the integrabil-
ity condition of sl(2,R)-valued linear problems ([7,27] and Section 2 below) and therefore one
can try to obtain solutions for them using a scattering/inverse scattering approach [1–3]. More
recently [13,24] it has been realized that independently of their integrability properties, new an-
alytical results about equations of pseudo-spherical type can be found motivated by geometrical
considerations: inspired by the fact that two surfaces of constant Gaussian curvature equal to
−1 are locally indistinguishable, N. Kamran and K. Tenenblat [13]—and then the present author
[24]—have showed that if Ξ = 0 and Ξ̂ = 0 describe pseudo-spherical surfaces, there exists a
smooth mapping transforming a (generic) local solution u(x, t) of Ξ = 0 into a (generic) local
solution û(x̂, t̂ ) of Ξ̂ = 0. In some instances, but not always, one can even find an explicit for-
mula for û(x̂, t̂ ) in terms of u(x, t). Examples of explicit and implicit transformations appear in
[13,24,25].

Now, an aspect of the theory of integrable systems which appears to have been little studied
from a geometrical point of view is the fact that, as stressed, for instance, in the treatises by
Faddeev and Takhtajan [9] and Dickey [8], evolution equations ut = F which are the integrability
condition of a nontrivial one-parameter family of linear problems

vx = Xv, vt = T v (1)

(in which X and T are, say, sl(2,R)-valued functions of u and a finite number of its derivatives
with respect to x) are members of infinite hierarchies of evolution equations uτn = Fn possessing
the following features:

(a) the flows generated by the equations uτn = Fn commute, and
(b) each equation uτn = Fn is the integrability condition of a nontrivial one-parameter family of

linear problems of the form

vx = Xv, vτn = Tnv,

that is, the equations uτn = Fn share with the given equation ut = F the “space” part of their
associated linear problems.

One wonders if these observations have counterparts in the class of equations considered by
Chern and Tenenblat: Can one define hierarchies of evolution equations describing pseudo-
spherical surfaces so that these “hierarchies of pseudo-spherical type” possess characteristics
(a) and (b)? If so, can one generalize to this new setting the correspondence theorems between
generic solutions of single equations of pseudo-spherical type found in [13,24]? This paper is
devoted to answering these two questions. Some basic aspects of the theory of equations of
pseudo-spherical type are recalled in Section 2. Then, hierarchies of pseudo-spherical type are
introduced in Section 3, and it is shown that they do satisfy (a) and (b) above. Finally, it is proven
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in Section 4 that indeed there exist correspondences between (suitably generic) solutions of any
two hierarchies of equations of pseudo-spherical type.

Some of the results appearing in this paper were announced at the 2000 NSF–CBMS Confer-
ence on the Geometrical Study of Differential Equations [23] and more recently in [25].

2. Equations of pseudo-spherical type

Definition 1. A two-dimensional manifold M is called a pseudo-spherical surface if there ex-
ist one-forms ω1,ω2,ω3 on M that satisfy the independence condition ω1 ∧ ω2 �= 0, and the
structure equations

dω1 = ω3 ∧ ω2, dω2 = ω1 ∧ ω3, dω3 = ω1 ∧ ω2. (2)

If M is a pseudo-spherical surface, it is a Riemannian manifold equipped with the metric
ds2 = (ω1)2 +(ω2)2, the differential form ω3 is the corresponding torsion-free metric connection
one-form, and its Gaussian curvature is K = −1 [12,13,31].

Following standard usage [18], one says that a differential function is a smooth function
which depends on the independent variables x, t , the dependent variable u, and a finite number
of derivatives of u. Hereafter, partial derivatives ∂n+mu/∂xn∂tm, n,m � 0, will be also denoted
by uxntm .

Definition 2. A scalar differential equation

Ξ(x, t, u,ux, . . . , uxntm) = 0 (3)

in two independent variables x, t is of pseudo-spherical type (or, it describes pseudo-spherical
surfaces) if there exist one-forms ωα , α = 1,2,3,

ωα = fα1(x, t, u, . . . , uxr tp ) dx + fα2(x, t, u, . . . , uxs tq ) dt, (4)

whose coefficients fαβ are differential functions, such that the one-forms ωα = ωα(u(x, t)) sat-
isfy the structure equations (2) whenever u = u(x, t) is a solution to Eq. (3).

Consequently, if Ξ = 0 describes pseudo-spherical surfaces with associated one-forms ωα ,
and u(x, t) is a solution to Ξ = 0 such that (ω1 ∧ ω2)(u(x, t)) �= 0, Definition 1 implies that
the domain of u(x, t) can be equipped with a Riemannian metric of constant Gaussian curvature
K = −1.

The functions fαβ could, presumably, all depend only on x and t , but this would be a trivial
case from the point of view of differential equations and it is therefore excluded from further
considerations.

Example 3. Burgers’ equation ut = uxx + uux is an equation of pseudo-spherical type. Associ-
ated one-forms ωα are

ω1 =
(

1
u − β

)
dx + 1

(
ux + 1

u2
)

dt, ω2 = η dx +
(

η
u + β

)
dt,
2 η 2 2 2
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and ω3 = −ω2, in which η is a nonzero parameter and β is a solution to the equation β2 −
ηβx = 0.

The expression “PSS equation” will be sometimes utilized below instead of the more formal
phrase “equation of pseudo-spherical type.”

Definition 4. Let Ξ = 0 be a PSS equation with associated one-forms ωα , α = 1,2,3. A solution
u(x, t) of Ξ = 0 is I-generic if (ω3 ∧ ω2)(u(x, t)) �= 0; II-generic if (ω1 ∧ ω3)(u(x, t)) �= 0; and
III-generic if (ω1 ∧ ω2)(u(x, t)) �= 0.

For instance (see Example 3) the travelling wave u(x, t) = 2ex+t /(1 + ex+t ) is a III-generic
solution of Burgers equation, but it is not I-generic. Definition 4 allows one to refine the geomet-
ric interpretation of PSS equations given above:

Proposition 5. Let Ξ = 0 be a PSS equation with associated one-forms ωα , α = 1,2,3; let
u(x, t) be a solution of Ξ = 0, and set ωα = ωα(u(x, t)).

(a) If u(x, t) is I-generic, ω2 and ω3 determine a Lorentzian metric of Gaussian curvature K =
−1 on the domain of u(x, t), with connection one-form given by ω1.

(b) If u(x, t) is II-generic, ω1 and −ω3 determine a Lorentzian metric of Gaussian curvature
K = −1 on the domain of u(x, t), with connection one-form given by ω2.

(c) If u(x, t) is III-generic, ω1 and ω2 determine a Riemannian metric of Gaussian curvature
K = −1 on the domain of u(x, t), with connection one-form given by ω3.

Proposition 5 is proven in [24]. It is a consequence of the structure equations of a surface
equipped with a metric of signature (1, ε), ε = ±1, which appear, for example, in [12,31].

The invariance properties of the structure equations (2) are spelled out in the following
straightforward proposition.

Proposition 6. Let ωα , α = 1,2,3, be one-forms whose coefficients are differential functions. Let
u(x, t) be a smooth function, and set ωα = ωα(u(x, t)). The structure equations (2) are invariant
under the transformations

ω̂1 = ω1 cosρ + ω2 sinρ, ω̂2 = −ω1 sinρ + ω2 cosρ, ω̂3 = ω3 + dρ; (5)

ω̂1 = ω1 coshρ − ω3 sinhρ, ω̂2 = ω2 + dρ, ω̂3 = −ω1 sinhρ + ω3 coshρ; (6)

ω̂1 = ω1 + dρ, ω̂2 = ω2 coshρ + ω3 sinhρ, ω̂3 = ω2 sinhρ + ω3 coshρ, (7)

in which ρ is any differential function and ρ = ρ(u(x, t)).

The geometric interpretation of this observation follows from Proposition 5: If Ξ = 0 is a
PSS equation with associated one-forms ωα and u(x, t) is a III-generic solution, (5) is simply
the transformation induced on the forms ωα by a rotation of the moving frame dual to the coframe
{ω1,ω2}. Analogously, if u(x, t) is II-generic, (6) is the transformation induced on the forms ωα

by a Lorentz boost of the moving frame dual to the coframe {ω1,−ω3}, and if u(x, t) is I-generic,
(7) is the transformation induced on the forms ωα by a Lorentz boost of the moving frame dual
to the coframe {ω2,ω3}.
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As pointed out in Section 1, conservation laws, symmetries, and classical Bäcklund trans-
formations of PSS equations can be studied via the geometry of pseudo-spherical surfaces [3,
7,20–22,27,31]. Of importance for this paper is the fact that if Ξ(x, t, u, . . .) = 0 describes
pseudo-spherical surfaces with associated one-forms ωα , it is the integrability condition of a
sl(2,R)-valued linear problem. Indeed, it is easy to see that the sl(2,R)-valued linear problem

∂v

∂x
= Xv,

∂v

∂t
= T v, (8)

in which X and T are determined by the sl(2,R)-valued one-form

Ω = X dx + T dt = 1

2

(
ω2 ω1 − ω3

ω1 + ω3 −ω2

)
, (9)

is integrable whenever u(x, t) is a solution to Ξ = 0. In other words, the structure equations (2)
imply that the matrix equation

∂X

∂t
− ∂T

∂x
+ [X,T ] = 0 (10)

is identically satisfied whenever u(x, t) is a solution of Ξ = 0, and so one may hope to study PSS
equations via scattering/inverse scattering techniques [1,2]. An interesting example is provided
by the equation {

ut − [
αg(u) + β

]
ux

}
x

= g′(u), (11)

in which g(u) satisfies the equation

g′′ + μg = θ

and μ,θ,α,β are real numbers. M. Rabelo proved in [19] that Eq. (11) is of pseudo-spherical
type with associated one-forms

ω1 = ζux dx + ζ(αg + β)ux dt, ω2 = η dx + ((
ζ 2g − θ

)
/η + βη

)
dt,

ω3 = (ζg′/η)dt, (12)

in which ζ 2 = αη2 − μ and η is a real parameter. Beals, Rabelo and Tenenblat [3] then used the
linear problem (8) determined by (9) and (12) to solve (11) by adapting to this case the rigorous
scattering/inverse scattering method developed by Beals and Coifman in [1,2].

Remark 7. It is a classical observation [9,27] that—whenever u(x, t) is a solution to Ξ = 0—
one can interpret Eqs. (8)–(10) in terms of connections: Let π :U × SL(2,R) → U , in which
U is (an open subset of) the domain of the solution u(x, t), be a principal fiber bundle, and
consider the sl(2,R)-valued one-form Ω(u(x, t)) determined by (9). This differential form can
be thought of as a flat connection one-form on the bundle π , and the solution v(x, t) to (8) as a
covariantly constant section on a vector bundle U ×V → U associated to π , in which V is some
two-dimensional vector space. This interpretation has been of use in the study of transformations
of solutions of PSS equations [24].
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A standard observation in integrable systems [9] is that an equation Ξ = 0 is not just the
integrability condition of a linear problem such as (8), but that Eq. (10) is in fact equivalent to
Ξ = 0: It is precisely under this assumption that nonlinear equations which are the integrability
condition of linear problems have been found from geometrical or algebraic considerations, see,
for example, Bobenko [4], Dickey [8], Lund and Regge [17], the monograph [31] by Tenenblat,
and also [21,22]. In the case of kth order evolutionary PSS equations ut = F(x, t, u, . . . , uxk )

one can formalize this equivalence as follows [10,13]:
Consider a manifold J equipped with coordinates x, t, u,ux, . . . , uxk , and the differential

ideal IF generated by the two-forms

du ∧ dx + F(x, t, u, . . . , uxk ) dx ∧ dt, duxl ∧ dt − uxl+1 dx ∧ dt,

in which 0 � l � k − 1, so that local solutions of ut = F correspond to integral submanifolds of
the exterior differential system {IF , dx ∧ dt}.

Definition 8. An evolution equation ut = F(x, t, u, . . . , uxk ) is strictly pseudo-spherical if there
exist one-forms ωα = fα1 dx + fα2 dt , α = 1,2,3, whose coefficients fαβ are smooth functions
on J , such that the two-forms

Ω1 = dω1 − ω3 ∧ ω2, Ω2 = dω2 − ω1 ∧ ω3, Ω3 = dω3 − ω1 ∧ ω2 (13)

generate the differential ideal IF .

It follows that if ut = F is strictly pseudo-spherical, it is the necessary and sufficient condition
for the structure equations Ωα = 0 to hold, as it was assumed in the seminal papers [7,27].
Definition 8 will provide important motivation for the constructions appearing in subsequent
sections. The following lemma [24] will be also of interest.

Lemma 9. Necessary and sufficient conditions for the kth order evolution equation ut = F to be
strictly pseudo-spherical with associated differential functions fαβ are the conjunction of

(a) the functions fαβ satisfy the constraints: fα1,uxa = 0; fα2,u
xk

= 0; f 2
11,u + f 2

21,u + f 2
31,u �= 0,

in which a � 1 and α = 1,2,3; and
(b) the following three identities hold:

−f11,uF +
k−1∑
i=0

uxi+1f12,u
xi

+ f21f32 − f31f22 + f12,x − f11,t = 0, (14)

−f21,uF +
k−1∑
i=0

uxi+1f22,u
xi

+ f12f31 − f11f32 + f22,x − f21,t = 0, (15)

−f31,uF +
k−1∑
i=0

uxi+1f32,u
xi

+ f21f12 − f11f22 + f32,x − f31,t = 0. (16)



32 E.G. Reyes / J. Differential Equations 225 (2006) 26–56
3. Hierarchies of equations of pseudo-spherical type

Consider an affine space equipped with coordinates (x, t, τ1, τ2, . . .). Hereafter, generalizing
the convention adopted in Section 2, a differential function will be a real-valued smooth function
depending on a finite number of independent variables x, t , τ1, τ2, . . . , the dependent variable
u, and a finite number of x-derivatives of u. The independent variable t will be also denoted by
τ0 and, unless otherwise explicitly stated, the indices i, j, α,β will have ranges i = 0,1,2, . . . ,
j = 1,2,3, . . . , α = 1,2,3, and β = 1,2.

3.1. Basic definitions

Assume that uτi
= Fi is a countable sequence of evolution equations and set

Dx = ∂

∂x
+

∞∑
j=0

uxj+1
∂

∂uxj

and Dτi
= ∂

∂τi

+
∞∑

j=0

(
D

j
xFi

) ∂

∂uxj

. (17)

Definition 10. Let uτi
= Fi be a countable number of evolutionary equations, in which Fi are

differential functions. These equations form a hierarchy of equations describing pseudo-spherical
surfaces (or uτi

= Fi is a hierarchy of pseudo-spherical type) if there exist differential functions
fαβ and hαj such that for each n � 0, the one-forms Θ

[n]
α given by

Θ [n]
α = fα1 dx + fα2 dt +

n∑
k=1

hαk dτk (18)

satisfy the equations

dH Θ
[n]
1 = Θ

[n]
3 ∧ Θ

[n]
2 , dH Θ

[n]
2 = Θ

[n]
1 ∧ Θ

[n]
3 , dH Θ

[n]
3 = Θ

[n]
1 ∧ Θ

[n]
2 , (19)

in which dH Θ
[n]
α is computed by means of dH (dx) = dH (dτi) = 0 and

dH g = Dxg dx +
n∑

k=0

Dτk
g dτk (20)

for any differential function g.

If uτi
= Fi is a hierarchy of pseudo-spherical type, ut = F is called the seed equation, while

the equations uτj
= Fj are referred to as the higher equations of the hierarchy. Examples are

given at the end of Section 4.

Definition 11. A local smooth solution of a hierarchy of pseudo-spherical type uτi
= Fi is a

sequence {u[n](x, τ0, . . . , τn): n � 0} of smooth functions u[n] :V [n] ⊂ Rn+2 → R such that for
each n � 0 the following two conditions hold:

(a) u[n] is a local smooth solution of the equations uτi
= Fi , i = 0, . . . , n,

(b) u[n+1]|V [n] = u[n].
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Equipped with this notion of solution one can study the geometrical content of Definition 10.

Theorem 12. Let uτi
= Fi be a hierarchy of pseudo-spherical type with associated one-forms

Θ [n]
α = fα1 dx + fα2 dt +

n∑
k=1

hαk dτk, n � 0, (21)

and let the sequence of real-valued smooth functions {u[n]: n � 0} be an arbitrary solution of the
hierarchy uτi

= Fi . For each n � 0, let V [n] ⊆ Rn+2 be (an open subset of ) the domain of the
function u[n].

(1) Assume that n = 0. If Θ
[0]
1 ∧ Θ

[0]
2 (u[0](x, t)) �= 0, the tensor

ds2 = Θ
[0]
1

(
u[0](x, t)

) ⊗ Θ
[0]
1

(
u[0](x, t)

) + Θ
[0]
2

(
u[0](x, t)

) ⊗ Θ
[0]
2

(
u[0](x, t)

)
defines a Riemannian metric of constant Gaussian curvature K = −1 on V [0], and the one-
form Θ

[0]
3 (u[0](x, t)) is the corresponding Levi–Civita connection one-form.

(2) Assume that n � 1. Equip V [n] with a flat pseudo-Riemannian metric of index s, and let
ι :D ⊆ R2 → V [n] be a smooth function from an open set D ⊆ R2 into V [n]. Suppose that
the forms Θ

[n]
α (u[n](x, τ0, . . . , τn)) satisfy the conditions

ι∗
[
Θ [n]

α

(
u[n](x, τ0, . . . , τn)

)] �= 0 and ι∗
[
Θ

[n]
1 ∧ Θ

[n]
2

(
u[n](x, τ0, . . . , τn)

)] �= 0. (22)

(a) The set D can be equipped with the structure of a pseudo-spherical surface: the pair of
one-forms

ι∗
[
Θ

[n]
1

(
u[n](x, τ0, . . . , τn)

)]
and ι∗

[
Θ

[n]
2

(
u[n](x, τ0, . . . , τn)

)]
are a moving coframe on D, and the one-form ι∗[Θ [n]

3 (u[n](x, τ0, . . . , τn))] is the corre-
sponding Levi-Civita connection one-form.

(b) If the index s is equal to n, there exists an isometric immersion of the pseudo-spherical
surface (D,ds2) constructed in (a), in which

ds2 = ι∗
[
Θ

[n]
1

(
u[n](x, τ0, . . . , τn)

)]2 + ι∗
[
Θ

[n]
2

(
u[n](x, τ0, . . . , τn)

)]2
,

into the flat pseudo-Riemannian manifold V [n]. Moreover, the normal bundle of the im-
mersion is flat.

Proof. The following range of indices will be used in this proof:

1 � A,B � n + 2; 1 � i, j � 2; 3 � α,β � n + 2.

Part 1 is a rephrasing of part (c) of Proposition 5, and it is also proven in [13].
Part 2(a) is a consequence of the basic properties of pull-back: Eqs. (19) and conditions (22)

imply that the metric

ds2 = ι∗
[
Θ

[n](
u[n](x, τ0, . . . , τn)

)]2 + ι∗
[
Θ

[n](
u[n](x, τ0, . . . , τn)

)]2

1 2
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on D has Gaussian curvature K = −1, and that ι∗[Θ [n]
3 (u[n](x, τ0, . . . , τn))] is the corresponding

Levi–Civita connection one-form.
Part 2(b) is proven thus: Set σA = 1, except for s indices between 3 and n + 2 for which

σA = −1. The structure equations of a two-dimensional manifold isometrically immersed in the
flat pseudo-Riemannian space V [n] are [12,31]

dω1 = ω2 ∧ ω21, dω2 = ω1 ∧ ω12, (23)

together with the Gauss equation

dω12 =
n+2∑
α=3

σαω1α ∧ ωα2, (24)

the Codazzi equations

dωiα =
2∑

j=1

ωij ∧ ωjα +
n+2∑
β=3

σβωiβ ∧ ωβα, (25)

and the Ricci equations

dωαβ =
n+2∑
γ=3

σγ ωαγ ∧ ωγβ + Ωαβ, (26)

in which the tensor

Ωαβ = ωα1 ∧ ω1β + ωα2 ∧ ω2β (27)

is the normal curvature of the immersed surface. Moreover, the one-forms ωAB satisfy the con-
ditions

ω1 ∧ ω1α + ω2 ∧ ω2α = 0 and ωAB + ωBA = 0, (28)

and the given immersed surface has constant Gaussian curvature K if and only if

n+2∑
α=3

σαω1α ∧ ωα2 = −Kω1 ∧ ω2. (29)

Conversely, assume that there exist two linearly independent one-forms ωi and (n + 2)2 one-
forms ωAB defined on an open subset D of R2 satisfying Eqs. (23)–(28), and equip D with the
metric ω1 ⊗ ω1 + ω2 ⊗ ω2. The fundamental theorem for submanifolds of pseudo-Riemannian
manifolds (see, for example, [12,30,31] and references therein) implies that for any u0 ∈ D, p0 ∈
V [n] and any orthonormal basis {e0

1, . . . , e
0
n+2} of the tangent space of V [n] at p0, the equations

dP = ω1e1 + ω2e2 and deA =
∑

σBωABeB
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determine a unique isometric immersion P :D → V [n] and a unique local orthonormal moving
frame {e1, . . . , en+2} near p0 with P(u0) = p0 and eA(p0) = e0

A.
Now, Definition 10 implies that Eqs. (23) are satisfied if one sets

ω1 = ι∗
[
Θ

[n]
1

(
u[n](x, τ0, . . . , τn)

)]
, ω2 = ι∗

[
Θ

[n]
2

(
u[n](x, τ0, . . . , τn)

)]
, (30)

ω12 = ι∗
[
Θ

[n]
3

(
u[n](x, τ0, . . . , τn)

)]
. (31)

Moreover, since the first equation of (28) implies that

ωiα = hα
i1ω

1 + hα
i2ω

2 and hα
ij = hα

ji, (32)

one can take

ω1α = 1√
n
ω1 and ω2α = 1√

n
ω2, (33)

define one-forms ωαβ simply by

ωαβ = 0, (34)

and set ωBA = −ωAB . Equation (34) implies that the Ricci equations (26) become Ωαβ = 0, and
these equations are identically satisfied because of (33). Also, Eqs. (33) and (34) imply that the
Codazzi equations (25) read

dω1 = ω12 ∧ ω2, dω2 = ω21 ∧ ω1,

which are precisely Eqs. (23). Lastly, the Gauss equation (24) becomes

dω12 =
n+2∑
α=3

σα

1

n
ω1 ∧ (−ω2) = −1

n

(
n+2∑
α=3

σα

)
ω1 ∧ ω2, (35)

and this equation holds if one takes σα = −1 for all α. Thus, Eqs. (23)–(28) are satisfied, and
therefore an isometric immersion P :D → V [n] exists, if the index of the pseudo-Riemannian
manifold V [n] is s = n. Equations (29) and (35) say that the Gaussian curvature of the immersed
manifold P(D) is K = −1, and finally, since the normal curvature tensor Ωαβ is identically zero,
the normal bundle of the immersion P :D → V [n] is flat [31]. �

One can now show that each equation uτi
= Fi which belongs to a hierarchy of pseudo-

spherical type describes pseudo-spherical surfaces. This natural result is a consequence of the
following elementary lemma.

Lemma 13. Let uτi
= Fi be a hierarchy of pseudo-spherical type with associated one-forms

Θ [n]
α = fα1 dx + fα2 dt +

n∑
k=1

hαk dτk, n � 0. (36)
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Then, the following four sets of equations hold:⎧⎨⎩
−Dtf11 + Dxf12 = f31f22 − f32f21,

−Dtf21 + Dxf22 = f11f32 − f12f31,

−Dtf31 + Dxf32 = f11f22 − f12f21;
(37)

⎧⎨⎩
−Dτi

f11 + Dxh1i = f31h2i − h3if21,

−Dτi
f21 + Dxh2i = f11h3i − h1if31,

−Dτi
f31 + Dxh3i = f11h2i − h1if21;

(38)

⎧⎨⎩
−Dτi

f12 + Dth1i = f32h2i − h3if22,

−Dτi
f22 + Dth2i = f12h3i − h1if32,

−Dτi
f32 + Dth3i = f12h2i − h1if22;

(39)

⎧⎨⎩
−Dτj

h1i + Dτi
h1j = h3ih2j − h3j h2i ,

−Dτj
h2i + Dτi

h2j = h1ih3j − h1j h3i ,

−Dτj
h3i + Dτi

h3j = h1ih2j − h1j h2i ,

(40)

in which i, j � 1. Conversely, if uτi
= Fi is a sequence of evolution equations, the operators Dx

and Dτi
are defined as in (17), and there exist differential functions fαβ , hαj such that (37)–(40)

are satisfied, then uτi
= Fi is a hierarchy of pseudo-spherical type with associated one-

forms (36).

Proposition 14. Let uτi
= Fi be a hierarchy of pseudo-spherical type with associated one-forms

Θ [n]
α = fα1 dx + fα2 dt +

n∑
i=1

hαi dτi, n � 0.

The equations uτi
= Fi describe pseudo-spherical surfaces with associated one-forms

ωα
0 = fα1 dx + fα2 dt (if i = 0) and ωα

i = fα1 dx + hαi dτi (if i � 1), (41)

and moreover, the one-forms σα
j = fα2 dt + hαj dτj (j fixed) and σα

ij = hαi dτi + hαj dτj (i, j
fixed, i �= j ) satisfy the structure equations (2) of a pseudo-spherical surface.

3.2. Hierarchies of PSS equations and integrability

In the remaining of this section it will be proven that Definition 10 encodes the properties of
standard hierarchies of integrable equations recalled in Section 1. First of all, the fact that the
higher equations of a hierarchy of pseudo-spherical type are the integrability condition of linear
problems is straightforward.

Proposition 15. Let uτi
= Fi be a hierarchy of pseudo-spherical type. There exist sl(2,R)-valued

functions X and Ti such that for each i � 0, uτi
= Fi is the integrability condition of the linear

problem

vx = Xv, vτi
= Tiv.
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Proof. This result follows from Proposition 14 and Eqs. (8)–(10). �
Remark 16. Remark 7 on single PSS equations and sl(2,R)-valued connection forms general-
izes to hierarchies: If uτi

= Fi is a hierarchy of pseudo-spherical type, it follows from (8), (9)

and (19) that for each n � 0, the trivial bundle V [n] × SL(2,R) can be equipped—whenever
{u[n]: n � 0} is a solution to the hierarchy uτi

= Fi—with a flat sl(2,R)-valued connection.
Moreover, the foregoing discussion implies that for each i � 0 the pull-back of this connection
to the submanifold of coordinates (x, τi) is a flat sl(2,R)-valued connection form associated with
the equation uτi

= Fi . This connection coincides with the one determined by the one-forms (41)

associated to uτi
= Fi .

Next, one shows that hierarchies of pseudo-spherical type generate hierarchies of pairwise
commuting flows. In order to avoid some technicalities—mentioned in Remark 23 below—this
property will be proven in the special case of hierarchies of strictly pseudo-spherical type, which
are now defined in analogy with the single equation case reviewed in Section 2.

Consider a countable number of evolution equations uτi
= Fi , and assume that the ith equa-

tion is of order ki . For each n � 0, let J (n) be a manifold with coordinates (x, t, τ1, . . . , τn,

u,ux, . . . , uxM(n) ), where M(n) is the maximum of the orders kj , 0 � j � n, and let I (n) be the
differential ideal generated by the two-forms

du ∧ dx + F0 dx ∧ dt +
n∑

i=1

Fi dx ∧ dτi; (42)

duxk ∧ dt − uxk+1 dx ∧ dt −
n∑

j=1

Dk
xFj dτj ∧ dt, 0 � k � k0 − 1; (43)

duxk ∧ dτj − uxk+1 dx ∧ dτj − Dk
xF0 dt ∧ dτj −

n∑
l=1

Dk
xFl dτl ∧ dτj , (44)

in which for each j = 1, . . . , n, the index k takes the values k = 0, . . . , kj − 1.

Definition 17. A countable collection of evolution equations uτi
= Fi is a hierarchy of strictly

pseudo-spherical type if there exist differential functions fαβ and hαj such that for every n � 0,

the two-forms Ω
[n]
1 = dΘ

[n]
1 − Θ

[n]
3 ∧ Θ

[n]
2 , Ω

[n]
2 = dΘ

[n]
2 − Θ

[n]
1 ∧ Θ

[n]
3 , and Ω

[n]
3 = dΘ

[n]
3 −

Θ
[n]
1 ∧ Θ

[n]
2 , in which

Θ [n]
α = fα1 dx + fα2 dt +

n∑
j=1

hαj dτj ,

generate the ideal I (n).

Instead of Lemma 9 on single strictly pseudo-spherical equations, one now proves the follow-
ing:

Proposition 18. Consider a sequence of equations uτi
= Fi of order ki and for each n � 0

let M(n) be the maximum of the orders kj , 0 � j � n. Necessary and sufficient conditions for
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the equations uτi
= Fi to define a hierarchy of strictly pseudo-spherical type with associated

functions fαβ and hαj are the conjunction of :

(1) The functions fα1 satisfy the nontriviality inequality f 2
11,u + f 2

21,u + f 2
31,u �= 0;

(2) For each n � 0, the functions fαβ and hαj satisfy

fα1,u
xk

= 0, 1 � k � M(n); fα2,u
xk

= 0, k0 � k � M(n);
hαi,u

xk
= 0, ki � k � M(n);

(3) The functions Fi , fαβ , and hαj satisfy, for all i, j � 0,⎧⎨⎩
−(f11,t + f11,uF0) + Dxf12 = f31f22 − f32f21,

−(f21,t + f21,uF0) + Dxf22 = f11f32 − f12f31,

−(f31,t + f31,uF0) + Dxf32 = f11f22 − f12f21;
(45)

⎧⎨⎩
−(f11,τi

+ f11,uFi) + Dxh1i = f31h2i − h3if21,

−(f21,τi
+ f21,uFi) + Dxh2i = f11h3i − h1if31,

−(f31,τi
+ f31,uFi) + Dxh3i = f11h2i − h1if21;

(46)

⎧⎨⎩
−Dτi

f12 + Dth1i = f32h2i − h3if22,

−Dτi
f22 + Dth2i = f12h3i − h1if32,

−Dτi
f32 + Dth3i = f12h2i − h1if22;

(47)

⎧⎨⎩
−Dτj

h1i + Dτi
h1j = h3ih2j − h3j h2i ,

−Dτj
h2i + Dτi

h2j = h1ih3j − h1j h3i ,

−Dτj
h3i + Dτi

h3j = h1ih2j − h1j h2i .

(48)

Proof. First, one expands the two-form Ω
[n]
1 and considers the structure equation Ω

[n]
1 = 0.

Definition 17 implies that

du ∧ dx + F0 dx ∧ dt +
n∑

i=1

Fi dx ∧ dτi = 0; (49)

duxk ∧ dt − uxk+1 dx ∧ dt −
n∑

j=1

Dk
xFj dτj ∧ dt = 0, 0 � k � k0 − 1, (50)

and also that

duxk ∧ dτj − uxk+1 dx ∧ dτj − Dk
xF0 dt ∧ dτj −

n∑
l=1

Dk
xFl dτl ∧ dτj = 0, (51)

in which for each j = 1, . . . , n, 0 � k � kj − 1. Substituting (49)–(51) into Ω
[n]
1 = 0, and col-

lecting terms, one finds the identities

−f11,t − f11,uF0 + Dxf12 − f31f22 + f32f21 = 0, (52)

−f11,τi
− f11,uFi + Dxh1i − f31h2i + h3if21 = 0, (53)
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−Dτi
f12 + Dth1i − f32h2i + h3if22 = 0, (54)

−Dτj
h1i + Dτi

h1j − h3ih2j + h3j h2i = 0, (55)

and the constraints f11,u
xk

= 0 if 1 � k � M(n); f12,u
xk

= 0 if k0 � k � M(n); and h1i,u
xk

= 0
if ki � k � M(n).

The other equations appearing in (37)–(40) are obtained from the equations Ω
[n]
2 = Ω

[n]
3 = 0.

Finally, the inequality f 2
11,u +f 2

21,u +f 2
31,u �= 0 holds, for otherwise the equations uτi

= Fi would

not be necessary and sufficient for the structure equations Ω
[n]
α = 0 to be satisfied. �

Corollary 19. Let uτi
= Fi be a hierarchy of strictly pseudo-spherical type with associated

functions fαβ and hαj . Then, the equation ut = F0 is strictly pseudo-spherical with associated
one-forms ωα

0 = fα1 dx + fα2 dt and, for each value of j , the equation uτj
= Fj is strictly

pseudo-spherical with associated one forms ωα
j = fα1 dx + hαj dτj .

In order to prove that a hierarchy uτi
= Fi of strictly pseudo-spherical type generates a family

of pairwise commuting flows, one needs to show [8,15,18] that the function Fp is a generalized
symmetry of the equation uτq = Fq for all p,q � 0.

Definition 20. A smooth function G depending on x, t, u and a finite number of derivatives of
u is a generalized symmetry of an evolution equation ut = F(x, t, u, . . . , uxn) if for any local
solution u(x, t), the function u(x, t) + τG(u(x, t)) satisfies ut = F to first order in τ .

For any smooth function f (x, t, u, . . . , uxk ) define the operator f∗ (the formal linearization
of f ) by means of [18]

f∗ =
k∑

i=0

∂f

∂uxi

Di
x, (56)

and consider the operator Dt defined as in (17). Then, a function G as in Definition 20 is a
generalized symmetry of ut = F if and only if the equation

DtG = F∗G

is identically satisfied. In other words, G is a generalized symmetry if the equation DtG =
F∗G, in which Dt is the usual total derivative with respect to t [18], holds identically once all
derivatives with respect to t appearing in it are replaced by means of ut = F . Equivalently [18]
an evolution equation uτ = G is a generalized symmetry of ut = F if the equation

∂G

∂t
+ F∗G − G∗F = 0 (57)

holds whenever u(x, t) is a solution of ut = F . If F and G satisfy

∂F

∂t
= ∂G

∂t
= 0, (58)

Eq. (57) means that, at least formally, the flows of ut = F and uτ = G commute.
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The following characterization of generalized symmetries of strictly pseudo-spherical evolu-
tion equations holds [22].

Lemma 21. Let ut = F(x, t, u, . . . , uxm) be a strictly pseudo-spherical evolution equation with
associated one-forms ωα = fα1 dx + fα2 dt . Let G be a smooth function depending on x, t, u

and a finite number of derivatives of u, and let u(x, t) be a local solution of ut = F . Consider
the deformed one-forms

ωα
(
u(x, t)

) + τΛα

(
u(x, t)

)
,

in which Λα(u(x, t)) is given by

Λα

(
u(x, t)

) = fα1,u

(
u(x, t)

)
G

(
u(x, t)

)
dx +

m−1∑
i=0

fα2,u
xi

(
u(x, t)

)∂iG(u(x, t))

∂xi
dt. (59)

These forms satisfy the structure equations of a pseudo-spherical surface up to terms of order τ 2

if and only if the function G is a generalized symmetry of the equation ut = F .

Motivated by condition (58), it will be assumed hereafter in this section that neither the func-
tions Fj , nor the associated functions fαβ and hαj , depend explicitly on the independent “time”
variables τ0, τ1, τ2, . . . .

Theorem 22. Assume that uτi
= Fi is a hierarchy of strictly pseudo-spherical type with associ-

ated one-forms

Θ [n]
α = fα1 dx + fα2 dt +

n∑
k=1

hαk dτk, n � 0. (60)

The function Fj is a generalized symmetry of the equation uτi
= Fi for all i, j � 0.

Proof. Corollary 19 says that the equations ut = F and uτj
= Fj are strictly pseudo-spherical

with associated one forms ωα
0 = fα1 dx + fα2 dt and ωα

j = fα1 dx + hαj dτj , respectively, and
one can apply the last lemma.

One checks first that the equations uτi
= Fi determine generalized symmetries of the seed

equation ut = F . Consider the deformations of the one-forms ωα
0 induced by u 
→ u + τiFi , and

set Λα
0 = fα1,τi

dx + fα2,τi
dt , in which fαβ,τi

= Dτi
fαβ . These one-forms are of the type (59) if

pulled-back by solutions u(x, t) of ut = F because of Proposition 18. A straightforward compu-
tation shows that the deformed one-forms ωα

0 + τiΛ
α
0 describe pseudo-spherical surfaces to first

order in τi if and only if the equations

dΛ1 = ω3 ∧ Λ2 + Λ3 ∧ ω2, (61)

dΛ2 = ω1 ∧ Λ3 + Λ1 ∧ ω3, and (62)

dΛ3 = ω1 ∧ Λ2 + Λ1 ∧ ω2 (63)
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hold whenever u(x, t) is a solution of the equation ut = F , in which the exterior derivative is
taken in (x, t) space. Now, Eq. (61), for instance, holds if and only if

−f11,τi t + f12,τix = f31f22,τi
− f32f21,τi

+ f31,τi
f22 − f21f32,τi

. (64)

But, because of Eqs. (46) and (47), Eq. (64) is equivalent to

−h2i (−f31,t + f32,x) + h3i (−f21,t + f22,x) = −h2i (f22f11 − f21f12) + h3i (f32f11 − f31f12),

and this equation does hold whenever u(x, t) is a solution of ut = F , since ut = F describes
pseudo-spherical surfaces with associated one-forms ωα

0 . Equations (62) and (63) are treated in
the same way.

Now one can check, in an analogous fashion, that the equations uτj
= Fj determine gen-

eralized symmetries of the equations uτi
= Fi , i �= j . Deform the associated one-forms ωα

i =
fα1 dx + hαi dτi by means of u 
→ u + τjFj . As before, the “infinitesimal deformations”
Λα

i = fα1,τj
dx + hαi,τj

dτi are of type (59) if pulled-back by solutions u(x, τi) of uτi
= Fi .

One then needs to prove that the one-forms ωα
i + τiΛ

α
i describe pseudo-spherical surfaces to

first order in τj , or, in other words, that the equations

dΛ1
i = ω3

i ∧ Λ2
i + Λ3

i ∧ ω2
i , (65)

dΛ2
i = ω1

i ∧ Λ3
i + Λ1

i ∧ ω3
i , (66)

dΛ3
i = ω1

i ∧ Λ2
i + Λ1

i ∧ ω2
i (67)

are satisfied whenever u(x, τi) is a solution of the equation uτi
= Fi , in which the exterior deriv-

ative is taken in (x, τi) space. The proof goes as before, using this time Eqs. (47) and (48). �
Remark 23. It is possible to generalize Theorem 22 to arbitrary hierarchies of pseudo-spherical
type uτi

= Fi , but extra technical difficulties appear: one needs to consider generalized sym-
metries of arbitrary PSS equations, and state an analog of Lemma 21 for them. Such a result
can be proven by taking into account the gauge invariance of the theory of equations describing
pseudo-spherical surfaces, as in [24].

4. Correspondence results

4.1. Introduction

Kamran and Tenenblat in their seminal paper [13]—and then the present author in [24]—
observed that the following two facts: (i) each suitably generic solution u(x, t) of a PSS equation
determines a (pseudo-)Riemannian metric of constant Gaussian curvature −1 on (open subsets
of) the domain of u(x, t) and (ii) (pseudo-)Riemannian surfaces of constant Gaussian curva-
ture are locally isometric, allow one to establish the existence of local transformations between
(suitably generic) solutions of PSS equations. Kamran and Tenenblat’s result was proven by con-
sidering the Riemannian interpretation of the structure equations (2) (item (c) of Proposition 5)
and, accordingly, Eq. (5) of Proposition 6. The pseudo-Riemannian point of view was first stud-
ied in [24].
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These correspondences are very different from classical Bäcklund transformations [31]: they
require explicit changes of independent variables; they appear to be unrelated to symmetry con-
siderations (as it has been observed to happen in the Bäcklund case [3,7,31]); and they are not
restricted to transforming solutions of a same equation, or even equations of the same order. For
instance, the following three results are proven in [24]:

Theorem 24. Let Ξ(x, t, u, . . .) = 0 and Ξ̂(x̂, t̂ , û, . . .) = 0 be two PSS equations with associ-
ated one-forms ωα = fα1 dx + fα2 dt and ω̂α = f̂α1 dx̂ + f̂α2 dt̂ , respectively, and assume that
ω1 ∧ ω3 �≡ 0, and ω̂1 ∧ ω̂3 �≡ 0. Then, for any II-generic solutions u(x, t) of Ξ = 0 and û(x̂, t̂ )

of Ξ̂ = 0, there exist a local diffeomorphism Υ :V → V̂ in which V and V̂ are open subsets of
the domains of u(x, t) and û(x̂, t̂ ), respectively, and a smooth function ν :V → R, such that the
one-forms ωα(u(x, t)) and ω̂α(û(x̂, t̂ )) satisfy the equations

Υ ∗ω̂1 = ω1 coshν − ω3 sinhν,

Υ ∗ω̂2 = ω2 + dν,

Υ ∗ω̂3 = −ω1 sinhν + ω3 coshν. (68)

That the maps Υ and ν exist is a way of stating that (pseudo-)Riemannian surfaces of
constant Gaussian curvature are locally isometric. Now write Υ (x, t) = (γ (x, t), δ(x, t)). The
functions γ , δ and ν depend on both solutions u(x, t) and û(x̂, t̂), of course. However, a closer
analysis of (68) allows one to find a system of equations for γ , δ and ν, for which local existence
of solutions can be proven without previous knowledge of û(x̂, t̂ ).

Lemma 25. Let Ξ(x, t, u, . . .) = 0 and Ξ̂(x̂, t̂ , û, . . .) = 0 be two equations describing pseudo-
spherical surfaces with associated one-forms ωα = fα1 dx + fα2 dt and ω̂α = f̂α1 dx̂ + f̂α2 dt̂ ,
respectively. Suppose that f̂21 = û, and also that ω2 ∧ ω3 �≡ 0, and ω̂2 ∧ ω̂3 �≡ 0. Let Υ (x, t) =
(γ (x, t), δ(x, t)) be a smooth map from (an open subset of ) the space of independent variables
x, t to (an open subset of ) the space of independent variables x̂, t̂ . Set J = γxδt − γtδx , and let
ν(x, t) be a smooth real-valued function. The system of equations

(
Υ ∗f̂11

)
γx + (

Υ ∗f̂12
)
δx = f11 coshν − f31 sinhν, (69)(

Υ ∗f̂11
)
γt + (

Υ ∗f̂12
)
δt = f12 coshν − f32 sinhν, (70)

J
(
Υ ∗f̂22

) = −[
γt (f21 + νx) − γx(f22 + νt )

]
, (71)(

Υ ∗f̂31
)
γx + (

Υ ∗f̂32
)
δx = −f11 sinhν + f31 coshν, (72)(

Υ ∗f̂31
)
γt + (

Υ ∗f̂32
)
δt = −f12 sinhν + f32 coshν, (73)

in which the pull-backs of û and its derivatives appearing in the functions (Υ ∗f̂αβ)(x, t) have
been evaluated by means of the equation

û ◦ Υ = 1 (
δt (f21 + νx) − δx(f22 + νt )

)
, (74)
J
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admits—whenever u(x, t) is a II-generic solution of Ξ = 0—a local solution γ (x, t), δ(x, t),
ν(x, t) defined on (an open subset of ) the domain of u(x, t), such that Υ (x, t) = (γ (x, t), δ(x, t))

is a local diffeomorphism.

The condition f̂21 = û appearing in this lemma (and also in Theorem 26 below) can be re-
moved, see [24]. Lemma 25 implies that there exist transformations carrying a II-generic solution
to Ξ(x, t, u, . . .) = 0 into a II-generic solution to Ξ̂(x̂, t̂ , û, . . .) = 0.

Theorem 26. Let Ξ(x, t, u, . . .) = 0 and Ξ̂(x̂, t̂ , û, . . .) = 0 be two equations describing pseudo-
spherical surfaces with associated one-forms ωα = fα1 dx + fα2 dt and ω̂α = f̂α1 dx̂ + f̂α2 dt̂ ,
respectively. Assume that f̂21 = û and that ω2 ∧ ω3 �≡ 0 and ω̂2 ∧ ω̂3 �≡ 0. For any II-generic
solution u(x, t) to Ξ = 0, take a real-valued function ν(x, t) and a local diffeomorphism
Υ (x, t) = (γ (x, t), δ(x, t)) which solve the system of equations appearing in Lemma 25. Then,
the function û(x̂, t̂ ) defined by means of

û ◦ Υ = 1

J

(
δt (f21 + νx) − δx(f22 + νt )

)
, (75)

in which J is the Jacobian of Υ , is a II-generic solution to Ξ̂ = 0.

One certainly expects correspondence theorems for hierarchies of pseudo-spherical type. As
explained above, the results in the single equation case are based solely on the local geometry of
(pseudo-)Riemannian surfaces of Gaussian curvature equal to −1—as encoded in the structure
equations (2)—and analogous equations appear when one is dealing with hierarchies!

4.2. Correspondence theorems for hierarchies

If uτi
= Fi is a hierarchy of pseudo-spherical type with associated one-forms Θ

[n]
α , the pull–

backs of the differential forms Θ
[n]
α by solutions u[n] will be denoted again by Θ

[n]
α , no confusion

should arise.

Theorem 27. Let uτi
= Fi(x, t, u, . . .) and ûτ̂i

= F̂i(x̂, t̂ , û, . . .) be two hierarchies of pseudo-
spherical type with associated one-forms given by

Θ [n]
α = fα1 dx + fα2 dt +

n∑
i=1

hαi dτi and Θ̂ [n]
α = f̂α1 dx̂ + f̂α2 dt̂ +

n∑
i=1

ĥαi dτ̂i . (76)

Let {u[n]} and {û[n]} be solutions of uτi
= Fi and ûτ̂i

= F̂i , respectively, and assume that
u[0](x, t) and û[0](x̂, t̂ ) are III-generic. For each n � 0 there exist a local diffeomorphism
Υ [n] :V [n] → V̂ [n]—in which V [n] and V̂ [n] are open subsets of the domains of u[n] and û[n]—
and a smooth function μ[n] :V [n] → R such that

Υ [n]∗Θ̂ [n]
1 = Θ

[n]
1 cosμ[n] + Θ

[n]
2 sinμ[n], (77)

Υ [n]∗Θ̂ [n]
2 = −Θ

[n]
1 sinμ[n] + Θ

[n]
2 cosμ[n], (78)

Υ [n]∗Θ̂ [n] = Θ
[n] + dμ[n]. (79)
3 3
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Moreover, the maps Υ [n] and μ[n] can be chosen so that for each n � 0,

Υ [n+1]∣∣
V [n] = Υ [n] and μ[n+1]∣∣

V [n] = μ[n]. (80)

Proof. For each n � 0 consider the one-forms σ
[n]
α given by

σ
[n]
1 = 1

t̂
dx̂ +

n∑
i=1

1

t̂
dτ̂i , σ

[n]
2 = 1

t̂
d t̂ , σ

[n]
3 = σ

[n]
1 . (81)

Note that σ
[0]
1 ⊗ σ

[0]
1 + σ

[0]
2 ⊗ σ

[0]
2 is exactly the standard hyperbolic metric on the Poincaré

upper-half plane, and that σ
[0]
3 is the corresponding connection one-form. One easily checks that

for any n � 0 the one-forms σ
[n]
α satisfy the structure equations

dσ
[n]
1 = σ

[n]
3 ∧ σ

[n]
2 , dσ

[n]
2 = σ

[n]
1 ∧ σ

[n]
3 , dσ

[n]
3 = σ

[n]
1 ∧ σ

[n]
2 (82)

identically. Now one can prove that for each n � 0 there exists a local diffeomorphism
Γ [n] : (x, t, τ1, . . . , τn) 
→ (x̂, t̂ , τ̂1, . . . , τ̂n) and a real-valued smooth function θ [n](x, t, τ1,

. . . , τn) such that

Γ [n]∗σ [n]
1 = Θ

[n]
1 cos θ [n] + Θ

[n]
2 sin θ [n], (83)

Γ [n]∗σ [n]
2 = −Θ

[n]
1 sin θ [n] + Θ

[n]
2 cos θ [n], (84)

Γ [n]∗σ [n]
3 = Θ

[n]
3 + dθ [n]. (85)

Indeed, write Γ [n] = (α,β,T1, . . . , Tn), in which α,β,Ti : V [n] → R. Equations (83)–(85) are
equivalent to the following system of equations:

1

β

(
αx +

n∑
i=1

Ti,x

)
= f11 cos θ [n] + f21 sin θ [n], (86)

1

β

(
αt +

n∑
i=1

Ti,t

)
= f12 cos θ [n] + f22 sin θ [n], (87)

1

β

(
ατj

+
n∑

i=1

Ti,τj

)
= h1j cos θ [n] + h2j sin θ [n], j = 1, . . . , n, (88)

1

β
βx = −f11 sin θ [n] + f21 cos θ [n], (89)

1

β
βt = −f12 sin θ [n] + f22 cos θ [n], (90)

1

β
βτj

= −h1j sin θ [n] + h2j cos θ [n], j = 1, . . . , n, (91)

1

β

(
αx +

n∑
Ti,x

)
= f31 + θ [n]

x , (92)

i=1
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1

β

(
αt +

n∑
i=1

Ti,t

)
= f32 + θ

[n]
t , (93)

1

β

(
ατj

+
n∑

i=1

Ti,τj

)
= h3j + θ [n]

τj
, j = 1, . . . , n. (94)

Substituting Eqs. (86)–(88) into (92)–(94) one can write the system (86)–(94) as

d

(
α +

n∑
i=1

Ti

)
= β

(
Θ

[n]
1 cos θ [n] + Θ

[n]
2 sin θ [n]), (95)

d(lnβ) = −Θ
[n]
1 sin θ [n] + Θ

[n]
2 cos θ [n], (96)

Θ
[n]
1 cos θ [n] + Θ

[n]
2 sin θ [n] = Θ

[n]
3 + dθ [n], (97)

in which the operator d indicates exterior derivative on V [n]. The Pfaffian system (97) is com-
pletely integrable for θ [n](x, t, τ1, . . . , τn), since that for each n � 0 the equations

dΘ
[n]
1 = Θ

[n]
3 ∧ Θ

[n]
2 , dΘ

[n]
2 = Θ

[n]
1 ∧ Θ

[n]
3 , dΘ

[n]
3 = Θ

[n]
1 ∧ Θ

[n]
2 , (98)

are satisfied on solutions of the hierarchy uτi
= Fi . Using (97) it is then straightforward to check

that the right-hand sides of (95) and (96) are closed one-forms. Thus, Eqs. (95) and (96) deter-
mine β and α+∑n

i=1 Ti . The functions Ti , i = 1, . . . , n, are almost arbitrary: they are constrained
only by the fact that Γ [n] = (α,β,T1, . . . , Tn) be a local diffeomorphism. A natural choice is to
take Ti = τi . It then follows that the Jacobian determinant of Γ [n] is

αxβt − αtβx = β2(f11f22 − f12f21),

and therefore, since u[0](x, t) is III-generic, Γ [n] is a local diffeomorphism.
Next, arguing as above one finds a diffeomorphism Γ̂ [n] and a function θ̂ [n] satisfying

Eqs. (83)–(85) with Θ
[n]
α replaced by Θ̂

[n]
α . It is then straightforward to check that the maps

Υ [n] = (
Γ̂ [n])−1 ◦ Γ [n] and μ[n] = θ [n] − θ̂ [n] ◦ Υ [n]

satisfy Eqs. (77)–(79).
It remains to prove that the functions Υ [n] and μ[n], n � 0, can be chosen so that they sat-

isfy the compatibility condition (80). The fact that Υ [n+1]|V [n] = Υ [n] follows trivially from
the construction of the local diffeomorphisms Υ [n]. On the other hand, in order to check that
μ[n+1]|V [n] = μ[n], it is of course enough to see that

θ [n+1]∣∣
V [n] = θ [n] and θ̂ [n+1]∣∣

V̂ [n] = θ̂ [n], n � 0. (99)

Consider the first equation appearing in (99). Expanding Eq. (97) with θ [n] replaced by θ [n+1],
one sees that the function θ [n+1] is determined by the Pfaffian system
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Θ
[n]
1 cos θ [n+1] + Θ

[n]
2 sin θ [n+1] = Θ

[n]
3 + dθ [n+1], (100)

h1,n+1 cos θ [n+1] + h2,n+1 sin θ [n+1] = h3,n+1 + ∂θ [n+1]

∂τn+1
, (101)

in which the operator d appearing in (100) is the exterior derivative on V [n]. Now consider the
Cauchy problem {

∂z
∂τn+1

= h1,n+1 cos z + h2,n+1 sin z − h3,n+1,

z(x, t, τ1, . . . , τn,0) = θ [n](x, t, τ1, . . . , τn).
(102)

It is proven in [11], for instance, that Cauchy problems of the form (102) have unique solutions.
Let z(x, t, τ1, . . . , τn, τn+1) be such a solution, and set θ [n+1] = z. Since θ [n] satisfies Eq. (100)
by construction, the function θ [n+1] satisfies (100), (101), and θ [n+1]|V [n] = θ [n]. The second
condition appearing in (99) is treated in a similar way. This ends the proof. �
Corollary 28. Let uτi

= Fi(x, t, u, . . .) and ûτ̂i
= F̂i(x̂, t̂ , û, . . .) be two hierarchies of pseudo-

spherical type with associated one-forms given by (76). Let {u[n]} and {û[n]} be solutions of
uτi

= Fi and ûτ̂i
= F̂i , respectively, and assume that u[0](x, t) and û[0](x̂, t̂ ) are III-generic.

There exist sequences of maps {Υ [n]} and {μ[n]} such that:

(a) for each n � 0, Υ [n] = (ψ [n], ϕ[n], φ[n]
1 , . . . , φ

[n]
n ) is a local diffeomorphism from an open

subset V [n] of the domain of u[n] to an open subset V̂ [n] of the domain of û[n] and
Υ [n+1]|V [n] = Υ [n];

(b) for each n � 0, μ[n] :V [n] → R is a smooth real-valued function and μ[n+1]|V [n] = μ[n]; and
(c) for each n � 0, one can in fact choose Υ [n] = (ψ [n], ϕ[n], τ1, . . . , τn), and the pull-backs of

the functions fαβ , hαi , f̂αβ , and ĥαi by u[n] and û[n], respectively, satisfy

f̂11 ◦ Υ [n] = Δ
[n]
1

Δ[n] , f̂12 ◦ Υ [n] = Δ
[n]
2

Δ[n] , ĥ1j ◦ Υ [n] = Δ
[n]
j+2

Δ[n] , (103)

in which Δ[n] is given by

Δ[n] =

∣∣∣∣∣∣∣∣∣∣∣∣

ψ
[n]
x ϕ

[n]
x 0 . . . 0

ψ
[n]
τ0 ϕ

[n]
τ0 0 . . . 0

ψ
[n]
τ1 ϕ

[n]
τ1 1 . . . 0

...
...

...
. . .

...

ψ
[n]
τn ϕ

[n]
τn 0 . . . 1

∣∣∣∣∣∣∣∣∣∣∣∣
= ψ [n]

x ϕ
[n]
t − ϕ[n]

x ψ
[n]
t , (104)

and for each i = 1,2, . . . , n + 2, the determinant Δi is equal to Δ, except for the ith column
which is replaced by the column vector⎛⎜⎜⎜⎜⎝

f11 cosμ[n] + f21 sinμ[n]
f12 cosμ[n] + f22 sinμ[n]
h11 cosμ[n] + h21 sinμ[n]

...

h1n cosμ[n] + h2n sinμ[n]

⎞⎟⎟⎟⎟⎠ . (105)



E.G. Reyes / J. Differential Equations 225 (2006) 26–56 47
Proof. Theorem 27 implies that there exist sequences {Υ [n]} and {μ[n]} of smooth maps satisfy-
ing (a) and (b) above, and such that for each n � 0,

Υ [n]∗Θ̂ [n]
1 = Θ

[n]
1 cosμ[n] + Θ

[n]
2 sinμ[n], (106)

Υ [n]∗Θ̂ [n]
2 = −Θ

[n]
1 sinμ[n] + Θ

[n]
2 cosμ[n], (107)

Υ [n]∗Θ̂ [n]
3 = Θ

[n]
3 + dμ[n]. (108)

Write Υ [n] = (ψ [n], ϕ[n], φ[n]
1 , . . . , φ

[n]
n ), ĝαβ = f̂αβ ◦ Υ [n], and Ĥαj = ĥαj ◦ Υ [n]. The construc-

tion of Υ [n] appearing in the proof of Theorem 27 implies that φ
[n]
j = τj , j = 1,2, . . . , n, and

therefore system (106)–(108) becomes

ĝ11ψ
[n]
x + ĝ12ϕ

[n]
x = f11 cosμ[n] + f21 sinμ[n], (109)

ĝ11ψ
[n]
t + ĝ12ϕ

[n]
t = f12 cosμ[n] + f22 sinμ[n], (110)

ĝ11ψ
[n]
τj

+ ĝ12ϕ
[n]
τj

+ Ĥ1j = h1j cosμ[n] + h2j sinμ[n], (111)

ĝ21ψ
[n]
x + ĝ22ϕ

[n]
x = −f11 sinμ[n] + f21 cosμ[n], (112)

ĝ21ψ
[n]
t + ĝ22ϕ

[n]
t = −f12 sinμ[n] + f22 cosμ[n], (113)

ĝ21ψ
[n]
τj

+ ĝ22ϕ
[n]
τj

+ Ĥ2j = −h1j sinμ[n] + h2j cosμ[n], (114)

ĝ31ψ
[n]
x + ĝ32ϕ

[n]
x = f31 + μ[n]

x , (115)

ĝ31ψ
[n]
t + ĝ32ϕ

[n]
t = f32 + μ

[n]
t , (116)

ĝ31ψ
[n]
τj

+ ĝ32ϕ
[n]
τj

+ Ĥ3j = h3j + μ[n]
τj

, (117)

in which j = 1,2, . . . , n. One can consider the n + 2 equations (109)–(111) as a linear system
for the functions ĝ11, ĝ12, and Ĥ1j , j = 1,2, . . . , n. It is easy to see that the determinant of the
left-hand side of (109)–(111) is given by (104), and therefore Cramer’s rule implies that

ĝ11 = f̂11 ◦ Υ [n] = Δ
[n]
1

Δ[n] , ĝ12 = f̂12 ◦ Υ [n] = Δ
[n]
2

Δ[n] , and Ĥ1j = ĥ1j ◦ Υ [n] = Δ
[n]
j+2

Δ[n] ,

in which Δi is determined by (104) and (105). �
Now one would like to use Theorem 27 and Corollary 28 to show the existence of a local

smooth mapping transforming a solution {u[n]} of the hierarchy uτi
= Fi into a solution {û[n]} of

the hierarchy ûτ̂i
= F̂i . In order to avoid some technicalities related to the gauge freedom one has

to determine one-forms associated with differential equations describing pseudo-spherical sur-
faces [24], only hierarchies of strictly pseudo-spherical type will be considered in what follows.
Motivated by Corollary 28, let

Υ [n] = (
ψ [n], ϕ[n], φ[n]

1 , . . . , φ[n]
n

)
, n � 0, (118)

be a smooth map from (an open subset of) Rn+2 equipped with coordinates (x, t, τ1, . . . , τn) to
(an open subset of) Rn+2 equipped with coordinates (x̂, t̂ , τ̂1, . . . , τ̂n), and let μ[n](x, t, τ1, . . . , τn)
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be a smooth real-valued function on (an open subset of) Rn+2. Also, define the determinants Δ[n]
and Δ

[n]
i as

Δ[n] = Jacobian
(
Υ [n]) (119)

and Δ
[n]
i = Δ[n], except for the ith column, which is replaced by the vector (105).

Lemma 29. Let uτi
= Fi and ûτ̂i

= F̂i be two hierarchies of strictly pseudo-spherical type with

associated functions fαβ , hαj , and f̂αβ , ĥαj respectively, and assume that f̂11 = G(û) with

G′ �= 0. For each n � 0, let Υ [n] be a smooth map as in (118), let μ[n](x, t, τ1, . . . , τn) be
a smooth real-valued function on an open subset of Rn+2, and set ĝαβ = f̂αβ ◦ Υ [n] and
Ĥαj = ĥαj ◦ Υ [n]. The system of equations

Δ[n]ĝ12 = Δ
[n]
2 , (120)

Δ[n]Ĥ1j = Δ
[n]
j+2, (121)

ĝ21ψ
[n]
x + ĝ22ϕ

[n]
x +

n∑
i=1

Ĥ2iφi,x = f21 cosμ[n] − f11 sinμ[n], (122)

ĝ21ψ
[n]
t + ĝ22ϕ

[n]
t +

n∑
i=1

Ĥ2iφi,t = f22 cosμ[n] − f12 sinμ[n], (123)

ĝ21ψ
[n]
τj

+ ĝ22ϕ
[n]
τj

+
n∑

i=1

Ĥ2j φi,τj
= h2j cosμ[n] − h1j sinμ[n], (124)

ĝ31ψ
[n]
x + ĝ32ϕ

[n]
x +

n∑
i=1

Ĥ3iφi,x = f31 + μ[n]
x , (125)

ĝ31ψ
[n]
t + ĝ32ϕ

[n]
t +

n∑
i=1

Ĥ3iφi,t = f32 + μ
[n]
t , (126)

ĝ31ψ
[n]
τj

+ ĝ32ϕ
[n]
τj

+
n∑

i=1

Ĥ3j φi,τj
= h3j + μ[n]

τj
, (127)

in which the index j runs from 1 to n and the left-hand sides of (120)–(127) have been evaluated
by means of the equation

f̂11 ◦ Υ [n] = G(û) ◦ Υ [n] = Δ
[n]
1

Δ[n] , (128)

admits—whenever {u[n]} is a solution of the hierarchy uτi
= Fi such that u[0](x, t) is

III-generic—a local solution ψ [n], ϕ[n], φ
[n], . . . , φ

[n]
n and μ[n], defined on an open subset V [n]
1
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of Rn+2, such that Υ [n] = (ψ [n], ϕ[n], φ[n]
1 , . . . , φ

[n]
n ) is a local diffeomorphism. Moreover, the

maps Υ [n] and μ[n] can be chosen so that

Υ [n+1]∣∣
V [n] = Υ [n] and μ[n+1]∣∣

V [n] = μ[n], n � 0. (129)

Proof. Let {û[n]} be any solution of the hierarchy ûτ̂i
= F̂i such that û[0](x, t) is III-generic.

By Theorem 27, there exist functions ψ [n], ϕ[n], φ
[n]
i and μ[n] satisfying (77)–(79), (129), and

such that Υ [n] = (ψ [n], ϕ[n], φ[n]
1 , . . . , φ

[n]
n ) is a local diffeomorphism. One can show that these

functions also satisfy the system of equations (120)–(127). Indeed, let G̃αβ , and H̃αj be the

functions depending on x, t , ψ [n], ϕ[n], φ
[n]
1 , . . . , φ

[n]
n , and their derivatives, which are obtained

from f̂αβ and ĥαj by computing the pull-backs Υ ∗f̂αβ and Υ ∗ĥαj by means of Eq. (128), as in

the enunciate of the lemma. On the solutions ψ [n], ϕ[n], φ
[n]
i and μ[n] of system (77)–(79) one

has, for any α and β ,

G̃αβ = f̂αβ ◦ Υ [n] = ĝαβ, H̃αj = ĥαj ◦ Υ [n] = Ĥαj ,

since on these solutions, Eq. (128) is an identity. Thus, system (120)–(127) reduces to the first
order system (77)–(79), and the result follows by writing this system in components, as in the
proof of Corollary 28. �

Now one can prove a correspondence result generalizing the single equation case treated in
[13,24].

Theorem 30. Let uτi
= Fi and ûτ̂i

= F̂i be two hierarchies of strictly pseudo-spherical type

with associated functions fαβ , hαj , and f̂αβ , ĥαj , respectively. Assume that f̂11 = G(û) with
G′ �= 0. For any solution {u[n]} of the hierarchy uτi

= Fi such that u[0](x, t) is III-generic, there
exist local diffeomorphisms Υ [n] and real-valued functions μ[n], n � 0, on open subsets V [n]
of Rn+2, satisfying the conditions

Υ [n+1]∣∣
V [n] = Υ [n], μ[n+1]∣∣

V [n] = μ[n], (130)

and such that the equation

f̂11 ◦ Υ [n] = Δ
[n]
1

Δ[n] (131)

determines a solution {û[n]} of the hierarchy ûτ̂i
= F̂i for which û[0](x, t) is also III-generic.

Proof. Let {u[n]} be a solution of the hierarchy uτi
= Fi such that u[0](x, t) is III-generic.

By Lemma 29, the system of Eqs. (120)–(127) possesses local solutions ψ [n], ϕ[n], φ1, . . . , φn

and μ[n], such that Υ [n] = (ψ [n], ϕ[n], φ1, . . . , φn) is a local diffeomorphism with domain
V [n] ⊆ Rn+2 and such that restriction (130) holds. Define û[n] ◦ Υ [n] by means of Eq. (131).
Then, for each n � 0 one finds a system of equations equivalent to
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Υ [n]∗Θ̂ [n]
1 = Θ

[n]
1 cosμ[n] + Θ

[n]
2 sinμ[n], (132)

Υ [n]∗Θ̂ [n]
2 = −Θ

[n]
1 sinμ[n] + Θ

[n]
2 cosμ[n], (133)

Υ [n]∗Θ̂ [n]
3 = Θ

[n]
3 + dμ[n], (134)

and moreover û[n+1] ◦ Υ [n+1]|V [n] = û[n] ◦ Υ [n]. Since Υ [n] is a local diffeomorphism and the
one-forms Θ

[n]
α satisfy Eqs. (19), so do the one-forms Θ̂

[n]
α . This means that (131) determines a

solution of the hierarchy ûτ̂i
= F̂i , as claimed. Finally, note that, in particular, Eqs. (132)–(134)

hold for n = 0. But then, (132) and (133) imply that (notation as in Proposition 14)

Υ [0]∗(ω̂1
0 ∧ ω̂2

0

) = ω1
0 ∧ ω2

0,

that is,

Jacobian
(
Υ [0])(f̂11f̂22 − f̂12f̂21

) = f11f22 − f12f21,

and one concludes that û[0](x̂, t̂ ) is indeed a III-generic solution since Υ [0] is a diffeomor-
phism. �

Thus, the existence of local correspondences between solutions to hierarchies of strictly
pseudo-spherical type has been proven in this paper basically by “dressing”—via Eq. (5)—the
hierarchy of pseudo-spherical structures (81) naturally induced by the Poincaré metric. Obvi-
ously, one expects that results analogous to the ones appearing in this section can be obtained if
one takes a “pseudo-Riemannian” point of view, as in [24], and dresses—via Eqs. (6) and (7)—
standard hierarchies of pseudo-Riemannian surfaces of constant Gaussian curvature.

It is also important to stress the fact that, as it happens in the single equation case [13,24,25],
the transformation (131) appearing in Theorem 30 depends on the particular solution {u[n]} of
the hierarchy uτi

= Fi one starts with, and that the proof of existence of the functions Υ [n] and
μ[n] of Lemma 29 relies on the Frobenius theorem. Since the natural arena for the study of the
formal geometry of differential equations is the theory of infinite-dimensional jet spaces ([15,29]
and references therein) and at this level there is no Frobenius theorem available [15,16,29], The-
orem 30 does not imply that one can “transfer” information on, for instance, conservation laws
or symmetries from one hierarchy to another by means of (131). However, one could think of
(131) intuitively as determining a “mapping” from the space of (smooth, local) solutions to a
hierarchy uτi

= Fi to the space of (smooth, local) solutions to a hierarchy ûτ̂i
= F̂i . Then one

could ask whether information about the structure of the former (for example, information about
its topology, along the lines of [5,16]) gives some insight into the structure of the latter. These
matters deserve further investigation.

4.3. Examples

This paper ends with some simple applications of Theorems 27 and 30 to the ubiquitous
Korteweg–de Vries hierarchy. It follows from the seminal paper [6] by Chern and Peng that this
hierarchy is of strictly pseudo-spherical type with associated functions

f11 = 1 − u, f12 = λux − uxx − 2u2 + 2u − λ2u + λ2; (135)
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f21 = λ, f22 = λ3 + 2λu − 2ux; (136)

f31 = −1 − u, f32 = λux − uxx − λ2u − 2u2 − λ2 − 2u (137)

and

h1i = 1

2
λB(i+1)

x − 1

2
B(i+1)

xx − uB(i+1) + B(i+1); (138)

h2i = λB(i+1) − B(i+1)
x ; (139)

h3i = 1

2
λB(i+1)

x − 1

2
B(i+1)

xx − uB(i+1) − B(i+1), (140)

in which

B(i) =
i∑

j=0

Bjλ
2(i−j),

and the functions Bj are defined recursively by means of the equations

B0,x = 0, (141)

Bj+1,x = Bj,xxx + 4uBj,x + 2uxBj , j � 0. (142)

The functions Fi , i � 0, are given by

Fi = 1

2
Bi+1,xxx + uxBi+1 + 2uBi+1,x = 1

2
Bi+2,x (143)

or, equivalently in terms of the functions B(i), by

Fi = 1

2
B(i+1)

xxx + uxB
(i+1) + 2uB(i+1)

x − 1

2
λ2B(i+1)

x .

For instance, one can easily check that if B0 = 1 and all integration constants are set to zero, the
equation uτ0 = F0 is the standard K–dV equation ut = uxxx + 6uux , and uτ1 = F1 and uτ2 = F2
are, respectively,

uτ1 = uxxxxx + 20uxuxx + 10uuxxx + 30u2ux,

uτ2 = uxxxxxxx + 70uxxuxxx + 42uxuxxxx + 14uuxxxxx + 70u3
x

+ 280uuxuxx + 70u2uxxx + 140u3ux.

A detailed study of the initial value problem for the K–dV hierarchy appears in Schwarz Jr.’s
paper [28]. An elementary solution to this hierarchy is the sequence of functions {u[n]: n � 0}
given by

u[n](x, t, τ1, . . . , τn) = 2 sech2(x + 4t + 16τ1 + 64τ2 + · · · + 4n+1τn

)
, (144)
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as it can be easily checked by induction. The physical content of solution (144) has been inves-
tigated by Kraenkel, Manna and Pereira in [14]. These authors have also shown in [14] that the
higher K–dV equations themselves play an important role in the description of the propagation
of long-surface waves in a shallow inviscid fluid.

Straightening-out the K–dV hierarchy. In this example is shown how one can transform a so-
lution to the K–dV hierarchy into a solution of a hierarchy of linear equations. Consider the
hierarchy ûτ̂i

= F̂i with seed equation ût̂ = ûx̂x̂ + ûx̂ , and higher equations

ûτ̂i
= ai+2

i+1 ûx̂i+2 +
i∑

l=1

ai+2
l ûx̂l+1 +

i+1∑
l=1

ai+2
l ûx̂l , (145)

in which the constants ar
s are arbitrary except that ar

1 = 1, r � 1. It is straightforward to check
that the hierarchy (145) is of strictly pseudo-spherical type with associated functions

f̂11 = û, f̂12 = ûx̂ , f̂21 = 1, f̂22 = 0, f̂31 = û, f̂32 = ûx̂; (146)

ĥ1i =
i+1∑
k=1

ai+2
k ûx̂k , ĥ2i = 0, ĥ3i = ĥ1i . (147)

Now, the proof of Theorem 27 implies that if the sequence {u[n]: n � 0} is a solution of the
K–dV hierarchy such that u[0](x, t) is III-generic (for instance, solution (144) satisfies this con-
dition) there exist functions α(x, t, . . . , τn), β(x, t, . . . , τn) and θ [n](x, t, . . . , τn), n � 0, such
that Eqs. (95)–(97) hold. Define diffeomorphisms Υ [n] : (x, t, τ1, . . . , τn) 
→ (x̂, t̂ , τ̂1, . . . , τ̂n) and
functions μ[n] :V [n] → R, n � 0, by means of the formulae

x̂ = − ln

∣∣∣∣∣β + 1

β

(
α +

n∑
i=1

τi

)2∣∣∣∣∣; (148)

t̂ = −
(

α + ∑n
i=1 τi

β

)
+ 1 −

n∑
i=1

τi + ln

∣∣∣∣∣β + 1

β

(
α +

n∑
i=1

τi

)2∣∣∣∣∣; (149)

τ̂i = τi, 1 � i � n, (150)

and

μ[n](x, t, τ1, . . . , τn) = θ [n](x, t, τ1, . . . , τn) − θ̃ [n] ◦ Υ [n](x, t, τ1, . . . , τn), (151)

in which θ̃ [n] is determined by the relations

cos θ̃ [n] = −1 + K2

1 + K2
, sin θ̃ [n] = 2K

1 + K2
, K = − 1

β

(
α +

n∑
τi

)
.

i=1
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The functions Υ [n] and μ[n] solve Eqs. (120)–(127) of Lemma 29, and therefore Theorem 30 can
be applied. One finds that {û[n]: n � 0}, in which

û[n] = x̂ + t̂ + τ̂1 + · · · + τ̂n,

is a solution to the hierarchy (145).

From linear equations to the K–dV hierarchy. In this example the “hatted” variables correspond
to the K–dV hierarchy. It will be shown how a simple solution to the K–dV equation, which also
solves the K–dV hierarchy, can be obtained starting from the solution u[n] = x + t + τ1 +· · ·+ τn

to (145).
Consider the following function from the space V̂ [n] into itself:

x̂ = 1

3D̂

(−12t̂ x̂2 + x̂5 − 2x̂3 − 12t̂
) −

n∑
i=1

τ̂i; (152)

t̂ = 1

D̂
x̂4; (153)

τ̂i = τ̂i , i = 1, . . . , n, (154)

in which D̂ = 4(6t̂ + x̂3)2 + x̂2(x̂3 − 12t̂ )2. The Jacobian of (152)–(154) is −8x̂3(x̂2 + 2)/D̂2,
and therefore this transformation is a local diffeomorphism away from x̂ = 0. Let T [n] be its
inverse transformation.

Now pull-back the one-forms Θ
[n]
α determined by functions (146)–(147) by means of the

solution u[n] = x + t + τ1 + · · · + τn. Then, the transformation Γ [n] given by

x̂ = −(x + t + τ1 + · · · + τn − 1)e−x

1 + (x + t + τ1 + · · · + τn − 1)2
−

n∑
i=1

τi; (155)

t̂ = e−x

1 + (x + t + τ1 + · · · + τn − 1)2
; (156)

τ̂i = τi, i = 1, . . . , n, (157)

and the function θ [n] :V [n] → R, determined by

cos θ [n] = −1 + (x + t + τ1 + · · · + τn − 1)2

1 + (x + t + τ1 + · · · + τn − 1)2
, sin θ [n] = 2(x + t + τ1 + · · · + τn − 1)

1 + (x + t + τ1 + · · · + τn − 1)2
,

solve Eqs. (83)–(85), thereby determining a correspondence between the Poincaré family of
pseudo-spherical structures (81) and the family of pseudo-spherical structures defined by the
one-forms Θ

[n]
α . Let Υ [n](x, t, τ1, . . . , τn) be the composition of T [n] and (155)–(157), and set

μ[n](x, t, τ1, . . . , τn) = θ [n](x, t, τ1, . . . , τn) − (
θ̂ [n] ◦ Υ [n])(x, t, τ1, . . . , τn),

in which

θ̂ [n] = 2 arctan

(
x̂(x̂3 − 12t̂ )

ˆ 3

)
.

2(6t + x̂ )
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Then, the diffeomorphism Υ [n] and the function μ[n] satisfy the system of Eqs. (120)–(127) of
Lemma 29, and Theorem 30 implies that the sequence {û[n]: n � 0}, given by

û[n](x, t, τ1, . . . , τn) = − 2

x̂2
, (158)

is a solution to the K–dV hierarchy.
It is possible to find a transformation from the solution u[n] = x + t +τ1 +· · ·+τn to arbitrary

stationary solutions to the (higher) K–dV equations, but computations become more involved.
Details will appear elsewhere [26].

Bäcklund transformation for the K–dV hierarchy. As a final example, it will be shown that the
Bäcklund transformation for the K–dV hierarchy can be recovered from the proof of Theorem 27.
Indeed, this transformation appears if one considers Eq. (97). Recall that this equation reads

Θ
[n]
1 cos θ [n] + Θ

[n]
2 sin θ [n] = Θ

[n]
3 + dθ [n], (159)

and note that this Pfaffian system is integrable if and only if the structure equations (19) are
satisfied. Changing variables by means of Γ [n] = cot(θ [n]/2) and using formulae (135)–(140),
one finds that (159) is equivalent to the Riccati system

(
Γ [n])2 + λΓ [n] + u = −Γ [n]

x , (160)

B(n+1)
(
Γ [n])2 + (

λB(n+1) − B(n+1)
x

)
Γ [n] −

(
1

2
λB(n+1)

x − 1

2
B(n+1)

xx − uB(n+1)

)
= −Γ [n]

τn
.

(161)

Setting λ = 0, so that B(i) = Bi for all i � 0, one obtains the important Riccati system

(
Γ [n])2 + u = −Γ [n]

x , (162)

Bn+1
(
Γ [n])2 − Bn+1,xΓ

[n] + 1

2
Bn+1,xx + uBn+1 = −Γ [n]

τn
. (163)

For instance, one can note that if n = 0, Eq. (162) is precisely the Miura transformation [6,8]
and that replacing (162) into Eq. (163) yields the modified K–dV equation Γt = (Γxx − 2Γ 3)x .
In order to generalize this observation to arbitrary n one proceeds as follows, inspired once more
by the beautiful paper [6]: Define a sequence of functions Rj (Γ ) by means of

R0,x = 0, (164)

Γ −1Rj+1,x = [
Γ −1Rj,x

]
xx

− 4(Γ Rj )x, (165)

and also set

Mn(Γ ) = 1

2
Γ −1Rn+1,x . (166)

The following technical lemma can be proven by a straightforward computation.
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Lemma 31. Let B̃j = Mj−1 +Rj and set R0 = 1. The functions B̃j satisfy the recursion relation
(141) and (142) if u is replaced by −Γx − Γ 2.

Thus, since Eqs. (141) and (142) determine the polynomials Bj , one concludes that if one
substitutes u = −Γx − Γ 2 into Bj one obtains precisely Mj−1 + Rj . Making this substitution in
(163) and simplifying, one concludes that system (162), (163) is equivalent to

u = −Γx − Γ 2, −1

2
Mn+1 = Γτn. (167)

The second equation in (167) is the nth order modified K–dV. In order to obtain the Bäcklund
transformation for the K–dV hierarchy one now follows the arguments of [6,7]: The functions Rj

are invariant under the change from Γ to −Γ and therefore the functions Mj satisfy Mj(−Γ ) =
−Mj(Γ ). It follows that the second equation of (167) is invariant under the change Γ 
→ −Γ .
The crucial observation is that the first equation of (167) is not invariant under this change of
variables. It becomes

ũ = Γx − Γ 2,

which, by construction, determines a new solution to the K–dV hierarchy. Writing u = wx and
ũ = w̃x one easily obtains

−1

2
(w − w̃) = Γ,

and it follows that w and w̃ satisfy the system

wx + w̃x = −1

2
(w − w̃), (168)

wτi
− w̃τi

= Mi+1

(
−1

2
(w − w̃)

)
. (169)

This is the classical Bäcklund transformation for the K–dV hierarchy.
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